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Abstract

Anticipating population declines is a crucial goal of conservation ecology. Recent

conceptual work suggests that populations facing growing stressors should

exhibit sequential shifts in behavior, morphology, and abundance before declin-

ing to extinction. However, the lack of high-resolution, multidimensional data

has hindered empirical validation of this conceptual work. Using an autono-

mously monitored, high-throughput experimental system, we generated

individual-based data on populations of the ciliate Paramecium caudatum forced

to collapse due to increasingly stressful conditions. The gradual introduction of a

pollutant elicited the predictable sequence of responses—declines in movement

speed, followed by declines in body length, emergence of early warning signals of

collapse, and finally, abundance declines. Conversely, a press disturbance gener-

ated by the introduction of predators did not induce this sequence. The time

between the first detectable trait changes and population collapse depended on

the statistical approach used, but the sequence remained consistent. Using gen-

eral additive models, detectable behavioral signals in the polluted populations

occurred one generation before abundance-based early warning signals were

detectable, and two generations before abundance decline. We highlight that

multivariate monitoring, particularly individual-based metrics, is crucial for fore-

casting population declines.

KEYWORD S

behavior, conservation, early warning signals, experiment, extinction, morphology,

multidimensional monitoring, Paramecium, population collapse

INTRODUCTION

Human activities are the root cause of the drivers of

biodiversity change, such as habitat loss and degradation,

climatic change, overexploitation, and the introduction of

pollutants and invasive species (Bonebrake et al., 2019;

IPBES, 2019). These drivers, hereafter referred to as

“stressors,” exert pressure on natural systems, contribut-

ing to the ongoing “sixth mass extinction” (Ceballos

et al., 2015; Cowie et al., 2022) and increasing the risk

of future abrupt ecosystem change (Botta et al., 2019;
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Pigot et al., 2023). Such abrupt change arises when

species can no longer adapt or avoid stressors, resulting

in fast declines in population sizes and ultimately in local

extinctions, which can destabilize ecological networks and

hamper ecosystem service provision (Brook et al., 2008;

Strona, 2022). For example, the introduction of alien spe-

cies or changes in land use may cause population decline

within one or two decades for reptiles (Emery et al., 2021;

Guiller et al., 2022), while climate anomalies can cause

a substantial population reduction over a single season

in butterflies (van Bergen et al., 2020). Similarly, water

pollution or overfishing can induce near extinctions in

fish populations, resulting in altered trophic networks and

ecosystem instability (Demertzioglou et al., 2022; Houk &

Musburger, 2013; Kidd et al., 2007). Consequently, our

ability to reliably predict whether a given population is

at risk of collapse remains a fundamental goal of bio-

diversity conservation. Here, we define collapse as a

rapid and sustained decline from a pre-existing popula-

tion abundance state (e.g., equilibrium state or carrying

capacity; Cerini, Childs, & Clements, 2023; Cumming &

Peterson, 2017). The magnitude of such a decline may

vary by context, but in ecology and conservation biology

population declines of 80%–90% or more, relative to a ref-

erence state, are commonly used as operational thresholds

for defining collapse (Aagaard et al., 2016; Cumming &

Peterson, 2017; Keith et al., 2013).

Extensive efforts have been made to analyze and fore-

cast population dynamics using the abundance of a

population, either via empirically derived population

models of extinction risk (e.g., population viability

analysis; Chaudhary & Oli, 2020; Coulson et al., 2001;

Jackson et al., 2019) or forecasting the occurrence of

a smooth transcritical bifurcation using early warning

signals (EWSs; Clements & Ozgul, 2018; Drake &

Griffen, 2010). However, such tools are highly variable in

their reliability (Brook et al., 2000; Butitta et al., 2017;

Patterson et al., 2021; Su et al., 2021), particularly when

data quality is poor (e.g., short time series not capturing

demographic processes; Coulson et al., 2001) and model

assumptions are not met (Boettiger & Hastings, 2012).

Most importantly, current tools are often limited in

their forecast horizon: the upper limit of time in the future

for effectively estimating ecological change (Clements &

Ozgul, 2016a; Petchey et al., 2015). The definition of

forecast horizon length can depend on the generation

time of the organisms being studied. For example,

detecting signals of collapse two generations before a

decline in a short-lived organism’s abundance could be

considered a long forecast horizon relative to that organ-

ism but not necessarily from a conservation perspective.

Conversely, long-lived organisms act at timescales in line

with conservation operations, yet monitoring programmes

often only observe part of such organisms’ lifespan. In

these terms, “short” forecast horizons hamper our ability

to implement management actions and reverse population

declines; therefore, increasing the time gap between

the first observation of warning signals and the occurrence

of collapse is a major goal in biodiversity monitoring

(IPBES, 2019).

Recent advances have highlighted the value of

incorporating data beyond that typically used in predic-

tive ecology (abundance and demography), particularly

individual-based data (behavior and morphology), which

are predicted to change rapidly in response to stressors

(Cerini, Childs, & Clements, 2023; Clements &

Ozgul, 2018; Keen et al., 2021; Sih, 2013). For example,

including body size data in EWS frameworks increases

the accuracy of signals inferring collapse and decreases

the length of time series required to predict transcritical

transitions (Clements et al., 2017; Clements &

Ozgul, 2016a). Indeed, scaling from individual-level pro-

cesses to the population, from a basis of physiological

responses to the environment (Brown et al., 2004; Fayet

et al., 2021; Wikelski & Cooke, 2006), can provide a

more complete picture of population change (Cerini,

Childs, & Clements, 2023; Lewis et al., 2006; Pirotta

et al., 2018). For example, environmental stressors

influence physiological pathways, which in the short

term can impact behavior; but over longer timescales,

chronic stressors influence morphological traits and,

ultimately, demographic rates and population dynamics

(Guindre-Parker & Rubenstein, 2021; Ozgul et al., 2010).

Thus, downstream effects of stressor-induced physio-

logical changes acting on behavior and morphology cre-

ate the opportunity to observe a sequence of signals

before changes in population abundance occur, which

we term the timeline to population collapse (Cerini,

Childs, & Clements, 2023) or simply timeline to col-

lapse. The timeline to collapse, integrating individual

and population responses to stressors, lays the concep-

tual groundwork for an ecological monitoring frame-

work applicable to species that are, or are suspected to

be, under growing levels of stressors, with potential to

improve the reliability of EWSs and generally the man-

agement of at-risk populations.

The implementation of the timeline to collapse frame-

work requires continuous monitoring of populations to

build time series of multidimensional data from the indi-

vidual to the population level (e.g., behavior, morphol-

ogy, and abundance; Cerini, Childs, & Clements, 2023).

Promisingly, the rise of autonomous monitoring in ecol-

ogy has the potential to fill this multidimensional data

gap (Besson et al., 2022; Cavender-Bares et al., 2022),

but despite this, an appropriate dataset to empirically

test the timeline has previously not existed. Performing
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ecological experiments to characterize the occurrence of

the timeline in real-life systems is thus necessary to test

the conceptual work.

Here, we employ a cutting-edge autonomous moni-

toring system to collect multidimensional data on

experimental protist populations that were driven to coll-

apse by increasingly stressful environmental conditions.

Specifically, we define collapse as the point at which

abundance falls below 10% of a reference abundance after

acclimatization. Our goal was to experimentally validate

the occurrence of the timeline of signals before collapse

and compare the timing of occurrence of individual-level

signals with classic EWSs. The conceptual framework

assumes that a gradual increase from low to high stress

levels (i.e., ramp disturbance; Lake, 2003) is the ideal

condition to observe the timeline of changes, whereby

individuals have time to implement phenotypic responses

(Cerini, Childs, & Clements, 2023). In contrast, an imme-

diate transition from unstressed to stressed conditions,

characterized by a sudden, high-magnitude stressor event

(i.e., a press disturbance; Bender et al., 1984), might not

generate an observable timeline to collapse. Thus, to test

both scenarios, we induced a decline in populations of the

widely used ciliate model Paramecium caudatum by

means of: (1) gradually increasing the concentration of a

pollutant (ramp disturbance), and (2) the introduction of

a predatory species (press disturbance), while con-

currently monitoring movement speed, body size, and

abundance eight times every generation. We explored the

statistical support for the timeline using two approaches,

general additive models and piecewise regression models,

which measured the temporal occurrence of changes in

behavior, morphology, and abundance trends. We also

explored support for widely used abundance EWSs. Our

main predictions were that (1) using trait data would

expand the time from when responses in control and

treatment populations start diverging until the treatment

populations collapse, and (2) responses would diverge

in the order of behavior, morphology, EWSs, and finally

abundance.

MATERIALS AND METHODS

Experimental protocol

A stock of P. caudatum, kept at Bristol University and

originally purchased from Sciento (Manchester, UK), was

raised in a temperature-controlled room for 2 weeks at

18�C and 80% humidity in constant light. The growth

medium consisted of crushed protozoa pellets (Blades

Biological LTD) dissolved in Chalkley’s solution at a con-

centration of 0.3 g L−1. We then autoclaved (Clements

et al., 2013) and filtered the medium through Whatman

no. 1 filter paper to improve media clarity and autoclaved

it again. We inoculated this medium with two species

of bacteria, Bacillus subtilis and Pseudomonas fluorescens.

At these conditions, P. caudatum had a generation time

of ~23 h.

We performed the experiment in microcosms

consisting of rectangular patches (L5.6 × W3.6 × H1.6 cm),

custom designed using FreeCAD 3D-design software

(https://www.freecad.org/) and 3D-printed in clear PLA fil-

ament (Lulzbot TAZ 6). We painted the base of each

microcosm with black acrylic paint and coated it in trans-

parent epoxy resin to smooth the patch surface and prevent

potential paint leaching. Each microcosm was filled with

6 mL of the medium described above, which was inocu-

lated 48 h before the start of the experiment (day −2). On

day 0, we added ~60 P. caudatum individuals to each

microcosm and left them to grow for 14 days to reach a

stable population size. Every day, we topped up the micro-

cosms with autoclaved distilled water to replace evapora-

tion. At the start of the third week, we started the stressor

treatments. We had 10 replicates for each treatment, for

a total of 30 microcosms. We used three treatments: a

control treatment, a pollution treatment, and a predator

treatment. In the control treatment, no stressor was applied

to the populations. In the pollution treatment, an increas-

ing quantity of a copper sulfate solution was added every

day over a 10-day period. Copper ions are toxic for aquatic

ciliates (Madoni & Romeo, 2006) and have been pre-

viously used for experimental extinction tests (Sommer

et al., 2017). The initial pollution quantity was calculated to

reach 5% of a pretested copper concentration (0.6 mg L−1)

in the experimental microcosm, lethal to a dense popula-

tion of P. caudatum. Every day, we increased the copper

concentration by adding another 1.5 μL (the initial quan-

tity) of the copper sulfate solution to the previous day’s one

(i.e., a linear increase with a rate of 1.5 μL day−1: 1.5 μL,

3 μL, 4.5 μL, etc.). In the predator treatment, five individ-

uals of the flatworm Stenostomum virginianum were added

to each microcosm. S. virginianum is a voracious generalist

predator known to prey on most ciliate species (Hammill,

Kratina, et al., 2010; Núñez-Ortiz et al., 2022). Preliminary

tests showed that five individuals were enough to bring a

population to extinction over a week.

The microcosms were monitored once every 3 h

(~eight times per generation) for 4 weeks. The monitor-

ing was performed by means of an automated system

consisting of a camera (GXCAM HighChrome-HR4 HI

RES) connected to a stereomicroscope (Nikon SMZ1270)

attached to a robotic gantry (igus drylin Gantry) pro-

grammed to record 12-s videos of each microcosm every

3 h. All recorded videos were processed using ComTrack,

an open-source machine learning-based software designed
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to extract individual morphological and behavioral infor-

mation, as well as species abundances and spatial distri-

butions of individuals from videos (Besson et al., 2021).

Due to the impossibility of marking the individual cili-

ates in our system, data acquisition from videos is treated

independently (i.e., we do not have repeated measures of

morphology or speed across videos of the same individ-

ual). The accuracy of the software output in terms of

abundance counts, morphological and movement mea-

sures was tested through additional experiments and

crosschecked with the literature of the studied species

(Besson et al., 2021; Hammill, Petchey, & Anholt, 2010;

Hewett, 1988).

Data processing

We processed the software outputs using R (version

4.3.1; R Core Team, 2022) to extract information on the

speed and body length of every tracked individual of

P. caudatum (see Online data and code), and the total

number of individuals tracked (abundance) at every

time point. From our raw dataset, we calculated the

mean speed (—in millimeters per second)—as an indica-

tor of behavior (Hammill, Kratina, et al., 2010)—and

mean body (cell) length (in micrometers)—as a plastic

morphological feature subject to variation in response

to stressors (Uiterwaal et al., 2020)—of every individual

in each of the 12-s videos. Thus, across all

the treatments and replicates, each tracked ciliate had a

mean value for speed and length for each sampling

point. For analysis, we averaged speed and body length

values across all individuals and frames in each time

point, resulting in a single feature value for each popu-

lation per time point (Appendix S1: Figures S1–S3). On

visual inspection, we found that the data were

displaying a regular daily cycle of values throughout

the study period, most evident in the abundance time

series (Appendix S1: Figures S1–S3A). This occurred

due to the daily topping up of each population with dis-

tilled water to maintain the initial volume: the mild

perturbation of the microcosm (addition of the water)

induced a sudden increase in movement and activity,

and many of the motionless protists (not tracked in sta-

ble conditions) would become trackable, thus increasing

the abundance counts. Due to the daily regularity of

these spikes, we removed daily cycles in raw data using

the additive seasonal trend decomposition by loess

(STL, Cleveland et al., 1990). In the STL decomposition,

we extracted seasonal components with a cycle of

8 observations (repeated every 9 observations to capture

daily cycles). We subtracted the resulting seasonal time

series from the raw data, resulting in a de-cycled time

series with trend and anomaly components. To confirm

that abundance estimates reflected actual population sizes

and not simply movement artifacts, we regularly inspected

videos throughout the experiment and found that tracked

counts closely corresponded to the visible number of cili-

ates present in each patch.

Time series analysis

We captured the temporal change in speed, length,

and abundance (hereafter “components” of the time-

line) using the de-cycled data (Figure 1) and focused

the analysis on the interval between the onset of the

stressors (330 h after the beginning of the experiment)

and the endpoint of the experiment (550 h, Figure 1).

One replicate of the control treatment that collapsed

for unknown reasons and two replicates of the pre-

dator treatment that did not collapse were excluded

from the analysis (final N = 27). We removed the

treatment replicates that did not undergo collapse to

avoid conflating species trait changes that occur prior

to collapse with those resulting from populations adap-

ting to the stressor levels. Each time series in the

stressor treatments was considered to reach “collapse”

at the time point when the abundance fell below 10%

(Aagaard et al., 2016) of the abundance after 10 days

of growth and acclimation. To capture temporal chan-

ges in the components and pinpoint signals of the

timeline, we used two analytical approaches that

accounted for nonlinearity in temporal changes and

differences in between-replicate variability in the

components. First, we used general additive mixed

models (GAMMs) on each component in each treat-

ment to identify the divergence point between stressed

and control replicates. Second, we used a piecewise (or

threshold) Bayesian regression fit across components

in each treatment to estimate the relative timing of

the component changes within a treatment. Full model

descriptions are presented in Appendix S1: Section S1.

We fit GAMMs with the response variables of mean

speed, mean length, and abundance of the populations

across the three treatments (control, pollution, and pred-

ator). There was one model for each response variable in

each treatment (to avoid pooling replicate-level variation

across timeline components/treatments), resulting in

a total of nine statistical models. The key predictor of

interest in the GAMMs was time point, to capture tempo-

ral trends in timeline components, which was included

using both global- and replicate-level smoothing terms

(see Appendix S1: Section S1 for full details; Pedersen

et al., 2019; Wood, 2003). GAMMs were fit using the mgcv

and nlme packages (Pinheiro et al., 2017; Wood, 2011,
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2017). After model fitting (see Appendix S1: Figures S5–S7),

control- and treatment-predicted time series were scaled

linearly so that predicted values were 1 at the introduc-

tion of the stressor. This allowed us to improve the

comparability of the treatments while maintaining raw

units (in millimeters per second, in micrometers, and

in number of individuals), as we focused on the mean

temporal trends rather than on the values, while remov-

ing the differences present at the start of the stressors

that were due to intrinsic variability of the individ-

uals growth rate and phenotypic diversity across the

treatments.

F I GURE 1 Detrended time series of the tracked Paramecium caudatum mean swimming speeds (a), body lengths (b), and number of

individuals (c) in the three treatments (green—control, orange—pollution, purple—predator). Colored lines represent the single replicates.

The thick black line is the mean of replicates. The dashed vertical line marks the start of the stressors.
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To test the robustness of the timeline signals sequence

obtained using GAMMs, and more explicitly account

for between-replicate variance, we also performed time

series analysis using piecewise or threshold regression

(McClanahan et al., 2011; Roth et al., 2022), implemented

in a Bayesian regression framework using the brms pack-

age (Bürkner, 2017). For piecewise regressions, we fit a

single model for each treatment, modeling components

together, which were z-transformed for each replicate

before analyses. For each model, we tested a linear

regression with a single threshold (i.e., two linear slopes

on either side of the threshold), which was chosen to

reflect the impact of the stressor being added to the popu-

lation. In each piecewise model, the linear coefficients on

either side of the threshold, the intercept, and the thresh-

old position (time point-adjusting parameter) were esti-

mated separately for each timeline component and each

individual replicate. For full model and prior specifica-

tions, please see Appendix S1: Section S1.

Early warning signals

To assess whether the smooth collapse of the popu-

lations was preceded by generic EWSs, we used the

R package EWSmethods (O’Brien, Deb, Sidheekh,

et al., 2023) to extract time series of the SD, CV, and

lag-1 autocorrelation for each replicate of each treat-

ment, calculated with a rolling window approach using

50% of each time series (i.e., a temporal window starting

with the first half of each time series). EWSs may be

appropriate in this circumstance if the system displays a

smooth transcritical transition (Drake & Griffen, 2010).

Transcritical transitions differ from abrupt critical tran-

sitions in that the system responds smoothly (rather

than abruptly) up to a fixed bifurcation point. This

bifurcation point is not lost following transition, but the

new state becomes stable and the old becomes unstable

(O’Brien, Deb, Sidheekh, et al., 2023). For example,

following extinction, a population cannot recover and

so the old state (with positive abundance) is unstable.

Conversely, critical transitions display hysteretic beha-

vior where the system can recover following tipping

(Clements & Ozgul, 2018).

We then fitted GAMMs on the time series of such indi-

cators. The GAMMs had the same structure as described

above (Appendix S1: Section S1). EWS components were

not scaled for analysis because the CV and autocorrelation

are scaled quantities. However, to improve comparability

among replicates for EWS metrics, we modified the inde-

pendent variable of time point to represent the hours

before collapse; thus, every replicate EWS would end at

the same time point (0).

Pinpointing the timeline signals

Following our two statistical approaches for estimating

temporal effects across timeline components, we estim-

ated the timing of signals along the timeline in two ways.

For GAMMs, we used a predictive, non-Bayesian simula-

tion framework, assessing the time points at which con-

trol and treatment populations diverged for each of the

time series, and thus the occurrence of signals along the

timeline. Specifically, we estimated divergence points as

the time point at which CIs in the temporal trends of

control and treatment populations no longer overlapped.

We used “posterior simulation” to obtain robust CIs,

which in this context is repeated simulations of predicted

values using model coefficients, covariances, and their

posterior uncertainty. We calculated predicted values

using the multivariate normal distribution, making pre-

dictions of the temporal trend from each timeline compo-

nent in each treatment, using 500 unique time-point

values between the start of the stressors and the end of

the experiment. We made predictions including only the

overall time-point smoothing term coefficients, averaging

over all additional coefficients and variation between

replicates. Thus, predictions are for the mean temporal

trend effect only. We sampled 1000 unique values of tem-

poral trend coefficients (basis dimension coefficients from

the smoother term) under parameter uncertainty using

a multivariate normal distribution (implemented in the

MASS package; Venables & Ripley, 2002). We combined

simulated model coefficients with the linear prediction

matrix to retrieve 1000 sets of predicted values. Then,

across the resultant 1000 sets of predictions, we calculated

the upper and lower 95% CLs of the temporal trend. We

defined the divergence point between control and treat-

ment predictions as the last point at which the CI of the

control overlapped with the treatment prediction, that is,

the time point where the difference between the upper

and lower CIs of control and treatment reached 0. In the

results, we refer to such cases as the variables showing

“significant” change. Finally, we assessed the sensitivity of

the divergence points to the posterior resampling: we

resampled 10% of the predicted data and recalculated

100 divergence points from the bootstrapped time series, to

give an estimate of divergence uncertainty.

For piecewise regression models, divergence points

were estimated for each replicate individually by estimating

the threshold parameter (time point at which linear trend

in timeline component changed), which we sampled with

draws of the posterior distribution. We used these two

methods to estimate divergence points to test the robustness

of timeline signals sequence and to explore the implications

of explicitly estimating divergences for each replicate indi-

vidually, accounting for among-replicate variance.
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RESULTS

We observed some variability among the replicates of

control populations, with one undergoing collapse spon-

taneously (not shown in Figure 1), and three replicates

gaining higher densities compared to the remaining six,

which were similar in their abundance trends (Figure 1).

All polluted populations underwent collapse after app-

roximately five generations from the initial introduction

of the stressor (Figure 1).

We found evidence for a timeline to collapse in the

pollution treatment, which increased the forecast horizon

relative to EWS analysis (Figures 2 and 3). From overall

temporal trends estimated from additive models, the

mean movement speed significantly reduced after 3.18

generations from the start of the stressor (73 h [65; 78],

upper and lower 95% CLs of divergence point based

on posterior resampling), when compared to the control

treatments (Figure 2a). Then, 3.96 generations (91 h [88;

103]) after the beginning of the pollution, and 0.78 gener-

ations (18 h) after the behavioral change, the mean body

length began to decline more strongly than in the control

populations (Figure 2b). Finally, 4.83 generations (111 h

[98; 114]) after introducing pollution, and 0.87 (~20 h)

generations after the morphology signal, the abundance

trend diverged significantly from the control. The pre-

dicted abundance trend reached the point of collapse

at time point 451 h, that is, the ramping pollution

brought the population to functional extinction after 5.34

generations, and the behavioral and morphological shifts

preceded the collapse by 2.1 and 1.3 generations, respec-

tively. The EWS analysis revealed a significant divergence

in abundance CV 1.13 generations (26 h) before the

collapse point, but after changes in both the behavior

and morphology (Figure 2). Critically, the introduction of

behavioral and morphological data increased the forecast

horizon of population collapse by one generation relative

to the EWS analysis. Finally, the observed divergence

points were robust to posterior resampling of predi-

cted temporal trends, displaying a consistent sequence of

change in behavior, morphology, and abundance (pre-

ceded by an increase in abundance CV, Figure 2).

We obtained qualitatively similar results from pie-

cewise regression models for pollution (Figure 3b), for

which behavioral and morphological time series shifted

3.17 and 2.83 generations before abundance across repli-

cates, respectively. However, behavioral and morphological

shifts were estimated to occur closer together in time than

in GAMMs. In the piecewise models, the posterior median

threshold for behavioral time series change across repli-

cates was 2.78 generations (63.9 h [39.6; 87.8]) following

the introduction of the stressor, with a morphological shift

immediately after at 3.12 generations (71.7 h [56.2; 86.7]).

Then, the threshold for abundance time series change

was 5.95 generations (137 h [115; 179]) following the

stressor introduction. Together, results from additive

and threshold models indicate a clear sequence of time-

line signals in the pollution treatment.

In contrast to the pollution treatment, the intro-

duction of the flatworm predator was not followed

by sequential changes in behavior, morphology, and

abundance, both in GAMMs (Figure 4) and in piecewise

regressions (Figure 3c). Instead, a decline in the abun-

dance of populations in the predator treatment began

immediately following the introduction of the stressor,

with a significant deviation in predicted abundance after

72 h [64; 78] or 3.14 generations (Figure 4c). We found

no clear trends of deviation in mean speed and body

length across the predator experiment (Figure 4a,b), and

this resulted in the wide intervals for turning points in

the posterior density (Figure 3c). For the control treat-

ment, no pattern in timeline signals was identified from

the piecewise regressions (Figure 3a).

We also assessed temporal trends in other abundance

EWS metrics (SD, and lag-1 autocorrelation—ACF;

Appendix S1: Figure S8), normalizing the temporal com-

ponent for each replicate using the time before collapse

(time before experiment end for control treatments). The

EWS analysis did not show clear patterns in the predator

treatment; the CV was highly variable and displayed an

increasing trend deviating significantly from the control

since the addition of predators (Appendix S1: Figure S8).

DISCUSSION

The rapid pace of change in the natural environment

is altering the dynamics of wild populations (Capdevila

et al., 2022), and EWSs of population collapse are poised

as a crucial tool for biodiversity management and pro-

tection (Nijp et al., 2019; Stelzer et al., 2021). However,

the application of these methods is currently hampered

by their reliability and their limited forecast horizon

(Baruah et al., 2020; Patterson et al., 2021). Expanding

these predictive frameworks to include information at

the individual level gives rise to potentially powerful

approaches to forecast population collapse (Clements

et al., 2017; Clements & Ozgul, 2016a). Similarly, new

conceptual work suggests that the temporal sequence of

changes in individual and population traits gives rise to

a corroborative tool to infer risk of population collapse and

trigger preemptive conservation actions (Cerini, Childs, &

Clements, 2023; Keen et al., 2021; Pirotta et al., 2018).

Here, using a novel autonomous, high-throughput monito-

ring system allowing us to track individual behavior, mor-

phology, and population abundance over 24 generations,
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F I GURE 3 Posterior density for threshold time points across timeline components in the control (a), pollution (b), and predator

(c) treatment from piecewise regression models. Density distributions give the full posterior density of the threshold parameter, scaled to

time in hours, across replicates for each of the timeline components. Segments give the credible intervals based on the Cumulative

Distribution Function for each timeline component, and vertical lines give the 50% quantile of the posterior distribution.

F I GURE 2 Observed timeline to collapse for the pollution treatment. Detrended and scaled (see Appendix S1) time series of mean

swimming speeds (a), mean body lengths (b), abundance (c), and CV (zoomed panel d) starting from the beginning of the stressor treatment

(time point 330). The CV is calculated on 50% of the abundance time series and the x axis is converted into hours before collapse to

normalize the temporal component for each replicate (i.e., all time series end at the same time point) (d). Orange and green elements

represent the pollution and control treatments, respectively. Dots with lines represent across-replicate mean and SEs. Colored lines and

areas represent predicted (using general additive mixed models [GAMMs]) mean trends and 95% CIs, respectively (a–d). For analysis,

predicted time series of control and pollution treatments were scaled linearly to begin at a value of 1 when the stressor was introduced.

Vertical black lines and gray areas indicate the divergence time point of the CI trends between the two treatments (a significant change

compared to the control) with a posterior resampling interval. The red vertical line in (c) and (d) indicates the emergence of an early

warning signal (EWS) (a significant difference in the CV between the pollution and the control treatment), also projected on the abundance

panel.
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we found experimental evidence to support the concep-

tual model of a timeline to population collapse (Cerini,

Childs, & Clements, 2023). Namely, we find a sequ-

ential shift in behavior, then morphology, and finally

abundance in response to a gradually increasing envi-

ronmental stressor. Such signals were detectable up to

1.65 generations before a significant decrease in abun-

dance (i.e., a statistically supported decline compared to

F I GURE 4 Detrended and scaled time series of mean swimming speeds (a), mean body lengths (b), and abundance (c) starting from

the beginning of the stressor treatment. Elements in purple represent the predator treatment, green elements the control treatment. Dots

with lines represent across-replicate means and SEs. Continuous lines and gray areas represent the general additive mixed models (GAMMs)

predicted mean trends with 95% CIs. (a–c) For analysis, predicted time series of control and pollution treatments were scaled linearly to

begin at a value of 1 when the stressor was introduced. Vertical black lines and gray shaded areas indicate the divergence time point of the

CI trends between the two treatments (a significant change compared to the control) with a posterior resampling interval.
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the control treatment), and crucially a whole generation

before a detectable EWS. The successive changes from

the individual to the population level represented a

growing body of evidence, strengthening the inference

of an approaching collapse. However, the occurrence

of the timeline to collapse is dependent on the stressor

nature. We highlight that integrative ecological moni-

toring approaches, with an emphasis on individual

behavioral and morphological data in addition to popu-

lation monitoring, may represent a crucial next step to

anticipate population declines more effectively.

The environmental pollution stressor generated a

clear timeline of changes matching the theoretical frame-

work (Cerini, Childs, & Clements, 2023). Generally,

changes in behavior are among the earliest and comm-

onest responses to environmental change; stress-induced

behavioral change can take the form of shifts in acti-

vity patterns, distributional range, or ecological choices

(e.g., antipredatory behaviors, foraging, nesting, or repro-

ductive preferences; Berger-Tal et al., 2011; Rabaiotti &

Woodroffe, 2019). In our experiment, the behavioral shift

preceded the morphological shift by nearly a whole gener-

ation if we consider the GAMM results, indicating that the

locomotory system of P. caudatum was the first to be

affected by the pollutant. Copper ions are known to affect

the food vacuole-forming capacity and chemotaxis in

ciliates (Dale, 1991; Nilsson, 1981). Thus, the observed

decrease in movement speed was likely due to a general

energy availability reduction for the P. caudatum cells, as

their food intake system was compromised. Often, behav-

ioral traits are more plastic than other features (e.g., life

history; Refsnider & Janzen, 2012), and can buffer organ-

isms against resource reduction (Goossens et al., 2020) or

temperature change (Chen et al., 2011). After the shift in

cell movement could not avert a physiological change,

there was a reduction in food intake affecting P. caudatum

morphology. The timing between shifts in individual traits

will vary between species, but a behavioral change may

occur up to and over a generation time before morphologi-

cal change. For example, food resource reduction increases

the foraging distance in seabirds (Fayet et al., 2021). In this

case, we might observe a longer time gap before morp-

hology and abundance are affected. Ultimately, however,

characterizing individual phenotypic traits can add impor-

tant insights into population decline (Cerini, Childs, &

Clements, 2023; Tyack et al., 2022).

The next observed signal in the timeline was the shift

in morphology. Change in morphological features is a

general physiological response not only to energy intake

reduction (e.g., mass reduction) but also to other kinds of

stressors such as environmental warming (Sheridan &

Bickford, 2011) and predator presence (Chiba, 2007).

The mean P. caudatum length declined strongly before

the trend nearly plateaued over an approximate

two-generation time interval (Figures 1 and 2). At that

point, most individuals were likely unable to replicate,

properly eat, and digest, and the population abundance

started to decrease. Generally, the observation of a

morphological shift shortly after, or concurrently with, a

behavior change should be considered a pivotal moment

in view of management of vulnerable populations, as it

may be the last signal observable before stressors act

directly on the survival of individuals (i.e., affecting the

population dynamics; Cerini, Childs, & Clements, 2023).

Indeed, for larger organisms such as vertebrates, the

capacity of body size to change for long periods of time

(e.g., polar bears weight loss; Stirling & Derocher, 2012)

as a reaction to stressors provides an opportunity to per-

form conservation actions.

After the morphological change, the populations

showed a rapid decline to collapse in little more than

one generation. Before collapse, we observed a potential

EWS: an increase in the CV of abundance, diverging

from the control approximately one generation before

collapse. This might represent a final measurable signal

in the timeline before the decline in abundance, becoming

visible after the behavioral and morphological change.

The CV proved to be a useful EWS forecasting abrupt

changes in other systems (Clements & Ozgul, 2018).

However, the CV was one indicator out of three tested (see

Appendix S1: Figure S4), and EWS metrics are prone to

indicate false positives (Boettiger & Hastings, 2012; Burthe

et al., 2016). Additionally, despite the populations under-

going a steep decline to collapse, they are not necessarily

undergoing a form of transition that EWS can detect

(O’Brien, Deb, Gal, et al., 2023). Thus, solely relying on

EWS metrics may not be a robust approach. Indeed, EWSs

were only generated ~ one generation prior to collapse

(half the forecast window of the first behavioral signals),

and thus may well be insufficient for meaningful action

in a real-world conservation scenario. Hence, the obser-

vation of the timeline signals before the EWS builds not

only a wider predictive horizon but also acts as a quality

check for classic collapse indicators. By confirming that

EWSs, if observed after the occurrence of the other signals,

are actually representing imminent collapse, the timeline

framework can help in reducing the false-positive rates

of classic EWSs. In fact, if behavioral or morpholo-

gical change can also show false positives (e.g., plasticity

response), their successive temporal sequence represents

a clear indication that all the population’s stress-coping

mechanisms are being involved, and thus the population

might be at risk of collapse if pressure keeps building

(Cerini, Childs, & Clements, 2023).

In contrast to the pollution treatment, the predator

introduction, a press disturbance scenario, did not result
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in the predicted sequence of observable events before the

population collapsed. While ciliates, and the Paramecium

genus in particular, are known to display antipredatory

behavioral and morphological responses (Cerini, O’Brien,

et al., 2023; Fyda et al., 2005), neither behavioral nor

morphological traits showed a clear pattern of change

compared to the control in the predator treatment.

Exposure to predatory Stenostomum cues induced a

swimming speed reduction in Paramecium and a cell

shape change toward a ball-shaped morph (to lower the

risk of being eaten by the predator; Hammill, Petchey, &

Anholt, 2010). Our lack of observation of similar res-

ponses may be a function of the predation pressure being

too high, and the size of the habitats too small, for the

P. caudatum individuals to escape or implement anti-

predatory responses. Thus, predation had an immediate

impact on the abundances of the ciliate populations, poten-

tially reducing the opportunity to elicit measurable behav-

ioral or morphological change. Such contrast between

responses to predators and pollution supports previous

work suggesting that the rapid onset of high-intensity

stressors (e.g., extreme events) can prevent meaningful pre-

diction in wildlife populations (Clements & Ozgul, 2016b)

and suggests that ramp disturbances (environmental pollu-

tion, temperature increase, habitat loss) are the best-suited

scenario for the timeline application. Additionally, this sug-

gests that the observation of the timeline to collapse will

depend on the mechanisms by which the stressor acts on

the population.

Adapting the timeline to collapse approach we used

here for wildlife conservation is challenging, particularly

due to the absence of standard controls and the non-

deterministic responses of populations to stressors.

These challenges were evident in our controlled experi-

mental system and are expected to be more pronounced

in field studies. On the one hand, the use of historical

thresholds (Donadio Linares, 2022) or comparisons

with nonstressed populations (space-per-time substitu-

tion; Fayet et al., 2021) can help in pinpointing signifi-

cant deviations in the behavioral or morphological traits

of studied populations, following our GAMM approach.

However, even our control populations exhibited inst-

ability, with each replicate displaying unique dynamics

despite standardized treatments (Figure 1). This under-

scores the limitation of applying the timeline framework

with GAMMs to aggregated time series without a clear

reference population and highlights the necessity of

incorporating population-level variability into timeline

comparisons. We addressed this by allowing our GAMMs

to vary by replicate around a global trend, enabling us

to capture both overall patterns and replicate-specific

sequences of change. Additionally, we compared the

observed sequence with that from the piecewise regression,

which does not require a control treatment comparison.

Integrating both methods could strengthen our ability to

detect early signals of collapse in complex ecological

systems.

Regardless of the method, concurrent monitoring

of individual traits and abundance has the potential to

increase the time window available to implement man-

agement actions, and thus developing frameworks to

leverage multidimensional data remains a priority. For

example, had we limited ourselves to monitoring swim-

ming speed of the ciliates, we might have wrongly inter-

preted the observed change in speed as a new behavioral

optimum of the individuals that are responding to the

increasing pollution; in fact, after a swift reduction, the

average swimming speed approached a possible plateau

(Figures 1 and 2a after time point 420) before the

abundance decline. The new value might have been

the physiological plastic limit of that behavior, as at

that point the pollution concentration was already critical

and started to affect individuals’ survival right after

(i.e., abundance continuously declines). In such case,

managing actions (i.e., cutting a chemical waste from an

ecosystem; Vorobeichik, 2022) might be useless. Instead,

focusing on the temporal sequence of multiple signals

reduces the risk of wrongly considering the population

as adapting to the new environmental conditions. In fact,

if observing a behavioral change might flag a situation

of potential future risk and thus should trigger inves-

tigations on possible stressors acting on the population,

observing a morphological change after the behavioral

one should be considered a critical moment for implem-

enting management actions. Projecting our experimental

example in the real world, and considering aquatic

organisms with longer generation times (e.g., fish), after

the observation of the first behavioral signal a practi-

tioner might have started analyzing environmental

variables potentially identifying the chemical stressors;

the body size change signal would have confirmed that

the stressor level is reaching dangerous levels, but there

would still be a generation’s time before the abundance

starts to decline, to stop the pollution, ultimately avoiding

the population collapse.

More experiments are needed to increase both the

spectrum of tested stressors and the complexity of the

taxa. Mesocosm experiments with multicellular organ-

isms whereby one can measure also detailed demo-

graphic processes like fecundity are the obvious next step

to test the other scenarios where the framework is best

suited. Nevertheless, we urge ecologists to take advantage

of autonomous monitoring tools for biodiversity monitor-

ing (Besson et al., 2022; Cavender-Bares et al., 2022),

which can collect multidimensional data to more effec-

tively predict population change, with few disadvantages
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(e.g., costs, proper calibration). Ultimately, the goal of

the timeline to collapse is to fuel the implementation of

the multidimensional approach directly into predictive

frameworks, to add to a large repertoire of forecasting

tools and EWSs using a wider array of data typologies.

Although this aspect is not the focus of our paper, we

believe that generating real-world data on collapse

dynamics, with their potential idiosyncrasies, is a useful

first step in that direction.

In conclusion, our results demonstrate a timeline of

signals preceding population collapse (Cerini, Childs, &

Clements, 2023), which can improve the reliability of

EWSs and, critically, flag situations of potential risk to

conservation practitioners much earlier than if consider-

ing only population-level dynamics. A ramping pollution

stressor represents a clear case where the individual traits

displayed shifts more than two generations before a

decline in abundance. Additionally, the observation of

the sequence of signals indicates that as the stressor is

increasing, different dimensions of a population are being

engaged, thus giving insights on the adaptability, or lack

of it, of the population to new conditions.
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