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Abstract. Electrochemical gas sensors (EGSs) have been
used to measure the surface distributions and vertical profiles
of trace gases in the wintertime Arctic boundary layer during
the Alaskan Layered Pollution and Chemical Analysis (AL-
PACA) field experiment in Fairbanks, Alaska, in January—
February 2022. The MICRO sensors for MEasurements of
GASes (MICROMEGAS) instrument set up with CO, NO,
NO;, and O3 EGSs was operated on the ground at an outdoor
reference site in downtown Fairbanks for calibration, while
on board a vehicle moving through the city and its surround-
ings and on board a tethered balloon, the helikite, at a site at
the edge of the city. To calibrate the measurements, a set of
machine learning (ML) calibration methods were tested. For
each method, learning and prediction were performed with
coincident MICROMEGAS and reference analyser measure-
ments at the downtown site. For CO, the calibration parame-
ters provided by the manufacturer led to the best agreement

between the EGS and the reference analyser, and no ML
method was needed for calibration. The Pearson correlation
coefficient R is 0.82, and the slope of the linear regression
between MICROMEGAS and reference data is 1.12. The
mean bias is not significant, but the root mean square error
(290 ppbv, parts per billion by volume) is rather large because
of CO concentrations reaching several ppmv (parts per mil-
lion by volume) in downtown Fairbanks. For NO, NO;, and
O3, the best agreements for the prediction datasets were ob-
tained with an artificial neural network, the multi-layer per-
ceptron. For these three gases, the correlation coefficients are
higher than 0.95, and the slopes of linear regressions with the
reference data are in the range 0.93—1.04. The mean biases,
which are 1£3, 0+4, and 3 £ 12 ppbv for NO,, O3, and
NO, respectively, are not significant. Measurements from the
car round of 21 January are presented to highlight the abil-
ity of MICROMEGAS to quantify the surface variability in
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the target trace gases in Fairbanks and the surrounding hills.
MICROMEGAS flew 11 times from the ground up to a max-
imum of 350 m above ground level (a.g.l.) on board the he-
likite at the site at the edge of the city. The statistics per-
formed over the helikite MICROMEGAS dataset show that
the median vertical gas profiles are characterized by almost
constant mixing ratios. The median values over the vertical
are 140, 8, 4, and 32 ppbv for CO, NO, NO;, and O3. Ex-
treme values are detected with low-O3 and high-NO; and
NO concentrations between 100 and 150 ma.g.l. O3 mini-
mum levels (5th percentile) of 5ppbv are coincident with
NO; maximum levels (95th percentile) of 40 ppbv, which oc-
cur around 200 ma.g.l. The peaks aloft are linked to pollu-
tion plumes originating from Fairbanks power plants such as
those documented during the flight on 20 February.

1 Introduction

Low-cost electrochemical gas sensors (EGSs) have been
widely used for air quality (AQ) applications for more than
a decade (Karagulian et al., 2019; Kang et al., 2022, and ref-
erences therein). Their use is still expanding due to their af-
fordability and the need to fill gaps in existing air quality
monitoring networks to better track and understand pollu-
tion patterns. However, their calibration is challenging but
critical to guarantee their validity and reliability (Kang et al.,
2022). Most of the applications take place with sensors set up
on the ground in urban environments at mid-latitudes in the
USA (Zimmerman et al., 2018; Casey et al., 2019; Malings
et al., 2019), Europe (Mead et al., 2013; Popoola et al., 2016;
Spinelle et al., 2015, 2017; Schmitz et al., 2023), or China
(Wei et al., 2018; Smith et al., 2019; Liu et al., 2021; Liang et
al., 2021). Interestingly, Schmitz et al. (2023) installed low-
cost sensors at the ground level and at different altitudes on
buildings in Berlin streets to document the horizontal and
vertical gradients of O3 and NO; in street canyons. Never-
theless, very few publications deal with the use of EGSs on
board flying platforms; Li et al. (2017) presented EGS O3
measurements from an unpiloted aerial vehicle (UAV), and
Schuldt et al. (2023) discussed CO, NO, NO,, and O3 ob-
servations from a Zeppelin in Germany. Furthermore, to our
best knowledge, low-cost AQ sensors have not been applied
in the Arctic region, especially in winter, except for particu-
late matter and CO; in the Svalbard archipelago (Carotenuto
et al., 2020).

During the winter, extremely low temperatures prevail
in the Arctic, accompanied by very stable meteorological
conditions and large temperature inversions at the surface
(surface-based inversion, SBI) or within the first few hun-
dreds of metres above the ground (elevated inversions, Els)
(Mayfield and Fochesatto, 2013). Consequently, high emis-
sions from home heating systems and road traffic are trapped
near the ground, producing severe air pollution episodes
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(Schmale et al., 2018). The international Alaskan Layered
Pollution and Chemical Analysis (ALPACA) field campaign
(Simpson et al., 2024) in January—February 2022 was de-
signed to understand the processes responsible for the regular
episodes of poor air quality in Fairbanks. ALPACA was the
first large-scale international experiment investigating these
issues in the Arctic, where anthropization linked to the ex-
ploitation of natural resources (e.g. minerals, energy, and ma-
rine) and growing human settlements are expected to accel-
erate with the on-going accelerated warming of the Arctic
(Rantanen et al., 2022). As part of ALPACA, outdoor sur-
face observations of trace gases, volatile organic compounds
(VOCs), and particles were performed at the Community and
Technical College (CTC) of the University of Alaska Fair-
banks (UAF) (64.841°N, 147.727° W; 136 m a.s.l.) in down-
town Fairbanks. The MICRO sensors for MEasurements of
GASes (MICROMEGAS) instrument, equipped with NO,
NO,, CO, and O3 EGSs, was deployed at different sites
and on different platforms during the ALPACA campaign.
First, MICROMEGAS was regularly operated over periods
of hours to days throughout the campaign at the outdoor CTC
site for calibration purposes. It was also used on board road
vehicles to map surface pollution in and around Fairbanks.
As the primary target of the MICROMEGAS deployment in
ALPACA, vertical profiles of trace gases were collected up
to 350 m above ground level (a.g.l) with a tethered balloon
at the UAF farm site at the northwestern edge of Fairbanks
(64.853°N, 147.859°W; 138 ma.s.l.). The tethered balloon
combines the features of a helium balloon and a kite to re-
main stable with winds up to 15 m s~ 1. it is hereafter referred
to as a helikite (Pohorsky et al., 2024b).

This novel use of EGSs in extremely cold and polluted
conditions on board moving platforms requires careful cal-
ibration and validation. The EGS performances are usually
found to be very good in the laboratory with controlled con-
ditions and gas concentrations (Mead et al., 2013), but it is
challenging to obtain the precision and accuracy required for
AQ applications in ambient conditions. Indeed, the EGS out-
put voltages show dependences on relative humidity (RH)
and temperature (Mead et al., 2013; Popoola et al., 2016;
Spinelle et al., 2015; Liang et al., 2021). Water vapour mod-
ifies the equilibrium between the sampled air and the sensor
electrodes, and temperature impacts the diffusion of gases
into the sensors and the current of the electrodes (Popoola
et al., 2016; Cross et al., 2017; Pang et al., 2018). Cross-
sensitivities with trace gases other than the targeted gas could
also be a challenge for EGSs (Kang et al., 2022). Finally, the
relationships between the measured voltages and the impact-
ing atmospheric parameters vary with the range of the am-
bient conditions (gas concentrations, temperature, and RH).
These relationships are subject to changes and drifts when
the sensors are used for long periods with changing condi-
tions or in different locations. Regular measurement peri-
ods at the CTC allowed the establishment of a comprehen-
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sive database for MICROMEGAS EGS calibration through-
out the ALPACA-2022 campaign.

The calibration of EGSs is an on-going research area. Re-
sults from calibration methods from hundreds of publications
about low-cost sensors have been reviewed by Karagulian
et al. (2019) and Kang et al. (2022). To calibrate the sen-
sors, one needs to select the type of calibration data and the
calibration method. The calibration can be based on explicit
relationships between the sensor outputs and the ambient pa-
rameters derived from laboratory measurements in controlled
conditions, such as in Wei et al. (2018). Nevertheless, labo-
ratory conditions cannot span all the possible outdoor or in-
door conditions, and most calibration methods are derived
from field measurements. One also needs to choose the cal-
ibration method which provides the best function to fit ref-
erence observations with EGS measurements. Most of the
recent methods used for EGS calibration fall into the vast
field of machine learning (ML) (Spinelle et al., 2015, 2017,
Bigi et al., 2018; Casey et al., 2019; Malings et al., 2019;
Liang et al., 2021; Bittner et al., 2022). We have therefore
tested various ML methods based on the EGS literature and
selected the best one for each of our target gases. After deal-
ing with the calibration issue, we present an original use of
EGSs to document trace gas distributions in the wintertime
Arctic boundary layer (ABL).

In Sect. 2, we start by providing details about the obser-
vations such as the MICROMEGAS instrument (Sect. 2.1)
and the Modular Multiplatform Compatible Air Measure-
ment System (MoMuCAMS) that hosted this instrument dur-
ing the balloon flights (Sect. 2.2). We then describe the ref-
erence analysers used for calibration and validation of MI-
CROMEGAS (Sect. 2.3). The operational strategy of MI-
CROMEGAS during the ALPACA-2022 campaign and the
different sites at which it was operated are presented in
Sect. 2.4. The diverse calibration methods considered here,
crucial elements for the adequate use of EGS, are introduced
in Sect. 2.5. Section 3 is dedicated to the presentation of the
results, starting with the calibration and validation of the dif-
ferent EGSs (CO, NO, NO,, and O3) using the reference
measurements made at the CTC site (Sect. 3.1). Comparisons
with independent measurements were performed with in-
struments from the MoMuCAMS platform at the UAF farm
site on the ground (Sect. 3.2.1) and during balloon flights
(Sect. 3.2.2) for CO and O3. An example of the surface map-
ping of trace gases from on-road mobile sampling is dis-
cussed in Sect. 3.3. The vertical profiles obtained during the
tethered balloon flights are finally discussed in Sect. 3.4, and
conclusions are presented in Sect. 4.

https://doi.org/10.5194/amt-18-1163-2025

2 Observations
2.1 MICROMEGAS instrument

The MICROMEGAS instrument contains A4 (NO, NO»,
O, = 03 +NO,, and CO) EGSs purchased from Alphasense
Ltd. The sensors are set up on four-sensor AFEs (analogue
front-ends), which are electronic boards from Alphasense in-
cluding the amplification and filtering of the sensor signals.
The acquisition electronics consist of an ADC (analogue-to-
digital converter) and a secure digital (SD) card recorder. The
EGSs are complemented with two Sensirion SHT75 rela-
tive humidity (RH) and temperature sensors. According to its
data sheet, the SHT75 sensors measure relative humidity and
temperature with 1.8 % and 0.3 °C accuracy and 8 and 5 s re-
sponse time, respectively. The position of the instrument was
recorded from a Diglent Pmod GPS with 3m 2D satellite
positioning accuracy. Data from the EGSs, temperature and
RH sensors, and GPS were recorded with 1 Hz frequency.
All sensors and electronics are set up in a 20 x 20 x 15¢cm
polystyrene box for which the inside temperature is regulated
with a thermal regulator connected to a thin 4 W film heater.
The sensors are set up on specific gas hoods built in PVDF
(polyvinylidene fluoride) and provided by Alphasense. The
outside air is pumped in with a mini 3.3 V diaphragm pump,

providing a flow of 0.3 L min~.

2.2 MoMuCAMS balloon platform

The MoMuCAMS is the platform developed to document in
situ vertical profiles of aerosol properties, namely CO, CO»,
and Oz, in the lowermost atmosphere flying on board a teth-
ered balloon called the helikite (Pohorsky et al., 2024b). Mo-
MuCAMS allows various combinations of instruments for
the observation of multiple aerosol properties (number con-
centration, size distribution, optical properties, and chemi-
cal composition and morphology), as well as CO, CO,, and
O3 concentrations and meteorological variables (tempera-
ture, relative humidity, and pressure). CO measurements are
performed with a MIRA Pico instrument (Aeris Technolo-
gies) with a precision better than 1 ppbv (parts per billion by
volume), according to the manufacturer. The O3 instrument
is a 2B Tech monitor with 1 ppbv (2 %) precision (see Po-
horsky et al., 2024b). The MIRA PICO instrument weighs
2.7kg, and the 2B Tech O3 monitor weighs 1.9 kg.

2.3 UAF reference measurements

The CTC site was the ALPACA reference site for outdoor
pollution in downtown Fairbanks (Simpson et al., 2024). At
this site, trace gases (NO, NO», O3, CO, and SO;) and CO;
were measured by reference instruments from 1 January to
16 March 2022 (Cesler-Maloney et al., 2024). CO was mea-
sured with a gas filter correlation analyser, O3 with an ultra-
violet photometric analyser, and NO and NO; with a chemi-
luminescence analyser. The gas analysers were calibrated
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roughly every week at the CTC site. The data were deliv-
ered with minute and hour averages. The CTC hourly av-
eraged time series of temperature, difference in temperature
between 3 and 23 m, humidity, CO,, and trace gas concen-
trations are displayed in Fig. 1. Temperature variations were
important during the campaign, with the occurrence of al-
ternating warm and cold periods. This is particularly appar-
ent for the period from 29 January to 10 February. The first
part of this period (29 January to 3 February) is character-
ized by low temperatures and high surface pressures (not
shown) corresponding to anticyclonic conditions (Fochesatto
et al., 2025). Such conditions promote the formation of a SBI
(Mayfield and Fochesatto, 2013). The temperature inversion
is clearly seen in Fig. 1 with the enhanced 23-3 m temper-
ature gradient. The trapping of pollutants in the SBI is also
captured with hourly NO concentrations above 100 ppbv and
enhanced CO (> 1 ppmv, parts per million by volume) and
CO» concentrations. It was so polluted that titration by NO
resulted in O3 levels lower than 1 ppbv during that period.
The anticyclonic period ends on 3 February during the early
afternoon, leading to an abrupt increase in temperature, the
decline in the SBI, the decrease in NO, NO,, CO, and CO,,
and the increase in O3. The temperature at 3 m rises by 10 °C
(from —27 to —17 °C), the 23-3 m inversion drops from 5.5
to 0.8 °C, and NO drops from 167.8 to 5.5 ppbv within only
4h (from 11:00 to 15:00 AKST, Alaska standard time).

The trace gas concentrations at the CTC are therefore
highly variable, depending on the local meteorological con-
ditions. This was taken into account when choosing the learn-
ing and prediction datasets, notably the concentration ranges,
to perform and validate the calibration of the EGSs.

2.4 MICROMEGAS deployment strategy

During the ALPACA 2022 field experiment, the MI-
CROMEGAS instrument was deployed in three different
ways. It was operated at the CTC site for calibration against
reference analysers for seven periods corresponding to a total
of 250h (see Fig. 2). At the CTC, the temperature recorded
on one of the EGSs (see Fig. 3) displays a moderate vari-
ability (11 to 28 °C) compared to the outside temperature,
which varies from —34 to 5°C (see Fig. 1). According to
their data sheets, the A4 sensors can be operated over a wide
range of temperatures from —30 to 50 °C for NO, NO,, and
CO and —20 to 50 °C for O, (https://www.alphasense.com/,
last access: 24 February 2025). The thermal regulation of
the sensors limits the effect of outside temperature vari-
ations on the measured concentrations. Nonetheless, this
effect is accounted for when calibrating the data, as de-
scribed in Sect. 2.5. The outside air RH sampled by the MI-
CROMEGAS SHT?75 sensor varies between 28 % and 83 %,
with the lowest values recorded during the coldest period
from 29 January to 3 February.

MICROMEGAS was also deployed five times between
21 January and 16 February in a vehicle for the surface
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mapping of pollution in and around Fairbanks. The MI-
CROMEGAS insulated box was placed inside a larger plas-
tic box on the roof of the vehicle. The vehicle was driven at
a speed slower than 20mh~! in order to sample distances
shorter than 500 mmin~!. It also stopped frequently for a
few minutes to sample specific locations.

Finally, MICROMEGAS was incorporated in the MoMu-
CAMS platform to be deployed with other instruments on
board the helikite at the UAF farm site. The balloon payload
was designed to sample vertical profiles of trace gases and
particles and possibly intercept pollution plumes in the ABL.
The MICROMEGAS instrument weighs only 2 kg. It could
therefore replace the MoMuCAMS CO and O3 instruments
for less than half their combined weight to save space and
weight in order to fly with a more complete aerosol package
(see Pohorsky et al., 2024b). More importantly, it also mea-
sures NO and NO, which are not part of the MoMuCAMS
instrumental package. MICROMEGAS performed 11 suc-
cessful balloon flights. Nighttime flights reached higher al-
titudes (up to 350 ma.g.1.) and lasted longer (up to 5h) than
daytime flights because of air traffic regulations.

Data from the MoMuCAMS CO and O3 instruments were
compared to the calibrated MICROMEGAS observations
when the instruments were jointly operated at the UAF farm
site (Sect. 3.2.1) and during helikite flights (Sect. 3.2.2).

2.5 Calibration methodology

As mentioned in the Introduction, low-cost EGSs calibration
can be conducted under controlled atmospheric conditions
(gas concentrations, temperature, and humidity) in labora-
tories or ambient conditions in the field. The latter option
allows the sampling of more realistic conditions that bet-
ter match the environmental conditions encountered during
observations. Furthermore, during the ALPACA-2022 cam-
paign, we had observations with reference analysers for four
target gases (CO, O3, NO, and NO;) at the CTC site. We
have therefore chosen the second option for our calibration.

2.5.1 Regression method

The calibration methods themselves fall into two categories,
namely parametric and non-parametric methods. Many stud-
ies use parametric ML methods that simplify the function to
be fit to a known form. The simplest forms are univariate
or multivariate linear or quadratic functions which are often
used as reference methods (Spinelle et al., 2015, 2017; Bigi
et al., 2018; Casey et al., 2019; Malings et al., 2019; Liang
et al., 2021; Bittner et al., 2022). The calibration model from
the manufacturer, called “raw” in the paper, is based on a
linear regression (LR) between calibrated gas concentrations
and the voltages output by the electrodes of the sensors.
More sophisticated forms could be artificial neural net-
works (ANNs; Casey et al.,, 2019; Malings et al., 2019;
Spinelle et al., 2015, 2017). Non-parametric ML algorithms
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Figure 1. Time series of hourly averaged CTC measurements. (a) Temperature at 3 m (red; left axis) and 7(23 m)-7'(3 m) (dashed grey line;
right axis). (b) CO, (solid black line; left axis) and CO (dashed grey line; right axis). (¢) NO (dashed grey line; left axis), NO, (dotted blue
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Figure 2. Timeline of MICROMEGAS operations during ALPACA 2022 with (green; C1 to C7) calibration periods at the CTC site, (red; F1
to F11) flights on board the helikite at the UAF farm site, and (blue; S1 to S7) car (“Sniffer”’) rounds on board road vehicles.

have also been used such as decision trees (Bigi et al., 2018;
Smith et al., 2019), support vector machines (Bigi et al.,
2018), Gaussian processes (Smith et al., 2019; Malings et
al., 2019), or k nearest-neighbour clustering (Malings et al.,
2019; Bittner et al., 2022). To take advantage of parametric
and non-parametric methods, some authors have also devel-
oped hybrid models combining, for instance, linear regres-

https://doi.org/10.5194/amt-18-1163-2025

sion and random forest (Zauli-Sajani et al., 2021; Zimmer-
man et al., 2018; Malings et al., 2019; Bittner et al., 2022).
Parametric and non-parametric methods have their ad-
vantages and drawbacks. Non-parametric methods gener-
ally provide better fits than parametric methods because the
form of the relationship between the EGS gas concentra-
tions (output) and input parameters (working and auxiliary
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electrode voltages, humidity, and temperature) is less con-
strained. Nevertheless, they have difficulties for prediction in
conditions (target or interfering gas concentrations, temper-
ature, or humidity) that fall outside of the learning dataset.
In contrast, parametric models generally allow broader and
more reliable extrapolations to conditions outside of those
of the learning dataset. However, they are subject to a lower
flexibility of the input—output relationships, which are set to
a given function or set of functions.

Spinelle et al. (2015) (respectively, Spinelle et al., 2017)
proposed LR or multivariate linear regressions (MLRs) and
ANN methods for the calibration of O3 and NO, (respec-
tively, NO, CO, and CO,) sensors. As they concluded that
simple LRs and MLRs are characterized by high uncertain-
ties, we tested the MLR and slightly different linear meth-
ods. LR minimizes a difference in order to reproduce best a
mean value. Quantile regressions (QRs) allow us to minimize
the differences to best reproduce a given quantile (g) such as
the median (¢ =0.5). We therefore tested QR methods with
g =0.25 (QRO0.25), 0.5 (QRO.5), and 0.75(QRO0.75).

Spinelle et al. (2015) also used two types of ANNs, namely
radial-based functions and a multi-layer perceptron (MLP).
They found out that the former did not yield satisfactory re-
sults and thus discarded it. Spinelle et al. (2015, 2017) re-
lied on MLPs because they provided very good results. Fol-
lowing their recommendations, we tested calibrations with a
MLP. The MLP is a supervised learning algorithm that re-
quires tuning multiple hyperparameters to achieve optimal
results. After preliminary tests varying these hyperparame-
ters, the results of the MLP calibration were not found to
be very sensitive to the number of neurons, layers, and it-
erations that we set to 10, 10, and 4000, respectively. The
results appeared more sensitive to the regularization param-
eter « (introduced to mitigate overfitting). Large « values
promote smaller weights, thus improving the fit for high
variances but potentially leading to overfitting; lower « val-
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ues favour larger weights and, hence, better fix high biases,
which may result in underfitting. Based on our preliminary
tests, we present the best results which were achieved with «
between 1 and 1000.

Non-parametric methods such as random forest (RF) are
also used for EGS calibration (Bigi et al., 2018; Smith
et al.,, 2019). We tested two renowned ensemble non-
parametric methods, namely the histogram-based gradient-
boosting trees (HGBT) and the RF. The RF model is set
with 100 estimators (trees in the forest), with 5 samples re-
quired to be at a leaf node and a minimum of 2 samples
required to split an internal node. The HGBT model has a
maximum number of iterations of the boosting process (max-
imum number of trees) set to 100 and a maximum number
of leaves for each tree set to 15. Our calibration ML tools
are based on Python libraries from the scikit-learn initia-
tive (https://scikit-learn.org/stable/, last access: 24 February
2025) described in Pedregosa et al. (2011).

To select the most robust method, the calibration data had
to be split into two parts, with one for the learning of the
calibration functions (Eq. 1 below) and one to validate the
predictions made by these functions. The use of randomly
selected training and prediction data yields excellent results,
with Pearson correlation coefficients (R) generally exceed-
ing 0.95 for the training and prediction data. The fact that the
performances of the different models are almost identical,
as are the results obtained from the training and prediction
data, does not allow selecting the best model with this ran-
dom choice of prediction data. Furthermore, when the trained
models are applied to balloon data, some of them produce in-
consistent results such as constant gas concentrations during
portions of the flights and abrupt transitions from one con-
stant value to another. This is particularly true for the non-
parametric methods, namely RF and HGBT, which struggle
to extrapolate beyond the training dataset. Indeed, during bal-
loon flights, weather conditions and especially pollution lev-
els differ from those encountered in the city at the CTC site.
In order to overcome those difficulties, the CTC data were
split into two equal and independent parts of ~ 125h (see
Fig. 3), with both containing very cold and highly polluted
periods and warmer and less polluted periods. The choice of
two independent subsets instead of a validation set randomly
selected from the whole dataset allows us to test methods
more robustly, particularly their ability to extrapolate when
conditions fall outside the training set limits, as will be pre-
sented in Sect. 3.1.

The pollution levels of the learning and prediction periods
can clearly be inferred from NO levels in Fig. 7. It has to be
noted that the learning and prediction periods were identical
for the four gases.

2.5.2 Regression parameters

As mentioned earlier, the output voltages of the EGS depend
not only on the concentration of the target gas but also on
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that of interfering gases, as well as RH and temperature (7).
Therefore the calibration function f to be adjusted must be
a function of all these parameters. As we do not have direct
measurements of the interfering gases, we use the voltage of
the working electrode Vy, and of the auxiliary electrode V; of
the EGS targeting these gases when available. For the EGS
targeting gas GO with cross-sensitivities to gases G (i) with
i =1 to n, the generic calibration function can be written as

[GO] = f(Vw(GO), Va(GO), Vi (G(D)), Va(G (1)), ...,
Vw(G(n)), Va(G(n)), RH, T) . ey

According to its data sheet from Alphasense, the CO-A4
EGS does not present important cross-sensitivities to other
trace gases. Furthermore, Liang et al. (2021) do not use inter-
fering gases for the calibration of CO-B4 Alphasense sensors
in monitoring AQ in Chinese cities. Therefore, no interfering
gases are introduced in the calibration function (Eq. 1) for
CoO.

With laboratory measurements, Lewis et al. (2016) showed
that for Alphasense B4 EGS the working electrode of Oy
sensors is equally sensitive to O3 and NO», the electrode
of NO sensors to NO and NO,, and the electrode of NO,
sensors mostly sensitive to NO, and less sensitive to NO.
Some regression models for NO and NO; include the net
(Vw — Va) voltages from the NO and NO» sensors (Bigi et
al., 2018). Based on these studies with varying approaches,
we performed sensitivity tests with various combinations of
trace gases for the NO, NO», and O, sensors. For NO, the ad-
dition of the NO, voltage as a variable in its calibration func-
tion makes no significant difference, and no interfering gases
are accounted for in the NO regression. For NO;, the addition
of voltages from the NO sensor in Eq. (1) slightly improves
the agreement with the reference data, and therefore NO is
accounted for in the NO; regression as a cross-sensitive gas.
For O3, the best results are obtained with the addition of the
voltages of the NO; and also of the NO sensor.

2.5.3 Evaluation statistics

To choose the best calibration method for each trace gas, it is
necessary to evaluate how the fit obtained with each method
reproduces the reference data in terms of absolute value (ac-
curacy) and variability (precision). The accuracy (systematic
error) is quantified by the mean bias error (MBE) (i.e. aver-
age difference between the reference and the calibrated data);
the precision or average magnitude of the errors is approxi-
mated by the root mean square error (RMSE) (i.e. the square
root of the average of the squared differences between refer-
ence and calibrated data). The agreement regarding the phase
of the variations can be assessed with the Pearson correlation
coefficient R. The agreement regarding the amplitude of the
variations can be evaluated with the ratio between the stan-
dard deviation of the calibrated data and that of the reference
data.
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The Taylor diagram, commonly used in meteorology and
climate science, takes advantage of the trigonometric rela-
tionship between the RMSE, standard deviations, and corre-
lation coefficients to synthetically display the performances
of multiple datasets against a reference dataset (Taylor,
2001). It consists of a circular grid, with each dataset repre-
sented by a point and with the reference dataset placed at the
centre of the x axis (e.g. see Fig. 4). The distance between a
data point and the reference point provides the RMSE of the
experiment, and the distance from the centre of the diagram
provides the ratio of the standard deviations. The correlation
coefficient between the reference and the experiment is given
by the azimuthal position of the point. For each experiment,
the RMSEs and standard deviations are normalized by the
standard deviation of the reference data to display the results
from multiple experiments on a single diagram.

3 Results
3.1 Validation against reference measurements

For comparison with reference data at the CTC site, MI-
CROMEGAS data were averaged in 1min intervals. For
the four trace gases, the correlation coefficient R, MBE,
and RMSE from comparisons between MICROMEGAS-
calibrated data and reference learning and prediction data at
the CTC are gathered in Table 1 for the selected calibration
methods. We also provide the slope of the linear regressions
fitted between MICROMEGAS and reference data.

The choice of the calibration method for each target trace
gas is explained in the following subsections which present
the detailed calibration results for CO (Sect. 3.1.1), NO
(Sect. 3.1.2), NO; (Sect. 3.1.3), and O3 (Sect. 3.1.4).

311 CO

The Taylor diagram of the CO sensor displays the results
from the different calibration methods for the learning and
prediction datasets at the CTC (Fig. 4a). As expected, the
performances are better for the learning dataset than for
the prediction dataset, with larger correlation coefficients
(0.86 < R <0.96 for learning and 0.74 < R < 0.83 for pre-
diction) and ratios of variabilities relative to the reference
data closer to unity. The HGBT and RF achieve the best
agreement for learning but almost the worst for prediction.
These non-parametric methods are characterized by a strong
flexibility that enable them to match the reference dataset
very well, but they have difficulties with predicting data that
fall even slightly outside of their learning database. In our
case, learning and prediction datasets are chosen within pe-
riods with similar weather and pollution conditions but with
some differences that are probably the reason for the lower
performances with the prediction dataset.

Except for the non-parametric methods, all the calibration
methods have R values slightly larger than 0.8 for the predic-
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Table 1. Statistics of the comparisons between MICROMEGAS and reference data at the CTC, including the correlation coefficients (R),
mean bias error (MBE), root mean square error (RMSE), and slope of the regression line fitted (MICROMEGAS versus reference) between

both datasets.

Species  Method Learning ‘ Prediction
R MBE £+ RMSE (ppbv) slope ‘ R MBE £+ RMSE (ppbv)  slope
CcO raw 0.86 14+£186 1.24 | 0.82 —74+£290 1.12
NO MLP 100 0.99 0+7 099 | 097 3+12  1.04
NO, MLP 100 0.98 0+3 098 | 0.98 1£3 1.00
03 MLP 100 0.98 0+2 098 | 0.95 0+4 093
% ref
—o— raw 2000 (b) Method:raw
0.0 0.1 0.2 @ :g: !Zeoa;5 learning . )
—— q=0.50 1750 | prediction - :
1.35 —%— q=0.75 1
—<&— random forest
1.20 ~A— MLP 1.0 1500 4 p
—— MLP 10.0 -
105 V- MLP1000 &
[ S, —+— MLP1000.0 £ 1250 1
5 —o— HGBT g
& 0.90 -0 raw 3
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3 075 -8 ¢=0.25 <
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§ 0560 % g=0.75 £ 7%
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0.45 S —A- MLP1.0 500 4
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Figure 4. CO calibration methods. (a) Taylor diagram for MICROMEGAS versus CTC reference measurements with (red symbols) learning
data and (blue symbols) prediction data. (b) Scatter plot of MICROMEGAS raw data versus CTC with (orange symbols) learning data and
(blue symbols) prediction data, together with the (black line) unity and (red line) linear regression.

tion dataset (Fig. 4a). The differences come from their abil-
ity to reproduce the amplitude of the CO variability from the
reference dataset, with ratios varying from 0.71 (MLP1.0) to
0.97 (QRO0.75). The performances of the raw data in repro-
ducing the variability in the reference data are almost simi-
lar to the performances of QR0.75, but the raw data MBE is
much smaller, at —7 instead of 61 ppbv (see Table 1), and we
have therefore chosen to use the raw data for the CO EGS.

The time series of CO measurements (raw data) from MI-
CROMEGAS and the reference CO analyser are displayed
in Fig. 5. MICROMEGAS captures well the very large CO
variations from hundreds to thousands of ppbv. However, the
absolute biases can reach 1 ppmv for the highest concentra-
tions. As a result, the absolute RMSE between the reference
and MICROMEGAS CO data for the prediction dataset is
rather large (290 ppbv).

Atmos. Meas. Tech., 18, 1163-1184, 2025

312 NO

The NO Taylor diagram (Fig. 6a) differs greatly from the
CO one. All the experiments have correlation coefficients
R >0.9, and the majority of them are even larger than
0.95. The variabilities in the MICROMEGAS experiments
are mostly in the range 0.90-1.05 times the variabilities in
the reference data, and the RMSEs are lower than 30 % of
the reference data variability. We have chosen the MLP100
method because it displays the largest R and a variability ra-
tio of 1.0. Furthermore, the slope of the linear regression be-
tween the reference and MICROMEGAS data is very close to
unity (Fig. 6b and Table 1), with only a very limited number
of negative MICROMEGAS NO values which do not exceed
a couple of ppbv (Fig. 6b).

The ability of MICROMEGAS to capture the NO large
variability (0-250 ppbv) is illustrated by the time series at
the CTC displayed in Fig. 7. The discrepancies are larger
for the prediction than for the learning dataset, with biases
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reaching +50 and £30 ppbv, respectively. Nevertheless, the
global RMSE for prediction remains moderate at 12 ppbv,
and the MBE of 3 ppbv is not significant.

3.1.3 NO;

The NO; Taylor diagram is very similar to the NO one
(Fig. 8a). Most experiments have R > 0.95, and variability
ratios are even closer to unity than for NO. For the predic-
tion, most experiments provide very similar results. We have
chosen MLP100, which performs slightly better than MLP1
or MLP10. Even if they are able to reproduce the variabil-
ity in the reference data correctly, linear regressions are ex-
cluded because, contrary to MLP, they provide significantly
negative values. The raw calibration method displays a good
correlation with the reference data but only just half of its
variability.

The scatter plot between MICROMEGAS and reference
NO; data (Fig. 8b) shows excellent agreement with a linear
regression slope of unity.

As expected from the previous analysis, MICROMEGAS
data closely follow the NO; variations from the reference
analyser (Fig. 9). The difference between both datasets is
within +10 ppbv (95th percentile), with a very low mean bias
(1.5 ppbv), and the RMSE (3 ppbv) is about 4 times lower
than for NO.

314 O3

For O3, the prediction results are characterized by decreased
performances relative to the learning results and to the NO,
prediction results (Fig. 10a). The best calibration method is
clearly MLP100, with a correlation coefficient of 0.95 and
an amplitude of variability that is only 10 % lower than that
of the reference. The scatter plot displays the bimodal O3
distribution with low values (< 5 ppbv) from an almost com-
plete O3 titration by NO during high-pollution periods, and
O3 between 20 and 40 ppbv during cleaner periods. The lin-
ear regression slope (0.93) is lower than for the other gases
(Table 1) but remains quite close to unity. The MLP100-
calibrated O3 data are never negative, contrary to O3 from
linear calibration methods.

MICROMEGAS O3 captures the variations in the refer-
ence O3 (Fig. 11) with the alternance of polluted periods with
little O3 and cleaner periods with about 30 ppbv of O3 in anti-
correlation with the NO levels (Fig. 7). For the prediction
dataset, biases can reach absolute values larger than 10 ppbv
for the highest levels of O3 but the mean bias is 0 £ 4 ppbv.

3.2 Comparisons of CO and O3 from MICROMEGAS
to analysers from MoMuCAMS

3.2.1 At the UAF farm site on the ground

MICROMEGAS was operated on the ground at the UAF
farm site before the helikite flights or between two successive

Atmos. Meas. Tech., 18, 1163-1184, 2025

Table 2. Statistics of the comparisons between MICROMEGAS and
MoMuCAMS analysers CO and O3 data at the UAF farm site and
on board helikite, including the correlation coefficient (R), mean
bias error (MBE), root mean square error (RMSE), and ratio of
MICROMEGAS on analyser standard deviations. N stands for the
number of data points. Data were averaged for 300 s periods on the
ground and 15 s on board helikite.

Species Ground ‘ Helikite
N R MBE + N R MBE +
(3005) RMSE | (155) RMSE
(ppbv) (ppbv)
(¢0) 15499 081 —2+50 | 1951 085 —19+43
O3 1260  0.86 0+4 | 1177 0.73 4+8

flights for five periods of hours to days. When they were not
flying, CO and O3 MoMuCAMS instruments (see Sect. 2)
were also operated at the UAF farm site. The MoMuCAMS
CO PICO (respectively, O3 2B Tech) instrument was oper-
ated for 129 h (respectively, 105 h) in coincidence with MI-
CROMEGAS at the site. The results from comparisons be-
tween the CO and O3 instruments are displayed in Figs. 12
and 13, respectively, and the corresponding statistics are pre-
sented in Table 2.

The UAF farm site at the edge of the city is less polluted
than the CTC site downtown. The CO concentrations remain
within the 100-300 ppbv range (Fig. 12), while CO concen-
trations at the CTC are mostly over 500 ppbv and often ex-
ceed 1 ppmv (see Fig. 1). At the UAF farm, O3 is seldom
fully titrated by NO, with concentrations mostly between 20
and 40 ppbv and below 10 ppbv over rare and short periods
(Fig. 13). This is in contrast with the CTC, where O3 is fully
titrated by NO over several periods that can last many days
(Fig. 1).

CO from MICROMEGAS has no systematic bias
(=2 £ 50 ppbv) relative to the PICO instrument. The RMSE
(50 ppbv) is much lower than at the CTC because the abso-
lute CO values are much lower. According to Fig. 12, the ab-
solute differences between both instruments rarely exceeds
50 ppbv. The correlation coefficient (R =0.81) between MI-
CROMEGAS and PICO CO data at the UAF farm is very
close to the one for the CO prediction data at the CTC (Ta-
ble 1).

For O3, no systematic bias (0= 4 ppbv) is observed be-
tween MICROMEGAS and the 2B Tech instrument. More-
over, the MBE (0 ppbv) and RMSE (4 ppbv) are identical to
those computed for the prediction dataset at the CTC (Ta-
ble 1). The correlation coefficient (R = 0.86) is nonetheless
lower than at the CTC (Table 1). This is probably related to
the O3 variability, which is lower at the UAF farm with no
complete Oj3 titration and only few periods with low-O3 con-
centrations.
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Figure 7. Same caption as Fig. 5 but for NO (MLP100 calibration function).

3.2.2 On board the helikite

For a limited number of flights, MICROMEGAS was flown
part of the time with the CO PICO or O3 2B Tech analysers
and with both for one flight (23 February). The comparison
dataset is more limited than at the ground with only 8 and 4 h
of coincident measurements for CO and O3, respectively. De-
spite the limited dataset and the significantly shorter averag-
ing time compared to ground-based data (15 s versus 300 s),
the statistics (see Table 2) remain very good, with even better
agreement for CO. For O3, the correlation coefficient (0.73)
is noticeably lower than it was on the ground but remains ac-
ceptable, and the mean bias (4 ppbv) and RMSE (8 ppbv) are
larger than at the ground. It is noteworthy that the averaging
time for in-flight data is 20 times shorter, which results in
increased noise and, consequently, a lower correlation coef-
ficient and a larger RMSE.

The time series of CO and O3 from MICROMEGAS and
MoMuCAMS analyser data and flight altitudes for the flight
of 23 February are displayed in Fig. 14. This flight is charac-
terized by four ascents and descents between the ground and
120 ma.g.l. over a total duration of 2 h. Both types of instru-
ments exhibit identical variations in CO and O3, with a more
polluted layer (high CO and low O3) near the surface and
background concentrations above the surface layer, resulting
in high correlation coefficients between the datasets (0.97 for
CO and 0.78 for O3).
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The comparison of in-flight data therefore shows that the
EGS are not significantly impacted by the ascents and de-
scents during the flights. The low vertical speed and limited-
altitude excursion prevent variations in sensor behaviour dur-
ing flights.

3.3 On-road mobile sampling

As mentioned in Sect. 2, MICROMEGAS was deployed
7 times on the roof of a vehicle to perform on-road mo-
bile samplings in Fairbanks and its surroundings. We present
here MICROMEGAS measurements from the first drive per-
formed on 21 January from 12:39 to 16:40. The car was
parked in a street next to the CTC measurement site at the
start (12:39 to 13:09) and at the end (16:32 to 16:38) of
the drive. The car first headed towards the residential neigh-
bourhood of Hamilton Acres and stopped next to the instru-
mented site called The House. The next stop was at the Birch
Hill Recreation Area. The car then headed west on College
Road and reached the UAF farm site, after a stop at the Au-
rora residential area, and drove up to the top of Chena Ridge
via Chena Ridge Road before descending towards Fairbanks
Airport via Chena Pump Road. It then headed east on Parks
Highway to reach the CTC site by going north (see Fig. 15).

According to the CTC data (see Fig. 1), the period of the
drive is characterized by relatively warm temperatures for the
season (~ —10 °C) and significant temperature inversions be-
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Figure 14. Time series of MICROMEGAS and MoMuCAMS measurements of CO in panel (a) and O3 in panel (¢) during the flight of
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panel (d) for Os3.

tween 3 and 23 m altitude (between —2 and —1.5°C). It is
identified as strongly stable according to Brett et al. (2025),
promoting elevated pollution levels. During the 4h of the
drive, the pollution levels increased at the CTC from 590
to 1610 ppbv for CO and from 40 to 110 ppbv for NO (see
Fig. 16). Such increases probably result from the diurnal vari-
ability in road traffic.

The comparison between the CTC reference measure-
ments and MICROMEGAS data (Fig. 16) clearly indicates
that MICROMEGAS captures the variations in trace gas con-
centrations between the start and the end of the drive. It is
noteworthy that MICROMEGAS is also able to capture the
CO and NO variability very well for the half-hour at the
CTC site before the car moves away. For Oz, the concentra-
tions are close to zero during both stops at the CTC, and the
agreement is excellent, with biases lower than 0.2 ppbv. MI-
CROMEGAS slightly overestimates NO» (5.4 ppbv) at the
beginning, and the bias decreases to 0.1 ppbv at the end.
The NO bias is negligible at the start (—0.3 ppbv) and MI-

https://doi.org/10.5194/amt-18-1163-2025

CROMEGAS is underestimating NO by 14 ppbv at the end.
For CO, the biases are larger at the beginning (210 ppbv) than
at the end (101 ppbv). For the four trace gases, the biases are
in good agreement with the intervals from Table 1. It has to
be noted that at the beginning, MICROMEGAS sampled a
peak with largely enhanced CO (and slightly enhanced NO)
which was not detected by the reference analyser (Fig. 16).
This discrepancy is most likely resulting from the location
of MICROMEGAS on the roof of the car which was parked
about 10 m away from the CTC trailer and closer to the traf-
fic emissions than the analyser’s inlet located on the roof of
the trailer. Therefore, MICROMEGAS probably sampled a
plume from the traffic that did not reach the analyser’s inlet.

The pollutant maps of Fig. 15 display significant varia-
tions among the sampled areas. The first striking feature is
that the O3 concentrations (Fig. 15¢) are strongly correlated
with the altitude (Fig. 15a) on both uphill legs of the drive
reaching Birch Hill to the northeast and Chena Ridge to the
southwest. Elevated areas are indeed isolated from the strong

Atmos. Meas. Tech., 18, 1163-1184, 2025
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emissions from the city, especially during temperature inver-
sion periods. The background air sampled on the hill slopes is
therefore also characterized by CO and NO, concentrations
lower than in the city. The large concentrations of NO, and
CO on the south leg of the drive from the airport to the CTC,
following Airport Way and Parks and Richardson highways,
are due to the sampling of air impacted by the traffic during
the rush hours. NO, concentrations are lower on the north-
ern leg on Johansen Expressway and College Road, probably
because of less traffic at the beginning of the afternoon.

The two residential areas sampled at 1 h intervals have dif-
ferent levels of pollutants. The Hamilton Acres area has a
low level of NO (5 ppbv) and CO (450 ppbv) compared to the
Aurora area, where NO reaches 77 ppbv and CO 730 ppbv
(see Fig. 16). The levels of NO, are also larger at Au-
rora (47 ppbv) than at Hamilton Acres (35 ppbv). During the
drive, at the beginning of the afternoon less traffic was seen

Atmos. Meas. Tech., 18, 1163-1184, 2025

in those residential areas. Nevertheless, at the Aurora site,
the 0—10 m winds simulated by the WRF model (see Brett
et al., 2025) are weak and blowing from the north, bringing
air polluted by traffic on Johansen Highway to the residential
area to the south. Stronger winds are blowing from the north-
east (Fig. 16a), bringing clean air from outside of the city to
Hamilton Acres. The differences in the wind strength and
direction probably explain the difference in pollution levels
between the two residential areas. The area around the UAF
farm to the northwest of the airport is marked by enhanced
O3 and low-NO, and CO concentrations as a result of the
north flow bringing background air (Fig. 15a).

3.4 Vertical profiles from helikite flights

As mentioned earlier (Fig. 2), MICROMEGAS performed 11
helikite flights in the MoMuCAMS platform from 30 January

https://doi.org/10.5194/amt-18-1163-2025
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to 25 February 2022. The helikite was operated as follows:
the balloon made an initial ascent at maximum vertical speed
(20 mmin~!) before descending in stages. Then, the cycle of
ascents and descents is repeated several times. When a plume
is detected (CO» and particles concentrations enhanced with
respect to background concentrations), the balloon ascends
and descends within the altitude range corresponding to this
plume and makes prolonged stops of a few minutes around
the altitude of maximum concentrations (see Pohorsky et al.,
2024, for details). For the flights, MICROMEGAS data were
averaged in 15 s bins corresponding to 5 m vertical displace-
ment at maximum velocity.

The general statistics with the median values and the 95th,
80th, 20th, and 5th percentiles computed over the 11 flights
are displayed in Fig. 17; Table 3 provides the median val-
ues and 20th and 80th percentiles computed over the whole
dataset. For the four trace gases, the median values remain

https://doi.org/10.5194/amt-18-1163-2025

within relatively narrow ranges of values over the 0-350 m
vertical range. Extreme values are particularly noticeable for
NO,, with peaks of up to 40 ppbv, 10 times larger than the
median value and for O3 with troughs down to 5 ppbv. Nev-
ertheless, extreme values of CO, NO, and NO; observed dur-
ing the flights remain low compared to what was observed at
the CTC during long polluted episodes (Fig. 1). This is due
to the location of the UAF farm, which is far from the large
pollution sources and rather upwind of the dominant winds
from the northern sector at Fairbanks.

An example of a helikite flight with a plume detected on
30 January was given in Simpson et al. (2024). During that
flight, peaks of NO; are recorded between 50 and 100 m and
between 200 and 250 m, coincident with CO, enhancements.
In Brett et al. (2025), MICROMEGAS NO, and CO flight
data were used to evaluate Lagrangian simulations of pol-
lution plumes originating from power plants to the east of

Atmos. Meas. Tech., 18, 1163-1184, 2025



1180 B. Barret et al.: Arctic winter boundary layer pollution with low-cost sensors

(a) (b)
350 350
° °
3 o
. .
300 - ° 5 300 - °
. .
. L]
. L]
250 - .’ 250 o ©
L] .
. .
L] L]
—~ 200 - v — 200 - °
£ . £ . 2
~ . ~ L]
= . F .
<150 1 %5 <1504 . °
. L]
B .
. o
100 ° . 1004 . °
. .
L .
. .
50 - o 50 - o
. L]
o .
+ X% + + X ° +*
0 - T = T 0 T = T
0 100 200 300 0 10 20
CO (ppbv) NO (ppbv)
(c) (d)
350 —= 350 s
. .
. .
. .
3004 °. 300 o
o .
. .
L] .
25090 % 250 o
. .
L] L]
L] L]
—~ 200 - ° 2001 o
£ s £ &
£ . £ o
E L F—4 [
<1504 %, < 150 - L
Ll .
. .
. .
100 o 100 - A
. L]
. .
L] .
504 % 50 - 5
. .
L] L]
+ + + +
0 - % T T T T 0 - T T .’c T
0 10 20 30 40 0 10 20 30 40
NO; (ppbv) O3 (ppbv)
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Table 3. Statistics (20th percentile, median, and 80th percentile)
of the MICROMEGAS helikite data for the whole ALPACA-2022
campaign and for the flight of 20 February (numbers in parenthe-
ses).

Species 20th Median 80th
CO 120 (134) 140 (149) 210(179)
NO —-03(—-15) 7.7(-0.6) 14.5(0.8)
NO; 1.53.9) 39(6.7) 9.8(13.6)
03 26 (23.5) 32(30) 38(33.5)

the UAF farm site and emitted aloft from elevated chimney
stacks. They focused on the flights of 30 January and 8-9
and 25 February. Here, we present the data for the four trace
gases (CO, NO, NO,, and O3) for the flight on the morn-
ing of 20 February when pollution plumes are detected aloft
(Fig. 18). The origin of the pollution plume and the layer-
ing of the ABL during this flight are discussed in a separate

Atmos. Meas. Tech., 18, 1163-1184, 2025

on-going study. We focus here on the multispecies measure-
ments of such a plume with the MICROMEGAS-calibrated
data. The statistics over the whole flight are presented in Ta-
ble 3. For CO, NO;, and O3, the median values are within the
20th—80th percentile ranges from the whole helikite datasets.
The NO values on the flight are generally lower than the me-
dian value; nonetheless, this difference is still consistent with
the evaluation of NO made in Sect. 3.1.2. Indeed, the mean
bias between MICROMEGAS and the CTC reference data
(3 £ 12 ppbv) encompasses the difference of —8.3 ppbv be-
tween the NO median of the whole helikite dataset and of
the 20 February flight. The CO, NO,, and O3 values mea-
sured during the flight generally fall within the 20th—80th
percentile from Table 3 but some extreme values are de-
tected a few times at different altitudes. A plume located
approximately between 120 and 180 m was sampled during
three short periods (from 07:17 to 07:33, 09:54 to 10:11, and
10:46 to 10:59 AKST) during the flight. In the plume, CO
and NO; concentrations reach maxima of, respectively, 417
and 46 ppbv, and O3 decreases to 0 ppbv following titration.
NO is enhanced with a maximum value of 11 ppbv in the
plume but only clearly between 09:55 and 09:58. Finally, an-
other plume is detected between 273 and 300 m from 09:22
to 09:33, with NO mixing ratios up to 27 ppb; it is correlated
with Oj3 titration but with very limited NO; and CO enhance-
ments. According to the Lagrangian modelling of Brett et al.
(2025), the plume at 150 m is originating from the UAF-C
or Chena—Aurora power plant in Fairbanks, and the 285 m
plume is not attributed.

4 Conclusions

The MICROMEGAS instrument has been successfully op-
erated at Fairbanks, Alaska, during the ALPACA field ex-
periment in January—February 2022 to sample surface dis-
tributions and vertical profiles of trace gases in the winter-
time Arctic boundary layer. MICROMEGAS includes EGSs
to measure NO, NO,, O3, and CO, as well as temperature and
relative humidity sensors and a GPS for localization. It has
been deployed on board a vehicle for seven on-road sampling
drives in Fairbanks and the surroundings and at the UAF farm
site to the northwest of Fairbanks on board a tethered bal-
loon (the helikite) for 11 flights up to a maximum altitude
of 350 ma.g.l. In order to calibrate and validate the EGSs,
we also operated MICROMEGAS coincident with reference
analysers at the instrumented CTC site downtown in Fair-
banks for ~ 250 h.

For the EGSs calibration, we have tested linear (quantile
regressions) and non-linear (multi layer perceptron) para-
metric methods and also non-parametric (random forest and
histogram-based gradient-boosting trees) methods. The use
of Taylor diagrams allowed us to evaluate the ability of
the different calibration methods to reproduce the variabil-
ity from the reference data and to determine the optimal
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method. For CO, the linear relationship between the gas con-
centration and the sensor voltages provided by the manufac-
turer (raw method) provides the best agreement for predic-
tion data, and we used no other calibration method. For NO,
NO,, and O3, an excellent agreement was reached for the
learning data with the non-parametric random forest method,
but the performances are largely reduced for the predictions.
The perfect learning is probably linked to the fact that non-
parametric methods, such as random forest, are able to fit
a large number of functional forms contrary to parametric
methods which have fixed functional forms. The degraded
results for the prediction results from the lower ability of the
non-parametric methods to extrapolate outside of the learn-
ing database relative to parametric methods. The multivariate
quantile regressions have correct performances concerning
the reproduction of variabilities but provide too many nega-
tive values. This is due to the basic linear functional form that
extrapolate to values which are outside of the reference data
range. For NO, NO,, and Os, the best prediction results are
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obtained with multi-layer perceptron (MLP) artificial neural
networks with 10 layers of 10 neurons when the network reg-
ularization parameter « is set to 100 (MLP100). The MLP
parametric function is complex enough to reproduce the non-
linear relationships between the different parameters and al-
lows an extrapolation to reproduce data outside of the learn-
ing dataset, which is essential for the use of the sensors away
from the calibration site. For these three gases, the variability
in the reference analyser is very well captured by the EGSs.
The correlation coefficients (R) characterizing the agreement
of the phase of the variations are ranging from 0.95 to 0.97,
and the standard deviation ratios characterizing the agree-
ment of the amplitude of the variations are close to 1. The
slopes of the linear regressions between the EGSs and ref-
erence data are very close to unity (0.93-1.12) for the four
gases, also indicating a similar amplitude of the variabilities
and no strong concentration dependences of the biases. The
MLP also avoids obtaining values outside of the range of the
reference dataset and especially negative values.

The selected calibration methods were applied to the MI-
CROMEGAS data obtained during on-road mobile sam-
plings in and around Fairbanks and helikite flights at the
UAF farm site. Comparisons between the MICROMEGAS
data and the reference measurements at the CTC site at the
beginning and at the end of the drive of 21 January confirmed
the high quality of the calibrated data under challenging con-
ditions, with the instrument on the roof of a car in very cold
temperatures. Similarly, comparisons with surface CO and
O3 data recorded at the UAF farm site demonstrated that the
sensors accurately reproduced the variations in these gases
with pollution conditions that are very different from those
at the calibration site. The data from the drive of 21 January
demonstrated the ability of the EGSs to capture the spatial
variability in the pollution in and around Fairbanks. In par-
ticular, the data highlighted the contrast not only between
the surrounding hills, characterized by background concen-
trations, and the polluted city but also between different resi-
dential areas and various traffic routes depending on the time
of day. Flight data enabled the documentation of variations in
trace gases with altitude in the ABL. The median concentra-
tions of pollutants are mostly representative of background
conditions and display relatively weak vertical gradients, but
significant variabilities were measured at the surface and at
various altitudes. The variations in altitude are caused by pol-
lution plumes from elevated sources such as power plants,
which were sampled on a few occasions when the UAF farm
site was downwind of the city. The flight data from 20 Febru-
ary are exemplary of the ability of MICROMEGAS to quan-
tify the trace gas concentrations in a power plant pollution
plume.

Our study showed that EGSs provide a good solution for
documenting the surface and vertical distributions of gaseous
pollutants over large ranges of concentrations and under ex-
tremely cold conditions on board mobile platforms. How-
ever, it should be noted that during ALPACA 2022, the bal-
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loon flights took place at a fixed site upwind of the main sur-
face (on-road traffic and domestic heating) or altitude (power
and heating plants) pollution sources, which significantly
limited the sampling of pollution plumes. The deployment
of such sensors on UAVs at various locations in and around
polluted Arctic cities like Fairbanks would allow for better
characterization of the dilution and physicochemical evolu-
tion of pollution plumes at different altitudes in the ABL.

The sensors were thermoregulated in an insulated box with
a simple and lightweight system based on a thermal switch
and a thin heating film. Nevertheless, they are supposed to
operate down to very low temperatures. It would be inter-
esting to use them without thermal regulation to determine
whether they can still function properly with the calibration
method presented in this study. This could allow us to further
reduce the system’s weight, size, and energy consumption.

Regardless of the application of EGS, it is important to
keep in mind that calibration with high-quality reference
data is the crucial step for obtaining accurate measurements.
This is probably the most significant limitation when us-
ing these sensors. Our study demonstrated that meaningful
results could be achieved with the appropriate calibration
method, even beyond the calibration dataset limits. It would
be interesting to observe the sensors’ behaviour in areas fur-
ther away from urban sources, where concentration varia-
tions are low around background levels.

Data availability. The  Arctic  Data  Centre  repository
(https://arcticdata.io/, last access: 24 February 2025) pro-
vides access to the multi-platform MICROMEGAS data at
https://doi.org/10.18739/A2V11VN3Z (Barret et al., 2024) and
to the gas and meteorological measurements at the CTC site at
https://doi.org/10.18739/A27D2Q87W (Simpson et al., 2023)
during the ALPACA-2022 field study.
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