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A B S T R A C T   

Objective: A clinical decision tool for Transient Loss of Consciousness (TLOC) could reduce currently high 
misdiagnosis rates and waiting times for specialist assessments. Most clinical decision tools based on patient- 
reported symptom inventories only distinguish between two of the three most common causes of TLOC (epi-
lepsy, functional /dissociative seizures, and syncope) or struggle with the particularly challenging differentiation 
between epilepsy and FDS. Based on previous research describing differences in spoken accounts of epileptic 
seizures and FDS seizures, this study explored the feasibility of predicting the cause of TLOC by combining the 
automated analysis of patient-reported symptoms and spoken TLOC descriptions. 
Method: Participants completed an online web application that consisted of a 34-item medical history and 
symptom questionnaire (iPEP) and spoken interaction with a virtual agent (VA) that asked eight questions about 
the most recent experience of TLOC. Support Vector Machines (SVM) were trained using different combinations 
of features and nested leave-one-out cross validation. The iPEP provided a baseline performance. Inspired by 
previous qualitative research three spoken language based feature sets were designed to assess: (1) formulation 
effort, (2) the proportion of words from different semantic categories, and (3) verb, adverb, and adjective usage. 
Results: 76 participants completed the application (Epilepsy = 24, FDS = 36, syncope = 16). Only 61 participants 
also completed the VA interaction (Epilepsy = 20, FDS = 29, syncope = 12). The iPEP model accurately pre-
dicted 65.8 % of all diagnoses, but the inclusion of the language features increased the accuracy to 85.5 % by 
improving the differential diagnosis between epilepsy and FDS. 
Conclusion: These findings suggest that an automated analysis of TLOC descriptions collected using an online web 
application and VA could improve the accuracy of current clinical decisions tools for TLOC and facilitate clinical 
stratification processes (such as ensuring appropriate referral to cardiological versus neurological investigation 
and management pathways).   

1. Introduction 

Transient Loss of Consciousness (TLOC) is a time-limited loss of 
awareness characterised by abnormal motor control, loss of respon-
siveness, amnesia, and a complete recovery. Over 90 % of TLOC pre-
sentations are explained by epilepsy, functional/dissociative seizures 
(FDS) or syncope [5]. A thorough analysis of the medical history by an 
expert is currently the most effective differential diagnostic method [21] 
because patients are typically asymptomatic on presentation and in-
vestigations after the event are of limited value. However, patients with 
TLOC usually present in non-expert primary or emergency care settings, 

and at least 20 % % of patients are initially misdiagnosed [32]. This 
means that many undergo inappropriate investigations and receive 
ineffective treatment. To date there are no reliable technical aids 
available that would be capable of differentiating reliably between the 
three most frequent causes of TLOC [30]. 

A symptom and medical history questionnaire called the iPEP has 
demonstrated promise for a three-way classification of patients pre-
senting with TLOC [31], although its clinical effectiveness remains un-
proven at this stage. Modelling of responses of patients with chronic 
TLOC disorders using a Random Forest classifier trained with data 
captured by this 34-item patient questionnaire suggested that an overall 
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accuracy of 78.3 % might be achieved with this tool (83.8 % syncope, 
81.5 % epilepsy and 67.9 % FDS). Furthermore, combining patient re-
ported symptoms with witness observations increased the accuracy in 
the modelling to 86 % % (100 % syncope, 85.7 % epilepsy and 75 % 
FDS). While the model identified all instances of syncope, it performed 
less effectively at differentiating between epilepsy and dissociative sei-
zures, suggesting the need for further research to improve this particular 
differential diagnosis. 

One method which could improve the diagnostic potential of 
symptom inventories involves the automated analysis of language. 
Previous qualitative research using Conversation Analysis (CA) has 
identified a range of interactional differences between how people with 
epilepsy or FDS describe their seizure experience. People with epilepsy 
typically focus on their subjective seizure experience, include extensive 
details about their seizure symptoms, and try to reconstruct periods of 
loss of awareness [27,28]. In doing so, they exhibit more formulation 
effort in the description of their seizure symptoms (characterised by 
hesitations, repetitions, restarts, and reformulations) [27,28]. In 
contrast, people with FDS are more likely to focus on what they do not 
know about their seizure manifestations by making more complete ne-
gations (e.g. ”I can’t remember anything”) [27,28] while focusing on the 
situations in which their seizures occur or the consequences of their 
seizures. Additional differences between the communication styles of 
these two patient groups have been described in their use of metaphoric 
conceptualizations [22], labels for their chief complaint [23], and ref-
erences to third parties [26]. These findings - originally made in German 
and English speakers - have since been replicated in patients speaking a 
range of different languages and qualitative analysis of such observa-
tions by experts in CA allowed raters to predict the medical diagnosis of 
epilepsy or FDS with accuracies ranging between 80 and 90 % [3,4,6,16, 
24,33]. These findings demonstrate clear and clinically relevant differ-
ences in the speech and language used by people with epilepsy or FDS 
when talking about their seizure experiences. However, the reliance on 
experts in CA limits the scalability of this diagnostic approach. 

A fully automated pipeline capable of capturing and analyzing 
spoken descriptions of TLOC could address this limitation and would 
allow combination with questionnaire-based clinical decision tools. We 
have previously demonstrated the feasibility of differentiating between 
epilepsy and FDS by automatically applying two linguistic feature sets to 
transcripts of doctor-patient interactions: Firstly we showed that a 
feature set designed to capture differences in formulation effort (e.g. 
hesitations, repetitions, and how patients pause) were capable of pre-
dicting the diagnosis with an accuracy of 71 % [19]. Secondly, we found 
that semantic differences in patients’ language measured using 21 cat-
egories from the Linguistic Inquiry and Word Count (LIWC) [18] were 
capable of distinguishing between the two diagnoses with an overall 
accuracy of approximately 78–81 % [20]. While our studies with these 
feature sets demonstrated the feasibility of an automatic diagnostic 
approach based on the analysis of spoken language, they are not an 
exhaustive exploration of all features of potential differential diagnostic 
value which would be suitable for automatic detection. For example, the 
previously used feature sets were not specifically optimised to examine 
differences in the descriptions of subjective seizure symptoms. It is also 
unclear from previous work whether the diagnostic performance would 
be maintained if patients’ spoken descriptions of their seizures were not 
sampled from interactions with clinicians but from the interaction with a 
computer-presented virtual agent (VA). Lastly is uncertain whether 
linguistic features could improve the diagnostic accuracy of 
questionnaire-based methods. 

1.1. Aim 

The aim of this research paper is to explore whether the automated 
analysis of spoken seizure descriptions can improve the differential 
diagnostic performance of the iPEP questionnaire in the assessment of 
patients with TLOC. Firstly, the performance of the formulation effort 

and LIWC features from previous research were evaluated on seizure 
descriptions collected using a VA. Secondly, the performance of an 
additional feature set based on the usage of verbs, adjectives, and ad-
verbs was evaluated to detect differences in subjective symptom de-
scriptions. Thirdly, we evaluated whether the baseline performance of 
the iPEP could be improved by the inclusion of these language features. 

2. Method 

2.1. Recruitment 

Patients received information about the study alongside appoint-
ment letters for the seizure and syncope clinics at the Royal Hallamshire 
Hospital. Recruitment targeted individuals over the age of 16 with a 
diagnosis or epilepsy, FDS, or syncope. Information about the study was 
also posted through various communication channels by the following 
charities supporting individuals with TLOC: STARS, Epilepsy Action, 
FNDHope, FNDAction, Epilepsy Sparks, and the Shape network sup-
ported by Epilepsy Research UK. Potential participants completed a 
”consent-to-contact” form and were approached by a member of the 
research team. The study therefore used a convenience sample. Patients 
who had agreed to complete the study procedure were encouraged to 
recruit witnesses of their seizures to provide additional information via 
the same online platform used for patient recruits. However, as re-
sponses from witnesses were only available for 34 % only patient re-
sponses were used for the present analysis because the sample size for 
witness responses was insufficient to train a machine learning model. 
The Leicester South Ethics Committee reviewed and granted ethical 
permission for this research (REC reference: 20/EM/0106). 

Participants were either diagnosed using video-EEG, clinical assess-
ment by a trained epileptologist, or both. The diagnosis was confirmed 
using the medical record for participants recruited via the Royal Hal-
lamshire Hospital, whereas self-disclosure was used for the additional 
participants who were recruited externally. 

Participants received a link to an online web application that con-
sisted of a demographic and seizure history questionnaire, the iPEP, and 
an interaction with an unresponsive virtual agent (VA). VAs have been 
used for the remote collection of spoken descriptions of health for 
research studies using similar applications, for example an application 
designed to detect signs of dementia [15]. The iPEP asked patients 42 
questions about their medical history and symptoms [31]. Witnesses (if 
available) were asked 10 questions about what they had observed during 
the attack [31]. The questions asked by the VA were designed to mirror 
the questions typically asked during routine epilepsy clinic consulta-
tions. In order to interact with the VA, participants were instructed to 
play short videos showing the VA posing the question and then 
responding to the question by speaking to the VA as if they were 
speaking to a clinician (Fig. 1). Spoken responses were recorded using 
the computer’s inbuilt microphone. There were eight questions for pa-
tients and four questions for witnesses (if available). The first question 
asked participants to provide as much detail about the most recent 
attack as possible, and the follow-up question probed for additional 
details, for example what was happening before, during and after they 
lost consciousness (Fig. 1). 

2.2. Dataset 

A total of 78 patients were recruited to the study. All participants 
completed the questionnaire, but only 61 completed the interaction with 
the VA due to technological and time constraints. A breakdown of the 
demographic and seizure history information is given in Table 1. Pa-
tients with FDS have a high seizure frequency and number of hospital-
isations, reflecting findings in other research samples collected in a 
similar context [25], although the severity of FDS captured in our study 
may be related to the fact that some of the patients recruited had been 
referred to a specialist seizure clinic. 
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Most participants were White/British (89.7 %). Most patients (52.7 
%) had at least one degree (equivalent of at least 16 years in education), 
13.5 % had A-Level or equivalent (equivalent of 13 years in education), 
13.5 % had GCSE (equivalent of 11 years in education), 2.7 % had no 
educational qualifications, and 4 participants did not specify. 

2.3. Feature extraction 

The audio recordings were manually transcribed and pre-processed 
to remove punctuation, convert all text to lowercase, expand contrac-
tions, and extract patient only talk. Three independent feature sets were 
extracted and evaluated for the language analysis. 

The first set of features was designed to capture formulation effort 
and extracted using a manually defined script. Seven features measured 
the number of hesitations, repetitions, proportion of key words associ-
ated with uncertainty (uncertainty was assessed using the ”nonfluency” 

category from the LIWC application [18]), and the frequency, average, 
and total duration of pauses. The group differences for these features 

have been detailed in a previous research paper [19]. Pauses were 
detected using the Web RTC Voice Activity Detector by Google. 

The second set of features was designed to capture differences in the 
semantic content using the LIWC application (2022) [18]. Nine semantic 
categories were selected (“Focus present tense”, “Emotional tone”, 
“Tentativeness”, “Quantifiers”, “Reward”, “Social”, “Affect”, “We” and 
“He/She”) because these features had emerged as having the largest 
impact on classification accuracy between people with epilepsy or FDS 
when evaluated on a different dataset [20]. 

The third feature set measured the frequency of specific adjectives, 
adverbs, and verbs to detect differences in the description of subjective 
symptoms and the action that surrounded the period of unconsciousness 
[27,28]. The text was lemmatised and all verbs, adjectives, and adverbs 
were identified using Spacy [10]. The Term Frequency Inverse Docu-
ment Frequency (TFIDF) vectoriser from Scikit Learn library in Python 
[17] was used to convert the verbs, adjectives, and adverbs into vector 
representations. TFIDF is a simple and efficient method of representing a 
document as a set of terms that can be easily interpreted [1]. 

This analysis only focused on single words that were included in a 
minimum of three documents and no more than seven. The algorithm 
was applied to the training data for each fold of the leave-one-out cross 
validation procedure, and the maximum number of features (N) was 
determined by evaluating the predictive performance of different values 
(10, 20, 50, 100) using a ”nested” fivefold cross validation that was 
restricted to the training data [29]. 

Missing values within the iPEP questionnaire were imputed using K- 
Nearest Neighbour (KNN). A KNN model was trained for each model and 
used to predict the missing responses. 

2.4. Data augmentation 

Data augmentation was performed on the training data for each 
cross-validation fold using a method called Adaptive Synthetic sampling 
(ADASYN) [9] to balance the samples by up-sampling the number of 
samples in the epilepsy and syncope groups. 

2.5. Classification 

The classification performance of the iPEP questionnaire and each 

Fig. 1. A still shot of the virtual agent from the web application and the eight questions that were asked. The study uses a prototype virtual agent to allow the 
feasibility of this approach to be tested. If the application were to be taken forward, the design of the application and virtual agent would be greatly improved. 

Table 1 
A breakdown of the demographic and seizure history information for each 
diagnostic group of patients who completed the application. The questions were 
presented in different formats: {a} free text box, {b} choice between four options 
(None, up to 5, 5:50, more than 50), {c} choice between four options (Never, 
Once, Up to 5, and more than 5), and {d} indicate “yes” or “no” (the percentage 
of ”yes” responses is reported per group).   

Epilepsy FDS Syncope 
How old were you when you had your first 

seizure? {a} 
43 (15.5) 36 (27.1) 55 

(23.2) 
How many years have you been having 

seizures for? {a} 
32.4 
(20.7) 

31 (15.6) 49.8 
(25) 

How many seizures have you had in the last 
year? {b} 

Up to 5 More than 
50 

Up to 5 

How many times have you been to hospital 
due to a seizure? {c} 

Up to 5 Up to 5 Once 

Have you been to intensive care due to a 
seizure? {d} 

4.2 % 11.1 % 0 % 

Do you have a family history of seizures? 
{d} 

16.7 % 13.9 % 37.5 % 

Gender (Male) 33.3 % 13.9 % 37.5 %  
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language feature set was evaluated separately using a Support Vector 
Machine with an RBF kernel (chosen because it exhibited the greatest 
and least unstable performance in a previous study) [20]. All models 
were trained to classify cases to one of three diagnoses (epilepsy / FDS / 
syncope) using nested leave-one-out cross validation [29]. Given that 
the aim was to explore whether the language features can improve the 
classification performance of the iPEP, two methods of integrating the 
iPEP and language features were evaluated. The first method (hence-
forth named ”all features’’) involved training a single model using all 
features (iPEP and language features) and all diagnostic groups. Given 
that the iPEP exhibited particularly high sensitivity for syncope [31], the 
second method (henceforth called ”stacking”), used a two tier approach 
(Fig. 2). Firstly, a model trained using the iPEP responses was used to 
make predictions. This iPEP model was used to make the final decision if 
the prediction was syncope or if the participant did not go on to interact 
with the VA having completed the iPEP. If this iPEP model made a 
prediction of epilepsy or FDS, the data was passed into a second stage 
analysis whereby three separate language analysis models were used to 
make predictions using each of the language analysis feature sets 
(formulation effort, LIWC, and TF-IDF). This means that, when the iPEP 
prediction was included, there were a total of four predictions for each 
participant who had interacted with the VA. Finally, a higher-order 
model was trained using a SVM, LOOCV and all four predictions. 
These final predictions were combined with the predictions for partici-
pants that were not included in the second stage analysis and used for 
evaluation. 

3. Result 

3.1. Binary classification between 

All language feature sets were good at the binary classification be-
tween epilepsy and FDS, but the formulation effort and LIWC features 
exhibited the best performance with accuracies of 85.7 % (Table 2). 

3.2. Three-way classification between 

The model trained using the patient symptoms from the iPEP 

questionnaire demonstrated an accuracy of 66 % for the three-way 
classification between epilepsy, FDS and syncope (Table 3). The per-
formance of the three language feature sets was dramatically reduced by 
the inclusion of people with syncope across all feature sets (Table 3). The 
formulation effort features still exhibited the best performance out of the 
three language feature sets with an accuracy of 59 %, although this is 
likely due to the high sensitivity for FDS and over-representation of FDS 
in the sample. Compared to the baseline performance exhibited by the 
iPEP features alone, the ”stacking” approach resulted in an accuracy 
increase of 20 % and improved the detection of people with epilepsy or 
FDS by 29 % and 22 %, respectively (Table 3). In contrast, training a 
model using the ”all features’’ method reduced the performance of the 
iPEP. 

4. Discussion 

This project investigated the feasibility of predicting the cause of 
TLOC using an online web application. The results demonstrate that it is 
possible to differentiate between epilepsy and FDS using an automated 
analysis of seizure descriptions produced during an interaction with a 
VA. Furthermore, our findings demonstrate that automated analysis of 
seizure descriptions can improve the performance of symptom checklist 
based clinical decision tools designed for the three-way classification 
between epilepsy, FDS, and syncope by improving the challenging dif-
ferentiation between patients with epilepsy and FDS through the anal-
ysis of spoken descriptions of seizures [31]. These descriptions can be 
elicited by an unresponsive virtual agent. The combination of data 
collection using a VA and automated analyses produces a system that is 
more readily scalable and could be made available to aid differential 
diagnosis in primary and emergency departments at all hours of the day. 
In such non-expert settings, an automated patient stratification system 
could ensure that patients are referred to the correct medical specialities 
(e.g. neurology versus cardiology) and receive the most appropriate 
investigations (e.g. brain scans and EEG versus prolonged ECG and 
blood pressure or tilt table tests). 

In contrast to the most popular machine learning approach of 
training a single model using all features and all classes, this research 
used an analytical pipeline that restricted the automated analysis of 
language to a downstream comparison between people with epilepsy 
and FDS. Our findings demonstrate that it is feasible to use a compara-
tively simple model to conduct the differentiation between syncope and 
seizures (based on a symptom checklist alone) and a more complicated 
model to differentiate epilepsy and FDS. 

Our findings demonstrate that it is not always necessary to identify 

Fig. 2. A representation of the model stacking algorithm. The grey boxes 
represent the different machine learning models. The blue boxes represent 
diagnostic predictions. All predictions were used to evaluate. 

Table 2 
Model performance for the binary classification using each feature subset from 
the language analysis.  

Features Accuracy Epilepsy FDS 
Formulation Effort 86 65 100 
LIWC 86 70 97 
TF-IDF 76 70 79  

Table 3 
Model performance for the three-way classification using each feature subset. 
iPEP: the condensed Paroxysmal Event Profile developed by Wardrope et al. 
[31]. LIWC: Linguistic Inquiry and Word Count. TF-IDF: Term Frequency Inverse 
Document Frequency. FDS: Functional (Dissociative) Seizures.  

Features Accuracy Epilepsy FDS Syncope 
IPEP 66 54 72 69 
Formulation Effort 59 20 100 25 
LIWC 32.8 100 0 0 
TF-IDF 52.5 70 45 42 
All Features 59 20 100 25 
Stacking 86 83 94 69  
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features that are highly discriminant in multi-class classification prob-
lems. Multi-class classification problems can be segmented into a 
multistage analysis whereby the more challenging differential diagnoses 
are conducted using a more complex analysis at a later stage of the 
analytic pipeline. 

Machine learning applications in the field of medicine are often 
limited by the size of available data sets [12]. Small data sets hinder the 
identification of reliably discriminating features because it is not 
possible iteratively to conduct feature engineering and selection without 
producing bias estimates of performance [29]. This analysis has 
demonstrated our formulation effort and LIWC features, which have 
been tested in previous studies [19,20] can display high classification 
performance on a novel data set, which provides further evidence that 
these features have diagnostic utility in the differential diagnosis of 
epilepsy and FDS. 

In contrast, the classification performance of the iPEP features was 
much lower than suggested by previous modelling. The accuracy re-
ported in this study was 12.3 % less than predicted in the modelling of 
this questionnaire, and whereas the iPEP previously identified patients 
with syncope better than the other classification approaches used here, 
among the participants of this study, it was most accurate at predicting 
diagnoses of FDS. This reduction of performance may be caused by the 
modest sample size in the present study (especially of the syncope 
subgroup). However, it may also be that the binary response format of 
the iPEP questionnaire used in patients with a less chronic TLOC dis-
order performs less well in the diagnostic classification task than the 5- 
point likert scales which were used in the original version of this ques-
tionnaire [25,31]. Therefore, further validation work should be con-
ducted to explore whether the performance metrics observed in the 
modelling of the iPEP can be replicated when the questionnaire is 
administered in a binary format because the analysis outlined in this 
paper is dependent on the iPEP reliably identifying most individuals 
with a diagnosis of syncope. 

This study was the first paper to explore the feasibility of predicting 
the cause of TLOC based on the usage of verbs, adjectives, and adverbs. 
These features exhibited a reasonably predictive performance that 
supports the use of these features in future machine learning models. 
Overall, these findings provide further support for the feasibility of the 
automated differentiation between epilepsy and FDS using an auto-
mated analysis of language. 

The predictive performance of each feature set was independently 
reduced by including individuals with syncope into the model. The 
reduction in accuracy may be because individuals with syncope produce 
spoken descriptions that are similar to the descriptions from individuals 
with epilepsy or FDS, making it difficult for the model to identify pat-
terns in the features that are a reliable indicator of a single diagnosis. It is 
unsurprising that the performance of these two models was reduced 
given that these features were originally selected to discriminate be-
tween epilepsy and FDS. Furthermore, the patients with syncope who 
were referred to specialist clinics and recruited to this study may have 
had attacks bearing a closer resemblance to epilepsy than patients only 
assessed in primary care and emergency care settings with more typical 
syncope presentations. It may be that, in a study capturing patients with 
syncope who were never referred to specialist assessment, the recogni-
tion of syncope and overall diagnostic performance of the combination 
of iPEP and virtual assistant would have been better. 

4.1. Limitations 

The analysis used a small sample size, especially for participants with 
syncope. Furthermore, not all participants received a gold-standard 
diagnosis, for example using video-EEG. As the majority of patients in 
the UK receive diagnoses of epilepsy or FDS which have not been proven 
by video-EEG [14], our inclusion of patients whose diagnoses were not 
based on this diagnostic gold-standard will mean that our findings are 
based on a less highly selected patient population and more relevant to 

routine practice. However, possible inaccuracies of clinical diagnoses 
may have influenced the performance metrics of the models. 

There has not been an exhaustive exploration of features because a 
separate training and testing data set is required for feature engineering 
and selection [29]. Future research should explore alternative features 
to fully optimise this classification problem, especially for individuals 
with syncope for whom there has been no previous research exploring 
language features that can aid the identification of this diagnosis. 

This paper provides no indication for how well this approach would 
work after the inclusion of automatic speech recognition (ASR). A suf-
ficiently large data set is required to adequately evaluate the perfor-
mance of ASR because ASR models require fine-tuning using data from 
the target domain. Given the limited size of the sample available for this 
study, an ASR model would likely provide inaccurate estimates of real- 
world performance. Therefore, future research should aim to develop a 
tailored ASR system for interactions about TLOC using a larger and 
cleaned dataset. 

The sample used in this study was not ethnically diverse because 
most participants were white and British. The data used to train an ASR 
system often uses speech from individuals who are native speakers of the 
target language, but these models can perform less effectively for in-
dividuals who are non-native speakers of the target language [7]. 
Therefore, ethnicity can have an impact on the performance of an 
automated analysis of language [12], and these confound variables, 
alongside additional confounds, should be explored more extensively in 
future research. 

We were unable to evaluate the performance of the iPEP when wit-
ness responses were incorporated due to a limited number of partici-
pants. The performance of the iPEP has been shown to improve when 
witness responses are incorporated to the extent that all individuals with 
syncope are correctly identified [31]. The fact that witness accounts 
were lacking from a proportion of the participants of our study reflects 
the clinical reality that many TLOC patients present to medical services 
when no witnesses are available.Therefore, future research should 
explore the impact of witness contributions, including whether an 
automated analysis of witness descriptions of the most recent attack can 
aid the differential diagnosis given that witness descriptions are vital in 
the differential diagnostic process [13]. 

Last but not least – while information about user satisfaction with the 
iPEP and VA system was collected in the form of patient and observer 
interviews (which will be analyzed and reported separately), we did not 
seek any views from clinicians about their faith in classifications 
generated by an AI process or about how the VA may be deployed 
clinicall in the future. 

5. Future research 

Future research should explore methods of improving the machine 
learning algorithm. Increasing the sample size would allow further 
development and improvement of the model. Alternative or additional 
features that are dependent on sample size could be developed, for 
example large language models could be used to develop features that 
are potentially effective predictors [8]. Other sources of data could be 
integrated into the model if it is possible to automate the analysis of the 
data, for example witness descriptions of the attack, body language [2], 
and home recordings of the seizure [11]. The design of the application 
can be further improved based on feedback from patients and clinicians, 
which could potentially include newer technology advanced in inter-
active speech technology to improve the interaction between the patient 
and VA. 

6. Conclusion 

This paper has explored the feasibility of predicting the cause of 
TLOC using an online patient symptoms and witness observation ques-
tionnaire (iPEP) and the automated analysis of spoken descriptions of 
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TLOC. We demonstrated that it is possible to improve the challenging 
differentiation between people with epilepsy or FDS using the auto-
mated analysis of seizure descriptions. However, increases in perfor-
mance were only achieved when the automated analysis of language was 
restricted to people with epilepsy and FDS. These findings demonstrate 
the feasibility of using this method to improve the differential diagnosis, 
but future research can improve upon this research by exploring 
whether the predictive performance of the version of the iPEP as 
administered through the online web application can be improved by 
training a machine learning model using a larger sample size, identifying 
linguistic features that are useful for identifying individuals with syn-
cope, creating an ASR system that is tailored towards descriptions of 
TLOC, and identifying and mitigating confounding variables. Finally, it 
is important to evaluate the acceptability of the approach from the 
perspective of users to ensure this is a clinical decision tool that patients 
and witnesses would be prepared to use. 
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