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A B S T R A C T 

Planet formation via core accretion involves the growth of solids that can accumulate to form planetary cores. There are a 
number of barriers to the collisional growth of solids in protostellar discs, one of which is the drift, or metre, barrier. Solid 

particles experience a drag force that will tend to cause them to drift towards the central star in smooth, laminar discs, potentially 

removing particles before they grow large enough to decouple from the disc gas. Here we present 3D, shearing box simulations 
that explore the dynamical evolution of solids in a protostellar disc that is massive enough for the gravitational instability to 

manifest as spiral density waves. We expand on earlier work by considering a range of particle sizes and find that the spirals can 

still enhance the local solid density by more than an order of magnitude, potentially aiding grain growth. Furthermore, if solid 

particles have enough mass, and the particle size distribution extends to sufficiently large particle sizes, the solid component of 
the disc can undergo direct gravitational collapse to form bound clumps with masses typically between 1 and 10 M ⊕. Thus, the 
concentration of dust in a self-gravitating disc could bypass the size barrier for collisional growth and directly form planetary 

cores early in the lifetime of the disc. 

Key words: planets and satellites: formation – planets and satellites: gaseous planets – protoplanetary discs – stars: formation –
stars: protostars – instabilities. 
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 I N T RO D U C T I O N  

roadly speaking, there are two main planet formation scenarios, 
ore accretion (Mizuno 1980 ) and direct collapse in gravitationally 
nstable discs (Kuiper 1951 ; Boss 1997 ). Although the latter could
orm giant planets on wide orbits (Nero & Bjorkman 2009 ; Kratter,

urray-Clay & Youdin 2010 ), models and observations indicate that 
t probably rarely operates (Rice et al. 2015 ; Vigan et al. 2017 ) and
hat most known planets likely form via core accretion (Schlaufman 
018 ). 
The basic core accretion process involves the growth of initially 
icron-sized dust grains into much larger objects (Blum & Wurm 

008 ) that can then coagulate to form large rocky bodies that either
ecome terrestrial planets, or the cores of giant planets. If the solid
ore becomes massive enough before the gas disc has dissipated, it
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an then undergo a phase of runaway gas accretion to form a giant
lanet (Pollack et al. 1996 ). 
There are, ho we ver, a number of barriers to the growth of solids in a

rotoplanetary disc, one of which is the drift, or metre, barrier (Laibe
014 ). In a smooth, laminar protoplanetary disc, the gas will orbit
ith sub-Keplerian velocities because the ne gativ e pressure gradient 

lightly reduces the net inward radial force. A consequence of this is
hat the solid particles, which are not influenced by the gas pressure,
eel a head-wind that produces a drag force, causing these particles to
ose angular momentum and drift inwards (Weidenschilling 1977 ). 

The rate at which the solids drift inwards depends on their size.
ery small particles will be strongly coupled to the gas and will drift
ery slowly. Very large particles will become decoupled from the gas
nd will also drift very slowly. Intermediate-sized particles, however, 
an drift at speeds that are high enough for them to be lost to the
entral star before becoming large enough to no longer be strongly
nfluenced by the drag force. Although the exact size will depend on
he disc properties, for typical protoplanetary discs, we’d expect the 
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rift rate to peak for cm- to metre-sized particles (Weidenschilling
977 ). 
The streaming instability (Youdin & Johansen 2007 ; Bai & Stone

010 ) provides one possible way to o v ercome this drift-barrier. If
egions with enhanced solid density start to develop, then the back-
eaction of the particles on the gas can increase the velocity of the gas,
esulting in a smaller velocity differential between the gas and the
ust, therefore reducing the impact of gas drag, and slowing the local
nward drift velocity of the particles. This region can then accumulate
olids as faster drifting particles catch up with those whose drift
as slowed, producing large enhancements in the local density of
olids and potentially leading to gravitational collapse of the solid
omponent of the disc, and the direct formation of planetesimals
Johansen, Youdin & Mac Low 2009 ; Simon et al. 2016 ). 

Ho we ver, it’s also recognized that the presence of high-density
tructures, or pressure maxima, in the gas disc can also influence the
nward drift of solid particles (Haghighipour & Boss 2003 ). The drag
orce will cause particles to drift towards pressure maxima, so the
resence of vortices (Godon & Livio 1999 ; Johansen, Andersen &
randenburg 2004 ; Gibbons, Mamatsashvili & Rice 2015 ) or even

mall-scale turbulence (Johansen, Klahr & Henning 2006 ) can lead
o the concentration of solid particles. 

During the earliest stages of protostellar evolution, protostellar
iscs may also be massive enough to be susceptible to the gravita-
ional instability (Lin & Pringle 1990 ; Rice, Mayo & Armitage 2010 ),
hich manifests as spiral density waves. Fragmentation into bound
bjects may also occur if the system is sufficiently unstable (e.g.
oss 1997 ; Durisen et al. 2007 ). Ho we ver, there are indications from

heoretical work and population synthesis models that fragmentation
oes not adequately explain the observed gas giant population (e.g.
ice et al. 2015 ; Forgan et al. 2018 ; M ̈uller, Helled & Mayer 2018 ),

uggesting that a self-gravitating phase is more likely to manifest as
piral density waves, which will also be sites where particles could
oncentrate. Previous work (e.g. Rice et al. 2004 ; Gibbons, Rice &
amatsashvili 2012 ; Booth & Clarke 2016 ; Baehr & Zhu 2021 )

as demonstrated that the local particle density can be substantially
nhanced in self-gravitating spirals, potentially reaching densities
here planetesimals could then form by direct gravitational collapse

Rice et al. 2006 ; Gibbons, Mamatsashvili & Rice 2014 ; Baehr,
hu & Yang 2022 ; Longarini et al. 2023b ; Rowther et al. 2024a ). 
Ho we ver, most of this earlier work either assumed particles of

 single size, or particles with a single stopping time. This is very
seful for understanding how spirals will influence different types
f particles, what types of particles would need to be present in
rder for the enhancements to be substantial, and to get some idea of
he criteria required for the particles to undergo direct gravitational
ollapse. Ho we ver, this is unrealistic, given that the particles typically
ave a size distribution that can co v er man y orders of magnitude. The
utcome therefore depends on the range of particle sizes and also how
uch mass is in particles that are strongly influenced by the spiral

ensity waves. 
F or e xample, a grain size distribution dominated by smaller grains

s expected to develop weaker concentrations within the spiral
eatures (Gibbons et al. 2014 ; Shi et al. 2016 ), making the collapse
nto bound clumps more dif ficult. Furthermore, e ver larger quantities
f dust are required to o v ercome the dust diffusion for small dust
rains since the collapse time-scale of a cloud of dust increases for
maller grains due to their shorter stopping time and lower terminal
elocity. Thus smaller dust grains are more likely to be prevented
rom collapsing by the same amount of diffusion (Klahr & Schreiber
020 ). 
NRAS 539, 3421–3435 (2025) 
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Here we use 3D shearing box simulations to investigate if spiral
ensity waves can still substantially enhance the local dust density
hen a particle size distribution is adopted. We start by considering
 particle distribution that co v ers a wide range in particle size, but
lso narrow this down to focus on the regime where the particles are
ost strongly affected by the spirals. In particular, we investigate the

onditions under which the particle component may undergo direct
ravitational collapse to form dense clumps (e.g. Baehr et al. 2022 ).
The paper is structured as follows. In Section 2 we introduce the

ENCIL code, 1 which is used for all the simulations presented here,
nd describe the simulation setup. Section 3 presents the results from
he suite of simulations carried out, and analyses the output from
hese simulations. Section 4 discusses these results and provides
ome broader context, and Section 5 presents some concluding
emarks. 

 M E T H O D S  

he simulations presented here are 3D hydrodynamic shearing-box
imulations using the PENCIL code (Brandenburg 2003 ; Pencil Code
ollaboration 2021 ). The shearing-box simulations solve the con-

inuity, momentum, and entropy equations in co-rotating Cartesian
oordinates. The centre of the box is assumed to be at some arbitrary
adius from the central object and is rotating with the disc’s angular
requency, �, at this radius. The basic equations for gas density, ρg ,
as velocity, u , and entropy, s, are: 

∂ρg 

∂t 
+ ∇ · ( ρg u ) − q�x 

∂ρg 

∂y 
= f D 

( ρg ) (1) 

∂ u 

∂t 
+ u · ( ∇ u ) − q �x 

∂ u 

∂y 
= −∇ P 

ρg 

+ q�u x ̂  y − 2 � × u − ∇� + f ν( u ) (2) 

∂s 

∂t 
+ ( u · ∇) s − q�x 

∂s 

∂y 
= 

1 

ρg T 

(
2 ρg νS 2 − � + f χ ( s) 

)
. (3) 

n the abo v e equations, � , is the gravitational potential of the gas, P 

s the gas pressure, T is the gas temperature, and the final terms on
he right-hand side of each equation are the hyperdissipation terms,
hich have the form 

 x = ν( ∇ 

6 x ) , (4) 

ith constant ν = 2 H 

6 
g � (Yang & Krumholz 2012 ). 

As highlighted in Baehr et al. ( 2022 ), the gravitational potential
s solved in Fourier space by transforming the density to find the
otential at wavenumber k and then transforming back into real
pace. The shear periodic boundary conditions are accounted for as
n Johansen & Youdin ( 2007 ). 

To take the shear velocity into account, the velocity has the form
u = ( v x , v y + q�x, v z ), where q = 1 . 5 is the Keplerian rotation
rofile adopted here and v x , v y , v z are the components of the velocity
elative to the shear flow. We use an equation of state with internal
nergy ε and specific heat ratio, γ = c p /c v = 5 / 3, such that the
ressure, P , is given by 

 = ( γ − 1) ρg ε, (5) 

here ε = c v T . As equation ( 3 ) indicates, the thermodynamic
ariable in the PENCIL code is the entropy, s, but we can relate
 https:// github.com/ pencil-code 

https://github.com/pencil-code
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Figure 1. Gas density structure in the midplane (top panel) and a vertical 
slice through the disc at x = 0 (bottom panel) at t� = 300. The disc has 
settled into a quasi-steady, self-gravitating state with spiral density waves 
and the simulation is clearly able to capture the vertical structure in the gas 
disc. 
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ntropy, temperature, and sound speed through 

 

2 
s = c 2 s , 0 exp 

[
γ s 

c p 
+ ( γ − 1) ln 

(
ρg 

ρg , 0 

)]
, (6) 

here c s , 0 is the initial uniform sound speed, and ρg , 0 is the initial
as density. 

The energy equation has a cooling term, � , that is implemented
sing the β-prescription (Gammie 2001 ) 

 = 

ρ( c 2 s − c 2 s , irr ) 

( γ − 1) t c 
, (7) 

here t c = β�−1 and c 2 s , irr is a term intended to represent some
evel of background irradiation. A protostellar disc is susceptible to 
he gravitational instability if Q = c s �/πG� g ∼ 1 (Toomre 1964 ),
here � g is the surface density of the gas disc. In the simulations
resented here, we use β = 10 and set c 2 s , irr so that the Toomre Q
alue settles to a value close to unity. This ensures that the disc will
ecome gravitationally unstable, manifesting as spiral density waves 
Lodato & Rice 2004 ; Baehr & Zhu 2021 ), but would not undergo
ragmentation (Gammie 2001 ; Rice, Lodato & Armitage 2005 ). 

The gas is vertically stratified and, as in Baehr, Klahr & Kratter
 2017 ), the vertical gravitational acceleration has a sinusoidal profile 
hat goes to 0 at the boundary. This is not entirely realistic, but has
een found to impro v e stability. 

.1 Reference gas simulation 

ll of the simulations presented here use a shearing box in which the
nitial sound speed is c s , 0 = π and in which the angular velocity is

= 1. Hence, the initial disc scale height is H g = c s , 0 /� = π . The
as disc has an average surface density of � g = 1 and is initialized
ith a vertical Gaussian profile that matches the expected initial gas 

cale height of H g = π . Using the approximation that � g ∼ ρg 2 H g 

ives a density in the midplane of ρg ∼ 0 . 16. The irradiation term in
he cooling formalism (see equation 7 ) is set to c s , irr = c s , 0 = π so
hat the disc will tend to cool to a state where Q ∼ 1. 

The box itself has a size of L x = 120, L y = 120, and L z = 20 and
 resolution of 256 × 256 × 128. This means that in the midplane
 x , y ) the box co v ers a region of about 40 scale heights, while in the
ertical direction, the box covers about 4 − 5 scale heights, or just
 v er 2 scale heights abo v e and below the midplane. This does mean
hat the simulations do not co v er a large number of vertical scale
eights, but this was chosen to provide reasonable vertical resolution 
n the midplane. 

Fig. 1 shows the gas density structure in the midplane (top panel)
nd a vertical slice through the disc at x = 0 (bottom panel) at a time
f t� = 300. The disc has settled into a quasi-steady, self-gravitating 
tate with spiral density wav es. Ev en though the simulations only
o v er a few scale heights in the vertical direction, the vertical
tructure of the gas disc is still reasonably well captured. 

.2 Including dust 

he PENCIL code allows for the inclusion of dust, or solid particles.
he solid particles are Lagrangian superparticles embedded in the 
ulerian mesh (Brandenburg 2003 ). The particles interact with the 
as via a drag force and via gravity. The backreaction of the
articles on the gas can also be included. Apart from the test
article simulation, all the simulations presented here include the 
ackreaction of the solid particles on the gas. 
Since the particles do not feel the gas pressure, the equation of
otion for particle i is (Yang & Johansen 2016 ): 
d w i 

d t 
= 2 �w y,i ̂  x + ( q − 2) �w x,i ̂  y − ∇� + 

1 

τs 

( w i − u ( x i ) ) (8) 

d x i 
d t 

= w i − q�x i ̂  y , (9) 

here w i is the velocity of particle i, x i is the position of particle
, and τs is the drag force stopping time. The gas velocity at the
ocation of particle i, u ( x i ), is determined using a second-order
pline interpolation often referred to as the triangular shaped cloud 
cheme (Youdin & Johansen 2007 ). 

In the Epstein regime, the stopping time is (Weidenschilling 1977 ) 

s = 

aρd 

c s ρg 
, (10) 

here a is the particle diameter, and ρd is the physical density of the
ust particles, which is taken to be a constant. If we normalize by the
ynamical time, �−1 , we get the Stokes number, 

t = τs �. (11) 

ince � = 1 in these simulations, the stopping time and Stokes
umbers are the same. 
MNRAS 539, 3421–3435 (2025) 
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Table 1. Table showing the simulations presented here. The term m d / m g 

is the total mass of the solid particles relative to the total gas mass, and 
St min and St max are the lower and upper limits to the representative Stokes 
numbers of the particles considered. The term clumps indicates whether 
or not dense clumps formed in that simulation. 

Simulation m d / m g St min St max Clumps 

md0St002-200 0 0.02 200 No 
md00001St002-200 0.0001 0.02 200 No 
md0001St002-200 0.001 0.02 200 No 
md003St002-200 0.003 0.02 200 No 
md007St002-200 0.007 0.02 200 No 
md01St002-200 0.01 0.02 200 Yes 
md025St002-200 0.025 0.02 200 Yes 
md001St01-1 0.001 0.1 1 No 
md003St01-1 0.003 0.1 1 No 
md007St01-1 0.007 0.1 1 Yes 
md001St1-10 0.001 1 10 No 
md003St1-10 0.003 1 10 Yes 
md007St1-10 0.007 1 10 Yes 
md01St002-02 0.01 0.02 0.2 No 
md01St01-1 0.01 0.1 1 Yes 
md01St1-10 0.01 1 10 Yes 
md01St2-20 0.01 2 20 Yes 
md01St10-100 0.01 10 100 No 
md01St20-200 0.01 20 200 No 
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In these simulations, the particles are superparticles, a collection
or swarm – of identical dust particles that do not mo v e with respect

o each other. The superparticles can be setup to have pre-specified
topping times, or can be initialized with pre-specified sizes, a, which
s what we consider here. There are a number of different possible
nitial size distrib utions, b ut in this work we assume a power-law size
istribution with a power-law index that gives an equal number of
uperparticles in each logarithmic size bin. This implies a grain size
istribution of n ( a) ∝ a −4 which is slightly steeper than the canonical
nterstellar medium (ISM) grain size distribution of n ( a) ∝ a −3 . 5 

Mathis, Rumpl & Nordsieck 1977 ), meaning a larger fraction of the
ass is in the smaller grains. In contrast, a grain size distribution

hallower than n ( a) ∝ a −3 . 5 would mean more mass is in the larger
articles, implying some amount of grain growth. 
The reason for choosing this size distribution is partly because

t is close to that expected and partly computational. Since each
uperparticle has the same mass, an equal mass in each logarithmic
ize bin also means the same number of particles in each logarithmic
ize bin. A shallower size distribution would reduce the resolution in
he smallest size bins, while a steeper one would reduce the resolution
n the largest size bins. 

The particles can be assumed either to be test particles, or to have
 total mass that is some fraction of the total gas mass. The particle
elf-gravity can also be included, as can the back-reaction of the
articles on the gas. When including the back-reaction of the solid
articles on the gas, a drag force of the form −( w i − u ( x i )) /τs is
ncluded on the right-hand side of equation ( 2 ). When including the
article self-gravity, the density of the gas and dust are combined to
roduce a potential � = � g + � d , so that the self-gravity of both the
as and particles is included and the gravitational potential influences
oth components. 
We consider a scenario in which the particles are treated as

est particles, and also scenarios where both the particle self-
ravity and the back-reaction of the particles on the gas is 
ncluded. 

 RESU LTS  

e consider a number of different simulations, starting with one in
hich the solid particles are taken to be test particles whose self-
ravity is not included and in which there is no back-reaction on the
as. We then carry out a suite of simulations in which the particle
elf-gravity and back-reaction on the gas are included, varying the
otal mass of the particles – relative to the gas – from 10 −4 to 0.025.
ach simulation has 10 7 superparticles, each of which has the same
ass, and, as mentioned abo v e, the size distribution is chosen so that

here is an equal mass in each logarithmic size bin. The superparticles
re initially distributed with a Gaussian vertical density profile that
s close to that of the initial vertical profile of the gas disc. 

We consider a range of particles sizes, which we represent as
pproximately the Stokes number that the particle would have if the
ensity and sound speed were the average values in the midplane once
he gas disc has settled into a quasi-steady state (e.g. equation 11 ). We
hould stress, though, that these are representative Stokes numbers
nd that the particles’ actual Stokes numbers will depend on the local
as density and sound speed. Table 1 presents the basic parameters
f all the simulations considered here. 

.1 Test particle simulation 

n this initial simulation, the particles are taken to be test particles
nd, as mentioned abo v e, this means that their self-gravity and the
NRAS 539, 3421–3435 (2025) 
ack-reaction of the particles on the gas is not included. Ho we ver, the
articles do feel the gravity of the gas and do experience a drag force,
hich we assume is in the Epstein regime. Ho we ver, the simulations

tart with no gas drag, which is then turned on at t� = 40. This
nsures that the gas disc has reached a quasi-steady state before we
ntroduce the drag force that will act to concentrate the solids in the
esulting density structures. 

For this test particle simulation, the size distribution varies from
 = 0 . 01 /ρd to a = 100 /ρd . In the reference gas simulation (see
ection 2.1 and Fig. 1 ) the mean midplane gas density is ρg ∼ 0 . 1 and

he mean sound speed, once a quasi-steady state has been reached, is
 s ∼ 5 . 0. Equations ( 10 ) and ( 11 ) indicate that the stopping time, and
tokes number, will also vary o v er 4 orders of magnitude, from about
t ∼ 0 . 02 to St ∼ 200. Ho we ver, the local stopping time/Stokes
umber will depend on the local gas density and sound speed, which
an differ from these mean values. Hence, the Stokes numbers that we
uote will be a representative approximation of the Stokes numbers
or the particles being considered, but will not be their exact Stokes
umbers. 
Equations ( 10 ) and ( 11 ) show that the Stokes number of particles

f a given size, a, depends on the local gas density, ρg , and local
as sound speed, c s . Since the sound speed tends to be higher in the
piral arms than in the interarm regions, the Stokes number for a
iven particle size can vary quite substantially. Once the gas disc has
ettled into a quasi-steady state, the Stokes number of the particles
e class as St ∼ 1 can vary from St = 0 . 1 to St = 12, but most

95 per cent) lie in the range St ∼ 0 . 3 − 5. 
Fig. 2 shows the surface density of the solid particles at the same

imulation time as shown in Fig. 1 . The top panel shows the surface
ensity in the xy-plane, while the bottom panel is the column density
rojected onto the xz-plane. We note that for the solid particles we
resent surface, or column, densities, rather than volume densities.
ig. 2 illustrates that the spiral features in the dust can be much
arrower than in the gas (c.f. Fig. 1 ), and that the dust will tend to
ettle towards the midplane, resulting in a smaller scale height than
hat of the gas. 
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Figure 2. Surface density structure of the particle disc at t� = 300, for 
the full size range of solid particles from the test particle simulation. The top 
panel shows the particle surface density in the disc midplane, while the bottom 

panel shows the surface, or column, density projected on to the xz-plane. 
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Figure 3. Scale height of the solid particles, as represented by the root mean 
square of the particles’ vertical positions normalized by the initial scale height 
of the gas disc ( H g = π ). The thick solid line shows all the particles, while 
the other lines shows particles with Stokes numbers of St ∼ 0 . 02 (thin solid 
line), St ∼ 0 . 1 (dashed line), St ∼ 1 (dash-dot line), St ∼ 10 (dash-dot-dot 
line), and St ∼ 130 (dotted line). The particles all start with a scale height 
similar to the initial scale height of the gas disc. The smallest ( St ∼ 0 . 02) and 
largest ( St ∼ 130) particles largely retain this initial scale height, while the 
St ∼ 1 and St ∼ 10 particles settle to a very thin layer in the disc midplane. 
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Fig. 3 sho ws ho w the scale height of the solids varies with particle
ize, or Stokes number. The figure shows the root mean square of
he vertical position of the dust particles, scaled by the initial scale
eight, H g = π , of the gas disc. Fig. 3 shows all the particles (thick
olid line), and then selects narrow ranges of particle size to select
articles with Stokes numbers of St ∼ 0 . 02 (thin solid line), St ∼ 0 . 1
dashed line), St ∼ 1 (dash-dot line), St ∼ 10 (dash-dot-dot line), and 
t ∼ 130 (dotted line). The particle size range is selected to co v er
 factor of 1.5 in particle size/Stokes number. Again, the Stokes 
umbers are representative and the actual values would depend on 
he local gas density and sound speed. 

Fig. 3 shows that the particles all start with a scale height
ery close to the initial scale height in the gas disc. There is
nitially no gas drag and it is turned on at t� = 40. The smallest
articles (thin solid line) retain this initial scale height and do 
ot undergo any settling. The largest with Stokes numbers of 
t ∼ 130 (dotted line) remain close to this initial scale height but 
re slowly settling as their vertical motion is slowly damped by 
he drag force. Particles, with Stokes numbers of ∼ 0 . 1 (dashed
ine) do undergo some settling, while intermediate-sized particles, 
ith Stokes numbers between about St ∼ 1 (dash-dot line) and 
t ∼ 10 (dash-dot-dot line), settle into a very thin layer around the
idplane. 
When considering all the particles together (thick solid line), they 

ettle into a layer with a scale height about half their original scale
eight, or about one-quarter of the gas scale height once the disc
as settled into a quasi-steady state. This is also illustrated by the
ottom panel in Fig. 2 . This will, ho we ver, depend on the range of
tokes numbers considered (e.g. Youdin & Lithwick 2007 ). If we
ere considering a much narrower range of Stokes numbers around 
nity, we’d expect the particle disc to be much thinner. Conversely,
f we were considering a much wider range of Stokes numbers, we’d
xpect the scale height of the particle disc to be larger. 

The surface density structure shown in Fig. 2 is for all of the
articles in the simulation. Ho we ver, as already illustrated in Fig. 3 ,
articles of different sizes, or Stokes numbers, will e volve dif ferently.
n Fig. 4 , we consider 4 different particle size ranges. In each case, the
urface density has been normalized by the average surface density 
or the particles being considered. The top-left panel is particles 
ith a/ρd = 0 . 01 − 0 . 1, the top-right panel is a/ρd = 0 . 1 − 1, the
ottom left panel is a/ρd = 1 − 10, and the bottom-right panel is
/ρd = 10 − 100, corresponding to representative Stokes number 
anges of St ∼ 0 . 02 − 0 . 2, St ∼ 0 . 2 − 2, St ∼ 2 − 20, and St ∼
0 − 200, respectively. 
Fig. 4 illustrates that the particles with small Stokes numbers (top-

eft panel) largely trace the structures in the gas disc (see Fig. 1 ). As
ou approach Stokes numbers of order unity (top-right panel) and for
tokes slightly larger than unity (bottom-left panel), the features in 

he particle disc can become much narrower than the corresponding 
eature in the gas disc, and the local particle surface density can
ecome significantly enhanced. This is partly because, as shown in 
ig. 3 , these particles will undergo more settling than the smaller, and

arger, particles, and partly because the drag force will also tend to
oncentrate them in pressure maxima (e.g. Rice et al. 2004 ). At larger
tokes numbers (bottom-right panel), the particles start to decouple 
rom the gas, and although they do trace some of the features in the
MNRAS 539, 3421–3435 (2025) 
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Figure 4. Surface density structure of the solid particles in the test particle simulation at t� = 300 and for particles of different sizes. Each panel considers 
one order of magnitude in particle size, which are presented as approximate Stokes number ranges. The smallest are in the top-left panel, and the largest in the 
bottom-right. The smallest largely trace the structures in the gas disc (see Fig. 1 ), while the largest show some of the gas structure, but are becoming decoupled 
from the disc gas. For particles with Stokes numbers around unity (top-right and bottom-left panels) the structures in the particles are much narrower than the 
corresponding structures in the gas and the local particle surface density can be significantly enhanced. 
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as disc, the enhancement in the local density of solids is relatively
mall. 

.1.1 Surface density enhancements 

ig. 5 shows the distribution of surface densities in the gas (dotted
ine) and in the solid particles (solid lines and dashed line) in the
est particle simulation at t� = 300. For the gas, we simply use the
xisting grid and integrate the gas density along the vertical column
o get the gas surface density in the x − y plane. The values in each
rid cell are then normalized by the average gas surface density,
� g 

〉 = 1. Fig. 5 shows that the local gas surface density can vary
y a factor of a few relative to the mean gas surface density. 
For the solid particles, we construct a 1000 × 1000 grid in the

 − y plane. The surface density in each grid cell is simply the sum
f the particles that would lie in that grid cell if they were located at
 = 0. The surface density is then normalized by the mean surface
ensity of the particles being considered. Fig. 5 shows the resulting
NRAS 539, 3421–3435 (2025) 
istribution of surface densities in this 2D grid, for all the particles
n the simulation (black dashed line) and for four different ranges of
article sizes, each of which span an order of magnitude in particle
ize and which are presented as representative Stokes number ranges.

When considering all the particles (black dashed line) the local
urface density can be enhanced by up to a factor of ∼ 30. For
he smallest particles ( St ∼ 0 . 02 − 0 . 2) and largest particles ( St ∼
0 − 200) the enhancement is generally smaller. For the smallest, this
s because the particles are more strongly coupled to the gas, while for
he largest it is because they are becoming decoupled from the gas.
or particles with Stokes numbers around unity, the enhancement can
e much more substantial, potentially reaching values two orders of
agnitude greater than the average surface density of these particles.
articles in this intermediate size range will be the most strongly
erturbed by turbulent gas motions leading to the most efficient
oncentration in pressure maxima. 

What Fig. 5 suggests is that even if the particles co v er a wide range
f Stokes numbers, there can be regions where the local particle
urface density is enhanced by an order of magnitude, or more. Of
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Figure 5. Distribution of surface densities for the gas (dotted line) and 
solid particles (solid lines and dashed line) in the test particle simulation at 
t� = 300. The gas surface density can vary by a factor of a fe w relati ve to 
the average. When considering all of the particles (black dashed line) there 
can be regions where the surface density is enhanced by more than an order 
of magnitude. For particles with Stokes numbers near unity (red and orange 
lines) this enhancement is more substantial, potentially reaching values two 
orders of magnitude greater than the average surface density of these particles. 
For the smallest and largest particles (blue and purple lines) the enhancement 
is smaller. 
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ourse, this will depend on the o v erall range of particle sizes and the
ize distribution. 

To provide some context, if the Stokes number 1 particles have 
izes of order a cm, then our broad size distribution extends from
bout 0.1 mm to about 1 m. In a realistic disc, we might expect the
ize distribution to extend down to about 1 μm, implying that we
re ignoring about 2 orders of magnitude in particle size. This could
uggest that we might be o v erestimating the o v erall enhancements
n particle surface densities, since the smallest particles will be 
trongly coupled to the gas and show enhancements similar to that of
he gas. 

Ho we ver, e ven for the n ( a) ∝ a −4 size distribution considered
ere, most of the mass will be in the size range considered and
he impact of not directly simulating the smallest particles should 
e relatively small. Hence, even if we were able to consider a full
article size range (i.e. from ∼ 1 μm to ∼ 1m) we’d still expect
hat there would be regions where the particle surface density was 
nhanced by at least a factor of 10. 

.2 Massi v e particles 

he test particle simulation discussed in Section 3.1 illustrates that 
f the solid particle size distribution co v ers a wide range of Stokes
umbers, the local surface density can be enhanced by just o v er an
rder of magnitude, and that this can increase if the particles become
ore concentrated around a Stokes number of 1. We consider here 

f this is different if the particles ha ve mass, their self-gra vity is
ncluded, and if the back-reaction of the solid particles on the gas is
lso included. 

We start by repeating the simulation abo v e, but now include the
article self-gravity and the back-reaction of the solid particles on 
he disc gas. We consider total particle masses that are 10 −4 , 10 −3 ,
.003, 0.007, 0.01, and 0.025 that of the g as. Ag ain, we initially
onsider a size distribution that co v ers four orders of magnitude in
article size and that has an equal mass in each logarithmic size bin.
lthough the Stokes number of each particle will depend on the local
as density and sound speed [see equations ( 10 ) and ( 11 )], the chosen
ize distribution will again co v er representativ e Stokes numbers that
ary from St ∼ 0 . 02 to St ∼ 200. In these simulations, as with those
n Section 3.1 , the drag force is turned on at t� = 40, again to allow
he gas disc to reach a quasi-steady state before dust particles begin
o concentrate. 

Fig. 6 shows the surface density structure for all of the particles
n the simulations with total particle masses of m d = 10 −4 m g 

top left), m d = 10 −3 m g (top right), m d = 0 . 003 m g (middle left),
 d = 0 . 007 m g (middle right), m d = 0 . 01 m g (bottom left), and
 d = 0 . 025 m g (bottom right), where m g is the total gas mass. In

ach case, the particle surface density is normalized by the average
article surface density in that simulation. 
For the lower particle masses, the results are very similar to that for

he test particle simulation shown in Fig. 2 . The local particle surface
ensity can be enhanced by more than an order of magnitude, but
here are no indications of dense clumps starting to form. Ho we ver,
or m d = 0 . 01 m g there is a single dense clump, highlighted by the
ed circle, and for m d = 0 . 025 m g there are a number of dense
article clumps, also illustrated by circles. As discussed in more 
etail in Section 3.2.3 , these clumps are identified as regions where
he local particle surface density is at least 10 times the average
urface density of the gas disc. The size of the circles highlighting
he clumps is then set by the Hill radius of the clump, R Hill =
 m cl R 

3 / 3 M ∗) 1 / 3 where m cl is the mass of the clump and R is the
ssumed orbital radius of the centre of the shearing box. Since � =
 

GM ∗/R 

3 = 1 and G = 1, the Hill radius in code units becomes
 Hill = ( m cl / 3) 1 / 3 . 
That clumps have formed in the m d = 0 . 01 m g and m d =

 . 025 m g simulations demonstrates that even if we consider a
ide range of particle sizes, if the dust-to-gas ratio is of the
rder of 0.01, the canonical dust-to-gas ratio of the interstellar 
edium, there can be regions where the particle density becomes 

igh enough for gravitational collapse to directly form dense 
lumps. 

.2.1 Narrowing the size range 

ig. 6 is broadly consistent with earlier work (Gibbons et al. 2014 ;
aehr et al. 2022 ; Longarini et al. 2023a , b ; Rowther et al. 2024a )

uggesting that to collapse to form dense clumps, the dust-to-gas 
atio in the disc needs to be of the order of 0.01 and the particles
ust have Stokes numbers near unity. Here, ho we ver, the particles

ave a wide range of Stokes numbers ( St ∼ 0 . 02 − 200) unlike many
f the earlier studies in which the particles have either had a fixed size
e.g. Rowther et al. 2024a ) or a fixed Stokes number (e.g. Gibbons
t al. 2014 ; Baehr et al. 2022 ). 

To further explore the conditions under which the particles may 
tart to form dense clumps, we consider reduced particle size 
anges. Specifically, we reduce the size range so that it co v ers
t ∼ 0 . 1 − 1 and St ∼ 1 − 10, rather than the St ∼ 0 . 02 − 200
onsidered abo v e. This is moti v ated by Fig. 5 suggesting that for
 size range that spans one order of magnitude, these are the particles
hat would probably experience the greatest enhancements in local 
urface density. 

Fig. 7 shows the surface density structures of the particles in
imulations in which the Stokes number ranges from St ∼ 0 . 1 − 1
left panels) and St ∼ 1 − 10 (right panels) and in which the total
articles mass is 0.001, 0.003, and 0.007 (top to bottom) that of
he gas. The simulations in which there are no dense clumps are all
MNRAS 539, 3421–3435 (2025) 
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Figure 6. Surface density structure for all the particles in the simulation in which the particles have a mass 10 −4 (top left), 10 −3 (top right), 0.003 (middle 
left), 0.007 (middle right), 0.01 (bottom left), and 0.025 (bottom right) that of the gas. The particle self-gravity, and the back-reaction on the gas, is included, 
and the particle size distribution co v ers four orders of magnitude in particle size with representative Stokes numbers ranging from St ∼ 0 . 02 to St ∼ 200. Apart 
from the m d = 0 . 025 m g simulation, these are all at t� = 300. For m d = 0 . 025 m g the high densities of the clumps reduced the time-step and the simulation 
was stopped at t� = 220. The circles in the bottom two panels highlight dense clumps that have formed in these simulations. 
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Figure 7. Surface density structure of the solid particles in the simulations in which the Stokes number ranges are St ∼ 0 . 1 − 1 (left-hand panels) and 
St ∼ 1 − 10 (right-hand panels) and the total particles mass – from top to bottom – is 0.001, 0.003, and 0.007 that of the gas. In each panel, the solid surface 
densities are normalized to the mean solid particle surface density in that simulations. The circles highlight dense particle clumps that have formed in the discs. 
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un to t� = 300, as is the m d = 0 . 003 m g , St ∼ 1 − 10 simulation.
he dense clumps in the m d = 0 . 007 m g simulations substantially

educe the time-steps and these simulations are stopped at t� = 140
 St ∼ 0 . 1 − 1) and t� = 200 ( St ∼ 1 − 10). 

Although there is some small-scale structure in the m d = 0 . 001 m g 

imulations, no dense clumps emerge. Interestingly, when increasing
he dust mass to m d = 0 . 003 m g , dense clumps start to emerge in the
t ∼ 1 − 10 simulation, and for m d ≥ 0 . 007 m g we see clumps for
oth St ∼ 0 . 1 − 1 and St ∼ 1 − 10. As in Fig. 6 , these clumps are
ighlighted by circles that have a size set by the Hill radius of each
lump. 

This is broadly consistent with the results shown in Fig. 6 . When
he range of particle sizes co v ers four orders of magnitude and co v ers
tokes numbers from St ∼ 0 . 02 − 200, dense clumps only form
hen the total particle mass is at least 1 per cent of the gas. These

imulations have the same particle mass in each logarithmic size bin.
ence, in the simulation with m d = 0 . 01 m g and St ∼ 0 . 02 − 200,

he particles with Stokes numbers in the range St ∼ 0 . 1 − 1 and in
he range St ∼ 1 − 10 each have a total mass m d = 0 . 0025 m g . This
uggests that for the solid component of the disc to fragment to form
ense clumps, there must be (a) particles with St ∼ 1 and (b) the
ust-to-gas mass ratio for particles 0 . 5 � St � 5 needs to be just
 v er 10 −3 . 
We also carried out a suite of additional simulations with
 d = 0 . 01 m g and with Stokes numbers in the range St ∼ 0 . 02 −
 . 2, St ∼ 0 . 1 − 1, St ∼ 1 − 10, St ∼ 2 − 20, St ∼ 10 − 100, and
t ∼ 20 − 200. Fig. 8 shows sample surface densities for these
imulation. These are typically at t� = 300, except for the St ∼
 . 1 − 1 and St ∼ 1 − 10 simulations in which the high density
lumps resulted in them being stopped at t� = 160 and t� = 100,
espectively. 

There is no evidence of dense clumps forming in the St ∼ 0 . 01 −
 . 1 (top left), St ∼ 10 − 100 (bottom left), or St ∼ 20 − 200 (bottom
ight) simulations. Ho we ver, dense clumps do form in the other three
imulations. This again indicates that when there is sufficient mass in
articles with Stokes numbers close to unity, dense clumps are able
o form in the particle disc. 

It also seems that as long as there is sufficient mass in a small
nough size range, dense clumps can form across a wide range
f Stokes numbers, from St ∼ 0 . 05 up to St ∼ 10. We should,
o we ver, be slightly cautious here since these are representative
tokes numbers based on the average midplane density and sound
peed, and the actual Stokes numbers will depend on the local gas
ensity and sound speed. 

.2.2 Criteria for collapse 

s highlighted in Baehr et al. ( 2022 ), a cloud of particles is unstable
o collapse when its density is higher than the Hill density, given by 

Hill = 

9 

4 π

M ∗
R 

3 
, (12) 

here M ∗ is the mass of the central star and R is the orbital radius of
he particle cloud. Since clumps form and live in the disc midplane,
e analyse particle surface densities, rather than volume densities,

nd use: 

 Hill ∼ 2 H d ρHill = 

9 

2 π

M ∗
R 

3 
H d , (13) 

here H d is the scale height of the particle disc. If we use that
= 

√ 

GM ∗/R 

3 = 1 and G = 1, we get that � Hill ∼ 9 H d / 2 π . 
As mentioned earlier, once the gas disc settles in a quasi-steady

tate, the scale height of the gas disc is H g ∼ 5. Figs 3 and 2 both
NRAS 539, 3421–3435 (2025) 
how that the scale height of the particle disc is substantially smaller
han that of the gas disc, by about a factor of 4 when considering the
ull size range ( St ∼ 0 . 02 − 200). Vertical dust settling is even more
oticeable when considering narrower size/Stokes number ranges, in
articular for particles with Stokes numbers in the range St ∼ 1 to
t ∼ 10. 
If we use H d = 1, then � Hill ∼ 9 / 2 π ∼ 1 . 4. Giv en an av erage gas

urface density of � g = 1, this suggests that a local particle surface
ensity comparable to the mean surface density of the gas disc would
e sufficient for collapse. 
Fig. 9 shows the maximum particle surface density, against time,

n a sample of the simulations that did not produce dense clumps.
he lines are simulations in which the Stokes numbers co v ered St ∼
 . 02 − 200, while the symbols are simulations in which the Stokes
umber range was narrower. The top panel shows the maximum
urface density relative to the mean particle surface density in each
imulation, and includes the test particle simulation (thick solid line).
he bottom panel shows the simulations with massive particles, but
ith their surface densities normalized by the mean surface density
f the gas disc. 
Fig. 9 illustrates that when the Stokes number co v ers St ∼

 . 02 − 200 the maximum surface density will tend to be just o v er
n order of magnitude greater than the mean, as also illustrated in
ig. 5 . Ho we ver, there is clearly also a lot of variability. In the
 d = 0 . 007 m g , St ∼ 0 . 02 − 200 simulation (dash-dot line) there is

ven an epoch when the maximum surface density is about 200 times
hat of the mean. This means that there will be regions where the
article surface density exceeds the mean gas surface (e.g. dash-dot
ine in the bottom panel of Fig. 9 ) and will be approaching values
here collapse becomes possible. 
Fig. 9 also shows that the maximum surface density will also

epend on the range of Stokes numbers considered. When St ∼
 . 1 − 1 and St ∼ 1 − 10, the maximum particle surface density will
ypically be more than two orders of magnitude greater than the mean
nd can approach values of ∼ 1000. Again, this suggests that if the
otal mass of particles with Stokes numbers around unity reaches
bout 10 −3 that of the gas there can be regions of the disc where the
ocal particle surface density becomes comparable to, or exceeds,
he mean gas surface density (e.g. stars symbols in bottom panel of
ig. 9 ) and where it starts to become possible for these regions to
ravitationally collapse to form dense clumps. 

.2.3 Clump identification and properties 

n order to quickly identify and analyse clumps that have formed in
he simulations, we use a clump finding scheme based on the local
ensity needed to remain bound, the Roche density. As shown by
aehr et al. ( 2022 ), the Roche surface density, � R , abo v e which
ou might expect the particles to form bound clumps, can be
pproximated by: 

 R = 8 . 8 
�2 H d 

G 

, (14) 

here H d is again the scale height of the particle disc. In these
imulations, � = G = 1 and, as mentioned in Section 3.2.2 , the
article disc settles to a scale height of H d ∼ 1, giving � R = 8 . 8.
ince the average gas surface density is 

〈
� g 

〉 = 1, if the particles
ave a total mass 1 per cent that of the gas, then this would imply that
ound clumps would only form in regions where the surface density
as been enhanced by a factor of 8 . 8 / 0 . 01 = 880. 

In the analysis presented here, we use � R = 10, essentially
dentifying clumps as being locations where the local surface density
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Figure 8. Suite of simulations with m d = 0 . 01 m g and with St ∼ 0 . 02 − 0 . 2 (top left), St ∼ 0 . 1 − 1 (top right), St ∼ 1 − 10 (middle left), St ∼ 2 − 20 (middle 
right), St ∼ 10 − 100 (bottom left), and St ∼ 20 − 200 (bottom right). 
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Figure 9. Dust surface density maxima, against time, in a sample of 
simulations in which dense particle clumps did not form. The lines are for 
simulations in which St ∼ 0 . 02 − 200, while the symbols are for three of the 
simulations with narrower Stokes number ranges. The top panel presents the 
particle surface densities relative to the mean particle surface density in that 
simulation, 〈 � d 〉 , and includes the test particle simulation (thick solid line). 
The bottom panel shows the simulations with massive particles with their 
surface densities plotted relative to the mean gas surface density, 
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Figure 10. Histogram showing the distribution of clump masses that form in 
all that simulations in which dense clumps emerge (see Table 1 ). The masses 
are in M ⊕ based on the scaling discussed in Section 3.2.3 . 
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f the solid particles is an order of magnitude greater than the average
urface density of the gas. 

If we consider the m d = 0 . 01 m g simulation with St ∼ 0 . 02 − 200
hown in the bottom-left panel in Fig. 6 there is one clump that
atisfies this criterion. If we define the clump radius as being the Hill
adius, then it contains 460014 superparticles with a total mass of
.5 in code units. 
The actual mass of this clump will depend on the assumed scaling

arameters. If we use the same scaling as Baehr et al. ( 2022 ), which
s based on those in Sch ̈afer, Yang & Johansen ( 2017 ), then the
ost star has a mass of M ∗ = 1 M 
 and the shearing box is assumed
o be at R = 50 AU with a surface density of � o = 53 g cm 

−2 ,
 temperature of T = 11 . 25 K, and a mean molecular weight of
= 2 . 33. This gives an angular frequency of � = 5 . 63 × 10 −10 s −1 ,

 sound speed of c s = 199 m s −1 , and a scale height for the gas disc
f H 

′ 
g = c s /� = 3 . 53 × 10 11 m = 2 . 36 au. 
NRAS 539, 3421–3435 (2025) 
In code units the shearing box has L x = L y = 120 and H g = π .
he total gas mass in the shearing box is then 

 

′ 
tot, gas = � o 

L x L y 

π2 
H 

′ 2 
g = 9 . 36 × 10 31 g = 0 . 048 M 
. (15) 

iven that the total gas mass in code units is M tot, gas = L x L y , the
ass scale, ˆ M , in the simulations is then 

ˆ 
 = 

M 

′ 
tot, gas 

M tot, gas 
= � o 

H 

′ 2 
g 

π2 
= 6 . 69 × 10 27 g = 1 . 1 M ⊕. (16) 

ence, the clump in the m d = 0 . 01 m g simulation mentioned abo v e
as a mass of m cl = 6 . 5 × 1 . 1 M ⊕ = 7 . 15 M ⊕. 

If we consider all of the simulations that produced clumps (see
able 1 ), a total of 42 clumps formed that satisfied the criteria abo v e.
he clump masses ranged from m cl = 0 . 6 M ⊕ to m cl = 7 . 15 M ⊕,
ith a mean of m cl = 2 . 2 M ⊕ and a standard deviation of 1 . 5 M ⊕.
he distribution of clump masses is shown in Fig. 10 . 
Of course, this is not a homogeneous suite of simulations and the

lump masses may depend on the dust-to-gas ratio and also on the
ange of Stokes numbers, which we are not able to explore in more
etail here. Ho we ver, the clump masses that emerge are consistent
ith the results presented in Longarini et al. ( 2023a , b ) and Rowther

t al. ( 2024a ) which suggest that the gravitational collapse of the solid
omponent of a two-fluid self-gravitating protostellar disc should
roduce planetary cores with masses between 1 and 10 M ⊕. 
Fig. 11 shows the size distribution of the particles in clumps

dashed line), the size distribution of particles not in clumps (dotted
ine), and the o v erall particle size distribution (thin solid line). This
s from the m d = 0 . 025 m g simulation shown in the bottom panel of
ig. 6 , which formed five clumps by t� = 220. Each distribution

n Fig. 11 has been normalized so that it integrates to 1 o v er the
ize range shown. The lower x-axis is aρd , and corresponds to
epresentative Stokes numbers ranging from St ∼ 0 . 02 to St ∼ 200
see equations ( 10 ) and ( 11 )] which is shown in the upper x-axis. 

Fig. 11 shows that the clumps contain particles of all sizes, but
hat there is an o v erabundance of particles with Stokes numbers near
nity. This also slightly reduces the abundance of these particles in
he rest of the disc (dotted line). Ho we ver, it is dif ficult to distinguish
etween the particle size distribution in the rest of the disc (dotted
ine) and the o v erall particle size distribution (thin solid line) because
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Figure 11. Size distribution for particles in clumps (dashed) line, not in 
clumps (dotted line) and all the particles (thin solid line) in the m d = 0 . 025 m g 

simulation shown in the bottom right panel of Fig. 6 . 
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he total mass of particles in clumps in this simulation is only
 per cent of the total particle mass. 

.2.4 Drag force assumption 

e can also use the scalings presented in Section 3.2.3 to check
ur assumption that all the particles are in the Epstein drag regime.
ur largest particles with Stokes numbers of St ∼ 200 will have 

izes of a = 200 c s ρg / ρd � = 3400 cm if ρd = 3 g cm 

−3 . The drag
orce is in the Epstein regime if a < 9 λ/ 4, where λ is the mean
ree path of the gas (e.g. Rice et al. 2004 ). If we assume the gas
s predominantly molecular hydrogen, then λ = m H 2 /Aρg , where 
 = 7 × 10 −16 cm 

2 is the cross-section of a hydrogen molecule.
sing the scalings presented in 3.2.3 suggests that λ ∼ 15000 cm 

nd that the drag force would indeed be in the Epstein regime for all
f the solid particles considered. 

 DISCUSSION  

t has long been known that in protostellar discs, density structures –
uch as self-gravitating spirals – can act to enhance the local density 
f solid particles, and that this is particularly ef fecti ve for those
articles that have Stokes numbers near unity (e.g. Rice et al. 2004 ;
ibbons et al. 2012 ; Booth & Clarke 2016 ; Baehr & Zhu 2021 ;
ongarini et al. 2023a ; Rowther et al. 2024a ). 
When dust does concentrate within the spiral structures of 

elf-gravitating discs, it can potentially lead to the formation of 
ravitationally bound quantities of dust as large as the core of a
lanet, possibly suggesting another pathway for planet formation. 
ince previous studies have focused on single grain sizes with 
tokes numbers near unity, the y hav e assumed dust growth to
e very efficient such that the entire mass budget is in these 
arge grains. 

Here we expand on this earlier work by considering particles with 
 range of sizes, rather than only considering a single particle size,
r a single Stokes number. The results indicate that even if the solid
articles have a wide range of Stokes numbers, the local particle 
ensity can still be enhanced by more than an order of magnitude
n the self-gravitating spirals, as long as the particle size distribution
xtends to St ∼ 1. 

In addition, if the total mass of particles is ∼ 1 per cent that 
f the gas and the particles have sizes that extend to St ∼ 1, the
ensity enhancements can lead to the particle disc undergoing direct 
ravitational collapsing to form dense clumps. When considering 
arrower size ranges, clumps can form as long as the particles span
t ∼ 0 . 5 to St ∼ 5 and have a mass a few ×10 −3 that of the gas.
here are also some indications that clumping may still occur even

f the Stokes number range is slightly below unity (e.g. Fig. 8 , where
ense particle clumps emerged in the St ∼ 0 . 1 − 1 simulation). 
To provide some context, if we consider the scalings assumed in

ection 3.2.3 , then a St = 1 particle at R = 50 au will have a size of
 = c s ρg / ρd � = 17 cm if ρd = 3 g cm 

−3 . This suggests that at radii
f 10s of au, where we expect this process might operate (Clarke &
odato 2009 ), the presence of spiral density waves will significantly

mpact the concentration of solid particles if the y hav e grown to
 ∼ 1 − 10 cm. 
If the particle size distribution extends from a ∼ 1 μm to a ∼

0 cm, has n ( a) ∝ a −4 , and if the solid particles have a total mass
 per cent that of the gas, particles with sizes between 1 and 10 cm
 St ∼ 0 . 1 to St ∼ 1) will have a mass 2 × 10 −3 that of the gas.
ur results would suggest that, in a self-gravitating disc with spiral
ensity waves, a particle component with these properties would 
robably develop local particle density enhancements that could lead 
o the emergence of dense particle clumps. 

Similarly, that the n ( a) ∝ a −4 size distribution is slightly steeper
han the canonical n ( a) ∝ a −3 . 5 ISM grain size distribution might
uggest that dense particle clumps are quite likely to form as long
s the particles can grow to cm-sizes while the disc is still self-
ravitating. 
Ho we ver, since a self-gravitating phase requires relatively high 

isc-to-star mass ratios (Kratter & Lodato 2016 ) means that this
hase will probably only persist for about 10 5 yr, or less (e.g. Hall
t al. 2019 ; Rowther et al. 2024b ). Hence, a k ey f actor will be whether
r not there is enough time for the solids to grow large enough
hile self-gravitating spirals are still present. Simple estimates of 
rowth rates based upon collisions in a turbulent protoplanetary 
isc suggest growth can occur on time-scales of 1 / ( Z�) ∼ 10 4 yr
t 50 au (Birnstiel, Klahr & Ercolano 2012 ), which is independent
f the strength of the turbulence due to the assumption that weaker
urbulence leads to more settling and higher densities. 

Ho we ver, in self-gravitating discs, both large-scale flows and 
he small scale-turbulence driven by secondary instabilities (Riols, 
atter & Paardekooper 2017 ; Booth & Clarke 2019 ) can counteract
ust settling (e.g. Riols et al. 2020 ) and the actual growth times
ay be longer. A more critical question is whether large dust grains

an survive in the conditions present in self-gravitating discs since 
oth the presence of shocks and strong relative motions driven 
y the turbulence may produce collision velocities that lead to 
ragmentation, rather than sticking. As in the simulations presented 
y Booth & Clarke ( 2016 ), we find that the smallest particles with
t < 0 . 1 can have velocity dispersions substantially smaller than

he gas sound speed. Given our chosen scalings, this means that
he collision velocity for these small particles may be of the order
f ∼ 10 m s −1 which could allow icy solids to survive collisions 
Booth & Clarke 2016 ). 

There are, ho we ver, some indications that grain gro wth could
ctually start during the cloud collapse phase (e.g. Steinacker et al.
015 ; Bate 2022 ) and there is both observational (e.g. Galametz et al.
019 ; Tychoniec et al. 2020 ) and theoretical (e.g. Tu, Li & Lam 2022 ;
orobyov et al. 2024 ) evidence for grain growth to ∼mm-sizes in
ery young protostellar discs, suggesting that planet formation may 
tart during the earliest stages of star formation (Harsono et al. 2018 ).
f the enhancement of the solids can then lead to the direct formation
f planetesimals, or even planetary-mass cores, that would o v ercome
MNRAS 539, 3421–3435 (2025) 
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any of the barriers to planet formation via core accretion (Nixon,
ing & Pringle 2018 ). 

 C O N C L U S I O N  

he results presented here indicate that the presence of self-
ravitating spirals can lead to substantial enhancements in solid grain
oncentrations even if the particles have a wide range of sizes. It
oes, ho we ver, still require that the particle size distribution extends
o particles that have Stokes numbers close to, or even above, unity. 

The results also indicate that if there is enough mass in the solid
articles, the density enhancements can be sufficient for the particle
isc to gravitationally collapse to directly form dense clumps with
p to a few M ⊕ of solid material. Therefore, these could form super-
arths, or the cores of future giant planets that then grow through
ccretion of gas from the disc. The self-gravitating phase is expected
o occur in the first ∼ 10 5 yr of the disc lifetime so, assuming clumps
orm in this time, we can generate planetary cores in the Class 0
hase as required by observations of accreting protoplanets in Class
 discs. Additionally, even when bound clumps of solids do not
orm, the enhancements of dust density in the spiral waves could
ssist grain growth, as long as the collision velocities of the smallest
articles is low enough to allow collisions to lead to growth, rather
han fragmentation. 

What’s particularly interesting is that these results suggest that
lumping requires a dust-to-gas ratio of ∼ 0 . 01, close to what is
xpected in very young protostellar systems. Furthermore, if we
onsider the particles with Stokes numbers between St ∼ 1 and
t ∼ 10, the required dust-to-gas ratio is substantially smaller than
.01, with dense clumps emerging for dust-to-gas ratios as low as
 d / m g = 0 . 003. Hence, the conditions required for clumping are at

east consistent with what might be expected in these very young
ystems. 

There are, of course, cav eats. A ke y issue is that the solid particles
eed to grow to sizes such that the Stokes number is St ∼ 1. At
rbital radii where we might expect self-gravity to manifest as spiral
ensity waves (a few 10s of au) this would require the particles to
row to a ∼ 10 cm and would need to do so while the system is still
ery young. 

Therefore, it’s not clear that grain growth can be rapid enough for
articles to grow to these sizes during the epoch when the system is
xpected to be self-gravitating (within the first ∼ 10 5 yr). Ho we ver,
ince the spirals will start to concentrate the grains at Stokes numbers
ell below unity, this could itself contribute to accelerated grain
rowth at these early times. 
Observations of very young protostellar systems at sub-mm or

adio wavelengths that either indicate the presence of mm- to cm-
ized grains, or rule them out, would be a powerful probe of whether
r not the mechanism proposed here could actually operate. What
s intriguing, though, is that there is increasing evidence that planet
ormation needs to start during the earliest phases of protostellar
volution, the same epoch as the process described here is expected
o operate. This would therefore seem to be a mechanism that is
orth exploring in more detail. 
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