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progression biomarkers, complex pathophysiol‑
ogy, the existence of effective symptomatic ther‑
apies which hamper the detection of actual dis‑
ease modification, and trial design. This review 
discusses the above issues and other important 
concepts in neuroprotection in PD. The main 
pathophysiological mechanisms in PD are clas‑
sified into mitochondrial dysfunction, lysosomal 
dysfunction, inflammation, protein aggregation/
propagation, and “other”, and discussed briefly. 
The most relevant disease‑modifying candidates 
in PD are classified into the aforementioned cat‑
egories and reviewed. Finally, conclusions and 
recommendations for future improvements 
in the field of disease modification in PD are 
provided.

Keywords: Clinical trials; Disease 
modification; Neuroprotection; Parkinson 
disease; Pathophysiology; Therapy

Key Summary Points 

Disease modification in Parkinson disease 
(PD) remains an elusive goal, mainly due to 
the lack of established biomarkers of disease 
progression.

ABSTRACT

Parkinson disease (PD) is a progressive neuro‑
degenerative condition characterised by tremor, 
bradykinesia and rigidity, as well as other motor 
and non‑motor symptoms, for which no effec‑
tive disease‑modifying treatments have been dis‑
covered. Neuroprotection in PD is limited by its 
clinical and biological heterogeneity, suboptimal 
preclinical models, lack of established disease 
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Pathophysiological mechanisms in PD can be 
broadly classified into mitochondrial dys‑
function, lysosomal dysfunction, inflamma‑
tion, protein aggregation/propagation, and 
other (e.g. alterations in calcium signalling, 
insulin resistance).

Compounds aimed at one or various of the 
above mechanisms have been developed and 
tested in PD, with no positive phase 3 clinical 
trials so far.

Future improvements in preclinical 
research—PD animal models, PD classifica‑
tion (biological staging), trial participant 
selection (deep phenotyping and PD subtyp‑
ing), outcome measures (tracking of progres‑
sion), and trial design (novel designs such as 
platform trials)—are warranted to ensure pro‑
gress in the discovery of disease‑modifying 
interventions in PD.

INTRODUCTION

Parkinson disease (PD) is a relentlessly progres‑
sive neurodegenerative condition classically 
defined by bradykinesia and either rest tremor, 
rigidity, or both, but which also encompasses 
other motor (e.g. dysarthria, impairment of pos‑
tural reflexes) and non‑motor manifestations 
(e.g. hyposmia, cognitive decline, constipation, 
sleep disturbances) [1].

Since its original description by James Par‑
kinson in 1817 [2], remarkable progress has 
been made in the symptomatic management of 
PD, from the discovery of levodopa in the late 
1960s [3] to current advanced therapies, such as 
deep brain stimulation and magnetic resonance 
imaging (MRI)‑guided focused ultrasound [4]. 
However, disease modification in PD remains 
an elusive goal, and none of the interventions 
trialled so far have shown a clinically proven 
neuroprotective effect.

This review aims to provide a brief overview 
of relevant concepts in disease modification, 
pathophysiological mechanisms in PD, the most 
relevant disease‑modifying candidates so far, 
and challenges in neuroprotection in manifest 

PD, as well as to discuss strategies to address 
those. This article is based on previously con‑
ducted studies and does not contain any new 
studies with human participants or animals per‑
formed by any of the authors.

It is outside the scope of this work to review 
extensively all current neuroprotective trials and 
compounds in PD, and the reader is directed to 
recent publications on this topic [5–7]. Similarly, 
gene and cell therapies are beyond the purpose 
of this review and have been discussed in other 
recent publications [8, 9].

Discussions on disease modification in pro‑
dromal PD [10], which is also not covered in this 
review, might be premature at this stage, given 
the current status of this endeavour in mani‑
fest PD and the additional challenges which 
it entails. Nevertheless, progress in the field of 
manifest PD will hopefully aid its development, 
and two recent publications discuss strategies 
for PD prevention through lifestyle changes [11] 
and pharmacological interventions [12]. Trial 
design for PD prevention has also been recently 
reviewed [13].

Disease Modification: Relevant Concepts

In PD, disease‑modifying therapies (DMTs) are 
defined as those which alter the course of the 
condition. This concept is well established in 
other fields, such as rheumatoid arthritis (RA) 
and multiple sclerosis (MS), which have robust 
biomarkers of disease progression—X‑ray imag‑
ing and inflammatory markers (e.g. C‑reactive 
protein) in RA, magnetic resonance imaging 
(MRI) in MS—and a wealth of DMTs [14, 15]. 
Unlike those examples, there is no established 
objective biomarker of disease progression for 
PD to date. Alpha‑synuclein seed amplification 
assays have emerged recently as a promising 
diagnostic biomarker in PD and led to a shift 
in its classification towards a biological staging 
system [16–21]. However, their potential to track 
disease progression is still to be elucidated and 
may likely be limited.

Additional concepts in PD include neuropro-

tection (the prevention of neuronal cell death 
other than the expected age‑related loss, with 
the consequent halt in disease progression), 
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neurorescue (salvaging of damaged neurons at 
risk of death) [22], compensation (enhancing 
defective compensatory mechanisms for dopa‑
minergic neuronal cell death) [23], and neu-

rorestoration (replacement of lost neurons via 
cell therapy) [24]. As with disease modification, 
there is currently no established biomarker to 
ascertain or measure those phenomena in PD.

Regarding PD pathogenesis, the systemic 
manifestations of PD prompted research into 
its mechanisms beyond the substantia nigra. 
Pathological and clinical findings in the early 
2000s, namely the discovery of alpha‑synuclein 
deposits in the olfactory bulb and dorsal motor 
nucleus of the vagus and the relatively fre‑
quent existence of gastrointestinal symptoms 
before onset of motor symptoms in PD, laid the 
foundations for the brain‑first versus body‑first 
hypothesis [25–27] and the dual‑hit hypothesis 
[28]. However, recent publications suggest the 
possible coexistence of both as PD subtypes 
(brain first and body-first), each of them with 
a distinct phenotype [29, 30]. The gut–brain 
hypothesis also gave rise to research on the role 
of gut microbiota in PD [31, 32].

In terms of drug discovery, the lack of an 
optimal preclinical model in PD which faith‑
fully resembles in vivo pathophysiology is one 
of its main limiting factors. Nevertheless, some 
models are more robust than others, and par‑
ticular models may be of interest when test‑
ing compounds with specific mechanisms of 
action. Excellent reviews of preclinical PD 
models have been published recently [33–35].

Trial design plays a crucial role in clinical 
research, and different putative DMTs may ben‑
efit from specific designs, but overall, the tradi‑
tional two‑arm clinical trial design has proven 
inefficient. Subsequently, alternative designs—
washout [36, 37], delayed start [38, 39], basket 
[40]—have been tested in PD. Adaptive designs, 
such as multi‑arm, multi‑stage (MAMS) trials, 
allow for sustained infrastructure and high 
throughput of putative DMTs and testing of 
exploratory outcomes, with a reduced propor‑
tion of participants being allocated to placebo 
[41]. MAMS trials have shown promise in other 
neurological conditions—MS [42], motor neu‑
ron disease [43]—and a phase 3 trial of putative 

DMTs in PD is currently under development in 
the UK [41].

Participant selection is an essential fac‑
tor when testing putative DMTs in PD, espe‑
cially considering its remarkable heterogeneity 
[44–47]. This will largely depend on the target 
population—idiopathic PD versus specific phe‑
notypes/genotypes—but in general, an inclusive 
approach would be desirable—age, sex, ethnic‑
ity—complemented by enrichment of specific 
treatment arms according to the compounds’ 
mode of action, to progress towards precision 
medicine [48, 49].

Despite the lack of a single established bio‑
marker of disease progression in PD, recommen‑
dations on outcome measures for trials of DMT 
in PD have been published [50], with the aim of 
helping homogenise clinical research in PD, thus 
enhancing comparability of trial results.

A review of recent advances in the develop‑
ment and clinical assessment of putative neu‑
roprotective compounds for the clinically and 
aetiology related but distinct alpha‑synucleinop‑
athy multiple system atrophy (MSA) is beyond 
the scope of this review. We direct the reader to 
recently published reviews on this topic [51, 52].

PATHOPHYSIOLOGY OF 

PARKINSON DISEASE

Supplementary Table 1 and Fig. 1 present an 
overview of pathogenetic mechanisms in PD. 
The most popular hypothesis is that sporadic 
PD is due to an interplay between genetic and 
environmental aetiological factors, which in 
turn lead to alterations in the mitochondrial, 
lysosomal, and inflammatory pathways, among 
others, leading to eventual neuronal cell death.

DISEASE-MODIFYING APPROACHES 

IN PARKINSON DISEASE

This section provides an overview of disease 
modification efforts in PD to date, which have 
frequently focused on the pathways described in 
Supplementary Table 1. It is important to note 
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that, given the heterogeneity of PD, some of the 
approaches may only benefit specific patients, 
such as those with genetic forms of PD. For a 
detailed account of current clinical trials in PD, 
we direct the reader to the 2024 edition of an 
excellent annual review by McFarthing et al. [6].

Mitochondrial

Quinones

Coenzyme Q10 (CoQ10) is a benzoquinone 
which increases tyrosine hydroxylase levels and 
reduces oxidative stress [53], inflammation, and 
apoptosis [54, 55].

Several clinical trials of CoQ10 in PD have 
been completed [56], proving its safety and 
tolerability but failing to show superiority ver‑
sus placebo according to meta‑analysis results 
[57, 58]. A phase 2 clinical trial of CoQ10 in PD 
stratifying participants according to “mitochon‑
drial risk burden” via an omics‑based approach 
is underway [59].

More recently, mitoquinone (MitoQ), 
another CoQ10 analogue and a potent anti‑
oxidant with positive preclinical evidence [60, 
61], failed to demonstrate an effect on PD pro‑
gression in a phase 2 clinical trial [62].

Idebenone, a synthetic CoQ10 analogue with 
antioxidant [63, 64] and mitophagy‑regulating 
properties [65], is currently being tested in a 
phase 2 trial in individuals with prodromal PD 
(rapid eye movement [REM] sleep behaviour 
disorder [RBD]) (NCT04152655).

Creatine

Creatine is a nutritional supplement which 
enhances mitochondrial energy production 
[66] and has shown protective effects on pre‑
clinical PD models [67].

Despite overcoming futility analyses in a 
phase 2 trial [68–70], a phase 3 trial of cre‑
atinine monohydrate over 5 years in patients 
with PD on dopaminergic treatment yielded 
negative results [71].

Fig. 1  Summary of pathogenetic mechanisms in Parkinson disease. ROS reactive oxygen species
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Nicotinamide Riboside

Nicotinamide riboside (NR) is a precursor of 
nicotinamide adenine dinucleotide, which 
enhances mitochondrial function through vari‑
ous pathways [72].

After encouraging phase 1 evidence [73]—
safety, tolerability, imaging, wet biomarkers, 
and clinical measures—and confirmation of its 
safety at high doses (3000 mg/day) in PD [74], 
a proof‑of‑concept study (NCT03568968) and a 
dose‑optimisation study (NCT05589766) of NR 
are currently underway.

Ursodeoxycholic Acid

Ursodeoxycholic acid (UDCA) is a naturally 
occurring bile acid licensed in the UK for the 
treatment of primary biliary cholangitis, dissolu‑
tion of gallstones, and gall reflux gastritis [75]. 
Both UDCA and its taurine conjugate, taurour‑
sodeoxycholic acid, have shown mitochondrial‑
enhancing, antioxidant, anti‑inflammatory, and 
antiapoptotic effects in different preclinical PD 
models [76–83], as well as rescue of mitochon‑
drial function in fibroblasts of people with PD 
[48, 84, 85].

Positive results from a pilot study [86] 
prompted a phase 2 trial of UDCA in PD, which 
confirmed its safety, tolerability, target engage‑
ment measured via 31‑phosphorus magnetic 
resonance spectroscopy (31P‑MRS), and reported 
gait improvement in the objective sensor‑based 
analysis. No differences were found in part III 
(motor examination) of the Movement Disor‑
der Society‑sponsored revision of the Unified 
Parkinson’s Disease Rating Scale (MDS‑UPDRS), 
but this trial was not powered to detect such 
differences [87].

Terazosin

Terazosin is an alpha‑1 adrenergic receptor 
antagonist licensed for the treatment of mild 
to moderate hypertension and benign pros‑
tatic hyperplasia [88]. Interestingly, it activates 
phosphoglycerate kinase 1, the first adenosine 
triphosphate (ATP)‑generating enzyme in gly‑
colysis, thus improving mitochondrial function 
in neurons [89–91]. Epidemiological evidence 

suggests a decrease in PD incidence [90, 91] as 
well as slower disease progression and fewer PD‑
related complications among individuals taking 
terazosin [90, 92, 93]. However, it has been sug‑
gested that the latter is due to an acceleration in 
PD disease progression among individuals taking 
tamsulosin, its comparator drug in some epide‑
miological studies [94].

Regarding its clinical evidence, a placebo‑
controlled 12‑week pilot trial demonstrated 
target engagement measured via 31P‑MRS and 
a significant increase in blood ATP levels with 
terazosin [95]. Two phase 2 trials are currently 
assessing its effects in prodromal PD (idiopathic 
RBD) (NCT04386317) and in pre‑motor PD 
(NCT05109364), respectively.

Alpha‑synuclein

Akin to the approach in Alzheimer disease (AD), 
PD research has explored removal of pathologi‑
cal alpha‑synuclein aggregates as a disease‑mod‑
ifying strategy. Strategies for alpha‑synuclein 
reduction have been reviewed recently, and 
include immunisation (active, passive), reduc‑
tion of its expression (via small interfering ribo‑
nucleic acids and antisense oligonucleotides 
[ASOs], among other techniques), inhibition of 
its aggregation, and enhancement of its degra‑
dation [96]. Of those, immunisation and inhibi‑
tion of aggregation are arguably the most widely 
assessed approaches in clinical trials.

Passive Immunisation

Cinpanemab (BIIB054), a human‑derived mon‑
oclonal antibody which preferentially binds 
extracellular aggregated alpha‑synuclein, failed 
to meet any primary and secondary endpoints 
over 52 weeks in a phase 2 trial [97], despite 
having shown safety, tolerability, and favour‑
able pharmacokinetics in a previous phase 1 
trial [98].

Prasinezumab (RO7046015/PRX002), a 
humanised monoclonal antibody which binds 
to aggregated alpha‑synuclein at its C‑terminal, 
also failed to show significant changes in clini‑
cal and imaging measures of disease progression 
versus placebo [99], although post hoc analyses 
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suggest a potential effect on rapidly progressing 
early PD [100].

Active Immunisation

ACI‑7104.056, an adjuvanted protein peptide 
conjugate vaccine, is currently under investi‑
gation at different doses in a phase 2 placebo‑
controlled trial (NCT06015841), with positive 
interim results reported by the company in 
November 2024 [101] but no peer‑reviewed pub‑
lication yet.

UB‑312, an active immunotherapeutic agent 
against alpha‑synuclein, met its primary end‑
points of safety, tolerability and immunogenic‑
ity in a phase 1 study [102].

Suppression of Alpha‑Synuclein Messenger 

Ribonucleic Acid (mRNA) Translation

Buntanetap (also known as Posiphen or 
ANVS401) is an orally bioavailable small mol‑
ecule which suppresses the translation of the 
mRNAs of multiple proteins, including alpha‑
synuclein. It is therefore hypothesised to restore 
proteostasis and halt neurodegeneration, and 
this is supported by data from animal studies 
[103–106]. This compound demonstrated safety 
and positive clinical and biomarker results in a 
phase 1/2 clinical trial in patients with early 
PD and in patients with early AD [107]. Subse‑
quently, a phase 3 trial in the same population 
(NCT04524351) concluded in December 2023 
and a peer‑reviewed publication of results is 
pending, but the company (Annovis) reported 
significantly better motor outcomes—MDS‑
UPDRS part II, III, II + III total score—versus pla‑
cebo in patients diagnosed over 3 years before 
enrolment and in patients with a postural insta‑
bility and gait difficulty phenotype, as well as a 
halting in cognitive decline as measured by the 
Mini‑Mental State Examination (MMSE) both in 
the entire PD cohort and in participants with 
mild dementia (MMSE scores between 20 and 
26 [108]).

Inhibition of Alpha‑Synuclein Aggregation

MT101‑5, an oral standardised herbal for‑
mula which inhibits alpha‑synuclein fibril 

formation [109], completed a phase 1 trial 
in 2023 (NCT05844787) with no published 
results, and a phase 2 trial is due to start in 2025 
(NCT06175767).

A proof‑of‑concept phase 2a trial of oral Min‑
zasolmin (UCB0599) (NCT04658186), an oral 
alpha‑synuclein misfolding inhibitor [110], did 
not meet primary or secondary clinical end‑
points according to a recent press release by its 
pharmaceutical company.

POD01A, a short peptide formulation targeted 
against oligomeric alpha‑synuclein, was safe and 
well tolerated in a phase 1 study and resulted in 
a substantial humoral immune response [111].

Another oral alpha‑synuclein aggregation 
inhibitor, Anle138b [112], showed favourable 
safety and pharmacokinetics in a phase 1 trial 
(NCT04208152) [113].

KM‑819 is a novel compound which inhib‑
its Fas‑associated factor 1, a protein known 
to enhance alpha‑synuclein accumulation 
and autophagy dysregulation [114]. A first‑
in‑human study of the safety and pharma‑
cokinetics of KM‑819 reported positive results 
[115], and a phase 2 trial is currently ongoing 
(NCT05670782).

Lysosomal

Leucine‑Rich Repeat Kinase 2 

(LRRK2)‑Targeting Therapies

LRRK2 is a ubiquitous protein whose physiologi‑
cal functions, although not yet fully elucidated, 
are known to involve mitochondrial function 
and inflammation [116, 117]. Interestingly, the 
role of LRRK2 in the endolysosomal system is 
becoming increasingly clear, which is further 
supported by its interaction with the beta‑glu‑
cosidase 1 (GBA1) gene, which encodes the lyso‑
somal enzyme glucocerebrosidase (GCase) [117, 
118].

Broadly, three strategies have been devised 
to target LRRK2: kinase inhibitors, ASOs, and 
guanosine triphosphate hydrolase (GTPase) 
modulators [119]. Of those, there is an ongoing 
phase 1 trial of the ASO BIIB094 (NCT03976349), 
and encouraging phase 1 and 1b results of kinase 
inhibitors DNL201 [120] and DNL151 [121] 
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prompted a phase 2 (NCT05348785) and a phase 
3 (NCT05418673) trial on the latter.

GBA1‑Targeting Therapies

GBA1‑targeting therapies can be divided into 
substrate‑reducing compounds, chaperones, 
GCase activators, and gene therapies [122].

Ambroxol, a repurposed cough medication 
which acts as an inhibitory chaperone aiding 
transfer of GCase into the lysosome, was safe 
and showed target engagement and central nerv‑
ous system (CNS) penetration in patients with 
and without GBA1 mutations in a phase 2 clini‑
cal trial [123]. Consequently, a phase 3 trial on 
ambroxol has been planned and is due to start 
recruitment in the near future (NCT05778617), 
a phase 2 trial in GBA‑associated PD is ongoing 
(NCT05287503) [124], and another phase 2 trial 
on PD dementia is expected to finish in Decem‑
ber 2025 (NCT02914366) [125].

Conversely, venglustat, a glucosylceramide 
synthase inhibitor, failed to show any clinical 
benefit over placebo in GBA1‑related PD in part 
2 of a recent phase 2 trial [126], after having 
demonstrated favourable safety, tolerability, and 
target engagement in the cerebrospinal fluid 
(CSF) in part 1 of the same trial [127].

Additionally, a phase 1/2a trial of intracister‑
nal PR001/LY3884961, a viral vector (AAV9) con‑
taining wild type GBA1 to restore GCase activity 
in patients with PD with at least one GBA1 muta‑
tion, is currently underway (NCT04127578).

Inflammation

Non‑steroidal Anti‑inflammatory Drugs 

(NSAIDs): Ibuprofen

Preclinical studies have shown anti‑inflamma‑
tory and antioxidant effects of ibuprofen in PD 
[128–131, 131–133]. Moreover, epidemiologi‑
cal studies have reported a reduction in PD risk 
among ibuprofen [134–137] and non‑aspirin 
NSAID [138] users, both in the general popu‑
lation and among carriers of LRRK2 risk vari‑
ants [139], although other studies have failed to 
confirm this association [140, 141]. Despite the 
above, to the authors’ knowledge, there are no 

ongoing or completed clinical trials of ibuprofen 
as a potential DMT in PD.

Statins

Statins are a group of compounds licensed as 
lipid‑lowering therapies. Preclinical studies have 
reported effects on inflammation, oxidative 
stress, apoptosis, and alpha‑synuclein aggrega‑
tion [142]. However, there is conflicting epide‑
miological evidence on statins and PD risk [143].

Regarding clinical evidence, lovastatin was 
well tolerated and showed a non‑significant 
trend towards less motor symptom worsening 
and significantly less deterioration in positron 
emission tomography (PET) imaging versus pla‑
cebo in a phase 2 trial in an early PD cohort 
[144]. Nevertheless, a more recent placebo‑con‑
trolled futility trial of simvastatin in moderate 
PD failed to meet its primary endpoint [145].

Immunosuppressants

Immunosuppressants have been successful at 
protecting dopaminergic neurons against neu‑
rodegeneration, reducing microglial activation 
and motor progression in PD preclinical models.

For four decades, azathioprine (AZA) has been 
used as an immunosuppressive and anti‑inflam‑
matory agent in organ transplantation (kidney 
and heart) [64, 65] and in chronic inflamma‑
tory diseases, including MS [66–73]. AZA is a 
prodrug selectively converted to the purine 
analogue 6‑mercaptopurine in target cells, and 
purine nucleotide biosynthesis inhibition and 
downregulation of B and T cell function have 
been suggested as its main mechanism of action 
[74–78]. Furthermore, AZA (and its metabolites) 
can induce apoptosis of T cells through cluster 
of differentiation‑28 (CD28) co‑stimulation, 
mediated by a specific binding of azathioprine‑
generated 6‑thioguanine triphosphate to Ras‑
related C3 botulinum toxin substrate 1 (Rac1) 
instead of GTP, converting a co‑stimulatory into 
an apoptotic signal. 6‑Thio‑GTP derivates, there‑
fore, exert their immunosuppressive activity at 
least in part through slow but quite selective 
mechanisms [79].

Azathioprine, a purine analogue [146, 147, 
147] with various indications (e.g. MS) is 
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currently being tested in a phase 2 trial which 
aims to detect disease modification and tar‑
get engagement both centrally (PET imaging, 
CSF immune markers) and peripherally (blood 
immune markers) in an early PD cohort with 
high risk of disease progression [148].

Sargramostim is a human recombinant gran‑
ulocyte–macrophage colony‑stimulating fac‑
tor which has shown preclinical evidence of 
protection against nigrostriatal degeneration 
[149, 150]. A phase 1 trial in patients with PD 
and controls demonstrated good tolerability, 
improvement in serum immune markers, and a 
modest motor improvement [151]. A 33‑month 
open‑label study also showed long‑term safety 
and effects on immune profile, as well as stabil‑
ity in motor scores of the Unified Parkinson’s 
Disease Rating Scale (UPDRS) [152].

Neflamapimod is a p38‑alpha inhibitor with 
anti‑inflammatory effects [153] which also inter‑
venes in endocytosis and basal forebrain cholin‑
ergic neuron (BFCN) degeneration [154]. After 
its promising effects on biomarkers in a phase 
2 trial on AD [155], a phase 2a study in patients 
with mild‑to‑moderate dementia with Lewy bod‑
ies (DLB) showed a favourable safety profile as 
well as reversal of pathology in a BFCN degen‑
eration mouse model [154]. Targeting BFCN 
degeneration may also improve gait in PD, given 
previous evidence in this field [156, 157].

Other Approaches

Glucagon‑Like Peptide‑1 (GLP‑1) Receptor 

Agonists

GLP‑1 receptor agonists exert effects in differ‑
ent pathophysiological PD pathways: inflam‑
mation [158], alpha‑synuclein aggregation 
[159], and, importantly, mitochondrial func‑
tion, enhancing antioxidant processes and 
mitochondrial biogenesis [160]. Exenatide, 
and in particular its extended‑release (ER) for‑
mulation, is the GLP‑1 receptor agonist with 
the broadest clinical evidence, including motor 
and cognitive improvements in an open‑label 
phase 2 study [161] which persisted 12 months 
after drug withdrawal [162], as well as motor 
improvement in a placebo‑controlled phase 2 

trial [163]. A secondary analysis of that trial 
confirmed target engagement of exenatide 
(brain insulin, Akt [protein kinase B] and mam‑
malian target of rapamycin [mTOR] signalling 
pathways) as measured on neuronal extracellu‑
lar vesicles, with some of the observed changes 
correlating with motor outcomes [164]. The 
results of a phase 3 trial of exenatide ER [165] 
have been published recently, indicating that 
there was no benefit across a range of primary 
and secondary endpoints [166]. This prompts 
several questions, both regarding the disease‑
modifying potential of other GLP‑1 agonists, 
especially dual agonists (e.g. tirzepatide), and 
in regard to the target population, specifically 
whether patients with PD and insulin resist‑
ance may benefit from these agents.

A phase 2 trial on pegylated exenatide 
(NLY01) was negative for motor and non‑motor 
measures, with subgroup analysis suggesting 
potential motor benefit in younger individuals 
[167]; and a phase 2 trial on sustained‑release 
exenatide (PT320) has not published its results 
yet (NCT04269642).

Regarding other GLP‑1 agonists, a recent 
phase 2 trial of lixisenatide showed sig‑
nificantly reduced motor progression over 
12 months and lower motor scores after wash‑
out, at 14 months [168].

Furthermore, a phase 2 study of semaglu‑
tide is not yet recruiting (NCT03659682), and 
a phase 2 trial of liraglutide demonstrated 
improvement in non‑motor symptoms and 
activities of daily living (ADL) but failed to 
show significant differences in motor and cog‑
nitive status versus placebo [169].

Calcium Channel Blockers: Isradipine 

and Zonisamide

Blockade of calcium channels can protect 
dopaminergic neurons against oxidative dam‑
age and iron accumulation [170–176]. Addi‑
tionally, the L‑type Cav1.3 channel plays a role 
in dopamine D2‑autoreceptor desensitisation, 
which may drive adaptation of dopaminergic 
neuronal activity in response to extracellular 
dopamine levels [177].
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Epidemiological evidence has shown a reduc‑
tion in PD risk among long‑term users of cal‑
cium channel blockers [178–180].

Isradipine is a dihydropyridine calcium chan‑
nel blocker commonly used as an antihyperten‑
sive agent [181, 182]. After a positive phase 2 
trial testing isradipine ER at different doses, a 
phase 3 trial of isradipine immediate‑release 
5 mg twice daily did not meet its endpoints 
[183]. The authors re‑analysed the data from 
the phase 2 trial and concluded that the ER 
formulation may be more effective in achiev‑
ing target engagement, therefore proposing a 
longer study with higher doses (i.e. isradipine 
ER 10 mg) [184].

Zonisamide is a T‑type calcium channel 
blocker antiepileptic, also approved in Japan for 
the treatment of motor symptoms as an adjunct 
to levodopa in PD and DLB [185–187].

Besides its symptomatic effect, a number of 
preclinical studies have reported its disease‑
modifying potential [188–193]. A retrospective 
cohort study on patients with PD taking zon‑
isamide in addition to levodopa reported a delay 
in progression as measured by dopamine trans‑
porter single‑photon emission computed tomog‑
raphy as well as clinical improvement [194]. 
Another cohort study on patients with PD found 
zonisamide to be associated with a lower risk 
of dementia, insomnia, and gastric ulcers than 
three other antiparkinsonian medications [195]. 
An open‑label study reported reduced inflam‑
matory activity as measured by PET as well as 
enhanced attention scores in the zonisamide 
group [196].

Monoamine Oxidase B (MAO‑B) Inhibitors

Rasagiline is a MAO‑B inhibitor approved for the 
treatment of PD symptoms which has shown 
neuroprotective potential in preclinical studies 
[197–201]. A 72‑week double‑blind, placebo‑
controlled, delayed‑start trial of rasagiline 1 mg 
or 2 mg in PD reported a reduction in motor pro‑
gression as measured by the UPDRS score in the 
1 mg group versus placebo, but the 2 mg group 
did not meet any prespecified endpoints [202]. 
This raised questions about the study design and 
led the authors to recommend caution when 
interpreting the results. Post hoc analyses from 

that trial showed additional significant differ‑
ences in the ADL part of the UPDRS as well as 
a delay in the start of dopaminergic therapy in 
the rasagiline 1 mg early‑start group versus the 
delayed‑start group [39]. Nevertheless, a 3‑year 
open‑label follow‑up study failed to show long‑
term benefits of rasagiline in PD progression 
[203]. Despite these results, a phase 2/3 trial is 
currently evaluating the potential of rasagiline 
to reduce the progression from idiopathic RBD 
to PD (NCT05611372).

Beta‑adrenoreceptor agonists: Salbutamol/

Albuterol

Adrenergic agonists have been reported to regu‑
late alpha‑synuclein deposition, inflammation, 
and alpha‑synuclein (SNCA) gene expression 
in preclinical PD models [204]. Salbutamol, 
licensed in the UK for the treatment of asthma 
and bronchospasm [205], was associated with 
a decreased risk of parkinsonism in a large self‑
controlled cohort study [180] and in two lon‑
gitudinal incident PD cohorts [206], although 
another study failed to show this association 
[207]. Several open‑label studies have reported 
a symptomatic benefit of salbutamol as add‑on 
therapy to levodopa in PD [208–210], and it is 
currently being tested in an ongoing phase 2 
parallel‑group disease‑modifying PD trial [211].

Iron Chelators: Deferiprone

Excess iron in the CNS leads to increased oxida‑
tive stress, and therefore its removal has been 
postulated as a neuroprotective strategy in PD 
[212].

Deferiprone, an iron chelator licensed in the 
UK for the treatment of thalassaemia major 
[213], showed clinical and radiological benefit 
over placebo in a delayed‑start trial in early PD 
[214], and the radiological changes were con‑
firmed in a subsequent phase 2 placebo‑con‑
trolled trial [215]. Nevertheless, a larger phase 
2 placebo‑controlled trial in early untreated PD 
showed significant clinical worsening in the 
deferiprone group, despite reduction of brain 
iron levels in MRI [216].
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Non‑pharmacological Interventions:

Exercise

A growing body of preclinical and clinical evi‑
dence supports the benefits of exercise in PD: 
epidemiological studies have found a reduced 
risk of PD among healthy individuals who 
are more physically active [217], as well as an 
improvement in off‑medication gait parameters 
[218] and a delay in the progression of some 
PD signs and symptoms [219] and reduced 
mortality in physically active patients with 
PD [220]. Furthermore, an extensive review 
concluded that sustained physical exercise is 
beneficial for people with PD in the long term 
[221]. A recent symptomatic double‑blind ran‑
domised controlled trial of aerobic exercise in 
PD reported an improvement in off symptoms 
[222]. As a result, several studies exploring the 
disease‑modifying potential of exercise in PD 
are ongoing (NCT04284436), some of them 
including smartphone‑based apps [223, 224].

For more information, the readers are 
directed to a recent excellent review on clini‑
cal trials of aerobic exercise in PD [225].

CONCLUSION

Neuroprotection in PD remains a challenging 
but urgently important goal. Regarding preclin‑
ical studies, animal and cell models are useful 
to help understand PD pathophysiology and to 
increase the chances of clinical success of puta‑
tive DMT, and patient‑derived tissues probably 
represent a valuable source of information in 
this setting.

From a clinical point of view, functionally 
relevant, “dopa‑refractory” clinical outcome 
measures are needed in disease‑modifying PD 
clinical trials, ideally combined with prom‑
ising exploratory endpoints, such as digital 
health technologies, wet biomarkers, and 
imaging techniques, for patient stratification, 

confirmation of target engagement, and track‑
ing of disease progression.

These strategies, alongside innovative trial 
designs such as MAMS platform trials, and con‑
sideration of repurposed compounds as well as 
novel agents, will hopefully accelerate the dis‑
covery of disease‑modifying agents in PD—a 
goal which has been already achieved in other 
neurological conditions, such as MS—ultimately 
to improve the prognosis and quality of life of 
people with PD regardless of their clinical and 
biological subtype, stage, and symptomatic 
treatment status.
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