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Abstract. As the driving force of the hydrological system, rain has severe impact when dealing 

with petroleum mining activities, especially in protecting assets and safety. Rainfall is one of the 

meteorological factors characterized by high spatial and temporal variability (chaotic data). Due 

to this reason, long-term forecasting can only be done in a stochastic way. The highly nonlinear 

relationships on rainfall dynamics then examined using the Lyapunov exponent method to 

analyze the chaotic behavior on rainfall time series data. The study of rainfall dynamics has been 

done in three different temporal scales, i.e., daily data, 5-day, and 10-day, observed over 6 years 

daily observed rainfall data at one of the largest petroleum mining sites in Bojonegoro, Indonesia. 

The time delay (τ) was obtained by using the Average Mutual Information (AMI) method for the 

three-rainfall series (3, 2, 3, respectively). The finite correlation dimensions obtained for all 

three-rainfall series data is around m=4, indicate a possible existence of chaotic behavior in 

rainfall observed in Bojonegoro at the three scales. The maximum Lyapunov exponent λmax for 

each of three-rainfall series in Bojonegoro is 0.111, 0.057, 0.062, respectively. These values 

were analyzed to find the optimum prediction time of rainfall occurrence to perform better 

forecasting. The result shows that the optimum range of prediction time for daily, 5-day, and 10-

day have 9, 18, and 16 times longer than their temporal scale. 

 

Keywords: rainfall, chaotic, optimum time, Lyapunov exponent  

 

1. Introduction 

Weather scenario, such as rainfall, presents some challenging hazards into mining activities. In many 

cases, it can cause excess runoff to tailings impoundments, overwhelm site drainage, diversion 

structures, and damage on pipeline systems [1]. Millions of dollars are lost, and mining production is 

drop. In 2008, the Ensham Mining Operation suffered a significant loss due to the flood and storm in 

Queensland. Total damages were reported by the company as being $270 million in May 2008 [2], 

whereas its total costs were estimated at over $300 million by July 2008. Heavy rainfall in early June 

2012 caused the artificial banks on a diversion of the Morwell River across the Yallourn Mine to collapse 
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[3]. As one of the largest oil production areas in Indonesia, Bojonegoro has the same potential loss due 

to the extreme rainfall phenomenon. 

Bojonegoro regency is situated in East Java, Indonesia. It is located in the inland part of northern 

Java plain, on the banks of the Solo River, the longest river in Java. Bojonegoro becomes the new focus 

of attention in Indonesia after a new oil field was found in this area. This oil production is the most 

extensive oil discovery in Indonesia in the last three decades and one of the most significant reserves in 

Indonesia [4]. Based on the classification of three dominant rainfall region, Bojonegoro classified into 

A region which has one peak and one trough and strongly influences by the two monsoons, namely the 

wet northwest (NW) monsoon from November to March and the dry southeast (SE) monsoon from May 

to September [5]. Besides monsoon activity, there are many meteorological factors, both locally and 

globally, which affect the variability of rainfall in Indonesia, including Bojonegoro, such as Indian 

Ocean Dipole (IOD), El Nino Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), or the 

topography condition. This complexity triggers the chaotic characteristics of rainfall that happen over 

the research region.  

Rainfall is one of the nonlinear meteorological parameters which possess high variability of data. 

This condition might be explaining why rainfall prediction is such a complex process to be done. 

Andrian and Wayahdi [6] stated that rainfall is one of the most challenging parameters to predict 

accurately in Indonesia. Rainfall forecasting is one of the most challenging parts and is still under 

progressive study. Several studies have been successfully improved the accuracy predictions on weather 

parameters such as temperature, pressure, and wind, but it did not occur in the case of prediction of 

rainfall [7]. Meanwhile, the rainfall prediction process plays a significant role in specific sectors, such 

as mining industries. In this case, treating the rainfall data as a chaotic system is way better than treating 

them in a stochastic system. This method may create a better understanding of the underlying dynamics 

[8]. 

The theory of chaos depends sensitively on the initial condition, which means that a slight change in 

it might result in the significantly different outcomes. Literature shows many studies of deterministic 

chaos, and most of these studies analyzed the existence of chaos in rainfall [9-15]. A method called 

Lyapunov has the capability to handle this chaotic series of data, including rainfall data. It can give the 

average information of the divergence of a system and its unpredictability. This paper aims to analyze 

the chaotic behavior of rainfall series data by using Lyapunov and determine the optimum prediction 

time of rainfall occurrence to perform better weather forecasting, especially on the petroleum mining 

sites in Bojonegoro. The data used in this study was obtained from an observational rainfall post near 

the mining sites.  

 

2. Methods employed 

The importance of this work is to analyze the chaotic behavior of rainfall in Bojonegoro, using rainfall 

data for the last six years from 2012 – 2017. The daily rainfall data in millimeters (mm) was obtained 

from the climatological station of Karang Peloso Malang as the coordinating station of who is in charge 

of measuring rainfall amount in Bojonegoro, Indonesia. The location of the rainfall observational post 

is Ngempak Dalem village, sub-district of Dander, Bojonegoro, while its exact coordinate location is 

7,11 S and 111,49 E. While there are several petroleum mining activities were conducted, such as Banyu 

Urip (48,6 km from the observation-rainfall post), Sukowati (14.2 km from the observation-rainfall 

post), Wonocolo (34.8 km from the observation-rainfall post), and Kedewan (43.3 km from the 

observation-rainfall post). The chaotic behavior of rainfall series data in this study was identified using 

the Lyapunov exponent. This method consists of few steps, such as determining the time delay (τ), 

estimating the embedding dimension (m), reconstructing phase space, and calculating maximum 

Lyapunov exponent λmax. All these steps are calculated with the help of the R Studio algorithm. 

2.1. Time Delay 

The time delay for reconstructing the phase space in this study is presented mathematically by Taken 

[16]. This method is applicable to obtain the requested information about time series. Time delay τ is 

chosen as the optimum delay where the mutual information takes on the first minimum value. This value 

is used for the best representation in phase space. If the value of τ is too small, the phase space 
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coordinates will not be independent. That condition causes some information about the characteristics 

of the attractor structure loss. An attractor can be understood as a subset of trajectories that originate 

from different initial conditions, and eventually converge. This subset of trajectories attracts all other 

trajectories in the phase space; therefore, it is called the system’s attractor [8]. In the chaotic system, the 

attractor might be characterized by a non-integer dimension. On the other hand, if the value of τ is too 

large, as the consequences, there will be no dynamic correlation of the state vectors because the 

neighboring trajectories diverge. Some information of the original system can be lost. The Average 

Mutual Information (AMI) method, mathematically presented in equation 1, is popularly used to 

determine the optimum value of time delay τ [17]. AMI function uses to select the τ value in a nonlinear 

system and presented as I in equation 1. If 𝑥(𝑡𝑖) is a set of measured values, 𝑥(𝑡𝑖 + 𝜏) are the 

measurement after a time delay for τ, the mutual average function 𝐼(𝜏) information between 𝑥(𝑡𝑖) and 

𝑡𝑖 + 𝜏 is 𝑥(𝑡𝑖 + 𝜏)𝑥(𝑡𝑖) [18,19] will be: 

𝐼(𝜏) = ∑ 𝑃(𝑥(𝑡𝑖), 𝑥(𝑁
𝑚=1 𝑡𝑖 + 𝜏))𝑙𝑜𝑔2 [

𝑃(𝑥(𝑡𝑖),𝑥(𝑡𝑖+𝜏))

𝑃(𝑥(𝑡),𝑥(𝑡+𝜏))
]   𝜏 > 0   (1) 

The mutual information 𝐼(𝜏) measures how information can be derived from one point of a time series 

given complete information about the other [20,21]. Based on this approach, for a scalar time series Xi, 

where i = 1,2,…,,N, the dynamics of the chaotic time series can be fully embedded in m-dimensional 

phase space represented by a vector as showed in equation 2, 

𝑌𝑗 =  𝑋𝑗, 𝑋𝑗+𝜏, 𝑋𝑗+2𝜏, … , 𝑋𝑗+(𝑚−1)𝜏 

where j=1,2, …, N – (m–1)τ; m is the embedding dimension, and τ is the time delay.  

2.2. Embedding Dimension  

Embedding dimension was introduced and mathematically determined using the False Nearest 

Neighbors (FNN) method. It is one of the most popular methods used for estimating the embedding 

dimension. This method enables the determination of the dimension in which the attractor is unfolded 

[22]. Therefore, the dimension m can be defined as the minimum number of state variables required to 

describe the chaotic system. The basic idea of FNN is searching all the nearest data points (neighbors) 

in a particular embedding dimension m and which changes upon increasing the embedding dimension 

to m+1, then compute the ratio of these two distance points. If this ratio is more significant than a 

specific threshold f, then the neighbors are false. When the ratio falls to near-zero or its minimum value, 

then embedded dimension m is considered good enough to represent the dynamic of the chaotic system 

[8]. For achieving so, the threshold f should be sufficiently large. Hegger and Kantz [23] suggested the 

minimal reasonable threshold of exp (λmax τ), where λmax is maximal Lyapunov exponents (explained in 

the next section), and τ is the time delay. Based on this method, Euclidian distance is defined as the 

difference between pairs a nearest neighborhood on the 𝑦𝑖(𝑚), and 𝑦𝑖(𝑚 + 1). Euclidian distance is 

defined as following equation 3: 

𝑎(𝑖, 𝑚) =
‖𝑦𝑖(𝑚+1)−𝑦𝑛(𝑖,𝑚)(𝑚+1)‖

‖𝑦𝑖(𝑚)−𝑦𝑛(𝑖,𝑚)(𝑚)‖
    ;  𝑖 = 1,2, … , 𝑁 − 𝑚𝜏 

where ‖∙‖ is the method to calculate the Euclidian distance and its maximum norm (equation 4) 

defined by Cao [24], i.e., 

‖𝑦𝑘(𝑚) − 𝑦𝑙(𝑚) = max
0≤𝑗≤𝑚−1

|𝑥𝑘+𝑗𝑟 − 𝑥𝑙+𝑗𝑟|‖ 

Any two points are close to each other in the m dimension and the reconstructed phase space of the 

m + 1 dimension if the m value is determined appropriately [24]. The 𝑦𝑖(𝑚 + 1) in equation 3 is the i-

th reconstructed vector with embedding dimension m+1, and an integer, 𝑦𝑛(𝑖,𝑚)(𝑚) is the nearest 

neighbour of 𝑦𝑖(𝑚) in the m-dimensional reconstructed phase space in the distance ‖∙‖, while n(i,m) 

depend on i and m.  The shape of pairs of points are called “right” neighbors, and otherwise, they are 

called “wrong” neighbors. It is said to be a perfect embedding if there is no false neighbour exist in the 

system. Nevertheless, it is difficult and nearly impossible to give a reasonable threshold value f. 

(3) 

(2) 

(4) 
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Different time series data may have different threshold values. To avoid this problem, Cao [24] proposed 

the following quantity as showed in equation 5, the mean value of all a(i,m), 

𝐸(𝑚) =  
1

(𝑁−𝑚𝜏)
∑ 𝑎(𝑖, 𝑚)𝑁−𝑚𝜏

𝑖=1  

The value of E(m) is only dependent on the m dimension and time delay τ. Equation 6 shows the 

analysis of its variation from m to m+1. 

𝐸1(𝑚) =  
𝐸 (𝑚0 + 1)

𝐸(𝑚0)
 

If the time series data comes from an attractor, the value of E1(m) will stop changing when m is more 

significant than some value of m0, then m0+1 is the minimum embedding dimension needed. Calculation 

of E1(m) and E2(m) are suggested to determine the minimum embedding dimension of scalar time series 

data and distinguish it from random data [24]. 

2.3. Reconstruction Phase Space 

Since the dynamic of a chaotic system cannot be determined, the phase space is reconstructed using the 

scalar series. Phase space is reconstructed by the method of time delay from single time series of rainfall 

data. Phase space theory considered that the reconstruction phase space with embedding dimension m 

and delay time could represent the character of the whole system. The phase space of observation 

sequence and recovery the form of chaotic attractors in high-dimensional phase space need to be 

reconstructed to analyze and predict chaotic dynamical system [25]. The estimation of embedding 

dimension and time delay determined before are used to study the chaotic dynamical system, and for the 

next step, embedding dimension and delay time are used to estimating the largest Lyapunov exponent 

of rainfall data in Bojonegoro as well. We assume that the time series of the rainfall data is {𝑥(𝑡𝑖), 𝑖 =
1, 2, . . . , 𝑁}. The embedding dimension is m and the delay time is τ, then the reconstructed phase space 

defined as equation 7:  

𝑋(𝑡𝑖) = (𝑥(𝑡𝑖), 𝑥(𝑡𝑖 + 𝜏), 𝑥(𝑡𝑖 + 2𝜏). . . , 𝑥(𝑡𝑖 + (𝑚 − 1)𝜏)), 𝑖 = 1,2, … , 𝑀 

where, 𝑥(𝑡𝑖) is the phase point in m-dimension phase space, M is the number of phase points, M = N – 

(m – 1) τ, and the time series set, {𝑥(𝑡𝑖), 𝑖 = 1, 2, . . . , 𝑁}, τ is the delay time, and m is the embedding 

dimension respectively. 

2.4. Lyapunov Exponent 

The iconic feature of a chaotic system is their sensitive dependence on the initial conditions. A slight 

deviation in the initial condition may result in a significant change in its outcomes. This divergence will 

be exponentially fast in the case of a chaotic system. Lyapunov can give the average information of this 

divergence. It can also define as the exponent, which is essential to indicate the dynamic characteristic 

of the nonlinear system [8]. This exponent is used to recognize the dependency of a system into its initial 

condition and show the dynamical behavior of the system [26]. The maximum Lyapunov exponent 

concludes the predictability of a dynamical system and characterizes the separation rate of its 

trajectories. The value of the Lyapunov exponent implies the chaotic degree of a system. A system is 

considered to be chaotic, and the orbit is unstable if the maximum Lyapunov exponent has a positive 

value (λ > 0) in the spectrum of Lyapunov exponent [27]. Meanwhile, the negative Lyapunov exponent 

means that the system is dissipative and non-conservative. The orbits attract to a stable fixed point and 

periodic. The time delay information between embedding vectors is needed to estimate the Lyapunov 

exponent. In this study, Lyapunov exponent is calculated by looking at the exponential growth of the 

average orbital distance of neighbour on a logarithmic scale with the prediction error (p) for time (k) 

steps: 

𝑝(𝑘) =
1

𝑁𝑡𝑠
∑ 𝑙𝑜𝑔2 (

‖𝑦𝑖(𝑚 + 1) − 𝑦𝑛(𝑖,𝑚)(𝑚 + 1)‖

‖𝑦𝑖(𝑚) − 𝑦𝑛(𝑖,𝑚)(𝑚)‖
)

𝑁

𝑛=1

  

 

(7) 

(8) 

(5) 

(6) 
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𝑝(𝑘) =
1

𝑁𝑡𝑠
∑ 𝑙𝑜𝑔2(𝑎(𝑖, 𝑚))

𝑁

𝑛=1

 

where N is the number of data points, ts is the sampling period, and 𝑦𝑛(𝑖,𝑚)(𝑚) is the nearest neighbor 

𝑦𝑖(𝑚) in the m-dimensional reconstructed phase space. The maximum Lyapunov λmax exponent values 

are determined by the slope of regression line using the least square method. If p(k) exhibits a linear 

increase, then its slope can be taken as an estimate of the maximal Lyapunov exponent λmax. Stehlik [18] 

mathematically define the maximum Lyapunov exponent in equation 9 as below: 

𝜆1 =
1

𝑡𝑁 − 𝑡0
∑ 𝑙𝑜𝑔2 (

‖𝑦𝑖(𝑚 + 1) − 𝑦𝑛(𝑖,𝑚)(𝑚 + 1)‖

‖𝑦𝑖(𝑚) − 𝑦𝑛(𝑖,𝑚)(𝑚)‖
)

𝑁

𝑛=1

  

 

𝜆1 =
1

𝑡𝑁 − 𝑡0
∑ 𝑙𝑜𝑔2(𝑎(𝑖, 𝑚))

𝑁

𝑛=1

 

 

where N is the number of replacement steps, tN is the period after sampling N, t0 is the initial time, and 

a(i,m) is the Euclidean distance as explained in equation 3 and equation 8. 

 

3. Results and discussion 

3.1. The time delay and embedding dimension 

The time delay was determined using the Average Mutual Information (AMI) method in three different 

temporal scales, i.e., daily, 5-day, and 10-day. The corresponding figure 1, 2, and 3 showed how the 

value of AMI varies over the time delay (day) in different temporal scales daily (Figure 1.a), 5-day 

(Figure 1.b), and 10-day (Figure 1.c), respectively. The delay time for the phase space reconstruction is 

the first minimum value. This value of the time delay curve was the optimum time delay for calculating 

the Lyapunov exponent [8]. The range of time delay τ on each temporal scale of daily, 5-day, and 10-

day rainfall series data is 3, 2, and 3 days consecutively. The time delays τ are determined separately for 

each time series using the mutual information method [28]. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Time delay of rainfall series data from 2012 – 2017 in different temporal scale, daily (a), 

5-day (b), and 10-day (c) in the Bojonegoro. 

(a) (b) 

(c) 

(9) 
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The complexity lies in the determination process of embedding dimension, especially when the data 

is multivariate. Every possible combination with a different value of m is needed to be tried out to 

determine the optimal combination of the embedding dimension [28]. FNN method was firstly 

introduced by Kennel et al. [22] as the concept if the dynamics in the phase space can be represented by 

a smooth vector field, resulting from a condition where the neighboring states would be subject to almost 

the same time evolution [29]. To avoid any spurious results due to noise, Hegger and Kantz [30] 

modified this algorithm in which the fraction of false nearest neighbors is computed in a probabilistic 

way. The total dimension m is determined from the individual embedding dimension mi’s for each 

component while dealing with multivariate time series data. The exact calculation of each individual 

embedded dimension mi’s will be computed by the method of Cao [24]. This modified algorithm was 

then applied to all rainfall time series data (daily, 5-day, and 10-day) to identify the total embedded 

dimension m. It can be seen in Figure 2, the value of each individual embedded dimension mi’s in every 

temporal scale of rainfall series data. The fraction of nearest neighbors is falling to a minimum value 

then deciding as the embedding dimension. The steep increase after each embedding dimension can be 

attributed to additive noise or the presence of a large amount of zero data (about 57%) in the whole-time 

series data [8]. This condition leads to high space dimensionality at smaller spaces. The selection of a 

suitable noise reduction is needed but not dealt with in this study. After the calculation process, it is 

known that the optimum embedding dimension in this study was adopted as 4 (m=4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Maximum Lyapunov exponent 

The largest or the maximal Lyapunov exponent is calculated by employing equation 8. The variation 

of p(k) with the time, t is the time at dimension m=4, is shown in Figure 4. This exponent could be 

estimated after the time delay, and embedding dimension are determined. Maximum Lyapunov 

exponent is determined by the slope of regression line using the least square method. The red dash line 

in figure 4 shows the slope of the regression line using a least square method, and its value represents 

the maximum Lyapunov exponent. The maximum Lyapunov exponent for daily temporal data is around 

0.111, 5-day temporal data is around 0.057, and 10-day temporal data is around 0.062. These exponents 

in all temporal scale in this study is more significant than zero, indicating that the daily rainfall series in 

Bojonegoro undergoes chaotic behavior.  

 

(a) (b) 

(c) 

Figure 2. Embedding dimension of rainfall time series data from 2012 – 2017 in Bojonegoro in three 

temporal scale data of daily (a), 5-day (b), and 10-day (c). 
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It is also possible to estimate the optimum time interval or the dynamic forward of rainfall prediction. 

Stehlik [18] mathematically define the dynamic forward of rainfall prediction and written as in equation 

10: 

optimum time predictability = 
Ts

λmax

 

where Ts is the sampling interval of rainfall data in which it is set to be daily in this study. This method 

was applied to identify the optimum time predictability for each temporal scale that is used in this study. 

Therefore, the daily, 5-day, and 10-day temporal scale respectively calculated as follow: 

optimum time predictability of daily temporal scale = 
1

0.111
 ≈ 9  

optimum time predictability of 5-day temporal scale = 
1

0.057
 ≈ 18  

optimum time predictability of 10-day temporal scale = 
1

0.062
 ≈ 16  

For daily temporal scale, it could be recognized that the optimum time predictability for rainfall 

prediction is nine times of their temporal scale (day). It means that the daily rainfall forecast will be 

optimum to predict within nine days ahead maximally. If it is over nine days, the result of the prediction 

or forecasting will not be good enough. Meanwhile, for 5-day and 10-day temporal scales are 18 times 

their temporal scale and 16 times their temporal scale, respectively. The results of this study can be used 

to improve the accuracy of weather forecasts by simulating the most effective time forecasting periods. 

In other words, weather predictions could not be better than the above-computed predictability horizon 

[18]. It is also recommended that petroleum mining companies in Bojonegoro should take this 

information into account in decision-making about design and planning consideration as an act of 

adaption and mitigation, to minimize loss due to weather hazards scenario, such as rainfall activities. 

 

 

(a) (b) 

(c) 

Figure 3. Maximum Lyapunov exponent of rainfall time series data in three temporal scale: daily (a), 

5-day (b), and 10-day (c) in Bojonegoro. The red dash line shows the slope of regression line using 

least square method. 

(10) 
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4. Conclusion 
Many atmospheric parameters such as rainfall have been proven to possess a sensitive dependence on 

the initial condition. In other word, a slight change in the data may result in significant change in the 

outcomes, especially in the case of prediction. For mining activities, the accuracy of rainfall prediction 

is one of the most matter things. Based on chaotic theory, the rainfall time series data from 2012 – 2017 

in the research area is chaotic due to the positive value of Lyapunov exponent in all the three-temporal 

scale: daily, 5-day, and 10-day. The maximum Lyapunov exponent λmax for daily, 5-day, and 10-day are 

around 0.111, 0.057, and 0.062, respectively. The computed dynamics forward in time show that the 

optimum time intervals of rainfall predictability daily, 5-day, and 10-day are around 9, 18, and 16 times 

longer than their temporal scale, respectively. Understanding the optimum prediction time of rainfall 

occurrence may result in better performance of rainfall forecasting, especially related to the effort of 

improving the accuracy value. By doing this, a petroleum company, as one of the biggest in Bojonegoro, 

may perform effectively after considering the better rainfall prediction and its optimum time of rainfall 

predictability. As the consequences, the petroleum mining industry in the research area may have a 

better strategy to prepare the adaptation and mitigation action due to rainfall occurrence and minimize 

loss due to rainfall activities. 
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