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a b s t r a c t

In this paper, we analyse a buck converter network containing arbitrary, up to mild regularity
assumptions, loads. Our analysis begins with the primary controller where we propose a novel
decentralised Lyapunov function for the interconnection between currents and a bounded integrator.
We leverage on this result to study the network as a cascaded interconnection between voltages and
bounded currents. We, in addition, propose a distributed optimal secondary control framework to steer
voltages close to their nominal operating values. We employ the properties of the Laplacian kernel to
show recursive feasibility and input-to-state stability of the closed loop. We demonstrate our results
in a meshed topology network containing 6 power converters, each converter feeding an individual
constant power load with values changing arbitrarily within a pre-specified range.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The presence of DC networks has become an important fea-
ture in modern complex systems such as electric vehicles and
aircraft (Elsayed et al., 2015). In addition, a DC Microgrid (MG)
can grow from simple photovoltaic and storage implementations
to highly complex and constantly evolving systems with meshed
topology with an increasing tendency to decentralisation (Planas
et al., 2015). Traditionally, control problems in DC MG, as men-
tioned in Tucci, Riverso et al. (2018), involve voltage stabilisation,
current or load sharing, and voltage balancing. The growing size
of DC systems calls for non-centralised control techniques for
voltage regulation which tackle plug-and-play methods (Sadabadi
& Shafiee, 2020), L2 gain-based loop shaping methods (Sadabadi,
2021b), and optimisation-based controller methods using con-
trol barrier functions (Kosaraju et al., 2022). Approaches that
include in its formulation current regulation and sharing in-
clude (Sadabadi, 2021a; Trip et al., 2019). On the other hand, De
Persis et al. (2018) propose a power-sharing controller which em-
ploys nonlinear consensus to obtain effective load sharing while
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keeping voltages bounded to a compact set. Despite the rapid
developments of control techniques and deeper system theoretic
understanding gained in the past decades, two main problems
have not yet been fully understood: safe operation during tran-
sients for input currents combined with voltage regulation, and
the role of current sharing in a meshed network topology. Among
distributed control techniques, receding horizon controllers offer
a methodology including constraints in its formulation (Maestre &
Negenborn, 2014). For the MG case, receding horizon techniques
have been used predominantly in their distributed optimisation
form as mentioned in the excellent review of Hu et al. (2021).
Robust control methods, however, have not yet, to the best of the
authors’ knowledge, established a foothold in a MG setting. The
source of limitation is the ubiquitous assumption on the size of
the interaction strength (Baldivieso-Monasterios, 2018). In a MG
setting, the interactions represent currents flowing through the
network whose magnitude is comparable to that of local states.
Therefore, robust control methods for distributed receding hori-
zon control require adjustments to how they handle interactions
among individual elements of the network.

In this paper, we aim to rigorously analyse the system theo-
retic properties of a DC network with a meshed topology where
each converter feeds generic nonlinear loads with mild continuity
assumptions. We address two important issues: current con-
straint satisfaction, and voltage regulation with an implicit notion
of load sharing. We use a novel Lyapunov-based analysis for the
decentralised primary controller where we prove asymptotic sta-
bility within a compact set. We, then, study the interconnection
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properties between voltages and currents under the scope of the
cascaded systems approach; our results show that the kernel
of the network Laplacian matrix defines an attractive set which
yields an ISS-type result. This analysis is, however, not enough
to guarantee convergence to a particular equilibrium point. To
regulate voltages, we employ a distributed voltage regulation
based on concepts of robust distributed model predictive con-
trollers. The latter implies that information sharing occurs only
once each sampling period as opposed to distributed approaches.
On this vein, we extend, to a nonlinear setting, the approach
of Baldivieso Monasterios and Trodden (2018) which proposes
an MPC technique capable of handling exogenous information.
The resulting distributed controller is, to the best of the authors’
knowledge, the first attempt to use a non-iterative distributed
predictive controller. We analyse the nominal equilibrium be-
haviour of the proposed control law, and show that, assuming
a bounded load deviation, it remains in a neighbourhood of
the ‘‘real’’ equilibrium, i.e., the one considering uncertain loads.
Similarly, we show that our distributed control law at steady state
lies in the equilibrium manifold of the system.

Our contributions are:

(i) We propose a Lyapunov function for the Bounded Integral
Controller (BIC)-based primary controller in closed loop
form with each node current as opposed to Konstantopou-
los and Baldivieso-Monasterios (2020) where only local
stability results are obtained based on linearisation. With
this Lyapunov function, we can conclude the asymptotic
stability of all the current dynamics.

(ii) We show that under the cascaded system interpretation,
a buck converter network satisfies a weaker ISS property.
The state remains close to the kernel of the Laplacian and
not around an equilibrium point.

(iii) We propose a novel non-iterative distributed receding
horizon voltage controller to steer the voltages towards a
given equilibrium point which does not rely on the ubiqui-
tous assumption of weak coupling between components,
as seen for example in Riverso et al. (2018) and Trod-
den and Maestre (2017). In the proposed controller, each
node employs information about the voltage values of its
neighbours to compute its own control law and exploit the
influence of neighbouring nodes. The proposed approach
extends the results of Baldivieso Monasterios and Trod-
den (2018) to a nonlinear setting to guarantee recursive
feasibility.

Notation: A MG is a connected undirected graph G = (V, E)
where the set of nodes V represents inverters and local loads; the
set of edges E ⊆ V ×V defining the MG topology is characterised
by the incidence matrix B ∈ R

|E|×|V|. The 2-norm is denoted
|x| = ∥x∥2; the distance of a point x ∈ R

n to a set A ⊂ R
n is

|x|A = inf{|x − y| : y ∈ A}. A set A ⊂ R
n is a C-set if it is convex

and compact; PC-set is a C-set with the origin in its nonempty
interior. A class K-function α :R+ → R

+ is a continuous, strictly
increasing with α(0) = 0; α(·) is K∞ if in addition limr→∞ α(r) =
∞. A function β :R+×R

+ → R
+ is KL if β(·, t) is K for all t ∈ R

+;
β(r, ·) is continuous, strictly decreasing, and limt→∞ β(r, t) = 0
for all r ∈ R

+. A set P is positively invariant for ẋ = f (x) if for any
x ∈ P , the state trajectory x(t) ∈ P for all t ≥ 0. A set R ⊂ X

is control invariant for ẋ = f (x, u) and constraint sets (X,U) if
for any x ∈ R, there exists a control law µ : R → U, such that
the closed loop system ẋ = f (x, µ(x)) satisfies x(t) ∈ R for all
t ≥ 0 with x(0) = x0. A C1 function V : Rn → R is a control

Lyapunov function for a system ẋ = f (x, u) with u ∈ U if it is
positive definite V (x) ≥ 0 for all x ∈ R

n, radially unbounded
lim|x|→∞ V (x) = ∞, and there exists αV :R → R nondecreasing

and radially unbounded such that infu∈U
∂V
∂x

f (x, u) + αV (|x|) < 0.

A set-valued map Φ :U → 2X is: (i) upper semi-continuous (u.s.c)
at x0 ∈ U if for an open neighbourhood VU ⊂ U of x0, for all
x ∈ VU , Φ(x) ⊂ VX for an open neighbourhood VX ⊂ X; (ii)
lower semi-continuous (l.s.c) at x0 ∈ U if for any y0 ∈ Φ(x0) and
a neighbourhood VX ⊂ X , there exists VU ⊂ U such that for all
x ∈ VU , Φ(x) ∩ VX ̸= ∅.; and continuous if it is u.s.c. and l.s.c.

2. Preliminaries

2.1. Modelling of DC-DC buck converters

The system in consideration consists of a network of M con-
verters connected through ME lines characterised by an undi-
rected graph (V, E). The dynamics of the network for each i ∈
V = {1, . . . ,M} and e = (i, j) ∈ E is

Li
dii

dt
= −riii − vi + V IN

i m̃i, (1a)

Ci

dvi

dt
= −fL,i(vi, PL,i) + ii − B

⊤
i iE , (1b)

Le
die

dt
= −reie + Bev, (1c)

where the states are ({ii, vi}i∈V , {ie}e∈E ) converter currents and
voltages together with line currents. In addition, (Li, ri) are the
converter inductance and parasitic resistance; Ci denotes the con-
verter capacitance; fL,i(·) represents the load current according to
power reference PL,i; V

IN
i is the input voltage; m̃i is the converter

duty ratio; and (Le, re) are line eth inductance and resistance. The
network affects the ith converter via B⊤

i iE with B⊤
i corresponding

to the ith column of the incidence matrix B and iE the current
running through the network lines, and, conversely, line e =
(i, j) ∈ E depends on voltage differences characterised by Be, the
eth row of B.

2.2. Current controller structure

The decentralised primary current controller, which has a
similar structure to Konstantopoulos and Baldivieso-Monasterios
(2020), ensures current limitation |ii −

1
2
Imax
i | ≤ 1

2
Imax
i . The non-

linear PI controller that allows tracking any reference |irefi | ≤ Imax
i

is

V IN
i m̄i = vi − kP,iii +

kP,i + ri

2
Imax
i + Miσi, (2a)

dσi

dt
=

kI,i

Mi

(irefi − ii)(1 − σ 2
i ), (2b)

where kP,i > 0, kI,i > 0, Mi = 1
2
(ri +kP,i)I

max
i are controller gains.

The closed loop equilibrium points of (1) with (2) are given by

the solution to1

i
eq
i = sat(irefi , 0, I

max
i ), (3a)

σ
eq
i = sat

(

2irefi − Imax
i

Imax
i

,−1, 1

)

, (3b)

ieq = fL(v
eq, PL) + B

⊤r−1
E Bveq, (3c)

i
eq
E = r−1

E Bveq, (3d)

where fL(v, PL) = (fL,1(v1, PL,1), . . . , fL,M (vM , PL,M )) and rE =
diag(r1, . . . , rME

). The controller (2) decouples the equilibrium
point between local (currents and integrator) and networked
(voltages and line currents) equilibria. The latter depends on the
current drawn by each load which are required to satisfy the
following assumption:

1 The saturation function is defined as sat(x, y, z) = x when z ≤ x ≤ y,

sat(x, y, z) = y when x > y, and sat(x, y, z) = z when x < z.

2
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Assumption 1. For each i ∈ V , the current drawn by each load is

fL,i(vi, PL,i) = gL,i(vi)dL,i with gL,i :R → R
n
L,i

∗ being C1 in an open

neighbourhood A ⊂ R of a voltage v ̸= 0, and dL,i ∈ R
nL,i defining

the load characteristics.

Remark 1. Assumption 1 is not restrictive; the current drawn

by a ZIP load can be written as fL,i = 1
RL,i
vi + IL,i +

PL,i
vi

for

an impedance RL,i, constant current IL,i, and constant power PL,i.

Therefore, gL,i(vi) = (vi, 1, v
−1
i ), di = (RL,i, IL,i, PL,i).

2.3. Constraints and control objectives

The overall state for each node is xi = (vi, ii, σi) with input

ui = irefi . The system is subject to constraints on the inputs and

states such that for all i ∈ V , xi ∈ Xi, ui ∈ Ui which satisfy the

following assumption:

Assumption 2 (Network Constraints). For each i ∈ V ,

(i) the input constraint set Ui ⊂ R is a PC-set, while the state

constraint Xi is a C-set.

(ii) the load characteristics dL,i ∈ R
nL,i are constrained to a

PC-set Di ⊆ R
nL,i .

In addition, we impose the following assumption on the

closed-loop dynamics on the time-scale separation between lines

and nodes

Assumption 3 (Time-scale Separation). The network parameters

satisfy

min
i∈V

{

Li

ri + kP,i
,
4CiPL,i

(Imax
i )2

,
ri + kP,i

kI,i

}

≫ max
e∈E

{

Le

re

}

where PL,i is the load power at node i ∈ V .

Assumption 3 essentially requires the time constants for each

power line to be sufficiently small. A consequence of Assump-

tion 3 is that line currents satisfy the algebraic relation (3d), and

the analysis focuses only on nodes. This Assumption takes into

account the case of low voltage microgrids, i.e., Le = 0. The

aim is to solve the following optimal control problem: from a

state x = (x1, . . . , xM ), determine the control policy, i.e., reference

currents, that minimises the criteria

J(x, u, v∗) =

∫ ∞

0

(1|V|v
∗ − Hx)⊤(1|V|v

∗ − Hx) + γ (u)dt.

where node voltages are outputs defined by the linear map

H :R3M → R
M such that v = (v1, . . . , vM ) = Hx. This criterion

encourages these to operate near a common point v∗, and each

source to feed its associated local load while minimising its

operating costs γ (·).

3. Primary controller and interconnection analysis

In this section, we aim to analyse the properties of the in-

terconnection between the decentralised current controller (2)

with the rest of the network. First, in Section 3.1, we prove the

invariance properties of the bounded integral control, then using

a Lyapunov function, we infer the stability properties. Later in

Section 3.2, the dynamics of each node are decomposed into

two constituting parts: the driving system given by currents and

integrators; and the driven system composed of node voltages. We

derive stability properties, not of an equilibrium point, but of a

neighbourhood of the kernel of the network Laplacian.

3.1. Current controller properties

The next result is an adaptation to our setting of Konstan-
topoulos and Baldivieso-Monasterios (2020, Proposition 3) and is
followed by our first novel result,

Lemma 1 (Bounded Integral Control). For all i ∈ V , the set Zi =
[0, Imax

i ] × [−1, 1] is positively invariant for (1a) and (2) with

Imax
i =

2Mi

(ri+kP,i)
for all 0 ≤ |irefi | ≤ Imax

i .

Proposition 1 (Bounded Integrator Lyapunov Function). For each

i ∈ V and any ui ∈ (0, Imax
i ), the C1 function Wi : int(Zi) → R

defined as

Wi(ii, σi) =
1

2
Li(ii − ui)

2 +
M2

i

kI,i

ui

Imax
i

ln

⏐

⏐

⏐

⏐

ui
Imax
i

1 + σi

⏐

⏐

⏐

⏐

+
M2

i

kI,i

(

1 −
ui

Imax
i

)

ln

⏐

⏐

⏐

⏐

1 −
ui

Imax
i

1 − σi

⏐

⏐

⏐

⏐

+ ln 2

(4)

is a Lyapunov function for the driving subsystem in int(Zi).

Proof. ForWi(·) to be a Lyapunov function, it needs to be positive
definite and has a negative time derivative along the trajectories
of (ii, σi). For the latter, the time derivative is Ẇi = ∂W

∂ ĩi
f (i, σi) +

∂W
∂σi

g(i, σi, ui) which results in Ẇi < −γi(r + kP,i)(ii − ui)
2 with

γi ∈ (0, 1). For the former, the positive definiteness condition for
Wi follows from an analysis of the Hessian of Wi at its extrema.
The Hessian of Wi satisfies ∇2Wi = diag

(

Li,
(

1 −
ui

Imax
i

)

1

(1+σ )2
+

ui
Imax
i

1

(1−σ )2

)

> 0 since ui ∈ (0, Imax
i ). Then Wi(i

eq
i , σ

eq
i ) ≤ Wi(ii, σi)

for all (ii, σi) ∈ int(Zi) and Wi(i
eq
i , σ

eq
i ) = 0. As a result, the

candidate function is a Lyapunov function. □

An immediate consequence of the above result is

Corollary 1 (Asymptotic Stability Driving Subsystem). Suppose As-

sumption 2 holds. For all i ∈ V and any ui ∈ (0, Imax
i ),

|(ii(t), σi(t))|(ieq
i
,σ

eq
i

) → 0 as t → ∞.

Proof. Let Ωi,(c,ui) = {(ii, σi) : Wi(ii, σi) ≤ c} be a c-level
set for Wi. The normal vector, ∇Wi, of each level set satisfies
∇Wifi(ii, σi, ui) ≤ 0 with fi(·, ·, ·) defining the system dynamics.
Next, by construction, we note that Wi(ii, σi) = 0 only at the
equilibrium (ĩ

eq
i , σ

eq
i ) ∈ Ωi,(c,ui). As a result, the asymptotic sta-

bility of the equilibrium point follows by applying the invariance
principle. □

The case for which ui ∈ {0, Imax
i } corresponds to a Lyapunov

function Wi(i, σi) = 1
2
Lii

2
i +

M2
i

kI,i
ln

⏐

⏐

2
1±σi

⏐

⏐. The domain of definition

of W (·, ·) is a consequence of the multi-stability properties of (2);
those equilibrium points corresponding to (Imax

i , 1) and (0,−1)
for ui ∈ (0, Imax

i ) are not stable which ensures that the basin of
attraction remains inside Zi.

3.2. Cascaded structure

We now exploit interconnection structure between node volt-
ages and currents with their associated integrators. This state of
each node can be written as: xi = (vi, zi) with zi = (ĩi, σi) as
the driving states with dynamics v̇i = fi(vi, 0) + h(vi, zi) and
żi = gi(zi, ui) where hi(vizi) = fi(vi, zi) − fi(vi, 0). The stability
analysis of cascaded systems has been thoroughly explored, see
for example Sepulchre et al. (1997), and two main methods exist
to infer the asymptotic stability of the cascaded system:

3
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(i) Asymptotic stability for the driving system and zero dy-
namics of the driven system, plus a linear growth restric-
tion on the interaction between these two components.

(ii) Input-to-state Stable (ISS) for the driven subsystem and
asymptotic stability for the driving subsystem.

In our setting, the driving subsystem satisfies both conditions; we
will now check conditions for the driven subsystem. An initial
guess of a Lyapunov function is the energy stored in the capaci-
tors S =

∑

i∈V
1
2
Civ

2
i . To account for a nonzero equilibrium point,

we employ a Bergman Function S =
∑

i∈V
1
2
Ci(v

2
i − v

eq
i

2
) −

Civ
eq
i (vi − v

eq
i ). The time derivative of S yields: Ṡ = (v −

veq)⊤(−Lv−gL(v)dL+i), where dL = (dL,1, . . . , dL,|V|) ∈
∏

i∈V Di is

the collection of load characteristics and L = B⊤r−1
E B ∈ R|V|×|V|

the network Laplacian. First, we check the voltage zero dynamics;
then Ṡ

⏐

⏐

i=0
= (v − veq)⊤(−Lv − gL(v)dL) which results in a stable

system only if the load is resistive i.e., gL(v)dL = diag(R−1
L,i )v. This,

however, is not true for the general case; for example, when the
network contains constant power loads gL(v)dL = diag(v−1

i )dL,

the impedance is locally negative, i.e.,
∂gL
∂v

dL = − diag(v−2
i )dL. As

a result, the origin becomes a singularity point; and there are
multiple unstable and stable equilibria.

However, all is not lost; the voltage dynamics have a Laplacian
structure that can be exploited. The network dynamics are dom-
inated by the Laplacian of the connectivity graph and kerL =
span 1|V| determines the synchronisation manifold. In the ab-
sence of loads, the kernel is stable (Bullo, 2020); in fact the
state converges to a weighted average of the initial state, i.e.,

v →
∑

i∈V Civi(0)
∑

i∈V Ci
1|V| ∈ kerL. The next ancillary result provides

estimates for v(·) subject to bounded perturbations.

Lemma 2 (Network Dynamics). The set Rη = kerL ⊕ ηB|V| is

attractive with η > 0 for Laplacian dynamics C v̇ = −Lv + u with

|u(t)| ≤ Bu for Bu > 0 and all t ∈ R

Proof. Given the Laplacian matrix pencil λC+L with eigenvalues
{λ0, . . . , λ|V|−1} and the state transformation yi = ⟨ξi, Cv⟩ with
ξi ∈ R

|V| the eigenvector associated with λi for i ∈ {0, . . . , |V| −
1}. The dynamics of each yi satisfy ẏi = −λiyi+ũi with ũi = ⟨ξi, u⟩.
The solution for each i ∈ {0, . . . , |V| − 1} is yi(t) = e−λityi(0) +
∫ t

0
e−λi(t−τ )ũidτ yielding for v =

∑

yiξi:

v =

(

⟨1|V|, Cv(0)⟩

1
⊤
|V|C1|V|

+

∫ t

0

⟨1|V|, u(τ )⟩

1
⊤
|V|C1|V|

dτ

)

1|V|+

n
∑

i=2

∫ t

0

e−λi(t−τ )⟨ξi, u(τ )⟩dτξi.

Given α1n ∈ kerL, the distance from any state to this set is
d(v(t), kerL) = min{|v(t) − α1n| : α ∈ R}. The explicit minimum
occurs at α∗(v) = v̄ H⇒ d(v, kerL) = |v − v̄1n|. The desired

bound is d(v(t), kerL) ≤ Bu

∑n−1
i=2

1−e−λi t

λi
and in steady state

d(vss, kerL) ≤ Bu

∑n−1
i=2

1
λi
. Setting η = Bu

∑n−1
i=2

1
λi

implies the

set R = kerL ⊕ ηB|V| is attractive for v̇ = Lv + u. □

The above lemma concludes an ISS type behaviour with re-
spect to the kernel, this however might not imply the solutions
are stable in the ordinary sense. For example, a constant input
produces a ramp output that remains close to the kernel.

4. Distributed voltage regulation

In this section, we exploit the kernel stability properties to
obtain closed-loop stability in the classic sense and optimal per-
formance with respect to an optimisation cost. First, we define

the distributed optimisation problem, then we proceed to anal-
yse both recursive feasibility and stability of the overall net-
work. Section 4.2 defines the optimal control problem in terms
of exogenous information; we have two steps to prove recursive
feasibility. First, we assume neighbouring measurements do not
change and prove stability under unchanging information. The
second step allows for changes in exogenous information and ex-
ploit the regularity of the set-valued control law defining the OCP.
This last step represents a generalisation to nonlinear systems
to the result presented in Baldivieso Monasterios and Trodden
(2018). We use the robust stability of each local controller to
conclude recursive feasibility, and, in Section 4.2.2, use the kernel
properties to show the overall stability of the network.

4.1. Optimal control problem

The system objective is to minimise the infinite horizon cost
for the network. A tractable solution to the problem is to use
finite horizon approximations and a separable cost J(x, u, v∗) =
∑

i∈V Ji(xi, ui, v
∗). The motivation behind this is twofold: a sep-

arable cost allows us to use robust-based methods without in-
troducing additional coordination, and ease of the computational
burden. Each node is subject to parametric, dL,i ∈ Di, and ‘‘cou-
pling’’, wi =

∑

j∈Nj
Lijvj arising from the interconnection with

neighbouring nodes, uncertainty.2 The dynamics of each node are
Civ̇i = −Liivi − gL,i(vi)d̄L,i + ii + wi + wL,i(vi) where wL,i(vi) =
gL,i(v)(d̄L,i−dL,i) and d̄L,i is a nominal load. Robust methods can be
used to handle parametric uncertainty; these methods, however,
are not suitable for coupling uncertainty because DC networks
do not satisfy weak coupling assumptions that permeate robust
distributed methods (Baldivieso-Monasterios, 2018) as seen in
the next example.

Example 1. Consider a network ({1, 2}, (1, 2)) with voltage con-
straints Vi = [0, V̄ ] and line admittance Y12 = 10[S]. The effect of
1 on 2 lies inside W1 = C−1

1 Y12V2. The weak coupling assumption
for tube MPC methods requires Wi ⊂ Vi for i = 1, 2 which is not
the case for this simple example. This implies that there are no
robust invariant sets capable to account for the interconnection
disturbance.

The above example illustrates one limitation of robust dis-
tributed approaches for electrical networks. However, we can
exploit the Laplacian structure, by virtue of Lemma 2, to bound
the effect of neighbours on each converter.The distributed opti-
misation problem Pi(xi, d̄L,i, wi) for each node i ∈ V consists in
minimising

Ji(xi, ui, v
∗) =

∫ T

0

ℓi(xi, ui, v
∗)dt + ψi(xi(T )), (5)

where ℓi(xi, ui, v
∗) = (v∗ −Hixi)

2+γi(ui), xi = (vi, ĩi, σi), vi = Hixi,

and ui = irefi , subject to

ẋi = Fi(xi, ui, d̄L,i) + Eiwi, (6a)

xi ∈ Xi, ui ∈ Ui, (6b)

xi(0) = xi, xi(T ) ∈ Xf ,i. (6c)

where Ei ∈ R
3×1 determines how the couplingwi affects the local

dynamics. The constraint set is a set-valued map UN
i (xi, d̄L,i, wi)

⊂ Ui. The terminal ingredients, ψi : Xf ,i → R
+ and Xf ,i ⊆

Xi, together with the stage cost ℓi(·, ·, ·) satisfy the following
assumptions

2 For a graph G = (V, E), the set of neighbours of node i is Ni = {j ∈
V : (i, j) ∈ E}.
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Assumption 4. For each i ∈ V , the terminal conditions for
Pi(xi, d̄L,i, wi) satisfy

(i) For all x ∈ Xf ,i, the terminal cost satisfies

min
u∈U,xi(t)∈Xf ,i

{

ψi(xi(t)) +

∫ t

0

ℓi(xi, ui)dt
}

≤ ψi(xi) (7)

(ii) The set Xf ,i ⊂ X is a control invariant for ẋ = Fi(xi, ui, dL,i)
with input constraints Ui ⊂ R.

Assumption 5 (Positive Definite Stage Cost). ℓi :Xi × Ui × R → R

is for each i ∈ V is continuous and positive definite.

In the context of Pi(xi, d̄L,i, wi), each local controller needs
only access to a measure of wi which is kept constant across the
prediction horizon [t, t + T ]. The solution at time t ≥ 0 is a
piece-wise constant optimal control input ui : [t, t+T ] → Ūi. This
input is applied to the system only during the interval [t, t + δ]
with δ > 0 acting as a sampling rate. At t + δ, each subsystem
measures its states and collects neighbouring information to form
wi, then (5) is solved with the updated information.

4.2. Properties of the OCP

In this section, the analysis focuses on local recursive feasibil-
ity and robustness to load changes. Then, we focus on stability
properties for the overall network.

4.2.1. Recursive feasibility

We invoke the following assumption to make precise the
concepts used in the OCP formulation.

Assumption 6 (Information Available to the Controller). For each
i ∈ V ,

1. The state xi(δk), interconnection information wi(δk), and
nominal load d̄L,i ∈ Di are known exactly at time t = δk ≥
0 with k ∈ N.

2. There exists γd,i > 0 such that dL,i ∈ Di satisfies |d̄L,i − dL,i|
< γd,i.

If the load variations do not satisfy the second part of Assump-
tion 6, then a robust approach can be used to regulate the voltages
to a neighbourhood of the equilibrium point. In fact, a tube-
based approach can be included in our approach by a suitable
constraint tightening. At a time δk, the OCP is solved by discretis-
ing the continuous problem Pi(xi, d̄L,i, wi) such that the solution
is a sequence of N optimal current references u0

i (xi, d̄L,i, wi) =
{u0

i (0), . . . , u
0
i (N − 1)}. The interconnection wi is kept constant

across the horizon, wi = wi1N+1; at the next sampling time,
this sequence, following Assumption 6, is allowed to change. To
account for this, the analysis will focus on two scenarios: prove
recursive feasibility for an unchanging interconnection, i.e., wi(k+
1) = wi(k). Then proving that recursive feasibility holds for the
general case by leveraging on the structure of the OCP.

The first hurdle to overcome is to find suitable terminal in-
gredients satisfying Assumption 4. These conditions depend on
the equilibrium of the local dynamics Fi(xi, d̄L,i, ui) + Eiwi = 0.
This equation admits a solution, since Fi is C1, by the implicit
function theorem (x

eq
i , u

eq
i ) = ξ ssi (d̄L,i, wi). The terminal set is

computed using the approach used in Baldivieso-Monasterios and
Konstantopoulos (2020); given polytopic set Xf ,i(x

eq
i ) ⊆ Xi, it is

possible to find a control action ui = u
eq
i + κf ,i(xi − x

eq
i ) such

that x(t) ∈ Xf ,i(x
eq
i ) for all t ≥ 0. This control action is built

based on the one-step reachability properties of the discretised

system and is the solution of min{|ui − u
eq
i |

2
: xi(δ(k + 1)) ∈

λXf ,i(x
eq
i ), ui − u

eq
i ∈ Ui}, where λ ∈ [0, 1] is a design parameter

to adjust the ‘‘aggressiveness’’ of the controller with minimisers
Uf ,i(xi, d̄L,i, wi) ⊂ Ui. The following proposition summarises the
properties of the terminal ingredients for the OCP.

Proposition 2 (Shifted Terminal Ingredients). Suppose Assump-
tions 1 and 5 hold. (i) For a fixed d̄L,i ∈ Di, if there exists a control
action ui ∈ Ui such that

|ui| ≥ max
y∈Xf ,i(x

eq
i

)

min
z∈λXf ,i(x

eq
i

)

|Fi(y, d̄L,i, u) − Fi(0, 0, u) − z|,

then Ui(xi, d̄L,i, wi) ̸= ∅ for all xi ∈ Xf ,i(x
eq
i ). Furthermore, (ii)

the function Ψf ,i(xi) = inf{r ∈ R
+ : xi ∈ rXf ,i} is a control

Lyapunov function. Lastly, (iii) the set Xf ,i is control invariant for

ẋi = Fi(xi, ui, d̄i) + Eiwi.

Proof. The proof for (i) is based on a modification to our setting
of Baldivieso-Monasterios and Konstantopoulos (2020, Theorem
3). The second assertion follows by construction, when xi =
x
eq
i , then Ψf ,i(x

eq
i ) = 0. Furthermore, the difference Ψf ,i(x

+
i ) −

Ψf ,i(xi) < 0 if ui ∈ Ui(xi, d̄f ,i, wi). In particular, it is possible to

construct the function αV ,i(xi) =
∫ t+δ

t
ℓ(xi, κi(xi, d̄i, wi))dt with

κi(·, ·, ·) a selection of the set-valued map Ui(·). Therefore, Ψf ,i(·)
satisfies an integral version of the definition of a CLF. The control
invariance stated in (iii) follows from Baldivieso-Monasterios and
Konstantopoulos (2020, Corollary 1). □

Proposition 2 shows that our terminal conditions satisfy As-
sumption 4 which allows us to define the feasible regions for
T > δ > 0 and wi as:

X
δ(k+1)
i (d̄L,i, wi) ={xi ∈ Xi : ∃ui ∈ Ui, xi(δ) ∈ X

δk
i }

X
0
i (d̄L,i, wi) =Xf ,i(x

eq
i ).

(8)

The existence of a feasible set XNδ
i is linked with the existence

of a sequence of control actions ui ∈ U
N
i which is related to the

OCP solution. The next result states feasibility under unchanging
interconnection information.

Proposition 3 (Recursive Feasibility Under Unchangingwi). Suppose
Assumptions 1–6 hold. For each i ∈ V , if w+

i = wi(t + δ) = wi(t),

then (i) xi ∈ X T
i (d̄i,wi) implies that x(t + δ) ∈ X T

i (d̄L,i,w
+
i ). (ii) the

set X T
i (d̄L,i,wi) is control invariant for ẋi = Fi(xi, ui, d̄L,i)+ Eiwi and

Ui.

The proof of these results follows the line of argument of Bal-
divieso Monasterios and Trodden (2018, Proposition 2) albeit
modified to account for the nonlinear nature of the system. Stan-
dard MPC results, see for example (Grüne & Pannek, 2016, Chap-
ter 5), i.e., feasibility implies stability, lead to the following Corol-
lary

Corollary 2 (Local Lyapunov Function). Suppose Assumptions 1, 2–
5 hold. For each node i ∈ V and a fixed wi ∈ Wi and d̄L,i ∈ Di, if
x
eq
i ∈ Xi is an equilibrium of node i, then there exist K functions αih

with h ∈ {1, 2, 3} such that the value function V 0
N,i(·, ·, ·) satisfies

αi1(|xi|xeq
i
) ≤ V 0

N,i(xi, d̄L,i, wi) ≤ αi2(|xi|xeq
i
)

V 0
N,i(x

+
i , d̄L,i, wi) − V 0

N,i(xi, d̄L,i, wi) ≤ −αi3(|xi|xeq
i
)

(9)

The above results allow us to conclude that for a fixed wi ∈ Wi

and d̄L,i ∈ Di, the closed-loop system ẋi = Fi(xi, κN,i(xi, d̄L,i, wi),
d̄L,i) + Eiwi is asymptotically stable with respect to {x

eq
i (d̄L,i, wi)}.

This next result is a generalisation to a nonlinear setting of Bal-
divieso Monasterios and Trodden (2018, Corollary 1); the non-
linearity of our setting makes it impossible to apply the pre-
vious result. In the following lemma, we study the regularity
of the value function using the set-valued minimisers and local
convexity properties.
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Lemma 3 (K-continuity of the Value Function). Suppose Assump-

tions 1, 2, and 5 hold, fix d̄L,i ∈ Di. The value function V 0
N,i(·) for

each i ∈ V satisfies |V 0
N,i(z) − V 0

N,i(ẑ)| ≤ σV (|z − ẑ|) over ZN
i and

σV is a K-function and any z, ẑ in its domain.

Proof. Continuity of the value function implies the result by

Limon et al. (2009, Lemma 1) and the Heine–Cantor theorem.

To prove continuity, we claim that for any neighbourhood T of

the minimisers Si(xi, d̄L,i, wi), there exists a neighbourhood Z of
(xi, wi) such that T ∩UN

i (xi, d̄L,i, wi) ̸= ∅. To prove this statement,

we consider two cases an optimal point u0
i ∈ UN

i (xi, d̄L,i, wi)

lies either in the interior of UN
i (xi, d̄L,i, wi) or at the boundary

UN
i (xi, d̄L,i, wi). Each neighbourhood of the optimal point u0

i sat-

isfies VU ∩ UN
i (xi, d̄L,i, wi) ̸= ∅. Given the graph of UN

i (·, ·, ·) is

a closed set, there exists a sequence {(xki , w
k
i , u

k
i )} converging to

(xi, wi, u
0
i ), i.e., (x

k
i , w

k
i , u

k
i ) ∈ Z × VU for k > K with K > 0. Since

UN
i (·, ·, ·) is closed, then cl(Z ×VU ) is compact. On the other hand,

there exists Zk ×VU ⊂ clZ ×VU for each element of the sequence

that forms a covering of cl(Z × VU ), and there exists a finite

subcover by compactness such that for any element of (x̃i, w̃i) ∈
Z =

⋂H

h=1 Z
kh , VU ∩ UN

i (x̃i, d̄L,i, w̃i) ̸= ∅. This statement together

with continuity of the cost function Ji(·, ·, ·) and closedness of the

graph of UN
i (·, ·, ·) fulfils the hypothesis of Bonnans and Shapiro

(2000, Proposition 4.4) which asserts the continuity of the value

function of perturbed optimisation problems. □

In the next step in order to prove recursive feasibility, we need

to investigate the effect of a changing disturbance, i.e., wi(k+1) ̸=

wi(k). To this aim, we invoke the following assumption:

Assumption 7 (Bounded Interconnection). For each i ∈ V , the

interconnection effect at a time t + δ satisfies w+
i = wi(t + δ) =

wi(t) + ∆wi where ∆wi ∈ ∆Wi. The set ∆Wi is chosen such

that λi = max{|w − w̃| :w, w̃ ∈ Wi, w − w̃ ∈ ∆Wi} satisfies

λi ≤ σ−1
V ◦ αi3 ◦ α−1

i2 (βi) where βi > 0.

The following result, the proof of which follows from a mod-

ification to the nonlinear case of Baldivieso Monasterios and

Trodden (2018, Theorem 1), asserts recursive feasibility under

changing interconnection effect.

Theorem 1 (Recursive Feasibility). Suppose Assumptions 1, and 2–7

hold. If at time t > 0 and for a fixed d̄L,i ∈ Di the state satisfies

xi ∈ XN
i (wi, d̄L,i), then at time t + δ, the state satisfies xi(t + δ) ∈

XN
i (w+

i , d̄L,i).

4.2.2. Closed-loop stability

In the previous section, we have shown that each node is

recursively feasible. In this section, we analyse the stability and

construct a Lyapunov function for the complete network. In the

analysis, we emphasise on bounding interactions and guarantee-

ing local steady state convergence. Local equilibria, characterised

by Fi(xi, ui, d̄L,i) = 0 and ui ∈ [0, Imax
i ], satisfy (ii, σi) ∈ Zi. This

allows us to analyse the voltage equilibrium pairs using

P
ss
i (d̄L,i, wi) : min{|vi − v∗|2 : ui ∈ [0, Imax

i ],

vi ∈ [Vmin
i , Vmax

i ],Liivi + gi(vi)d̄L,i = ui + wi}
(10)

The following property sheds some light on the properties of the

steady state optimisations for each node

Proposition 4. If the optimal current uss
i ∈ (0, Imax

i ), then the

optimal steady state voltage satisfies vssi = v∗.

Proof. The KKT system for Pss
i (d̄i) is given by

(vi − v∗) + λ∇vh(vi, ui, wid̄L,i) + µ⊤
v ∇vr(vi, ui) = 0

λ∇uh(vi, ui, wid̄L,i) + µ⊤
u ∇ur(vi, ui) = 0

0 ≤ µ⊥r(vi, ui) ≥ 0, h(vi, ui, wi, d̄i) = 0

where (λ,µv, µv) ∈ R
5 are the dual variables; the inequality and

equality constraints are h(vi, ui, wi, d̄L,i) and r(vi, ui) respectively;
and a⊥b = a⊤b with a, b ∈ R

n. Since by assumption uss
i is an

interior point, then µu = 0. The reduced KKT system can be
expressed as (vi −v

∗)+µv1 −µv2 = 0, min(µv1,−vi +Vmax
i ) = 0,

and min(µv2, vi −Vmin
i ) = 0 where we obtain two cases: µv2 = 0

or vi = Vmin
i . The latter condition implies µv1 = 0 and µv2 < 0.

The first case yields µv1 = v∗ −vi and two further cases: µv1 = 0
or vi = Vmax

i . Therefore µv1 = 0 implying vssi = v∗. □

On the other hand, the network steady state pairs (xeq, ueq) lie
in H = {(v, u) ∈ R

|V| : −Lv+u+ is −gL(v)dL = 0, dL ∈ D, u ∈ U}
which is a level set of a locally surjective map ΦdL :R

|V| ×R
|V| →

R
|V|. The implicit function theorem guarantees xeq = ξ (u) such

that ΦdL (ξ (u), u) = 0 for all u ∈ U. A natural step is to investigate

the deviation of uss = (uss
1 (w1, d̄L,1), . . . , u

ss
V (wV , d̄L,|V|)) and ueq.

The desired difference is |uss − ueq| ≤ (|LD| + G)|veq − v∗
1|V|| +

|gL(v
eq)|

∑

i∈V γL,i with LD
ii = Lii, G > 0 the Lipschitz constant for

the load, and γL,i > from Assumption 6. The resulting closed-loop
network voltage dynamics are

C v̇ = − (LD + G)(v − v∗
1|V|) + u + s̃(v − v∗

1|V|)

+ r̃(i − u) − gL(v)(dL − d̄L).
(11)

where r̃(·) measures the error between current and its reference,

limv→v∗1|V|

|s̃(v−v∗1|V|)|

|v−v∗1|V||
= 0 and G is the derivative of gL(·)d̄L

evaluated at the reference voltage. We note that when using u =
uss, the resulting equilibrium manifold is LD(v − 1|V|) + (gL(v) −
gL(v

∗
1V ))d̄L = gL(v)(dL − d̄L), the solution of which is clearly

veq = v∗
1V when d̄L−dL = 0, i.e., when the controller has perfect

knowledge of the load. A perturbation analysis yields veq =

v∗ + |dL − d̄L|ν1(v
∗, d̄L) + |dL − d̄L|

2
ν2(v

∗, d̄L) + · · · where ν1, ν2,
etc. are functions of both operating conditions and nominal load
which results in a bound on |veq − v∗

1V | ≤ ε|
∑∞

k=1 νkε
k−1| with

ε =
∑

i∈V γL,i. The following result establishes the properties of
the closed loop system around a neighbourhood of the nominal
operating point.

Proposition 5 (Closed Loop Control Invariance Near the Equilib-
rium). Suppose Assumptions 1–6 hold. There exists a set S ⊂ R

|V|

that is control invariant for the voltage dynamics ż = Az+u+ s̃(z)+
r̃(ĩ − u) − gL(z + v∗

1|V|)(d − d̄) and constraint sets (V,U).

Proof. The proof follows from the OCP formulation and the
boundedness of the voltage deviations, currents, and loads w.r.t
v∗

1|V|, κN (v, d̄) and dL respectively. □

The importance of the above proposition is that it ensures the
existence of a control action that counteracts both the potential
instability introduced by the loads and yields an equilibrium
pair (veq, ũeq + κN (v, d̄)) ∈ H. The final part of the puzzle
is the analysis of the interconnection disturbance, i.e., ∆wi =
wi(δ + t) − wi(t) which can be bounded for all i ∈ V as
|∆wi| ≤ (|(L − LD)i||v

+ − v|). The difference between solu-
tions of Pss

i (wi(t + δ), d̄L,i) and P
ss
i (wi(t), d̄L,i) behaves similarly,

i.e., |uss
i (wi(t + δ), d̄L,i) − uss

i (wi, d̄L,i)| ≤ |LC
i ||v

+ − v|. Moreover,

from (11), |v+ − v| ≤ (G + |LD|)
∫ t+δ

t
|v − v∗

1V |dt + δ|u| +

|gL(v)|
∑

i∈V γL,i + αV (|v − v∗
1V |) + δ(|u| + Γ

∑

i∈V γL,i) holds3

3 In the last inequality, we have used the following well known property of

K-functions: the integral of a class K-function is also class K.

6
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with |gL(v)| ≤ Γ for all v. We are now in position to state the
main result of this paper:

Theorem 2 (Closed-loop Stability). Suppose Assumptions 1, 2–6
hold. If in addition, σV (r) = LV r for r > 0 and LV > 0, and there

exists ηi > 0 for all i ∈ V such that α(r) =
∑

i∈V ηiα3i(r) −
LV (

∑

i∈V ηi|(L − LD)i|)αV (r) is a K-function, then the network of

buck converters (1) is input to state stable (ISS) in closed loop with

the control law (2a) and current irefi = κN,i(xi, wi, d̄L,i).

Proof. Following Corollary 2, the value function for each i ∈
N is a Lyapunov function with respect to an equilibrium point
x
eq
i (d̄L,i, wi) ∈ Xi depending on nominal loads and interactions.
Furthermore, Proposition 1 provides us with a Lyapunov function
for the driving subsystem for each i ∈ V . Our strategy of proving
asymptotic stability of the closed-loop system hinges on showing
Ψ (x) =

∑

i∈V ηi(V
0
N,i(xi, d̄L,i, wi) + Wi(xi)) is a Lyapunov function.

Here, V 0
N,i(·, ·) is the OCP value function and Wi(·) is defined in

(4); ηi > 0 is a suitable weight as in Siljak (2007). The variation
∆Ψ (x) = Ψ (x(t + δ)) − Ψ (x(t)), following Corollary 2 and
Proposition 1, is ∆Ψ (x) ≤ −α(|v − v∗

1V |) − α̃(|i − κN (x, d̄L,i)|) −
α̂(|σ − 1

Imax κN (x, d̄L,i)|)+LV
∑

i∈V ηi|(L − LD)i|δ(|u|+Γ
∑

i∈V γL,i).

Furthermore α̃ =
∑

i∈⟩ ηiα̃4i where α̃4ir = 1
3
α3i(r) +

∫ t+δ

t
|r|dt

and α̂ =
∑

i∈V
ηi
3
α3i are K-functions. Following that |u| → ueq as

the system approaches its equilibrium, and the uncertainty of the
load is bounded by Assumption 6, the ISS of the buck converter
network follows. □

5. Simulations

In this section, we explore the behaviour of a network of
|V| = 6 interconnected, without ignoring line dynamics, buck
converters where each source feeds a constant power load, i.e.,
each gL,i(vi) = v−1

i . The input is Vin = 800 V, the operating
voltage is set to v∗ = 560 V. The rated power for each con-
verter is given as Pmax

C,i = {43, 39, 46, 39, 50, 42} kW; the voltage

constraint sets are Vi = Vin[0.3, 1] yielding: Imax
i =

Pmax
C,i

0.3Vin
. The

primary controller is given by (3a) and the translation ĩ = ii − is
with is = 1

2
Imax
i . The cost used or each i ∈ V is ℓi(xi, ui) =

qi|vi − v∗|2 + ni|ui − uss
i (wi, d̄i)|. The terminal set is X

f

i = v∗ +
[−∆Vi,∆Vi] × [0, Imax

i ] × [−1, 1] with ∆Vi = 10 V. Finally, the
sampling time used in this simulation is δ = 2 ms, and the
simulation horizon is 14 s. The simulation shows the behaviour
of the network to a priori unknown load changes switching to
values that exceed their converter power rate, albeit the condition
∑

i∈V PL,i ≤
∑

i∈V Pmax
C,i always holds. When power converter

i cannot feed its own load, the rest of the network aids this
converter while accounting for losses in the network. The load
steps in the following way: PL,1 = 0.95Pmax

C,i and at t = 0.6 s it
switches to PL,1 = 0.735Pmax

C,1 ; PL,2 = 1.14Pmax
C,2 and at t = 1.24 s

it switches to PL,2 = 0.73Pmax
C,2 ; PL,4 = 0.5Pmax

C,4 and at t = 0.93 s it

switches to PL,4 = 1.03Pmax
C,4 ; and PL,6 = 0.66Pmax

C,6 and at t = 0.3 s
it switches to PL,6 = 1.05Pmax

C,6 . As seen in Fig. 1, the voltage of
each node reacts to a change in load without leaving the terminal
set, we note the non-minimal phase type behaviour exhibited by
all the voltages when reacting to a load step. From Fig. 1, the
voltages clearly converge to neighbourhoods of the equilibrium
points. As the converters converge towards a neighbourhood of
the equilibrium point because of the uncertainty introduced in
the load. We see the effect of this deviation from the nominal
point in Fig. 2 where we portray the distance of the centralised
equilibrium veq computed for the uncertain load to the operating
point v∗

1|V| and the voltage v.

Fig. 1. Voltage responses of the network to arbitrary and uncertain load

variations. All voltages remain within a compact neighbourhood of the operating

voltage v∗ .

Fig. 2. Deviation from voltage centralised equilibrium, ( ) represents

|veq − v∗
1|V|| and ( ) represents |veq − v|.

6. Conclusions

In this paper, we have proposed a decentralised primary con-
troller, together with a distributed secondary controller for a DC
network of Buck power converters connected in meshed topol-
ogy. For the primary controller, we have proposed a Lyapunov
function candidate defined over a compact set which is con-
sidered a safety region. Using this Lyapunov function, we have
proven the asymptotic stability of an equilibrium point using
the invariance principle. We have analysed the interconnection
between voltages and currents to conclude the attractiveness of
a neighbourhood of the kernel of the network Laplacian matrix.
We leverage this result to prove the ISS behaviour of the closed-
loop system. We have also proven the recursive feasibility of
the controller. Future lines of research may involve coupled con-
straint satisfaction which would account for line saturation, an
economic network operation that would relax the need for ter-
minal ingredients in the MPC framework, and different converter
topologies.

References

Baldivieso-Monasterios, P. (2018). Distributed model predictive control for re-

configurable large-scale systems (Ph.D. thesis), (p. 157). University of

Sheffield.

Baldivieso-Monasterios, P. R., & Konstantopoulos, G. C. (2020). Constrained con-

trol for microgrids with constant power loads. In 2020 59th IEEE conference

on decision and control (pp. 3341–3346). IEEE.

Baldivieso Monasterios, P., & Trodden, P. (2018). Model predictive control of

linear systems with preview information: Feasibility, stability and inherent

robustness. IEEE Transactions on Automatic Control.

Bonnans, J. F., & Shapiro, A. (2000). Perturbation analysis of optimization problems

(p. 618). New York, NY: Springer New York.

Bullo, F. (2020). Lectures on network systems (1.4 ed.). (p. 315). Kindle Direct

Publishing.

De Persis, C., Weitenberg, E. R., & Dörfler, F. (2018). A power consensus algorithm

for DC microgrids. Automatica, 89, 364–375, arXiv:1611.04192.

Elsayed, A. T., Mohamed, A. A., & Mohammed, O. A. (2015). DC microgrids

and distribution systems: An overview. Electric Power Systems Research, 119,

407–417.

Grüne, L., & Pannek, J. (2016). Nonlinear model predictive control : Theory and

algorithms (2nd ed.). (p. 359). Springer.

Hu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., & Rodriguez, J.

(2021). Model predictive control of microgrids – An overview. Renewable

and Sustainable Energy Reviews, 136(September 2020), Article 110422.

Konstantopoulos, G. C., & Baldivieso-Monasterios, P. R. (2020). State-limiting

PID controller for a class of nonlinear systems with constant uncertainties.

International Journal of Robust and Nonlinear Control, 30(5), 1770–1787.

7

http://refhub.elsevier.com/S0005-1098(23)00271-6/sb1
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb1
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb1
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb1
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb1
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb2
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb2
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb2
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb2
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb2
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb3
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb3
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb3
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb3
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb3
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb4
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb4
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb4
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb5
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb5
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb5
http://arxiv.org/abs/1611.04192
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb7
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb7
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb7
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb7
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb7
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb8
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb8
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb8
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb9
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb9
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb9
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb9
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb9
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb10
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb10
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb10
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb10
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb10


P.R. Baldivieso-Monasterios, M.S. Sadabadi and G.C. Konstantopoulos Automatica 155 (2023) 111111

Kosaraju, K. C., Sivaranjani, S., & Gupta, V. (2022). Safety during transient

response in direct current microgrids using control barrier functions. IEEE

Control Systems Letters, 6, 337–342.

Limon, D., Alamo, T., Raimondo, D. M., de la Peña, D. M., Bravo, J. M.,

Ferramosca, A., & Camacho, E. F. (2009). Input-to-state stability: A unifying

framework for robust model predictive control. In Nonlinear model predictive

control (pp. 1–26). Springer Berlin Heidelberg.

Maestre, J., & Negenborn, R. R. (2014). Distributed model predictive control made

easy, vol. 69. Springer.

Planas, E., Andreu, J., Gárate, J. I., Martínez De Alegría, I., & Ibarra, E. (2015).

AC and DC technology in microgrids: A review. Renewable and Sustainable

Energy Reviews, 43, 726–749.

Riverso, S., Kouramas, K., & Ferrari-Trecate, G. (2018). Decentralized and

distributed robust control invariance for constrained linear systems. In

2017 IEEE 56th Annual conference on decision and control, CDC 2017 (pp.

5978–5984). CDC 2017 2018-Janua.

Sadabadi, M. S. (2021a). A distributed control strategy for parallel DC-DC

converters. IEEE Control Systems Letters, 5(4), 1231–1236.

Sadabadi, M. S. (2021b). Line-independent plug-and-play voltage stabilization

and L2 gain performance of DC microgrids. IEEE Control Systems Letters, 5(5),

1609–1614.

Sadabadi, M. S., & Shafiee, Q. (2020). Scalable robust voltage control of DC

microgrids with uncertain constant power loads. IEEE Transactions on Power

Systems, 35(1), 508–515.

Sepulchre, R., Janković, M., & Kokotović, P. V. (1997). Communications and Control

Engineering, Constructive nonlinear control. London: Springer London.

Siljak, D. D. (2007). Large-Scale dynamic systems : Stability and structure (p. 416).

Dover Publications.

Trip, S., Cucuzzella, M., Cheng, X., & Scherpen, J. (2019). Distributed averaging

control for voltage regulation and current sharing in DC microgrids. IEEE

Control Systems Letters, 3(1), 174–179.

Trodden, P., & Maestre, J. (2017). Distributed predictive control with

minimization of mutual disturbances. Automatica, 77, 31–43.

Tucci, M., Riverso, S., & Ferrari-Trecate, G. (2018). Line-independent plug-and-

play controllers for voltage stabilization in DC microgrids. IEEE Transactions

on Control Systems Technology, 26(3), 1115–1123.

Pablo R. Baldivieso-Monasterios is a post-doctoral

research associate in the Department of Automatic Con-

trol and Systems Engineering, University of Sheffield,

UK. He received a Ph.D. in robust distributed model

predictive control from the University of Sheffield, UK

in 2018. His research interests include robust and

distributed model predictive and optimisation-based

control, and game theoretic methods for control and

smartgrids.

Mahdieh S. Sadabadi is currently an Assistant

Professor in the School of Electronic Engineering

and Computer Science at the Queen Mary Uni-

versity of London (QMUL), London, United King-

dom. Prior to joining QMUL, she was an As-

sistant Professor in the Department of Automatic

Control and Systems Engineering (ACSE), Univer-

sity of Sheffield, United Kingdom. She was a Post-

doctoral Research Associate at the Department of

Engineering, UniversityofCambridge, and a Postdoc-

toral Fellow in the DivisionofAutomaticControl at the

DepartmentofElectricalEngineering, LinkopingUniversity in Sweden. She received

her Ph.D. in Control Systems from AutomaticControlLaboratory, Swiss Federal

Institute of Technology in Lausanne (EPFL), Switzerland in February 2016. Her

research interests are generally centered on fundamental theoretical and applied

research on robust, resilient, secure, and scalable control strategies for cyber–

physical systems under uncertainty. Her research is inspired by control and

resilience challenges involved in the integration and interconnection of power

electronics converters into future power networks.

George C. Konstantopoulos received his Dipl.Eng. and

Ph.D. degrees in electrical and computer engineering

from the Department of Electrical and Computer En-

gineering, University of Patras, Rion, Greece, in 2008

and 2012, respectively. From 2011 to 2012, he was

an Electrical Engineer with the Public Power Corpo-

ration of Greece. In 2013, he joined the Department

of Automatic Control and Systems Engineering, The

University of Sheffield, U.K., where he held the posi-

tions of Research Associate, Research Fellow, Lecturer

and Senior Lecturer. Since 2019, he has been with

the Department of Electrical and Computer Engineering, University of Patras,

Greece, as an Associate Professor. He has been an EPSRC UKRI Innovation

Fellow in the priority area of cheap and clean energy technologies and he

currently serves as an Associate Editor of the IET Smart Grid Journal and the

International Journal of Systems Science. His research interests include nonlinear

modeling, control and stability analysis of power converters in microgrid and

smart grid applications, renewable energy systems and electrical drives. Dr.

Konstantopoulos is a Member of the National Technical Chamber of Greece.

8

http://refhub.elsevier.com/S0005-1098(23)00271-6/sb11
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb11
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb11
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb11
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb11
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb12
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb13
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb13
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb13
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb14
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb14
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb14
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb14
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb14
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb15
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb16
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb16
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb16
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb17
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb17
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb17
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb17
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb17
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb18
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb18
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb18
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb18
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb18
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb19
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb19
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb19
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb20
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb20
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb20
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb21
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb21
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb21
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb21
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb21
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb22
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb22
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb22
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb23
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb23
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb23
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb23
http://refhub.elsevier.com/S0005-1098(23)00271-6/sb23
http://www.qmul.ac.uk/
https://www.sheffield.ac.uk/acse
http://cam.ac.uk/
https://www.control.isy.liu.se/
http://www.eng.cam.ac.uk/
https://liu.se/en
http://www.la.epfl.ch/
http://www.epfl.ch/

	Two-layer nonlinear control of DC–DC buck converters with meshed network topology
	Introduction
	Preliminaries
	Modelling of DC-DC buck converters
	Current controller structure
	Constraints and control objectives

	Primary controller and interconnection analysis
	Current controller properties
	Cascaded Structure

	Distributed Voltage regulation
	Optimal control problem
	Properties of the OCP
	Recursive feasibility
	Closed-loop stability


	Simulations
	Conclusions
	References


