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ABSTRACT

Young protoplanetary discs are expected to be gravitationally unstable, which can drive angular momentum transport as well
as be a potential mechanism for planet formation. Gravitational instability is most prevalent in the outer disc where cooling
time-scales are short. At large radii, stellar irradiation makes a significant contribution to disc heating and is expected to suppress
instability. In this study, we compare two models of implementing irradiation in 2D hydrodynamic simulations of self-gravitating
discs: supplying a constant heating rate per unit mass and per unit area of the disc. In the former case, instability is quenched
once the stellar irradiation becomes the dominant heating source. In the latter case, we find instability persists under high levels
of irradiation, despite large values of the Toomre Q parameter, in agreement with analytic predictions. Fragmentation was able
to occur in this regime with the critical cooling time-scale required decreasing as irradiation is increased, corresponding to a

maximum threshold for the viscosity parameter: « ~ 0.03 — 0.09.
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1 INTRODUCTION

Protoplanetary discs form around young stars as infalling material is
flattened into a disc due to angular momentum conservation. Young
discs are dominated by their gas component and can be massive
enough to be self-gravitating. The destabilizing force of gravity
can overcome support from pressure and centrifugal forces, causing
regions of gas to clump together. The potential for gravitational
instability (GI) has considerable implications for the evolution of the
disc and planet formation. The formation of bound objects via the
runaway collapse of overdensities (fragmentation) has been proposed
to explain the high occurrence rate of binary stars (Clarke 2009) and
to account for the formation of giant planets at large orbital radii
(Boss 1997). Additionally, non-axisymmetric structures induced by
GI, such as spiral arms (Lynden-Bell & Kalnajs 1972), facilitate
angular momentum transport — a critical process in accretion disc
theory that enables material to flow inward.

Previous studies have emphasized that an important role for GI,
both in terms of planet formation and driving significant angular
momentum transfer, relates to the ratio of the cooling time to the
dynamical time. Consequently, the regions where GI is potentially
important are limited to the outer parts of the disc (r 2 40 AU;
Matzner & Levin 2005; Rafikov 2005; Stamatellos & Whitworth
2008; Clarke 2009; Forgan & Rice 2011). However, these regions
are precisely where it can be expected that external heating of the disc
by stellar irradiation is significant (D’ Alessio et al. 1999; Kratter &
Lodato 2016). The regime of short cooling time and strong irradiation
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is therefore an important one to understand, but previous studies are
unclear about the behaviour of the disc in this region. In this paper,
we focus on simulations that explore this regime in detail.

The linear theory described by Toomre (1964) applies perturba-
tions to a 2D self-gravitating axisymmetric rotating disc. The onset
of instability is characterized by the Toomre parameter:

_ Q2 !
Q_nGE’ M

which represents the balance of self-gravity against pressure and
centrifugal forces. Low and less stable values of Q are found at
large radii where the disc is cooler. Classically, Q < 1 is required for
instability; however, realistic discs will undergo heating and cooling
processes that allow them to thermally saturate at higher values of
Q. As regions of the disc collapse, Q decreases and the increased
heating rate due to shock dissipation will stabilize overdensities.
As they expand, the heating rate decreases and the disc begins to
cool again. This self-regulated state (Paczynski 1978) is known as
gravitoturbulence and numerical simulations show discs saturate with
0 ~ 1 — 2 (Lodato & Rice 2004; Rice et al. 2011).
Gravitoturbulence is sensitive to the thermodynamics of the disc.
Heating due to shocks acts to increase Q, whereas radiative cooling
will decrease Q towards instability. The more efficient the cooling,
the higher the rate of heating required to balance it. Cooling is often
implemented using the S—prescription (Gammie 2001), where 8 =
7,82 is the ratio of the cooling time-scale of the disc material to
the orbital time-scale. B is a decreasing function of radius such
that larger radii have shorter cooling times (Rafikov 2005; Clarke
2009). The effective viscosity can be modelled by the Shakura &
Sunyaev (1973) prescription, v = ac; H, where « is a dimensionless
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parameter measuring the efficiency of angular momentum transport
due to turbulence. Assuming thermal equilibrium in the saturated
state leads to an inverse relationship between o and f: o = m,
derived by Gammie (2001) and similarly by Mamatsashvili & Rice
(2009) using the total energy equation. This relation assumes the
energy associated with angular momentum transport is dissipated
locally, which has been tested numerically using global simulations
and shown to be a good approximation (Lodato & Rice 2004, 2005;
Cossins, Lodato & Clarke 2009).

A further source of heating is irradiation from the central star.
While incident flux decreases with orbital radius, it does so less
steeply than internal heating in the disc (Kratter & Lodato 2016).
At large radii, it becomes a significant contribution to the overall
heating. High levels of irradiation are expected to stabilize the disc
by raising the value of Q. However, the outer disc is also where the
cooling time-scale becomes short, making the disc more susceptible
to fragmentation. Thus, it is important to understand the role of
irradiation in these outer regions and whether they do, or do not,
satisfy the conditions required for planet formation by GI.

How irradiation is incorporated in realistic disc simulations is
complicated by optical depth effects and the computational cost of
radiative transfer models. A common simplification used in 2D local
disc models is to include a constant added rate of energy determined
by stellar luminosity and radial location in the disc (Rice et al.
2011; Baehr & Klahr 2015) in the energy equation. Irradiation
creates an effective heat bath and imposes a background sound
speed. It is expected that once this sound speed implies Q > 1, a
gravitoturbulent state cannot be maintained.

This additional term has been treated in various ways in previous
studies with a clear difference being whether or not the heating rate
per unit area depends on surface density. Linear analysis studies show
distinctly different behaviours depending on the choice made (Lin &
Kratter 2016). Density dependence provides an extra stabilizing
term such that at large levels of irradiation implying Q = 1 — 2,
there are no unstable solutions. Alternatively, without it, unstable
solutions remain for arbitrarily high irradiation. This has been seen
in numerical simulations, such as Rice et al. (2011), who simulate
the first case and find no evidence of instability for highly irradiated
discs. However, using the latter case, Lohnert, Kritschmer & Peeters
(2020) find active GI for high levels of irradiation, limited only by
numerical effects.

A further significant outcome of this case is the value of Q obtained
in the gravitoturbulent state. Lohnert et al. (2020) found that as
irradiation is increased, the saturated value of Q also increases and
Gl still occurred for discs with Q ~ 10. This is considerably different
from the classical expectation that only Q close to 1 can be unstable.
Measurements of disc masses show that there are many discs not
satisfying Q < 1, but would instead meet this more relaxed criterion
(Tobin et al. 2020).

Since the energy equation describes the evolution of the internal
energy per unit area, including irradiation as a constant additional
term corresponds to a constant heating rate of the disc per unit
area. If the added term has a linear dependence on surface density,
this is equivalent to a constant heating rate per unit mass with
denser regions being supplied more energy per time. The outcome of
this difference can be understood by considering that GI involves
the continuous formation and disruption of overdensities. This
requires self-gravity to dominate over stabilizing effects, such as
irradiation and enhance the growth of density fluctuations. When a
constant rate of energy is supplied per unit mass, overdense regions
contain more mass per area and will be preferentially heated. This
additional pressure support acts against self-gravity in promoting the
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growth of overdensities, but does not occur when heating per unit
area.

In the outer disc where GI is relevant, opacity is dominated by
icy grains and the disc is expected to be optically thick to incident
stellar irradiation (Clarke 2009). Therefore, it is more physically
reasonable to incorporate heating as a constant rate over a surface
area. Simulations in the literature more commonly model the case
of constant heating per unit mass (Rice et al. 2011; Baehr & Klahr
2015; Baehr, Klahr & Kratter 2017) and do not explore the strongly
irradiated regime (where Q > 1) since these are expected to be stable.
Lohnert et al. (2020) simulate this regime using a heating per area
model, but only consider the implications on discs with long cooling
time-scales, which would not be susceptible to fragmentation (8 >
3).

In this paper, we study both methods of heating due to irradiation
in local 2D hydrodynamic simulations and compare the results to the
expectations of the linear theory. We also investigate the boundary
for fragmentation as a function of the cooling time and irradiation.
Sections 2 and 3 describe the analytic theory and simulations
respectively. We present and discuss the results in Section 4 and
our conclusions in Section 5.

2 ANALYTIC CONSIDERATIONS

In this section we set out the linear theory of self-gravitating
discs with simply prescribed cooling and irradiation and discuss
the requirements imposed by thermal equilibrium on the properties
of the saturated state. The theory presented here will be useful in
interpreting the simulations presented in Section 4, which compare
the outcome of different irradiation models. It is useful first to
introduce the terminology that will be used throughout the remainder

of the paper.
Qi = ‘;ggg’ is the value of the Toomre Q parameter that the

system would have if it were subject to external irradiation with no
contribution from heating by GI. ¢, i, is the sound speed set by irra-
diation and X is the background density. Qj is thus an independent
parameter that in Section 3 is varied between simulations.

Qsa = (Q) is the value of the Toomre Q parameter that the system
attains in practice when subject to external irradiation, cooling and
heating effects associated with GI. () denotes an average over the
simulation domain and time.

Qa0 = Qsar(Qirr = 0) s the value of the Toomre Q parameter that
the system attains in practice when subject to cooling and heating
effects associated with GI but in the absence of external irradiation.

2.1 The model

We use the local, 2D shearing sheet approximation (Goldreich &
Lynden-Bell 1965; Hawley, Gammie & Balbus 1995) to model the
disc with coordinates (x, y) representing the radial and azimuthal
directions respectively. The equations of hydrodynamics are solved
in a frame co-rotating with the background Keplerian flow. They
include the mass continuity, momentum conservation, and internal
energy density equations and a Poisson equation for the self-gravity
of a razor-thin disc.

X+V-(Zu=0 2)

1
du+(u-Vyu= —EVP —2Q0e, x u+3Q3xe, — VO 3)

U, U [Z\"
U+ - NU+yUNV -u)=—-——+ (—) (C))
Te Te >
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Vi =41 GE8(z) 3)

The forces on the right-hand side of equation (3) are the pressure
gradient, the Coriolis, and tidal forces due to the rotating frame and
the self-gravitational force. u is the velocity of the fluid relative to
the background flow (uy = —%Qoxe}.). In the 2D approximation,
¥ = [ pdz is the vertically integrated density and similarly P is the
vertically integrated pressure.

U is the internal energy density (energy per unit area) and is related
to the pressure by the equation of state, P = (y — 1)U. U evolves
via equation (4), where the first term on the right-hand side represents
radiative cooling with cooling time 7. = 8/ €2y. The second term is
heating due to irradiation. U, = fgféi;r indicates the internal energy
per unit area for an isothermal disc that is heated to a sound speed
¢y = Coirr Dy an external irradiation field (in the absence of self-
gravity), where ¢? = y g is the adiabatic sound speed. Thus, Uy, or
¢ parametrizes the strength of external heating in terms of this
equilibrium temperature.

It can be seen that the heating prescription in equation (4)
corresponds to constant heating per area for fy = 0 and constant
heating per mass for fy = 1. Note these possibilities were included
in the analysis of Lin & Kratter (2016) via their parameter 6, although
they did not interpret this parameter in terms of whether the external
heating was held constant per unit mass or per unit area.

2.2 Thermal balance

In the presence of self-gravity, an irradiated disc settles into a
‘thermally saturated’ state, where radiative cooling and external
irradiation are balanced by heating generated through gravitational
instability. This heating represents the conversion of mechanical
energy into heat as a result of shock dissipation associated with spiral
arms in the disc. Lodato & Rice (2004) demonstrated using global
calculations that the relationship between such heating and the rate
of associated angular momentum transfer is analogous to the action
of an effective viscosity and so can be cast in terms of an equivalent
value of the Shakura-Sunyaev «—viscosity (Shakura & Sunyaev
1973). Within this framework, the equation of thermal balance can
be expressed in the form (Rice et al. 2011):

4 2
=— (1= 6
T o —1p ( 2) ©

This equation assumes (Zc2) = (X)(c,)? and applies to both irra-
diation models (fy =0, 1). It is only semi-analytic since the Q
value of the saturated system, Qg,, is not known a priori and
is dependent on the imposed level of irradiation, parametrized by
Qirr- The classical understanding is that for low levels of irradiation
(Qir < 1), a gravitoturbulent state with finite & can be maintained.
However, once the level of irradiation implies a temperature such
that Qir > Qsa, @ reduces to zero and the instability is inactive.

Rice et al. (2011), using f = 1 in equation (4), find an approxi-
mately constant value of Qg with varying Qi and so fix this when
estimating o via equation (6). They make the above assumption
of stability under high irradiation and do not simulate Qi > Qg
The simulations in Lohnert et al. (2020) use fy = 0 and find that
Qga varies with Qy, such that it is always greater than Qj, and
o remains finite. This includes Qin > Qsao, Where Qg is that
of the unirradiated (Q;,; = 0) state. However, Lohnert et al. (2020)
were unable to model a gravitoturbulent state with Qi 2 2 Qa0 ON
account of heating associated with the finite numerical viscosity in
their code.
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Figure 1. Analytic dispersion relations from equation (7) with cooling time-
scale B = 1.0 = 10 and different levels of irradiation, Qj,. Both the heating
per unit area ( fy = 0) and per unit mass (fy = 1) models are plotted.

2.3 Linear stability analysis

We now perturb equations (2)—(5) about a uniform equilibrium
with constant density and pressure and corresponding Toomre Q:

Qo = ;:ggg We assume linear perturbations of the form f/(x, ) =

Feorik) where o is the growth rate and k is the x-component of the
wave vector. We use axisymmetric perturbations for simplicity here,
though non-axisymmetric perturbations are able to grow at larger Q
(Lau & Bertin 1978; Papaloizou & Lin 1989; Papaloizou & Savonije
1991; Durisen et al. 2007; Mamatsashvili & Chagelishvili 2007),
which will affect the comparison between theory and simulation
results. Here, we use Q¢ = Qi as the background state. Using this
in the above equations leads to the dispersion relation:

2 S Q g2 + yt.o
o= —Q2 + Csofl0, coolfo +v )k2 o
Qirr ]/(1 + 1.0)

This equation is equivalent to that found by Lin & Kratter (2016).
When f, =1, corresponding to constant heating per unit mass,

unstable modes (o2 > 0) are possible for ﬁ <1 —4/1 - QT‘O") <

keg o
Qo

2
< Qym 14+4/1— %) There are no unstable modes when

Oir > /¥ J!'soin this regime, a large enough irradiation temperature
will completely suppress GI. This is similar to the behaviour of
the dispersion relation of a barotropic fluid without cooling, which
has instability below a critical Q and a larger range of unstable
wavenumbers as Q is decreased below this value.

Conversely, fy = 0 corresponds to constant heating per unit area
and, as shown in Lohnert et al. (2020), unstable modes are possible

for all values of Qj, at high wavenumbers (small spatial scales):
key, irr
Q*OO > QT
We plot the dispersion relation in Fig. 1 for different levels of

irradiation using y = 2.
The most unstable mode can be found by solving 0o /0k = 0. We
define o0, as the maximum growth rate and k,, as the corresponding

IThis criterion differs from the standard Toomre criterion due to our use of the
adiabatic sound speed when defining Q. As the growth rate approaches zero,
the cooling time-scale scale becomes much shorter than the growth time-scale
and perturbations behave isothermally. Defining Q by the isothermal sound
speed accounts for the factor of ,/y and recovers the Q < 1 criterion.
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wavenumber. For the high irradiation regime of interest, the growth
rate becomes small. Neglecting higher orders of ;’2—"(“),

on _ ¥ = Ol
Qo (0% — DyB

Similarly, the expression for the most unstable wavenumber, which
is valid for Qy; = 1, is given by

~

(3

kmcs.O
Qo

= Qirr (9)

This expression suggests that with higher levels of irradiation,
instability is expected to occur on shorter length scales.

For Qjx < 1, the growthrate is too large to neglect higher orders. In
this regime, knc;.0/ Q0 = 1/ Qin, Which is equivalent to the standard
Toomre criterion.

Following the analysis of Lohnert et al. (2020), the growth rate of
the most unstable mode can be used to derive analytic predictions for
the saturated value of Q and corresponding « of the turbulent state
using a mixing length approach (Shakura 2018). An estimate for
the turbulent viscosity is found using characteristic mixing length
and time scales given by a typical wavelength and growth rate
respectively. Here, we keep Q¢ = Qinr, Whereas Lohnert et al. (2020)
use Qo = Qg to evaluate the growth rate. The more physically
reasonable choice is somewhat unclear. We use Q¢ = Qj; in the
linear analysis as the background state is determined by the level
of irradiation. However, the mixing length model is used for the
saturated state, where it may be more appropriate to evaluate the
growth rate using Qg rather than Q;,. We explored both options
and found that Qy = Qj gave a closer fit to the data, although the
difference in the resulting analytic expressions was minimal. Using
this with the maximum growth rate and retaining higher orders results
in the following equation, relating « to Qi and B (see Appendix A
for details):

HOKAY L ()Y’
2 sat \ 7 2 sat \
YBQi < 2 Q ) + fo Qi ( 2

irr irr

2 (3)2
+)’ﬁ< Sal(n)a

0L Q

(10)
) (0r = 1)+ (fs Q5 —¥)=0

In addition to the linear theory, the assumption of thermal equi-
librium (equation (6)) allows us to find equations for & and Qg as
functions of Qj, and B only. For f, = 0, this solution is physical
down to Qj, = 1.8 with Qg = 3.2. For low values of Qj., the
growth rate becomes large and Qg, reduces to zero as the linear
theory breaks down. Furthermore, in the low irradiation regime,
the most unstable wavenumber is inversely proportional to Q. as
mentioned above, resulting in an unphysically short mixing length
estimate as Qjr becomes small. It is expected theoretically and seen
in numerical calculations that a disc in the absence of irradiation will
sustain a quasi-steady state and approximately constant Qg0 > 1
(Paczynski 1978). With this in mind, we take Qj, = 1.8, where the
linear theory diverges from the physical expectation, to be the limit
of where it is a representative approximation. Below this, we assume
a constant Qg = Qo = 3.2.

To summarize the complete analytic model to be compared to the
simulation results in Section 4, we use equations (6) and (10) to
predict o and Qg for fy = 0 and Qi > 1.8. For Qi < 1.8 we take
Qs = Qsaro as constant and use only equation (6).

For fy = 1, there are no solutions in the linear theory for Q;, >
/¥, which is lower than the Qj, = 1.8 threshold, so the final model
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assumes Qg = Qsat,O until Qirr > Qsat,0~ Above this, Osat = Qirr as
the temperature is set completely by the irradiation.

3 METHODS

3.1 The code

The simulations in this work were performed with Athena (Stone
et al. 2008), a grid-based, second-order Godunov code. We solve the
equations of hydrodynamics using the shearing sheet implementation
(Stone & Gardiner 2010) with periodic boundary conditions in the
x and y directions, accounting for the shearing motion at the radial
boundaries. Self-gravity is included by solving for the potential via
Fast Fourier Transforms.

The simulation domain is a grid of N x N cells with N = 1024.
Lengths in code units can be scaled by H = = ngo and setting ¥y =
Qo=1and G = 1/m, such that H = 1. We use(:)abox size of L, =
L, = 64H and choose an adiabatic index of y = 2 for comparison
with the literature e.g. Gammie (2001). The pressure scale height of
the disc is H, = Q H. The simulations were initialized with uniform
density and pressure and Q = 1.1.

Perturbations were introduced to the velocity field in the form
of a Gaussian random field of amplitude (§v?)/c? = (1.0/1.1),
following the method of Johnson & Gammie (2003). This amplitude
means that the simulations begin with non-linear perturbations.
This was done to reduce computational time as for large values
of Qjy, the growth rate becomes small (equation 8), requiring many
orbital time-scales to reach the saturated state. With order unity
perturbations, all simulations saturate within 502, ! To validate this
approach, additional simulations were conducted with amplitudes
of (8v?)/c? = (107*/1.1)?, across a range of Qi,. The growth of
perturbations in the linear phase was consistent with the analytic
growth rate. Once the simulations reached a saturated state, there was
no difference in their behaviour or measured properties compared to
those initialized with order unity perturbations.

The «o-parameter can be measured directly from simulations via
the gravitational and Reynolds stresses:

2 (S.0) 2
= —F—(Sy) = —/——
3(xc2) T 3({xe?)
The Reynolds stress is calculated by
(ny) = (Eu;u/‘> s (12)

((Gyy) + (Hyy)) (11)

where ', and u/, are the velocities relative to the background orbital
motion. The gravitational stress component is given by equation (13),
which can be calculated analytically in the Fourier domain (Gammie
2001).

© 88y
Gy=/] d 13
! /_Oo ‘472G (13)

7 Gk, |2

(Gy) = zk: & (14)

Initial results were found to behave as expected without the
addition of artificial viscosity. Given the low values of « expected
in the highly irradiated regime, added viscosity would dominate and
the contribution from GI would be undetectable. For these reasons,
no artificial viscosity is included in the simulations.

3.2 Fragmentation criterion

After a saturated state is achieved, fragmentation can occur by
the runaway collapse of overdense regions. This happens when
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B is less than a critical cooling time-scale, By, below which
overdensities are unable to be stabilized by heating. The precise
location of this boundary has faced issues due to non-convergence for
a variety of reasons associated with the dimensionality and viscosity
implementation in the codes (Lodato & Clarke 2011; Paardekooper,
Baruteau & Meru 2011; Meru & Bate 2012), but is typically quoted
as Beit & 3 — 10 (Gammie 2001; Rice, Lodato & Armitage 2005).

There is no criterion for identifying fragmentation that has been
uniformly applied in the literature, although a common choice
requires an overdensity above 100X to survive for a few orbital time-
scales (Meru & Bate 2011; Rice et al. 2011; Paardekooper 2012).
From initial results, classifying simulations as fragmented was found
to depend sensitively on the exact threshold for the maximum density
and survival time of a clump. Using the condition of X, > 100X,
for + > 3Q;" indicated fragmentation in cases which were later
found to contain only transient overdensities. To distinguish these
simulations from fragmenting ones, we use a further criterion that
fragments must be gravitationally bound.

3.3 Time-dependent cooling

Simulations are initiated with 8 = 10 and allowed to settle into a
saturated state. When simulating shorter cooling times, the value of 8
is then linearly reduced over 100£2;" to its target value. If low values
of B are introduced at t = 0, the disc may spuriously fragment in
this initial phase. As pointed out by Clarke, Harper-Clark & Lodato
(2007), it is also not realistic to instantaneously form a disc with
B < Bt but the disc may evolve to have a lower cooling time due
to infall of material or redistribution via gravitational torques. They
study the effect of slowly reducing 8 over many cooling times and
find this lowers the value of B by a factor of 2 compared to a rapid
decrease.” The dependence on thermal history should be accounted
for when comparing values of ... Averaged quantities are calculated
from after the final 8 has been reached.

3.4 Resolution effects

The standard set-up for simulations used a box size of L, = L, =
64H and N = 1024. Both box size and resolution can affect the
outcome of simulations and absolute quantities (Young & Clarke
2015; Riols, Latter & Paardekooper 2017; Booth & Clarke 2019).
Using the non-irradiated case (Qir = 0) and 8 = 10, simulations
with N = 256, 512, 1024, 2048 were conducted. There was minimal
effect on quantities of interest, such as average Q and «, which were
found to have converged by N = 1024. Table 1 provides a summary
of results from tests of different simulation configurations.

With no irradiation, Q increases quickly from its initial value and
settles to Qo ~ 3.0. Including irradiation leads to Q saturating at
a higher value as Qj,, is increased, as seen in Fig. 2. Previous results
using ZEUS (Mamatsashvili & Rice 2009) and Athena (Shi et al.
2016) have also found these codes to have higher values of Qg0
than others, which more commonly saturate at Qg, ~ 2.0. Many
numerical factors can increase Qg,, such as using a large box size
(Riols et al. 2017; Booth & Clarke 2019; Zier & Springel 2023).
The Qi = 0 case was tested with L, = L, = 8, 16,32, 64, 128H.
There was little difference to the average o values, but Q, was found
to increase with box size (see Table 1). For small boxes, Qg & 1.7,

2This was tested in the non-irradiated case, where we observed that a
simulation with 8 = 3 fragmented upon an instantaneous reduction of the
cooling time, but did not fragment when gradually reduced.
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Table 1. Averaged properties over simulation domain and time for simula-
tions with fy =0 and g = 10.

Qirr Box size Resolution Osat (o)
(Ly x Ly) (Nx X Ny)

0 8H x 8H 1024 x 1024 1.67 0.0241
0 16H x 16H 1024 x 1024 2.10 0.0236
0 32H x 32H 1024 x 1024 2.68 0.0210
0 64H x 64H 256 x 256 3.16 0.0221
0 64H x 64H 512 x 512 3.00 0.0218
0 64H x 64H 1024 x 1024 2.96 0.0216
0 64H x 64H 2048 x 2048 2.89 0.0215
0 128 H x 128 H 1024 x 1024 2.97 0.0217
10 64H x 64H 512 x 512 10.26 0.00102
10 64H x 64H 1024 x 1024 10.28 0.00109
10 128 H x 128H 1024 x 1024 10.36 0.00135

which is closer to that measured in similar studies (Rice et al. 2011).
Convergence was reached for L > 64 H. However, using a box of this
size limits the applicability of the local model to real astrophysical
discs.

All simulations were initiated with Q = 1.1, implying a scale
height H, = 1.1. However, as they evolve, H, increases with O,
changing the size of the box in units of H, and the resolution
in units of cells per pressure scale height. In the non-irradiated
case and in previous studies, Qg remains low enough such that
the difference is small. In Section 4.1 we demonstrate that in the
highly irradiated regime, Qg, is large enough to increase the scale
height by a factor of 10 relative to initial conditions. Although this
only increases the number of cells per scale height, it means that
simulation with different inputs of Q. yield different Hj,. To assess
whether this influences the conclusions, Q;,; = 10 simulations were
performed with larger box sizes and/or lower resolutions in order to
match the box size and number of cells per H}, to the Q; = 0 case.
There was minimal effect on the simulation properties and behaviour
(Table 1), supporting the use of the standard set-up with N = 1024
and L = 64H for subsequent simulations.

Finally, considering a theoretical condition, the box length should
accommodate the length scale corresponding to the minimum unsta-
ble wavenumber from the linear dispersion relation (equation 7) i.e.
L > &% = 2T H. This is satisfied for all but the smallest values of
Qiir» Where ki, becomes very small. However, in practice Q always
saturates to values at least as high as Qg0 ~ 3, such that very small
wavenumbers are never realized.

4 RESULTS AND DISCUSSION

4.1 Non-linear state

Simulations were run across a range of input parameters, including
cooling times B = 10, 20, and irradiation level, Q;; = 0 — 10, for
both the case of heating per unit area and per unit mass. In all
simulations, Q increased sharply within a few le from an initial
condition of Q = 1.1 and either saturated to a gravitoturbulent
state or resulted in laminar flow. Example time series of Q are
shown in Fig. 2 for g = 10. The cooling time was chosen such
that fragmentation does not occur and a thermally saturated state can
be achieved. The fragmentation boundary is investigated using lower
B values in Section 4.2.

Withnoirradiation, fy = Oand f, = 1 are equivalentand Q settles
to Qo ~ 3.0. This agrees well with the value from the analytic
model in Section 2.3 (Q0 = 3.2), despite being larger than what is
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Figure 2. Temporal evolution of the domain-averaged Q for a selection of simulations with different levels of irradiation, Qj.. Left: f; = 1. Right: fy = 0.

fo=0 fo=1
Measured X +
Analytic Model — —

2n 1 1 1

0 2 4 6

10

Qirr

Figure 3. Saturated values of Q measured from simulations with g = 10.
Qsat 1s calculated by averaging over time and the simulation domain during
the saturated state. The solid lines indicate the analytic model outlined in
Section 2.3.

commonly measured in simulations. Increasing Qj, raised the value
of Q reached by the simulations. For f, = 1, Q remained constant
over time for higher levels of irradiation, whereas for fy =0, Q
continued to fluctuate over time, as seen in Fig. 2.

Fig. 3 shows how the saturated value of Q varies with the imposed
level of irradiation. For f = 1, Q, remains approximately constant
with increasing Qi until Qiy > Qsao. The instability becomes
inactive and Q terminates at &~ Qj,. The resulting laminar state
is demonstrated by the flat Q versus time profiles, low « values and
the spatial structure of density.

For fy = 0, Q4 remains approximately constant for Qi < 1.8.1In
this regime, we expect the measured value of Qy, to be determined by
non-linear effects in the simulations and to be largely independent of
the low Qj, value. For Qi > 1.8, irradiation becomes a significant
contribution to the heating balance. The saturated state responds to
the level irradiation, such that Q, increases, remaining greater than
Qi and the instability is still active. This behaviour is seen in the
simulation results, which agree well with the model.

The o-parameter is a measure of the efficiency of angular momen-
tum transport due to turbulence and indicates the activity of GI. It
was measured directly from gravitational and Reynolds stresses in the
simulations via equation (11) and compared to theoretical predictions
outlined in Section 2.3. Fig. 4 plots the variation of o with Q.
The behaviour is consistent with Fig. 3 with the cases fy = 0 and
fo = 1 diverging around Qj, = 1.8. For f, = 1, « reduces to zero

fo=0 fo=1

Measured X +

0.02 Therm. Eqbm. 0 O

Analytic Model —— -
(0%

0.01

0.00 B
1 1 1 ! L I
0 2 4 6 8§ 10

Qirr

Figure 4. Behaviour of « with increasing irradiation at § = 10. Direct mea-
surements from simulations using equation (11) are compared to calculations
of o using the assumption of thermal equilibrium (equation 6) with Qg
measured directly from the simulations. Theoretical lines are plotted using
the linear analysis of Section 2.3. Anomalous « measurements are plotted as
upper limits.

as irradiation dominates the saturated state. For f, = 0, @ remains
finite for high levels of irradiation.

Though the theory predicts no unstable solutions for f, = 1 and
Qirr > Qgaro, residual o values were measured for simulations at
higher Qi,. This is due to the implementation of self-gravity in
the code not fully conserving momentum. The disc acquires a non-
zero average velocity in the form of a small eccentricity, oscillating
between the radial and azimuthal directions. The resulting Reynolds
stress is due to this bulk motion rather than turbulent motion
associated with GI. Other properties of these simulations indicate
that GI is not active, such as the maximum density remaining below
~ 2%. For this reason, we mark these values as upper limits in
Fig. 4.

The agreement between the directly measured « and calculating
via equation (6) supports the assumption that thermal equilibrium has
been reached and shows the simulation is conserving energy well.
There is also excellent agreement between the simulations and the
analytic model derived from the linear theory.

From the linear analysis, Fig. 1 suggests that irradiation will
limit the range of unstable wavenumbers for fy = 1 compared to
fo = 0. Fig. 5 shows example power spectra for each irradiation
model. Following the method of Lohnert et al. (2020), Fourier
amplitudes of density perturbations were computed at a given
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Figure 5. Left: Power of density perturbations as a function of k, for simulations with Qj; = 3.0 and 8 = 4. Both simulations are in a gravitoturbulent state
with @ = 0.025 for fy = 0 and @ = 0.0089 for fy = 1. Right: Surface density snapshots of each simulation.

timestamp and averaged over the y-component of the wavenumber
to obtain the power as a function of the x-component. These were
then averaged over multiple timestamps during the saturated state:
P(k,) = <(| Sk, ky)|2)ky >t. Fig. 5 also includes example snapshots
of the spatial structure of density. The fy = 0 simulation exhibits
more small-scale structure, which is evident in the power spectra. The
shape of the power spectra differ between the models, with f; = 0
remaining a shallower function of k, until "z*—ﬂL ~ 30. The greatest
difference in power occurs around this wavenumber, corresponding
to wavelengths of order H and the wavenumber of the most unstable
mode predicted by linear theory. At large wavenumbers, pressure is
the dominant restoring force. When irradiation is supplied per unit
area of the disc, these sub-Jeans length scales are less effectively
stabilized, resulting in the retention of power at small scales.

4.2 Fragmentation

The process of fragmentation can be considered in two stages. First,
the disc must be gravitationally unstable, for which we have shown
is possible for f, = 0 heating even at high levels of irradiation.
Secondly, the disc must be able to cool sufficiently quickly that
overdensities are not able to be stabilized by heating associated
with PdV work and shock heating and instead continue to grow.
Otherwise, the disc saturates to the gravitoturbulent state. Due to
the dependence of fragmentation on cooling time, the criterion for
fragmentation is often considered as a critical value for the 8-
parameter, such that fragmentation occurs for 8 < B

There has been much uncertainty over the location and nature of
this boundary as values of B are not consistent across the literature
or are unable to converge due to resolution dependence (Lodato &
Clarke 2011; Meru & Bate 2011, 2012). In the absence of irradiation,
we find fragmentation below B & 2, which is similar to the value
of Buir = 3 found by Gammie (2001), but lower than S = 8 found
by Rice et al. (2011). The difference may be due to exact numerical
implementations used and the equation of state (Rice et al. 2005).
The value of y = 1.6 in Rice et al. (2011) compared to y = 2 here
would result in a factor of two difference in equation (6). Berie Will
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also be lowered by a factor of & 2 by the decision to slowly reduce the
cooling time (Clarke et al. 2007). Similarly, Young & Clarke (2015)
investigate the dependence of B on softening and resolution. They
report B A 7 for unsoftened simulations using y = 5/3 and at a
similar resolution to this work. We do not include a gravitational
softening factor here as it would suppress behaviour at the small
scales relevant for this investigation.

Given the lack of softening, we do not expect the absolute values
for the fragmentation boundary to numerically converge. We instead
focus on running simulations with consistent properties, such as
resolution and box size in order to analyse the functional behaviour
of Bt With Qjy. Furthermore, the radial dependence of g in the
outer disc (8 o« r~%/; Clarke 2009; Cossins, Lodato & Clarke 2010)
is steep enough that small differences in B do not correspond to
significant changes in radial location.

Simulations were conducted following the previous methodology,
but with arange of g values. Fig. 6 shows the three possible outcomes
in the (8, Qi) parameter space:

(i) Gravitationally unstable, but not fragmenting. There was clear
turbulent activity, but overdensities did not grow and persist.

(ii) Gravitationally unstable and fragmented. Simulations reached
extreme maximum densities and formed bound fragments.

(iii) Gravitationally stable. No turbulent activity observed. The
maximum density does not increase beyond a few times the back-
ground density.

The fragmentation boundary is usually determined in simulations
without irradiation, for which g ~ 3 is found, corresponding to
a ~ 0.07 (Gammie 2001; Rice et al. 2005; Paardekooper 2012).
The simulations here show S to be a decreasing function of Qjy,
suggesting it may be more suitable to express the fragmentation
boundary using a critical value of o, a., Which is independent of
Qirr- ey relates to the amplitude of density perturbations (Cossins
et al. 2009) and regulates the maximum stress the disc can withstand
before fragmenting. Using the analytic model from Section 2.3,
contours of constant « are plotted on Fig. 6.
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Figure 6. Outcome of simulations with different cooling times and levels of irradiation. Crosses and triangles represent fragmented and unfragmented
simulations respectively. Circles indicate simulations with no gravitational instability. Left: fy = 1. Right: fy = 0. The colourbar shows the theoretical value

of « using the analytic model in Section 2.3.

Case fy =1

For the case of heating per unit mass, fragmentation only occurred for
low levels of irradiation and with short cooling times. The value of 8
required for collapse decreased as the irradiation was increased. For
Qi > QOsaro, there was no evidence of instability due to self-gravity,
so fragmentation could not occur even for very low cooling times.
This behaviour follows the classical understanding that once the level
of irradiation implies a corresponding value of Qj,, that exceeds that
of the natural saturated state of the system, GI will be quenched. The
distinct change in behaviour as the instability is suppressed and o is
reduced to zero occurs between Qj, = 3.0 — 3.5, in agreement with
the analytic prediction of Section 2.3.

In the low irradiation regime with Qi < Qsat0, Barit decreases as
Qi increases. This boundary approximately follows the contours of
constant @ ~ 0.08, although there is not complete agreement. As was
found in Rice et al. (2011), the fragmentation boundary is such that
a lower value of « is required for fragmentation as Qj, increases.

Case fy =0

For the case of heating per unit area, GI remained active and
fragmentation occurred at high levels of irradiation beyond the
value of Qgo. In this regime, the fragmentation boundary again
approximately follows contours of «, which, unlike f, = 1, only
asymptotically approach zero. This allows a region of parameter
space to be susceptible to fragmentation for high values of irradiation,
up to the maximum Q;, = 10 tested. Here, the boundary occurs at
a slightly lower o &~ 0.03. This contour follows the fragmentation
boundary until Qj, & 3.5, below which the threshold for « increases
for decreasing values of Qj;. At Qi = 0, aerig = 0.09.

As discussed in Section 3.2, the observed boundary is sensitive to
the chosen fragmentation criteria, particularly at low Qj,. A more
relaxed criterion results in higher S and lower o, which would
be more consistent with a constant « threshold and with previously
reported values of B for the non-irradiated case. Furthermore, in
the high Qj,, regime, the o contours converge significantly, leading
to uncertainty in the value of o/cyi;.

Determining an exact and consistent oy, if one exists, will
face similar numerical issues as those found for B and is not
of significant consequence in locating the fragmentation zone of

the disc, owing to the steep radial dependence of 8. The notable
distinction here compared with f; = 1 is that fragmentation still
occurs in highly irradiated regimes corresponding to Q ~ 10. Both
Qi and B decrease with radius, suggesting there is a radius in the
disc beyond which & > «; and fragmentation can occur.

Impact on fragment mass

Fragmentation of a gravitationally unstable disc as a mechanism
for planet formation faces problems in replicating expected planet
masses. Population synthesis models indicate that planets formed
via GI are overly massive when compared to the detection rates of
direct imaging (Forgan et al. 2018). A simple estimate for the initial
mass can be derived using the wavelength of the most unstable mode:
M; ~ )% (Kratter, Murray-Clay & Youdin 2010). In the standard
theory, A =27 H Q with Q ~ 1 required for fragmentation. Here,
we have A = 27 H/Qj, from equation (9). In the f, = 0 regime,
irradiated discs with high Qj,, are still able to fragment for sufficiently
low B and will do so on smaller length scales, leading to initial
fragments of lower masses.

Conversely, Cadman et al. (2020) use the methods of Forgan &
Rice (2013) to calculate the Jeans mass in the spiral arms of irradiated,
self-gravitating discs. They find that increased disc temperatures
yield higher Jeans masses and so more massive fragments. Thorough
analysis of fragment masses was not conducted in this study due to
runtime considerations as the time-step required to accurately evolve
the system reduces significantly as clumps form.

5 CONCLUSIONS

In this paper, we compared the analytic and numerical behaviour
of a razor thin, self-gravitating protoplanetary disc using S-cooling
and two models for heating due to irradiation. An important and
underexplored regime where gravitational instability may occur in
protoplanetary discs is the outer disc where cooling times are short,
but where the disc is subject to significant heating by external irradia-
tion. Our results highlight the sensitivity of gravitational instability to
assumptions about how the incident heating rate responds to changes
in surface density in the disc.

The two models include irradiation as either a constant heating
rate per unit mass or per unit area of the disc, approximating
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heating of an optically thin and thick disc respectively. Irradiation
alongside heating due to shocks in a gravitationally unstable disc can
balance cooling, leading to a self-regulated state where the Toomre
Q parameter saturates to an approximately constant value.

When heating per unit mass, a gravitoturbulent state can be
maintained only when irradiation does not imply a temperature,
or corresponding Q, greater than that set by the saturated state
of the system. In contrast, a constant heating rate per unit area
means gravitoturbulence persists for higher levels of irradiation as
the temperature of the saturated state is able to increase above that
imposed by irradiation, in agreement with the analytic model. The
Toomre Q of discs in this regime is elevated, with gravitational
instability still active for discs with Qg =~ 10, though with low
values of the effective viscous stress, «. This is in contrast to the
conventional assumption that a gravitationally unstable disc must
have Qg &~ 1 — 2. This result increases the parameter space of disc
properties that may be susceptible to GI.

Gravitoturbulence relies on an active balance of heating and
cooling processes. High irradiation levels will increase the value
of QO and decrease the viscous stress, whereas shorter cooling time-
scales will increase the viscous stress level but not affect the saturated
Q value (see Figs 3 and 4). As regions of gas cool and collapse, they
undergo more dissipative heating due to turbulent motions. When
supplying irradiation per unit mass of the disc, overdense regions are
preferentially heated and stabilized. This is not the case when heating
per unit area and radiative cooling is still effective in balancing
heating. Young protoplanetary discs are expected to be optically
thick to incident irradiation, so it is more appropriate to prescribe
irradiation as a constant heating rate per unit area. However, the
heating and cooling functions used here are still idealized models for
the disc thermodynamics.

This weak GI regime is important itself as it allows for angular
momentum transport and the formation of spiral structures in discs.
Although simulations here using heating per unit area remain
unstable when highly irradiated, they have elevated temperatures
and low values of viscous stress, which will reduce the amplitude
and detectability of spiral waves (Hall et al. 2018). When including
a dust component, the growth of solids can be enhanced as dust
is concentrated in spiral arms (Rice et al. 2005; Gibbons, Rice &
Mamatsashvili 2012; Booth & Clarke 2016; Baehr & Zhu 2021;
Baehr, Zhu & Yang 2022; Longarini et al. 2023; Rowther et al. 2024),
which can improve detectability (Dipierro et al. 2015; Rowther et al.
2024).

To probe the conditions under which the gas component of an irra-
diated gravitoturbulent disc may fragment, low values of the cooling
time-scale were tested. The fragmentation boundary was found to
be a function of irradiation, such that more irradiated discs require
shorter cooling times in order to fragment. The boundary for frag-
menting simulations approximately followed contours of constant ¢«
with simulations fragmenting for & 2 0.03 — 0.09, consistent with
previous estimates (Gammie 2001; Rice et al. 2005; Paardekooper
2012). In the case of heating per unit area, fragmentation can occur
at values of Q substantially greater than unity.

These results were obtained using a razor thin disc model with a
simple cooling prescription. More realistic 3D models are required
to test this further as the effect of self-gravity is generally reduced
compared to the 2D approximation (Mamatsashvili & Rice 2010).
Including a more realistic cooling function or radiative transfer
models will also be useful due to the dependence on thermodynamics
of the results.
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APPENDIX A: MIXING LENGTH MODEL

The maximum growth rate from the linear analysis of Section 2.3 can
be used to estimate o and Qg, of the turbulent state using a mixing
length approach (Shakura 2018).

First, the turbulent viscosity can be estimated by characteristic
time and length scales:

82
»=(3)

We estimate the typical time-scale as §;! = oy, using the maxi-
mum growth rate derived from the dispersion relation [equation (7)
of the main text]. The full expression for oy, is

3 2
yBO2, (;—’2) + £ 0% (;—“;) +yB (;—“;)( -

—y=0

(AD)

1)+ f,00,
(A2)

For the typical wavelength, Lohnert et al. (2020) find the power
spectra of density perturbations to be insensitive to Qj,. They
average over it to find a typical wavenumber of k ~ %, leading to

2
v, = (%) Om.
The turbulent viscosity relates to the viscous stress, (S,,) =

%(2)1},. Similarly, equation (11) relates the stress to the o-parameter,

%. Applying equation (6) allows us to elimi-

leading to o = e
nate (U). Here, Lohnert et al. (2020) note that v, is normalized with
the background sound speed rather than (cs) and as such, we use
v, resulting in ¢ = ”’,V, .

4G5
Substituting for the mixing length estimate of the turbulent vis-

cosity gives oy, = (%)2

2
vt - Cs,irr

o
>
1 o

(A2) to obtain equation (10)0, relating o to Qjr and .

which can then be used with equation
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