
This is a repository copy of PREDICT-GTN 2: Two-factor streamlined models match FIGO 
performance in gestational trophoblastic neoplasia.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232019/

Version: Published Version

Article:

Parker, V.L. orcid.org/0000-0002-8748-4583, Winter, M.C. orcid.org/0000-0001-6192-
9874, Tidy, J.A. et al. (8 more authors) (2024) PREDICT-GTN 2: Two-factor streamlined 
models match FIGO performance in gestational trophoblastic neoplasia. Gynecologic 
Oncology, 180. pp. 152-159. ISSN: 0090-8258

https://doi.org/10.1016/j.ygyno.2023.11.017

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.ygyno.2023.11.017
https://eprints.whiterose.ac.uk/id/eprint/232019/
https://eprints.whiterose.ac.uk/


PREDICT-GTN 2: Two-factor streamlined models match FIGO

performance in gestational trophoblastic neoplasia

Victoria L. Parker a,⁎, Matthew C. Winter a,b, John A. Tidy b,1, Julia E. Palmer b, Naveed Sarwar c, Kamaljit Singh b,
Xianne Aguiar c, Barry W. Hancock a, Allan A. Pacey d, Michael J. Seckl c,1, Robert F. Harrison e,1

a Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Level 4 The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK
b Sheffield Centre for Trophoblastic Disease, Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Whitham Road, Sheffield S10 2SJ, UK
c Gestational Trophoblastic Disease Centre, Department of Medical Oncology, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
d Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester, M13 9NT, UK
e Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

H I G H L I G H T S

• The FIGO scoring system in GTN patients can be streamlined from eight risk factors to two.

• Three logistic regression models containing two risk factors match FIGO performance across several performance measures.

• Models favoured for ongoing validation are:

• Model 2 (M2): pre-treatment hCG + site of metastases; and

• Model 3 (M3): pre-treatment hCG + number of metastases.
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Objective. The International Federation of Gynecology and Obstetrics (FIGO) scoring system uses the sum of

eight risk-factors to predict single-agent chemotherapy resistance in Gestational Trophoblastic Neoplasia

(GTN). To improve ease of use, this study aimed to generate: (i) streamlined models that match FIGO perfor-

mance and; (ii) visual-decision aids (nomograms) for guiding management.

Methods.Using training (n=4191) and validation datasets (n=144) of GTN patients from twoUK specialist

centres, logistic regression analysis generated two-factor models for cross-validation and exploration. Perfor-

mance was assessed using true and false positive rate, positive and negative predictive values, Bland-Altman cal-

ibration plots, receiver operating characteristic (ROC) curves, decision-curve analysis (DCA) and contingency

tables. Nomograms were developed from estimated model parameters and performance cross-checked upon

the training and validation dataset.

Results.Three streamlined, two-factormodelswere selected for analysis: (i)M1, pre-treatment hCG+history

of failed chemotherapy; (ii) M2, pre-treatment hCG + site of metastases and; (iii) M3, pre-treatment

hCG + number of metastases. Using both training and validation datasets, these models showed no evidence

of significant discordance from FIGO (McNemar's test p > 0.78) or across a range of performance parameters.

This behaviour was maintained when applying algorithms simulating the logic of the nomograms.

Conclusions. Our streamlined models could be used to assess GTN patients and replace FIGO, statistically

matching performance. Given the importance of imaging parameters in guiding treatment, M2 and M3 are

favoured for ongoing validation. In resource-poor countries, where access to specialist centres is problematic,

M1 could be pragmatically implemented. Further prospective validation on a larger cohort is recommended.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The International Federation of Gynecology and Obstetrics scoring

system (FIGO) is commonly used to determine the risk of primary,

single-agent chemotherapy resistance to methotrexate or actinomycin

D and select between these versus multi-agent chemotherapy in pa-

tients diagnosed with Gestational Trophoblastic Neoplasia (GTN). The

scoring system uses the sum of eight prognostic risk-factor scores:

(i) maternal age; (ii) type of antecedent pregnancy; (iii) time interval

between the end of the index pregnancy and treatment start; (iv) pre-

treatment level of human chorionic gonadotrophin (hCG); (v) size of

the largest tumour; (vi) site of metastases; (vii) number of metastases;

and (viii) a history of previous failed chemotherapy in the treatment of

GTN [1]. In theUnited Kingdom (U.K.), low-risk patients (total score ≤ 6)

receive primary intramuscular Methotrexate, whereas high-risk pa-

tients (total score ≥ 7) receive first-line combination treatment, usually

EMA-CO (intravenous Etoposide, Methotrexate, Actinomycin D/Cyclo-

phosphamide and Vincristine) [2]. The scoring system cannot be used

for rare histological subtypes of GTN, including Placental site- (PSTT)

and Epithelioid trophoblastic tumours (ETT) owing to the differing be-

haviours of these tumours [2–5].

Historically, numerous differing scoring systems were used interna-

tionally, to assess GTN patients, favouring predominantly histological,

anatomical or clinical risk-factors [6]. Based upon expert clinical opin-

ion, the FIGO prognostic scoring system was formulated in 2000; de-

signed to harmonise classification, facilitate data comparison and

reduce variability in the management of patients diagnosed with GTN

[7]. However, prior to their inclusion, none of the risk-factors were sub-

ject to rigorous statistical retrospective or prospective validation, in part

owing to the rare nature of the disease and small patient numbers. The

revised systemof 2000was only tested retrospectively upon a small pa-

tient cohort (n=201) from the Sheffield Trophoblastic Disease Centre,

U.K (STDC) [8]. Therefore, perhaps unsurprisingly, FIGO is imperfect,

with 25–35% patients overall and 75–80% of those scoring 5 or 6 being

resistant to primary, single-agent chemotherapy [2,9–11].

Attempts to improve upon FIGO performance through statistical

modelling of the available data are flawed, because FIGO is used a priori

to guide primary chemotherapy treatment. Consequently, low- and

high-risk patients cannot truly be compared having received different

first-line agents. Furthermore, any apparent ‘improvements’ over FIGO

performance would re-categorise low-risk patients that are resistant

to single-agent treatment to the high-risk group. However, approxi-

mately 50% of those re-categorised would be overtreated and unneces-

sarily exposed to toxic, multi-agent chemotherapy, which is preferable

to avoid given the young patient population [12,13].

Clinicians have therefore scrutinised the eight risk-factors within

FIGO scoring to assess their individual prognostic significance and de-

termine whether the system can be refined. In 2017, a five-factor logis-

tic regression prognostic model comprising age, antecedent pregnancy,

interval, pre-treatment hCG and number of metastaseswas proposed to

match the performance of the FIGO score, developed using 793 low- and

high-risk patients treated at the Charing Cross Trophoblastic Disease

Centre, U.K. (CCTDC), however the system is yet to be externally or pro-

spectively validated [14]. In this study, we combine data from the two

U.K. specialist treatment centres (STDC and CCTDC) to create what we

believe to be theworld's largest dataset of GTN patients in order to gen-

erate: (i) streamlinedmodels that statistically match FIGO performance

and; (ii) visual-decision aids (nomograms) for guiding themanagement

of GTN patients.

2. Methods

2.1. Data collection

Patients diagnosed with GTN were identified from the University of

Sheffield and National Health Service (NHS) registries of patients

maintained by STDC (February 1973–July 2019) and CCTDC (August

1958–July 2019) containing 1294 and 4393 patients respectively. This

formed the training dataset. A validation dataset consisted of n = 100

patients treated at CCTDC (August 2019–August 2020) and n = 44

STDC (May 2019–December 2020) (Fig. 1). Patients were included if

they had: (i) a diagnosis of GTN; (ii) received treatment (chemotherapy

or additional surgery) for GTN beyond the initial uterine evacuation(s);

(iii) a full complement of scored and raw data (where possible) for the

eight-prognostic risk-factors constituting the FIGO score; (iv) details of

the primary chemotherapy received; and (v) the response to primary

chemotherapy (treatment resistance (TR) versus complete response

(CR)). TR to primary chemotherapy was defined as a rise in two or

more serial serum hCG levels over four weeks, or three or more consec-

utive hCG readings that did not fall as expected (by approximately 25%)

over the same time period [11]. Excluded data included patients with:

(i) duplicate data entries; (ii) histology inconsistent with a diagnosis

of Gestational Trophoblastic Disease following review by expert pathol-

ogists; (iii) rare histological subtypes of GTN including PSTT, ETT or

placental-site nodule (PSN); and (iv) a risk category that changed fol-

lowing data cleaning and checking (Fig. 1).

Each dataset was extensively and independently cleaned and

checked by two individuals (VP, RF) to ensure complete coverage. This

involved identifying and correcting where possible, non-sense

(e.g., words/inappropriate numbers written in the scored or raw data

columns) or human-error data entries (e.g., incorrect score calculated

based upon the raw data) and populating missing data. To achieve

this, the datasets were cross-referenced against additional history and

treatment information held by the centres, and where necessary, NHS

records were consulted. This was done for all included patients to en-

sure data integrity. Where discrepancies occurred, the total FIGO score

was re-calculated using the ‘checked’ data and used in subsequent anal-

yses. Patientswhose FIGO risk-category (low- or high-risk) changed as a

result were excluded from the analysis, because their treatment deci-

sions had beenmade using the ‘original’ data. Scored data was available

for all eight risk-factors and raw data for three parameters: (i) maternal

age; (ii) time interval (in months) between the end of the index preg-

nancy and date of treatment start (defining a month as 28 days); and

(iii) pre-treatment hCG level.

2.2. Diagnosis, treatment and follow-up

The methodology for the diagnosis, treatment and follow-up of GTN

patients was as previously described [15]. Over time, imaging modali-

ties used to stage GTN patients has changed. In the 1960s, pelvic disease

was assessed with arteriography and replaced by ultrasonography in

the 1970s. Similarly, chest disease was assessed by Chest X-Ray alone

until the 1970s, after which chest computed tomography (CT) imaging

has been used to clarify equivocal disease on chest X-Ray. Only lesions

>1 cm in diameter on either chest X-Ray or CT are counted within the

FIGO score. In the 1970s, contrast-enhanced CT head imagingwas intro-

duced for patients with lung metastases, being replaced by magnetic

resonance imaging (MRI) brain in 1970s.

2.3. Statistical analysis

Multivariate logistic regression (LR) analysis of the combined

datasets from the two centres was used to assess the relative impor-

tance of the eight FIGO risk-factors in the prediction of primary chemo-

therapy resistance. We adopted a bottom-up strategy, exhaustively

searching all one- then two-factor models, terminating when a match

was found for FIGO. Five-fold cross validated (5FCV) performance was

used to avoid over-specialization during model selection [16]. Specifi-

cally, the dataset was randomly divided into five non-overlapping sub-

groups of approximately equal sample size and stratified for prevalence

of TR; using four subgroups as a training set and one for validation, re-

peating the process five times. Each stage of 5FCV resulted in a new
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model estimate. For LR models, the underlying linear relationship be-

tween the log odds of TR and its predictors permitted the averaging of

the (five sets of) model parameters, yielding a single, averaged model.

The variability of the parameter estimates about this averagewas quan-

tified in their coefficient of variation (CoV), defined as the standard de-

viation divided by themean, for each parameter. The lower the CoV, the

greater the confidence that the averaged model is representative of the

dataset.

2.4. Streamlined model selection

To produce a streamlined model that generated a statistical, but not

necessarily a case-by-case match to FIGO, the operational value of the

false positive rate (FPR) was fixed to equal that of FIGO (11.9%).

Searching the 57 5FCV one- and two-factor models meeting the inclu-

sion criteria, five two-factor candidates were found (Supplementary

Table 1, online only). The inclusion criteria were: (i) CoV ≤4% for each

included parameter; and (ii) a difference in opinion between the

model and FIGO categorisation of <500 cases. The five models were

subjected to a further 50 repeats of the 5FCV process to investigate

whether the models were reliably independent of different splits in

the data. Threemodels were repeatedly selected and included for ongo-

ing investigation: (i) log pre-treatment hCG (raw data) + previous

failed chemotherapy (scored data); (ii) log pre-treatment hCG (raw

data) + site of metastases (scored data); and (iii) log pre-treatment

hCG (raw data)+ number of metastases (scored data) (Supplementary

Table 1, online only).

To ensure the LR models matched FIGO, their performance was

assessed using a combination of conventional measures such as true

(TPR) and false positive rates (FPR), positive (PPV) and negative predic-

tive values (NPV), where a positive was defined as TR to primary che-

motherapy. Additional measures included the area under (AUC) the

receiver operating characteristic (ROC) curve and decision curve analy-

ses (DCA), the latter to evaluatewhether the newmodelwould domore

harm than good. DCA compared the net benefit of each model to FIGO

and default strategies of treating all patients as high-risk (TAHR) or

treating all patients as low-risk (TALR) over a range of clinically applica-

ble probability thresholds [17,18]. Net benefit was calculated as: TPR x

Prevalence – (1-FPR) x (1-Prevalence) x (Pt/1-Pt) where Pt was the

threshold probability of disease for taking action, in this scenario, ad-

ministering high-risk treatment [19]. Finally, the correspondence be-

tween FIGO and the streamlined models in terms of the categorisation

to low- and high-risk groups was assessed, with a detailed analysis of

the number of patients that would have changed risk category (low-

to-high-risk or vice versa) and been over- or under-treated as a result

as determined by primary treatment response. Calibration of the

models was assessed using Bland-Altman plots of the observed and pre-

dicted deciles of class probability [20].

Fig. 1. CONSORT diagram. GTN, Gestational Trophoblastic Neoplasia; PSTT, Placental site trophoblastic tumour; ETT, Epithelioid trophoblastic tumour; PSN, Placental site nodule; hCG,

human chorionic gonadotrophin; FIGO, International Federation of Gynecology and Obstetrics.
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The three streamlined models were validated using an independent

cohort of patients from the STDC and CCTDC as described above. To as-

sist future decision making in clinical practice, nomograms were devel-

oped from the estimated model parameters. Their performance was

cross-checked upon the training and validation dataset using algo-

rithms simulating the logic of the nomograms.

A Chi-squared test compared the rates of TR versus CR within the

two datasets, whilst McNemar's test determined whether the models

matched FIGO at a given probability threshold. Statistical analyses

were performed in GraphPad Prism (version 9.0.0, San Diego, CA,

USA) and MatLab (version R2020a, Natick, MA, USA).

3. Results

3.1. Demographics

The combined STDC and CCTDC dataset included 4554 patients who

satisfied the inclusion and exclusion criteria, of which 4191 patients

were suitable for ongoing analysis (Fig. 1). A summary of the two

datasets is provided in Supplementary Fig. 1 and Supplementary

Table 2 (online only). Comparing the two centres, the proportion of

TR versus CR patients was not significantly different (Chi-squared test,

p=0.09). Similarly, the performance of FIGOwas comparable between

sites, revealing poor sensitivity and high specificity, with PPV < NPV

(Supplementary Table 3, online only).

3.2. Model development

Following step-wise exploration of all one and two factor models

satisfying the inclusion criteria and 50 repeats of the 5FCV process,

three models were repeatedly selected for ongoing investigation. Sup-

plementary Table 4 summarises the estimated model coefficients, sig-

nificance and CoV of the variables included within each streamlined

model. As expected, each variable proved highly significant, justifying

inclusion within the predictive model. The three models matched

FIGO performance with respect to TPR, FPR, PPV, NPV and DOR

(Table 1).

Model performance was assessed using a variety of measures to en-

sure a consistent match to FIGO. As a baseline, FIGO has an AUC of 0.62.

Calibration analysis revealed the difference between observed and pre-

dicted frequencies to lie within the 95% limits of agreement (Fig. 2D).

Each streamlined model matched FIGO in terms of the curve shape

and AUC (Figs. 2A, 3A, 4A), calibration (Figs. 2B, 3B, 4B) and DCA at a

decision probability threshold equivalent to a total FIGO score = 7,

the decision point between low- and high-risk groups (Fig. 2C, 3C, 4C).

Contingency table analysis revealed no significant discordance be-

tween FIGO and themodels (McNemar's test p>0.78), with a disagree-

ment in the classification of patients to low- or high- risk groups

affecting ≤10% patients. In summary, the overall disparity between

FIGO andM1 involved six patients, whilst no disparitywas observed be-

tween FIGO versus M2 or M3 (Supplementary Table 5, online only).

3.3. Model validation

Validation using the independent dataset (n = 144) revealed that

performancewasmaintained,matching FIGO. Table 1 details the valida-

tion dataset performance of using standard measures, whilst Supple-

mentary Fig. 2, 3, 4 (online only) confirm that FIGO performance was

matched upon ROC, calibration analysis and DCA. Finally, contingency

table analysis showed close correspondence between FIGO and all

models, with a disparity of eight cases when applying M1 (p = 0.04),

five cases using M2 (p = 0.21) and three cases with M3 (p = 0.29,

McNemar's test) (Supplementary Table 6, online only). Supplementary

Table 7 (online only) provides amore detailed analysis of the theoretical

effect (under- or over-treatment) upon patients that would have

changed risk category (low- to high-risk or vice versa) by applying the

model. Two patients would have been over-treated by applying M2

and none using M1 and 3. Three patients would have been under-

treated using M1 and M2, and two, applying M3. Finally, using both

the training and validation dataset, performance was cross-checked

with the algorithm simulating the logic of the nomograms (Fig. 5) and

found to be equivalent.

4. Discussion

FIGO cannot be improved through statistical modelling [13], hence

any attempts to improve it must focus upon streamlining this eight-

factor prognostic system to increase ease of use, reliability and effi-

ciency. Using exhaustive search, three streamlined LRmodels, each con-

taining two variables were selected for exploration. All three models

involved raw data for pre-treatment hCG, with M2 and M3 combining

this parameter with imaging-based factors, specifically the site and

number of metastases. M1 requires no imaging investigations, instead

combining pre-treatment hCG with a history of failed chemotherapy

(Table 1). The models matched FIGO performance across a range of

measures including conventional parameters (TPR, FPR, PPV and NPV)

(Table 1), ROC characteristics, DCA, calibration (Fig. 2,3 and 4) and con-

tingency table analysis (Supplementary Table 5, online only). Crucially,

model performance was sustained across these parameters when vali-

dated upon an independent dataset (n=144) (Table 1, Supplementary

Table 6, Fig. 2,3 and 4, online only). Risk change analysis of the valida-

tion cohort was equally supportive; with the theoretical over-

treatment of two patients using M2 and no patients applying M1 or

M3 (Supplementary Table 7, online only). Three visual nomograms

were produced to aid and simplify clinical decisionmaking (Fig. 5). Per-

formancewas cross checked upon algorithms simulating the logic of the

nomograms and found to be equal.

Streamlinedmodels havemanybenefits. A simplified scoring system

is easier and quicker for clinicians to use,with less room for humanerror

in data entry and score calculation. Within the computerised datasets

examined here, data entry errors were noteworthy. Inaccurate, missing

data entries, non-sense information (e.g., words in a scored/raw data

column) and failure to sum the scores correctly changed the total

Table 1

Performance of FIGO and the streamlined logistic regression models in the training (n = 4191) and validation datasets (n = 144).

Model description TPR (%) FPR (%) PPV (%) NPV (%) DOR

FIGO 17.10 11.90 44.40 65.60 1.50

log pre-treatment hCG (raw data) + previous failed chemotherapy (scored data) 17.50 11.90 44.90 65.70 1.60

log pre-treatment hCG (raw data) + site of metastases (scored data) 17.10 11.90 44.40 65.60 1.50

log pre-treatment hCG (raw data) + number of metastases (scored data) 17.10 11.90 44.40 65.60 1.50

VALIDATION DATASET

FIGO 14.50 12.80 42.10 61.50 1.20

log pre-treatment hCG (raw data) + previous failed chemotherapy (scored data) 21.80 8.10 63.20 64.80 3.10

log pre-treatment hCG (raw data) + site of metastases (scored data) 21.80 11.60 54.50 63.90 2.10

log pre-treatment hCG (raw data) + number of metastases (scored data) 12.70 8.10 50.00 62.20 1.60

FIGO, International Federation of Gynecology and Obstetrics scoring system; log, logarithm; hCG, human chorionic gonadotrophin; TPR, true positive rate; FPR, false positive rate; PPV,

positive predictive value; NPV, negative predictive value; DOR, diagnostic odds ratio.
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score in 1734 patients (41% of the dataset) and of concern, the risk

categorisation in 109 patients (2.6% of the dataset), which would have

led to different primary treatment. Whilst these may have been data

transcription errors, transferring from the paper to computerised for-

mat, it is evident that the principle of parsimony holds here: the sim-

plest method is usually the correct one [21]. Scoring systems like FIGO

are commonly used in other areas of clinical practice, with the Early

Warning System (EWS) as an example, designed to alert clinicians of

patient deterioration. However, these systems are highly susceptible

to human error, and alarmingly, EWS, studies have shown that

approximately one third of scores are incomplete [22] with error rates

up to 36% [23,24]. No published data exists for FIGO. Weighted or

score-based systems are particularly problematic through incomplete

data collection, misassignment of the correct score to the raw data

and total score calculation [23]. Given the serious implications upon pa-

tient care, automated, computer-based calculators are advocated and

becoming increasingly prevalent in clinical practice [25,26].

Streamlined models lend themselves to the development of visual

decision aids, such as nomograms (Fig. 5), which ease and enhance

the accuracy of the scoring process and provide a visual representation
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of risk that can be shared with the patient [28]. This is important, given

the benefits conferred by involving the patient in their healthcare dis-

cussions and decisions [29–31]. Such nomograms can be operated

using raw data via an online database, reducing the scope for human

error in score assignment and calculation.

There are key cost and efficiency benefits of a simplified model. This

could avoid imaging parameters (M1 in this study), obviating cost and

time demands for both the health service and patients. However,

these imaging investigations are crucial for clinical decision making,

such as guiding surgical intervention (hysterectomy, resection of me-

tastases). However, in countries where resources or access to specialist

centres is problematic, M1 may be pragmatic, with FIGO performance

matched without the need for imaging investigations [33].

Our study has further streamlined FIGO, advancing upon earlier lit-

erature, which generated three five-factor models, all of which included

imaging variables [14]. Of note, this study trained a LRmodel upon FIGO

decisions (i.e., low- versus high-risk categorisation) and as such, could

match FIGO performance exactly (AUC of 0.99–1.00). Dissimilarly, our

study trainedmodels upon actual outcome (TR or CR to primary chemo-

therapy) but selected them tomatch FIGO performance, which explains

the differences in the AUC on ROC curve analysis. Our study used larger

patient numbers and more robust modelling analysis that is closely

aligned with Transparent Reporting of a multivariable prediction

model for Individual Prognosis or Diagnosis (TRIPOD) guidelines [34],

designed to improve the reporting of prediction models. Our study ex-

amined not only the significance and variability of the eight FIGO vari-

ables using F5CV, but assessed model performance across a wider

range of parameters (conventional TPR, FPR, PPV, NPV measures, ROC

curve characteristics, calibration analysis, DCA and contingency tables).

The model was then validated upon an independent validation cohort,

which was not used to select, re-train or re-adjust the models in any

way.Moreover, our analysis has revealed theweakness of prior publica-

tions that purely relied upon ROC AUC characteristics to compare FIGO

performance [14]. Here, we found AUC to provide only a gross

Fig. 3. Training dataset performance of M2: log pre-treatment hCG (raw data)+ site of metastases (scored data) (n= 4191). (a) Receiver Operating Characteristics (ROC) Curve compar-

ing M2 with FIGO. (b) Bland-Altman Calibration plots for M2. Hypothesis tests confirmed non-significance of the least squares slope p = 0.05. (c) Decision Curve Analysis (DCA) for M2.

Dotted line (treat all patients as low risk (TALR)), thenet benefit assuming that noGTNpatientswill have the outcome (resistance to primary chemotherapy); chained line (oracle), the net

benefit associated with a perfect prediction model; dashed line (treat all patients as high-risk (TAHR)), net benefit assuming that all GTN patients will have the outcome; solid line (M2),

net benefit when we manage GTN patients according to the predicted risk of the outcome (primary chemotherapy resistance). + represents FIGO performance at a total score = 7 (de-

cision point between low- and high-risk GTN). Data shown is the 5FCV result. FIGO, International Federation of Gynecology and Obstetrics scoring system; AUC, area under the curve; CV,

cross-validated; LoA, limits of agreement; b, bias; SE, standard error.

Fig. 4. Training dataset performance ofM3: log pre-treatment hCG (rawdata)+ number ofmetastases (scored data) (n=4191). (a) Receiver Operating Characteristics (ROC) Curve com-

paringM3with FIGO. (b) Bland-AltmanCalibration plots forM3. Hypothesis tests confirmednon-significance of the least squares slopep=0.05. (c) Decision Curve Analysis (DCA) forM3.

Dotted line (treat all patients as low risk (TALR)), thenet benefit assuming that noGTNpatientswill have the outcome (resistance to primary chemotherapy); chained line (oracle), the net

benefit associated with a perfect prediction model; dashed line (treat all patients as high-risk (TAHR)), net benefit assuming that all GTN patients will have the outcome; solid line (M3),

net benefit when we manage GTN patients according to the predicted risk of the outcome (primary chemotherapy resistance). + represents FIGO performance at a total score = 7 (de-

cision point between low- and high-risk GTN). Data shown is the 5FCV result. FIGO, International Federation of Gynecology and Obstetrics scoring system; AUC, area under the curve; CV,

cross-validated; LoA, limits of agreement; b, bias; SE, standard error.
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performance measure, with small variation in AUC across all explored

models, despite considerable differences in other performance mea-

sures, confirming that ROC shape, especially on the left-hand-side, is

crucial. Taken together, in addition to the 50 repeats of the 5FCV process

performed within themodel selection process, these techniques reduce

the likelihood of model overfit and dependency upon a particular spilt

of the data. This gives confidence that model performance should be

replicated when confronted with a new cohort [35]. Indeed, the results

of our validation analysis would certainly support this.

Limitations of this study include the inherent bias introduced

through the retrospective nature of the study and change in imaging pa-

rameters over the study period, although all patients were rescored ac-

cording to the FIGO 2000 criteria. The different hCG assays used

between the centres is a further limitation, yet the current FIGO system

operates internationally with different hCG assays, so this variation

must be incorporated into any streamlined model. The small number

of ultra-high risk GTN (total FIGO score ≥ 13) patients [4,5,36], in both

the training (n= 139) and validation (n=5) datasets limits the appli-

cability of the model to this subgroup. The relatively small numbers

within the validation cohort is a further limitation, yet due to the rare

nature of GTN, accruing larger numbers would take several years. Like

FIGO, a limitation of the models and nomograms herein concern

decisions at the borderline between low- and high-risk treatment

groups. A degree of uncertainty exists, and as such, we do not propose

that our guidance is any more prescriptive than FIGO. Neither FIGO

nor our models consider the response to second-line single-agent

chemotherapy, hence individual patient preference and clinician expe-

rience remain of vital importance. Borderline low-risk patients should

continue to be counselled regarding their likelihood of responding to

single-agent chemotherapy and be offered a choice between this ap-

proach versus a primary, multi-agent regimen. Despite our large

dataset, 487 patients received second-line single-agent chemotherapy,

of which only n = 51 were TR. Accounting for second-line outcomes

in a modelling strategy such as this would not only deviate from the

study purpose, to match FIGO, but would prove problematic at the

model building stage owing to the very low TR prevalence (10%) and

small cohort size. While recognised techniques such as over-sampling

could be employed to reduce variability in model estimation, cross-

validated results could not be relied upon to infer prospective perfor-

mance. Furthermore, there exists no independent validation set to test

real-life performance.

The trade-off between over- and under-treatmentmust always be at

the forefront of changing practice, given that GTN is an inherently cur-

able condition [2,36], involving a youngpatient populationwith a desire

for future pregnancies. Overtreatment and the consequences of this

should be avoided, particularly given that ∼50% of low-risk patients re-

sistant to first-line single-agent chemotherapy achieve remissionwith a

second-line single-agent [12]. In this regard, our streamlinedmodels are

reassuring (Supplementary Table 7, online only) and could quickly and

efficiently be tested worldwide, using an online nomogram for deter-

mining treatment strategy (low- or high-risk) (Fig. 5). Given the impor-

tance of imaging investigations to guiding treatment decisions, we

Fig. 5.Nomograms developed from the estimatedmodel parameters. (a)M1: log pre-treatment hCG (raw data)+ previous failed chemotherapy (scored data). (b)M2: log pre-treatment

hCG (raw data)+ site ofmetastases (scored data). (c)M3:log pre-treatment hCG (raw data)+ number ofmetastases (scored data). The solid line delineates the boundary between low-

(yellow) and high-risk (red) treatment, whilst the area to the right of the dotted line represents ultra-high-risk GTN patients.

hCG, human chorionic gonadotrophin; IU, international unit.
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recommend that M2 and M3, involving hCG and the site or number of

metastases respectively, are subject to future validation. Further testing

of the models and nomograms using data fromworldwide GTN centres

is now required to test their functionality and reproducibility across dif-

ferent populations and hCG assays.
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