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A B S T R A C T 

Young protoplanetary discs are expected to be gravitationally unstable, which can drive angular momentum transport as well 
as be a potential mechanism for planet formation. Gravitational instability is most pre v alent in the outer disc where cooling 

time-scales are short. At large radii, stellar irradiation makes a significant contribution to disc heating and is expected to suppress 
instability . In this study , we compare two models of implementing irradiation in 2D hydrodynamic simulations of self-gravitating 

discs: supplying a constant heating rate per unit mass and per unit area of the disc. In the former case, instability is quenched 

once the stellar irradiation becomes the dominant heating source. In the latter case, we find instability persists under high levels 
of irradiation, despite large values of the Toomre Q parameter, in agreement with analytic predictions. Fragmentation was able 
to occur in this regime with the critical cooling time-scale required decreasing as irradiation is increased, corresponding to a 
maximum threshold for the viscosity parameter: α ∼ 0 . 03 − 0 . 09. 

Key words: hydrodynamics – instabilities – turbulence – planets and satellites: formation – protoplanetary discs. 
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 I N T RO D U C T I O N  

rotoplanetary discs form around young stars as infalling material is
attened into a disc due to angular momentum conservation. Young
iscs are dominated by their gas component and can be massive
nough to be self-gravitating. The destabilizing force of gravity
an o v ercome support from pressure and centrifugal forces, causing
egions of gas to clump together. The potential for gravitational
nstability (GI) has considerable implications for the evolution of the
isc and planet formation. The formation of bound objects via the
unaway collapse of overdensities (fragmentation) has been proposed
o explain the high occurrence rate of binary stars (Clarke 2009 ) and
o account for the formation of giant planets at large orbital radii
Boss 1997 ). Additionally, non-axisymmetric structures induced by
I, such as spiral arms (Lynden-Bell & Kalnajs 1972 ), facilitate

ngular momentum transport – a critical process in accretion disc
heory that enables material to flow inward. 

Previous studies have emphasized that an important role for GI,
oth in terms of planet formation and driving significant angular
omentum transfer, relates to the ratio of the cooling time to the

ynamical time. Consequently, the regions where GI is potentially
mportant are limited to the outer parts of the disc ( r � 40 AU;

atzner & Levin 2005 ; Rafikov 2005 ; Stamatellos & Whitworth
008 ; Clarke 2009 ; Forgan & Rice 2011 ). Ho we ver, these regions
re precisely where it can be expected that external heating of the disc
y stellar irradiation is significant (D’Alessio et al. 1999 ; Kratter &
odato 2016 ). The regime of short cooling time and strong irradiation
 E-mail: cscl3@cam.ac.uk 
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s therefore an important one to understand, but previous studies are
nclear about the behaviour of the disc in this region. In this paper,
e focus on simulations that explore this regime in detail. 
The linear theory described by Toomre ( 1964 ) applies perturba-

ions to a 2D self-gravitating axisymmetric rotating disc. The onset
f instability is characterized by the Toomre parameter: 

 = 

c s �

πG� 

, (1) 

hich represents the balance of self-gravity against pressure and
entrifugal forces. Low and less stable values of Q are found at
arge radii where the disc is cooler. Classically, Q < 1 is required for
nstability; ho we ver, realistic discs will undergo heating and cooling
rocesses that allow them to thermally saturate at higher values of
 . As regions of the disc collapse, Q decreases and the increased

eating rate due to shock dissipation will stabilize o v erdensities.
s they expand, the heating rate decreases and the disc begins to

ool again. This self-regulated state (Paczynski 1978 ) is known as
ra vitoturb ulence and numerical simulations show discs saturate with
 ≈ 1 − 2 (Lodato & Rice 2004 ; Rice et al. 2011 ). 
Gra vitoturb ulence is sensitive to the thermodynamics of the disc.

eating due to shocks acts to increase Q , whereas radiative cooling
ill decrease Q towards instability. The more efficient the cooling,

he higher the rate of heating required to balance it. Cooling is often
mplemented using the β–prescription (Gammie 2001 ), where β =
c � is the ratio of the cooling time-scale of the disc material to
he orbital time-scale. β is a decreasing function of radius such
hat larger radii have shorter cooling times (Rafikov 2005 ; Clarke
009 ). The ef fecti ve viscosity can be modelled by the Shakura &
unyaev ( 1973 ) prescription, ν = αc s H , where α is a dimensionless
© 2025 The Author(s). 
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arameter measuring the efficiency of angular momentum transport 
ue to turbulence. Assuming thermal equilibrium in the saturated 
tate leads to an inverse relationship between α and β: α = 

4 
9 γ ( γ−1) β , 

erived by Gammie ( 2001 ) and similarly by Mamatsashvili & Rice
 2009 ) using the total energy equation. This relation assumes the
nergy associated with angular momentum transport is dissipated 
ocally, which has been tested numerically using global simulations 
nd shown to be a good approximation (Lodato & Rice 2004 , 2005 ;
ossins, Lodato & Clarke 2009 ). 
A further source of heating is irradiation from the central star.
hile incident flux decreases with orbital radius, it does so less

teeply than internal heating in the disc (Kratter & Lodato 2016 ).
t large radii, it becomes a significant contribution to the o v erall
eating. High levels of irradiation are expected to stabilize the disc 
y raising the value of Q . However, the outer disc is also where the
ooling time-scale becomes short, making the disc more susceptible 
o fragmentation. Thus, it is important to understand the role of
rradiation in these outer regions and whether they do, or do not,
atisfy the conditions required for planet formation by GI. 

How irradiation is incorporated in realistic disc simulations is 
omplicated by optical depth effects and the computational cost of 
adiative transfer models. A common simplification used in 2D local 
isc models is to include a constant added rate of energy determined
y stellar luminosity and radial location in the disc (Rice et al.
011 ; Baehr & Klahr 2015 ) in the energy equation. Irradiation
reates an ef fecti ve heat bath and imposes a background sound
peed. It is expected that once this sound speed implies Q > 1, a
ra vitoturb ulent state cannot be maintained. 
This additional term has been treated in various ways in previous 

tudies with a clear difference being whether or not the heating rate
er unit area depends on surface density. Linear analysis studies show 

istinctly different behaviours depending on the choice made (Lin & 

ratter 2016 ). Density dependence provides an extra stabilizing 
erm such that at large levels of irradiation implying Q � 1 − 2,
here are no unstable solutions. Alternatively, without it, unstable 
olutions remain for arbitrarily high irradiation. This has been seen 
n numerical simulations, such as Rice et al. ( 2011 ), who simulate
he first case and find no evidence of instability for highly irradiated
iscs. Ho we ver, using the latter case, L ̈ohnert, Kr ̈atschmer & Peeters
 2020 ) find active GI for high levels of irradiation, limited only by
umerical effects. 
A further significant outcome of this case is the value of Q obtained

n the gra vitoturb ulent state. L ̈ohnert et al. ( 2020 ) found that as
rradiation is increased, the saturated value of Q also increases and 
I still occurred for discs with Q ∼ 10. This is considerably different

rom the classical expectation that only Q close to 1 can be unstable.
easurements of disc masses show that there are many discs not 

atisfying Q < 1, but would instead meet this more relaxed criterion
Tobin et al. 2020 ). 

Since the energy equation describes the evolution of the internal 
nergy per unit area, including irradiation as a constant additional 
erm corresponds to a constant heating rate of the disc per unit
rea. If the added term has a linear dependence on surface density,
his is equi v alent to a constant heating rate per unit mass with
enser regions being supplied more energy per time. The outcome of
his difference can be understood by considering that GI involves 
he continuous formation and disruption of o v erdensities. This 
equires self-gravity to dominate o v er stabilizing effects, such as
rradiation and enhance the growth of density fluctuations. When a 
onstant rate of energy is supplied per unit mass, o v erdense re gions
ontain more mass per area and will be preferentially heated. This
dditional pressure support acts against self-gravity in promoting the 
rowth of o v erdensities, but does not occur when heating per unit
rea. 

In the outer disc where GI is rele v ant, opacity is dominated by
cy grains and the disc is expected to be optically thick to incident
tellar irradiation (Clarke 2009 ). Therefore, it is more physically 
easonable to incorporate heating as a constant rate o v er a surface
rea. Simulations in the literature more commonly model the case 
f constant heating per unit mass (Rice et al. 2011 ; Baehr & Klahr
015 ; Baehr, Klahr & Kratter 2017 ) and do not explore the strongly
rradiated regime (where Q > 1) since these are expected to be stable.
 ̈ohnert et al. ( 2020 ) simulate this regime using a heating per area
odel, but only consider the implications on discs with long cooling

ime-scales, which would not be susceptible to fragmentation ( β �
). 
In this paper, we study both methods of heating due to irradiation

n local 2D hydrodynamic simulations and compare the results to the
xpectations of the linear theory. We also investigate the boundary 
or fragmentation as a function of the cooling time and irradiation.
ections 2 and 3 describe the analytic theory and simulations 
espectively. We present and discuss the results in Section 4 and
ur conclusions in Section 5 . 

 A NA LY T I C  C O N S I D E R AT I O N S  

n this section we set out the linear theory of self-gravitating
iscs with simply prescribed cooling and irradiation and discuss 
he requirements imposed by thermal equilibrium on the properties 
f the saturated state. The theory presented here will be useful in
nterpreting the simulations presented in Section 4 , which compare 
he outcome of different irradiation models. It is useful first to
ntroduce the terminology that will be used throughout the remainder 
f the paper. 
Q irr = 

c s, irr �0 
πG� 0 

is the value of the Toomre Q parameter that the
ystem would have if it were subject to external irradiation with no
ontribution from heating by GI. c s, irr is the sound speed set by irra-
iation and � 0 is the background density. Q irr is thus an independent
arameter that in Section 3 is varied between simulations. 
Q sat = 〈 Q 〉 is the value of the Toomre Q parameter that the system

ttains in practice when subject to external irradiation, cooling and 
eating effects associated with GI. 〈〉 denotes an average over the
imulation domain and time. 
Q sat,0 = Q sat ( Q irr = 0) is the value of the Toomre Q parameter that

he system attains in practice when subject to cooling and heating
ffects associated with GI but in the absence of external irradiation. 

.1 The model 

e use the local, 2D shearing sheet approximation (Goldreich & 

ynden-Bell 1965 ; Ha wle y, Gammie & Balbus 1995 ) to model the
isc with coordinates ( x , y ) representing the radial and azimuthal
irections respectively. The equations of hydrodynamics are solved 
n a frame co-rotating with the background Keplerian flow. They 
nclude the mass continuity, momentum conservation, and internal 
nergy density equations and a Poisson equation for the self-gravity 
f a razor-thin disc. 

 t � + ∇ · ( �u ) = 0 (2) 

 t u + ( u · ∇) u = − 1 

� 

∇ P − 2 �0 e z × u + 3 �2 
0 xe x − ∇� (3) 

 t U + ( u · ∇) U + γU ( ∇ · u ) = −U 

τc 
+ 

U irr 

τc 

(
� 

� 0 

)f θ

(4) 
MNRAS 539, 2780–2789 (2025) 
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Figure 1. Analytic dispersion relations from equation ( 7 ) with cooling time- 
scale β = τc �0 = 10 and dif ferent le vels of irradiation, Q irr . Both the heating 
per unit area ( f θ = 0) and per unit mass ( f θ = 1) models are plotted. 
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adiabatic sound speed when defining Q . As the growth rate approaches zero, 
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and perturbations behave isothermally. Defining Q by the isothermal sound 
speed accounts for the factor of 

√ 

γ and reco v ers the Q < 1 criterion. 
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2 � = 4 πG�δ( z) (5) 

The forces on the right-hand side of equation ( 3 ) are the pressure
radient, the Coriolis, and tidal forces due to the rotating frame and
he self-gravitational force. u is the velocity of the fluid relative to
he background flow ( u 0 = − 3 

2 �0 xe y ). In the 2D approximation,
 = 

∫ 
ρd z is the vertically integrated density and similarly P is the

 ertically inte grated pressure. 
U is the internal energy density (energy per unit area) and is related

o the pressure by the equation of state, P = ( γ − 1) U . U evolves
ia equation ( 4 ), where the first term on the right-hand side represents
adiative cooling with cooling time τc = β/�0 . The second term is

eating due to irradiation. U irr = 

� 0 c 
2 
s,irr 

γ ( γ−1) indicates the internal energy
er unit area for an isothermal disc that is heated to a sound speed
 s = c s,irr by an external irradiation field (in the absence of self-
ravity), where c 2 s = γ P 

� 
is the adiabatic sound speed. Thus, U irr or

 s,irr parametrizes the strength of external heating in terms of this
quilibrium temperature. 

It can be seen that the heating prescription in equation ( 4 )
orresponds to constant heating per area for f θ = 0 and constant
eating per mass for f θ = 1. Note these possibilities were included
n the analysis of Lin & Kratter ( 2016 ) via their parameter θ , although
hey did not interpret this parameter in terms of whether the external
eating was held constant per unit mass or per unit area. 

.2 Thermal balance 

n the presence of self-gravity, an irradiated disc settles into a
thermally saturated’ state, where radiative cooling and external
rradiation are balanced by heating generated through gravitational
nstability. This heating represents the conversion of mechanical
nergy into heat as a result of shock dissipation associated with spiral
rms in the disc. Lodato & Rice ( 2004 ) demonstrated using global
alculations that the relationship between such heating and the rate
f associated angular momentum transfer is analogous to the action
f an ef fecti ve viscosity and so can be cast in terms of an equi v alent
alue of the Shakura-Sunyaev α−viscosity (Shakura & Sunyaev
973 ). Within this framework, the equation of thermal balance can
e expressed in the form (Rice et al. 2011 ): 

= 

4 

9 γ ( γ − 1) β

(
1 − Q 

2 
irr 

Q 

2 
sat 

)
(6) 

his equation assumes 〈 �c 2 s 〉 = 〈 �〉〈 c s 〉 2 and applies to both irra-
iation models ( f θ = 0 , 1). It is only semi-analytic since the Q
alue of the saturated system, Q sat , is not known a priori and
s dependent on the imposed level of irradiation, parametrized by
 irr . The classical understanding is that for lo w le vels of irradiation

 Q irr � 1), a gra vitoturb ulent state with finite α can be maintained.
o we ver, once the level of irradiation implies a temperature such

hat Q irr > Q sat , α reduces to zero and the instability is inactive. 
Rice et al. ( 2011 ), using f θ = 1 in equation ( 4 ), find an approxi-
ately constant value of Q sat with varying Q irr and so fix this when

stimating α via equation ( 6 ). They make the abo v e assumption
f stability under high irradiation and do not simulate Q irr > Q sat .
he simulations in L ̈ohnert et al. ( 2020 ) use f θ = 0 and find that
 sat varies with Q irr , such that it is al w ays greater than Q irr and
remains finite. This includes Q irr > Q sat,0 , where Q sat,0 is that

f the unirradiated ( Q irr = 0) state. Ho we ver, L ̈ohnert et al. ( 2020 )
ere unable to model a gra vitoturb ulent state with Q irr � 2 Q sat,0 on

ccount of heating associated with the finite numerical viscosity in
heir code. 
NRAS 539, 2780–2789 (2025) 
.3 Linear stability analysis 

e now perturb equations ( 2 )–( 5 ) about a uniform equilibrium
ith constant density and pressure and corresponding Toomre Q :
 0 = 

c s,0 �0 
πG� 0 

. We assume linear perturbations of the form f ′ ( x , t) =
˜ 
 e ( σ t+ i kx ) , where σ is the growth rate and k is the x-component of the
av e v ector. We use axisymmetric perturbations for simplicity here,

hough non-axisymmetric perturbations are able to grow at larger Q
Lau & Bertin 1978 ; Papaloizou & Lin 1989 ; Papaloizou & Sa v onije
991 ; Durisen et al. 2007 ; Mamatsashvili & Chagelishvili 2007 ),
hich will affect the comparison between theory and simulation

esults. Here, we use Q 0 = Q irr as the background state. Using this
n the abo v e equations leads to the dispersion relation: 

2 = −�2 
0 + 

2 c s , 0 �0 

Q irr 
k − c 2 s , 0 ( f θ + γ τc σ ) 

γ (1 + τc σ ) 
k 2 (7) 

This equation is equi v alent to that found by Lin & Kratter ( 2016 ).
hen f θ = 1, corresponding to constant heating per unit mass,

nstable modes ( σ 2 > 0) are possible for γ

Q irr 

(
1 −

√ 

1 − Q 

2 
irr 

γ

)
<

kc s, 0 
�0 

< 

γ

Q irr 

(
1 + 

√ 

1 − Q 

2 
irr 

γ

)
. There are no unstable modes when

 irr > 

√ 

γ , 1 so in this regime, a large enough irradiation temperature
ill completely suppress GI. This is similar to the behaviour of

he dispersion relation of a barotropic fluid without cooling, which
as instability below a critical Q and a larger range of unstable
avenumbers as Q is decreased below this value. 
Conversely, f θ = 0 corresponds to constant heating per unit area

nd, as shown in L ̈ohnert et al. ( 2020 ), unstable modes are possible
or all values of Q irr at high wavenumbers (small spatial scales):
kc s, 0 
�0 

> 

Q irr 
2 . 

We plot the dispersion relation in Fig. 1 for different levels of
rradiation using γ = 2. 

The most unstable mode can be found by solving ∂ σ/ ∂ k = 0. We
efine σm 

as the maximum growth rate and k m 

as the corresponding



Irradiation effects on self-gravitating discs 2783 

w  

r

S
i

T
i

 

t  

T
 

t  

t
u  

t
a
r  

u  

r  

l
o  

s  

g  

a  

d
t
i
f

l  

f  

d  

g  

t
t
m
e
i  

s
(  

l  

o  

a

s  

p  

Q

 √
 

a  

t

3

3

T
e  

e
(  

x  

b
F

 

L  

�  

L  

w  

t  

d

o  

f  

m
T  

o  

o
p
a
o  

p
g  

n
t

t

α

T

〈
w  

m  

w
2

G

a
i
t
n

3

A
t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/539/3/2780/8117178 by guest on 29 Septem
ber 2025
av enumber. F or the high irradiation regime of interest, the growth
ate becomes small. Neglecting higher orders of σm 

�0 
, 

σm 

�0 
= 

γ − Q 

2 
irr f θ

( Q 

2 
irr − 1) γβ

. (8) 

imilarly, the expression for the most unstable wavenumber, which 
s valid for Q irr � 1, is given by 

k m 

c s, 0 

�0 
= Q irr (9) 

his expression suggests that with higher levels of irradiation, 
nstability is expected to occur on shorter length scales. 

For Q irr < 1, the growth rate is too large to neglect higher orders. In
his regime, k m 

c s, 0 /�0 = 1 /Q irr , which is equi v alent to the standard
oomre criterion. 
Following the analysis of L ̈ohnert et al. ( 2020 ), the growth rate of

he most unstable mode can be used to derive analytic predictions for
he saturated value of Q and corresponding α of the turbulent state 
sing a mixing length approach (Shakura 2018 ). An estimate for
he turbulent viscosity is found using characteristic mixing length 
nd time scales given by a typical wavelength and growth rate 
espectively. Here, we keep Q 0 = Q irr , whereas L ̈ohnert et al. ( 2020 )
se Q 0 = Q sat to e v aluate the gro wth rate. The more physically
easonable choice is somewhat unclear. We use Q 0 = Q irr in the
inear analysis as the background state is determined by the level 
f irradiation. Ho we ver, the mixing length model is used for the
aturated state, where it may be more appropriate to e v aluate the
rowth rate using Q sat rather than Q irr . We explored both options
nd found that Q 0 = Q irr gave a closer fit to the data, although the
ifference in the resulting analytic expressions was minimal. Using 
his with the maximum growth rate and retaining higher orders results 
n the following equation, relating α to Q irr and β (see Appendix A 

or details): 

γβQ 

2 
irr 

( 

Q 

2 
sat 

Q 

2 
irr 

(
3 
π

)2 
α

�0 

) 3 

+ f θQ 

2 
irr 

( 

Q 

2 
sat 

Q 

2 
irr 

(
3 
π

)2 
α

�0 

) 2 

+ γβ

( 

Q 

2 
sat 

Q 

2 
irr 

(
3 
π

)2 
α

�0 

) (
Q 

2 
irr − 1 

) + ( f θQ 

2 
irr − γ ) = 0 

(10) 

In addition to the linear theory, the assumption of thermal equi- 
ibrium (equation ( 6 )) allows us to find equations for α and Q sat as
unctions of Q irr and β only. For f θ = 0, this solution is physical
own to Q irr = 1 . 8 with Q sat = 3 . 2. For low values of Q irr , the
rowth rate becomes large and Q sat reduces to zero as the linear
heory breaks down. Furthermore, in the low irradiation regime, 
he most unstable wavenumber is inversely proportional to Q irr as 

entioned abo v e, resulting in an unphysically short mixing length 
stimate as Q irr becomes small. It is expected theoretically and seen 
n numerical calculations that a disc in the absence of irradiation will
ustain a quasi-steady state and approximately constant Q sat,0 > 1 
Paczynski 1978 ). With this in mind, we take Q irr = 1 . 8, where the
inear theory diverges from the physical expectation, to be the limit
f where it is a representati ve approximation. Belo w this, we assume
 constant Q sat = Q sat,0 = 3 . 2. 

To summarize the complete analytic model to be compared to the 
imulation results in Section 4 , we use equations ( 6 ) and ( 10 ) to
redict α and Q sat for f θ = 0 and Q irr > 1 . 8. For Q irr < 1 . 8 we take
 sat = Q sat,0 as constant and use only equation ( 6 ). 
For f θ = 1, there are no solutions in the linear theory for Q irr >
 

γ , which is lower than the Q irr = 1 . 8 threshold, so the final model
ssumes Q sat = Q sat,0 until Q irr > Q sat,0 . Abo v e this, Q sat = Q irr as
he temperature is set completely by the irradiation. 

 M E T H O D S  

.1 The code 

he simulations in this work were performed with Athena (Stone 
t al. 2008 ), a grid-based, second-order Godunov code. We solve the
quations of hydrodynamics using the shearing sheet implementation 
Stone & Gardiner 2010 ) with periodic boundary conditions in the
 and y directions, accounting for the shearing motion at the radial
oundaries. Self-gravity is included by solving for the potential via 
 ast F ourier Transforms. 
The simulation domain is a grid of N × N cells with N = 1024.

engths in code units can be scaled by H = 

πG� 0 
�2 

0 
and setting � 0 =

0 = 1 and G = 1 /π , such that H = 1. We use a box size of L x =
 y = 64 H and choose an adiabatic index of γ = 2 for comparison
ith the literature e.g. Gammie ( 2001 ). The pressure scale height of

he disc is H p = QH . The simulations were initialized with uniform
ensity and pressure and Q = 1 . 1. 
Perturbations were introduced to the velocity field in the form 

f a Gaussian random field of amplitude 〈 δv 2 〉 /c 2 s = (1 . 0 / 1 . 1) 2 ,
ollowing the method of Johnson & Gammie ( 2003 ). This amplitude
eans that the simulations begin with non-linear perturbations. 
his was done to reduce computational time as for large values
f Q irr , the growth rate becomes small (equation 8 ), requiring many
rbital time-scales to reach the saturated state. With order unity 
erturbations, all simulations saturate within 50 �−1 

0 . To validate this 
pproach, additional simulations were conducted with amplitudes 
f 〈 δv 2 〉 /c 2 s = (10 −4 / 1 . 1) 2 , across a range of Q irr . The growth of
erturbations in the linear phase was consistent with the analytic 
rowth rate. Once the simulations reached a saturated state, there was
o difference in their behaviour or measured properties compared to 
hose initialized with order unity perturbations. 

The α-parameter can be measured directly from simulations via 
he gravitational and Reynolds stresses: 

= 

2 

3 
〈
�c 2 s 

〉 〈 S xy 〉 = 

2 

3 
〈
�c 2 s 

〉 (〈 G xy 〉 + 〈 H xy 〉 
)

(11) 

he Reynolds stress is calculated by 

 H xy 〉 = 〈 �u 

′ 
x u 

′ 
y 〉 , (12) 

here u 

′ 
x and u 

′ 
y are the velocities relative to the background orbital

otion. The gravitational stress component is given by equation ( 13 ),
hich can be calculated analytically in the Fourier domain (Gammie 
001 ). 

 xy = 

∫ ∞ 

−∞ 

d z 
g x g y 

4 πG 

(13) 

〈
G xy 

〉 = 

∑ 

k 

πGk x k y | � k | 2 
| k | 3 (14) 

Initial results were found to behave as expected without the 
ddition of artificial viscosity. Given the low values of α expected 
n the highly irradiated regime, added viscosity would dominate and 
he contribution from GI would be undetectable. For these reasons, 
o artificial viscosity is included in the simulations. 

.2 Fragmentation criterion 

fter a saturated state is achieved, fragmentation can occur by 
he runaway collapse of overdense regions. This happens when 
MNRAS 539, 2780–2789 (2025) 



2784 C. S. Leedham, R. A. Booth and C. J. Clarke 

M

β  

o  

l  

a  

i  

B  

a
 

u  

r  

s  

F  

t  

a
f  

f  

s  

f

3

S  

s
i  

o  

t  

(  

β  

t  

s  

fi  

d  

f  

f

3

T  

6  

o  

2  

U  

w  

e  

f  

o
 

s  

a  

u  

2
t  

n  

(  

T  

T  

t  

2

s
c

Table 1. Averaged properties over simulation domain and time for simula- 
tions with f θ = 0 and β = 10. 

Q irr Box size Resolution Q sat 〈 α〉 
( L x × L y ) ( N x × N y ) 

0 8 H × 8 H 1024 × 1024 1.67 0.0241 
0 16 H × 16 H 1024 × 1024 2.10 0.0236 
0 32 H × 32 H 1024 × 1024 2.68 0.0210 
0 64 H × 64 H 256 × 256 3.16 0.0221 
0 64 H × 64 H 512 × 512 3.00 0.0218 
0 64 H × 64 H 1024 × 1024 2.96 0.0216 
0 64 H × 64 H 2048 × 2048 2.89 0.0215 
0 128 H × 128 H 1024 × 1024 2.97 0.0217 
10 64 H × 64 H 512 × 512 10.26 0.00102 
10 64 H × 64 H 1024 × 1024 10.28 0.00109 
10 128 H × 128 H 1024 × 1024 10.36 0.00135 
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is less than a critical cooling time-scale, βcrit , below which
 v erdensities are unable to be stabilized by heating. The precise
ocation of this boundary has faced issues due to non-convergence for
 variety of reasons associated with the dimensionality and viscosity
mplementation in the codes (Lodato & Clarke 2011 ; Paardekooper,
aruteau & Meru 2011 ; Meru & Bate 2012 ), but is typically quoted
s βcrit ≈ 3 − 10 (Gammie 2001 ; Rice, Lodato & Armitage 2005 ). 

There is no criterion for identifying fragmentation that has been
niformly applied in the literature, although a common choice
equires an o v erdensity abo v e 100 � 0 to surviv e for a few orbital time-
cales (Meru & Bate 2011 ; Rice et al. 2011 ; Paardekooper 2012 ).
rom initial results, classifying simulations as fragmented was found

o depend sensitively on the exact threshold for the maximum density
nd survi v al time of a clump. Using the condition of � max > 100 � 0 

or t > 3 �−1 
0 indicated fragmentation in cases which were later

ound to contain only transient o v erdensities. To distinguish these
imulations from fragmenting ones, we use a further criterion that
ragments must be gravitationally bound. 

.3 Time-dependent cooling 

imulations are initiated with β = 10 and allowed to settle into a
aturated state. When simulating shorter cooling times, the value of β
s then linearly reduced o v er 100 �−1 

0 to its target v alue. If lo w v alues
f β are introduced at t = 0, the disc may spuriously fragment in
his initial phase. As pointed out by Clarke, Harper-Clark & Lodato
 2007 ), it is also not realistic to instantaneously form a disc with
< βcrit , but the disc may evolve to have a lower cooling time due

o infall of material or redistribution via gravitational torques. They
tudy the effect of slowly reducing β o v er man y cooling times and
nd this lowers the value of βcrit by a factor of 2 compared to a rapid
ecrease. 2 The dependence on thermal history should be accounted
or when comparing values of βcrit . Averaged quantities are calculated
rom after the final β has been reached. 

.4 Resolution effects 

he standard set-up for simulations used a box size of L x = L y =
4 H and N = 1024. Both box size and resolution can affect the
utcome of simulations and absolute quantities (Young & Clarke
015 ; Riols, Latter & Paardekooper 2017 ; Booth & Clarke 2019 ).
sing the non-irradiated case ( Q irr = 0 ) and β = 10, simulations
ith N = 256 , 512 , 1024 , 2048 were conducted. There was minimal

ffect on quantities of interest, such as average Q and α, which were
ound to have converged by N = 1024. Table 1 provides a summary
f results from tests of different simulation configurations. 
With no irradiation, Q increases quickly from its initial value and

ettles to Q sat,0 ≈ 3 . 0. Including irradiation leads to Q saturating at
 higher value as Q irr is increased, as seen in Fig. 2 . Previous results
sing ZEUS (Mamatsashvili & Rice 2009 ) and Athena (Shi et al.
016 ) have also found these codes to have higher values of Q sat,0 

han others, which more commonly saturate at Q sat ≈ 2 . 0. Many
umerical factors can increase Q sat , such as using a large box size
Riols et al. 2017 ; Booth & Clarke 2019 ; Zier & Springel 2023 ).
he Q irr = 0 case was tested with L x = L y = 8 , 16 , 32 , 64 , 128 H .
here was little difference to the average α values, but Q sat was found

o increase with box size (see Table 1 ). For small boxes, Q sat ≈ 1 . 7,
NRAS 539, 2780–2789 (2025) 

 This was tested in the non-irradiated case, where we observed that a 
imulation with β = 3 fragmented upon an instantaneous reduction of the 
ooling time, but did not fragment when gradually reduced. 

b  

β

 

t  

m  
hich is closer to that measured in similar studies (Rice et al. 2011 ).
onvergence was reached for L ≥ 64 H . Ho we ver, using a box of this

ize limits the applicability of the local model to real astrophysical
iscs. 
All simulations were initiated with Q = 1 . 1, implying a scale

eight H p = 1 . 1. Ho we v er, as the y evolv e, H p increases with Q ,
hanging the size of the box in units of H p and the resolution
n units of cells per pressure scale height. In the non-irradiated
ase and in previous studies, Q sat remains low enough such that
he difference is small. In Section 4.1 we demonstrate that in the
ighly irradiated regime, Q sat is large enough to increase the scale
eight by a factor of 10 relative to initial conditions. Although this
nly increases the number of cells per scale height, it means that
imulation with different inputs of Q irr yield different H p . To assess
hether this influences the conclusions, Q irr = 10 simulations were
erformed with larger box sizes and/or lower resolutions in order to
atch the box size and number of cells per H p to the Q irr = 0 case.
here was minimal effect on the simulation properties and behaviour

Table 1 ), supporting the use of the standard set-up with N = 1024
nd L = 64 H for subsequent simulations. 

Finally, considering a theoretical condition, the box length should
ccommodate the length scale corresponding to the minimum unsta-
le wavenumber from the linear dispersion relation (equation 7 ) i.e.
 > 

2 π
k min 

= 

4 π
Q irr 

H . This is satisfied for all but the smallest values of
 irr , where k min becomes very small. Ho we ver, in practice Q al w ays

aturates to values at least as high as Q sat,0 ∼ 3, such that very small
avenumbers are never realized. 

 RESULTS  A N D  DI SCUSSI ON  

.1 Non-linear state 

imulations were run across a range of input parameters, including
ooling times β = 10 , 20, and irradiation level, Q irr = 0 − 10, for
oth the case of heating per unit area and per unit mass. In all
imulations, Q increased sharply within a few �−1 

0 from an initial
ondition of Q = 1 . 1 and either saturated to a gra vitoturb ulent
tate or resulted in laminar flow. Example time series of Q are
hown in Fig. 2 for β = 10. The cooling time was chosen such
hat fragmentation does not occur and a thermally saturated state can
e achieved. The fragmentation boundary is investigated using lower
values in Section 4.2 . 
With no irradiation, f θ = 0 and f θ = 1 are equi v alent and Q settles

o Q sat,0 ≈ 3 . 0. This agrees well with the value from the analytic
odel in Section 2.3 ( Q sat,0 = 3 . 2), despite being larger than what is
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Figure 2. Temporal evolution of the domain-averaged Q for a selection of simulations with different levels of irradiation, Q irr . Left : f θ = 1. Right : f θ = 0. 

Figure 3. Saturated values of Q measured from simulations with β = 10. 
Q sat is calculated by averaging over time and the simulation domain during 
the saturated state. The solid lines indicate the analytic model outlined in 
Section 2.3 . 
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Figure 4. Behaviour of α with increasing irradiation at β = 10. Direct mea- 
surements from simulations using equation ( 11 ) are compared to calculations 
of α using the assumption of thermal equilibrium (equation 6 ) with Q sat 

measured directly from the simulations. Theoretical lines are plotted using 
the linear analysis of Section 2.3 . Anomalous α measurements are plotted as 
upper limits. 
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ommonly measured in simulations. Increasing Q irr raised the value 
f Q reached by the simulations. For f θ = 1, Q remained constant
 v er time for higher levels of irradiation, whereas for f θ = 0, Q
ontinued to fluctuate o v er time, as seen in Fig. 2 . 

Fig. 3 shows how the saturated value of Q varies with the imposed
evel of irradiation. For f θ = 1, Q sat remains approximately constant 
ith increasing Q irr until Q irr > Q sat,0 . The instability becomes 

nactive and Q terminates at ≈ Q irr . The resulting laminar state 
s demonstrated by the flat Q versus time profiles, low α values and
he spatial structure of density. 

For f θ = 0, Q sat remains approximately constant for Q irr < 1 . 8. In
his re gime, we e xpect the measured value of Q sat to be determined by
on-linear effects in the simulations and to be largely independent of
he lo w Q irr v alue. For Q irr > 1 . 8, irradiation becomes a significant
ontribution to the heating balance. The saturated state responds to 
he level irradiation, such that Q sat increases, remaining greater than 
 irr and the instability is still active. This behaviour is seen in the

imulation results, which agree well with the model. 
The α-parameter is a measure of the efficiency of angular momen- 

um transport due to turbulence and indicates the activity of GI. It
as measured directly from gravitational and Reynolds stresses in the 

imulations via equation ( 11 ) and compared to theoretical predictions 
utlined in Section 2.3 . Fig. 4 plots the variation of α with Q irr .
he behaviour is consistent with Fig. 3 with the cases f θ = 0 and
 θ = 1 diverging around Q irr = 1 . 8. For f θ = 1, α reduces to zero
s irradiation dominates the saturated state. For f θ = 0, α remains
nite for high levels of irradiation. 
Though the theory predicts no unstable solutions for f θ = 1 and
 irr > Q sat,0 , residual α values were measured for simulations at

igher Q irr . This is due to the implementation of self-gravity in
he code not fully conserving momentum. The disc acquires a non-
ero average velocity in the form of a small eccentricity, oscillating
etween the radial and azimuthal directions. The resulting Reynolds 
tress is due to this bulk motion rather than turbulent motion
ssociated with GI. Other properties of these simulations indicate 
hat GI is not active, such as the maximum density remaining below

2 � 0 . For this reason, we mark these values as upper limits in
ig. 4 . 
The agreement between the directly measured α and calculating 

ia equation ( 6 ) supports the assumption that thermal equilibrium has
een reached and shows the simulation is conserving energy well. 
here is also excellent agreement between the simulations and the 
nalytic model derived from the linear theory. 

From the linear analysis, Fig. 1 suggests that irradiation will 
imit the range of unstable wavenumbers for f θ = 1 compared to
 θ = 0. Fig. 5 shows example power spectra for each irradiation
odel. Following the method of L ̈ohnert et al. ( 2020 ), Fourier

mplitudes of density perturbations were computed at a given 
MNRAS 539, 2780–2789 (2025) 
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Figure 5. Left : Power of density perturbations as a function of k x for simulations with Q irr = 3 . 0 and β = 4. Both simulations are in a gra vitoturb ulent state 
with α = 0 . 025 for f θ = 0 and α = 0 . 0089 for f θ = 1. Right: Surface density snapshots of each simulation. 
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imestamp and averaged over the y-component of the wavenumber
o obtain the power as a function of the x-component. These were
hen averaged over multiple timestamps during the saturated state:
 ( k x ) = 

〈〈| ̂  � ( k x , k y ) | 2 〉 k y 
〉

t 
. Fig. 5 also includes example snapshots

f the spatial structure of density. The f θ = 0 simulation exhibits
ore small-scale structure, which is evident in the power spectra. The

hape of the power spectra differ between the models, with f θ = 0
emaining a shallower function of k x until k x L 

2 π ≈ 30. The greatest
if ference in po wer occurs around this wavenumber, corresponding
o wavelengths of order H and the wavenumber of the most unstable
ode predicted by linear theory. At large wavenumbers, pressure is

he dominant restoring force. When irradiation is supplied per unit
rea of the disc, these sub-Jeans length scales are less ef fecti vely
tabilized, resulting in the retention of power at small scales. 

.2 Fragmentation 

he process of fragmentation can be considered in two stages. First,
he disc must be gravitationally unstable, for which we have shown
s possible for f θ = 0 heating even at high levels of irradiation.
econdly, the disc must be able to cool sufficiently quickly that
 v erdensities are not able to be stabilized by heating associated
ith PdV work and shock heating and instead continue to grow.
therwise, the disc saturates to the gra vitoturb ulent state. Due to

he dependence of fragmentation on cooling time, the criterion for
ragmentation is often considered as a critical value for the β-
arameter, such that fragmentation occurs for β < βcrit . 
There has been much uncertainty o v er the location and nature of

his boundary as values of βcrit are not consistent across the literature
r are unable to converge due to resolution dependence (Lodato &
larke 2011 ; Meru & Bate 2011 , 2012 ). In the absence of irradiation,
e find fragmentation below βcrit ≈ 2, which is similar to the value
f βcrit = 3 found by Gammie ( 2001 ), but lower than βcrit = 8 found
y Rice et al. ( 2011 ). The difference may be due to exact numerical
mplementations used and the equation of state (Rice et al. 2005 ).
he value of γ = 1 . 6 in Rice et al. ( 2011 ) compared to γ = 2 here
ould result in a factor of two difference in equation ( 6 ). βcrit will
NRAS 539, 2780–2789 (2025) 

c

lso be lowered by a factor of ≈ 2 by the decision to slowly reduce the
ooling time (Clarke et al. 2007 ). Similarly, Young & Clarke ( 2015 )
nvestigate the dependence of βcrit on softening and resolution. They
eport βcrit ≈ 7 for unsoftened simulations using γ = 5 / 3 and at a
imilar resolution to this work. We do not include a gravitational
oftening factor here as it would suppress behaviour at the small
cales rele v ant for this investigation. 

Given the lack of softening, we do not expect the absolute values
or the fragmentation boundary to numerically converge. We instead
ocus on running simulations with consistent properties, such as
esolution and box size in order to analyse the functional behaviour
f βcrit with Q irr . Furthermore, the radial dependence of β in the
uter disc ( β ∝ r −9 / 2 ; Clarke 2009 ; Cossins, Lodato & Clarke 2010 )
s steep enough that small differences in βcrit do not correspond to
ignificant changes in radial location. 

Simulations were conducted following the previous methodology,
ut with a range of β values. Fig. 6 shows the three possible outcomes
n the ( β, Q irr ) parameter space: 

(i) Gra vitationally unstable, b ut not fragmenting. There was clear
urbulent activity, but o v erdensities did not grow and persist. 

(ii) Gravitationally unstable and fragmented. Simulations reached
xtreme maximum densities and formed bound fragments. 

(iii) Gravitationally stable. No turbulent activity observed. The
aximum density does not increase beyond a few times the back-

round density. 

The fragmentation boundary is usually determined in simulations
ithout irradiation, for which β ∼ 3 is found, corresponding to
∼ 0 . 07 (Gammie 2001 ; Rice et al. 2005 ; Paardekooper 2012 ).

he simulations here show βcrit to be a decreasing function of Q irr ,
uggesting it may be more suitable to express the fragmentation
oundary using a critical value of α, αcrit , which is independent of
 irr . αcrit relates to the amplitude of density perturbations (Cossins

t al. 2009 ) and regulates the maximum stress the disc can withstand
efore fragmenting. Using the analytic model from Section 2.3 ,

ontours of constant α are plotted on Fig. 6 . 
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Figure 6. Outcome of simulations with different cooling times and levels of irradiation. Crosses and triangles represent fragmented and unfragmented 
simulations respectively. Circles indicate simulations with no gravitational instability. Left : f θ = 1. Right : f θ = 0. The colourbar shows the theoretical value 
of α using the analytic model in Section 2.3 . 
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ase f θ = 1 

or the case of heating per unit mass, fragmentation only occurred for
o w le vels of irradiation and with short cooling times. The value of β
equired for collapse decreased as the irradiation was increased. For 
 irr > Q sat,0 , there was no evidence of instability due to self-gravity,

o fragmentation could not occur even for very low cooling times. 
his behaviour follows the classical understanding that once the level 
f irradiation implies a corresponding value of Q irr that exceeds that 
f the natural saturated state of the system, GI will be quenched. The
istinct change in behaviour as the instability is suppressed and α is
educed to zero occurs between Q irr = 3 . 0 − 3 . 5, in agreement with
he analytic prediction of Section 2.3 . 

In the low irradiation regime with Q irr < Q sat,0 , βcrit decreases as
 irr increases. This boundary approximately follows the contours of 

onstant α ∼ 0 . 08, although there is not complete agreement. As was
ound in Rice et al. ( 2011 ), the fragmentation boundary is such that
 lower value of α is required for fragmentation as Q irr increases. 

ase f θ = 0 

or the case of heating per unit area, GI remained active and
ragmentation occurred at high levels of irradiation beyond the 
alue of Q sat,0 . In this regime, the fragmentation boundary again 
pproximately follows contours of α, which, unlike f θ = 1, only 
symptotically approach zero. This allows a region of parameter 
pace to be susceptible to fragmentation for high values of irradiation, 
p to the maximum Q irr = 10 tested. Here, the boundary occurs at
 slightly lower αcrit ≈ 0 . 03. This contour follows the fragmentation 
oundary until Q irr ≈ 3 . 5, below which the threshold for α increases
or decreasing values of Q irr . At Q irr = 0, αcrit ≈ 0 . 09. 

As discussed in Section 3.2 , the observed boundary is sensitive to
he chosen fragmentation criteria, particularly at low Q irr . A more 
elaxed criterion results in higher βcrit and lower αcrit , which would 
e more consistent with a constant α threshold and with previously 
eported values of βcrit for the non-irradiated case. Furthermore, in 
he high Q irr regime, the α contours converge significantly, leading 
o uncertainty in the value of αcrit . 

Determining an exact and consistent αcrit , if one exists, will 
ace similar numerical issues as those found for βcrit and is not 
f significant consequence in locating the fragmentation zone of 
he disc, owing to the steep radial dependence of β. The notable
istinction here compared with f θ = 1 is that fragmentation still
ccurs in highly irradiated regimes corresponding to Q ∼ 10. Both 
 irr and β decrease with radius, suggesting there is a radius in the

isc beyond which α > αcrit and fragmentation can occur. 

mpact on fragment mass 

ragmentation of a gravitationally unstable disc as a mechanism 

or planet formation faces problems in replicating expected planet 
asses. Population synthesis models indicate that planets formed 

ia GI are o v erly massiv e when compared to the detection rates of
irect imaging (Forgan et al. 2018 ). A simple estimate for the initial
ass can be derived using the wavelength of the most unstable mode:
 i ≈ �λ2 (Kratter, Murray-Clay & Youdin 2010 ). In the standard 

heory, λ = 2 πH Q with Q ≈ 1 required for fragmentation. Here,
e have λ = 2 πH /Q irr from equation ( 9 ). In the f θ = 0 regime,

rradiated discs with high Q irr are still able to fragment for sufficiently
ow β and will do so on smaller length scales, leading to initial
ragments of lower masses. 

Conversely, Cadman et al. ( 2020 ) use the methods of Forgan &
ice ( 2013 ) to calculate the Jeans mass in the spiral arms of irradiated,

elf-gravitating discs. They find that increased disc temperatures 
ield higher Jeans masses and so more massive fragments. Thorough 
nalysis of fragment masses was not conducted in this study due to
untime considerations as the time-step required to accurately evolve 
he system reduces significantly as clumps form. 

 C O N C L U S I O N S  

n this paper, we compared the analytic and numerical behaviour 
f a razor thin, self-gravitating protoplanetary disc using β-cooling 
nd two models for heating due to irradiation. An important and
ndere xplored re gime where gravitational instability may occur in 
rotoplanetary discs is the outer disc where cooling times are short,
ut where the disc is subject to significant heating by external irradia-
ion. Our results highlight the sensitivity of gravitational instability to 
ssumptions about how the incident heating rate responds to changes 
n surface density in the disc. 

The two models include irradiation as either a constant heating 
ate per unit mass or per unit area of the disc, approximating
MNRAS 539, 2780–2789 (2025) 
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eating of an optically thin and thick disc respectively. Irradiation
longside heating due to shocks in a gravitationally unstable disc can
alance cooling, leading to a self-regulated state where the Toomre
 parameter saturates to an approximately constant value. 
When heating per unit mass, a gra vitoturb ulent state can be
aintained only when irradiation does not imply a temperature,

r corresponding Q , greater than that set by the saturated state
f the system. In contrast, a constant heating rate per unit area
eans gra vitoturb ulence persists for higher levels of irradiation as

he temperature of the saturated state is able to increase abo v e that
mposed by irradiation, in agreement with the analytic model. The
oomre Q of discs in this regime is ele v ated, with gravitational

nstability still active for discs with Q sat ≈ 10, though with low
alues of the effective viscous stress, α. This is in contrast to the
onventional assumption that a gravitationally unstable disc must
ave Q sat ≈ 1 − 2. This result increases the parameter space of disc
roperties that may be susceptible to GI. 
Gra vitoturb ulence relies on an active balance of heating and

ooling processes. High irradiation levels will increase the value
f Q and decrease the viscous stress, whereas shorter cooling time-
cales will increase the viscous stress level but not affect the saturated
 value (see Figs 3 and 4 ). As regions of gas cool and collapse, they

ndergo more dissipative heating due to turbulent motions. When
upplying irradiation per unit mass of the disc, o v erdense re gions are
referentially heated and stabilized. This is not the case when heating
er unit area and radiative cooling is still ef fecti ve in balancing
eating. Young protoplanetary discs are expected to be optically
hick to incident irradiation, so it is more appropriate to prescribe
rradiation as a constant heating rate per unit area. Ho we ver, the
eating and cooling functions used here are still idealized models for
he disc thermodynamics. 

This weak GI regime is important itself as it allows for angular
omentum transport and the formation of spiral structures in discs.
lthough simulations here using heating per unit area remain
nstable when highly irradiated, they have ele v ated temperatures
nd low values of viscous stress, which will reduce the amplitude
nd detectability of spiral waves (Hall et al. 2018 ). When including
 dust component, the growth of solids can be enhanced as dust
s concentrated in spiral arms (Rice et al. 2005 ; Gibbons, Rice &

amatsashvili 2012 ; Booth & Clarke 2016 ; Baehr & Zhu 2021 ;
aehr, Zhu & Yang 2022 ; Longarini et al. 2023 ; Rowther et al. 2024 ),
hich can impro v e detectability (Dipierro et al. 2015 ; Rowther et al.
024 ). 
To probe the conditions under which the gas component of an irra-

iated gra vitoturb ulent disc may fragment, lo w v alues of the cooling
ime-scale were tested. The fragmentation boundary was found to
e a function of irradiation, such that more irradiated discs require
horter cooling times in order to fragment. The boundary for frag-
enting simulations approximately followed contours of constant α
ith simulations fragmenting for α � 0 . 03 − 0 . 09, consistent with
revious estimates (Gammie 2001 ; Rice et al. 2005 ; Paardekooper
012 ). In the case of heating per unit area, fragmentation can occur
t values of Q substantially greater than unity. 

These results were obtained using a razor thin disc model with a
imple cooling prescription. More realistic 3D models are required
o test this further as the effect of self-gravity is generally reduced
ompared to the 2D approximation (Mamatsashvili & Rice 2010 ).
ncluding a more realistic cooling function or radiative transfer
odels will also be useful due to the dependence on thermodynamics

f the results. 
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PPENDI X  A :  M I X I N G  L E N G T H  M O D E L  

he maximum growth rate from the linear analysis of Section 2.3 can
e used to estimate α and Q sat of the turbulent state using a mixing
ength approach (Shakura 2018 ). 

First, the turbulent viscosity can be estimated by characteristic 
ime and length scales: 

t = 

〈
δ2 
x 

δt 

〉
(A1) 

We estimate the typical time-scale as δ−1 
t = σm 

, using the maxi-
um growth rate derived from the dispersion relation [equation ( 7 )

f the main text]. The full expression for σm 

is 

βQ 

2 
irr 

(
σm 

�0 

)3 

+ f θQ 

2 
irr 

(
σm 

�0 

)2 

+ γβ

(
σm 

�0 

) (
Q 

2 
irr − 1 

) + f θQ 

2 
ir

− γ = 0 (A2)

For the typical wavelength, L ̈ohnert et al. ( 2020 ) find the power
pectra of density perturbations to be insensitive to Q irr . They
v erage o v er it to find a typical wavenumber of k ≈ 3 

2 , leading to

t = 

(
π
3 

)2 
σm 

. 
The turbulent viscosity relates to the viscous stress, 〈 S xy 〉 =

3 
2 〈 �〉 νt . Similarly, equation ( 11 ) relates the stress to the α-parameter,
eading to α = 

〈 �〉 νt 

γ ( γ−1) 〈 U〉 . Applying equation ( 6 ) allows us to elimi-
ate 〈 U〉 . Here, L ̈ohnert et al. ( 2020 ) note that νt is normalized with
he background sound speed rather than 〈 c s 〉 and as such, we use
′ 
t = c 2 s,irr νt , resulting in α = 

ν′ 
t 

1 + 

ν′ 
t 

α0 

. 

Substituting for the mixing length estimate of the turbulent vis- 
osity gives σm 

= 

(
3 
π

)2 α
1 − α

α0 
, which can then be used with equation

 A2 ) to obtain equation ( 10 ), relating α to Q irr and β. 
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