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Abstract. In this work we employ importance sampling (IS) techniques to

track a small over-threshold probability of a running maximum associated with

the solution of a stochastic differential equation (SDE) within the framework
of ensemble Kalman filtering (EnKF). The proposed method acts as a post-

processing step applied to the EnKF output: it uses the ensemble at a given

observation time to estimate the probability of a rare event occurring before the
next observation, without altering the EnKF itself. Between two observation

times of the EnKF, we propose to use IS with respect to the initial condition of
the SDE, IS with respect to the Wiener process via a stochastic optimal con-

trol formulation, and combined IS with respect to both initial condition and

Wiener process. Both IS strategies require the approximation of the solution
of Kolmogorov Backward equation (KBE) with boundary conditions. In mul-

tidimensional settings, we employ a Markovian projection dimension reduction

technique to obtain an approximation of the solution of the KBE by just solv-
ing a one dimensional PDE. The proposed ideas are tested on three illustrative

examples: Double Well SDE, Langevin dynamics and noisy Charney-deVore

model, and showcase a significant variance reduction compared to the stan-
dard Monte Carlo method and another sampling-based IS technique, namely,

multilevel cross entropy.
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1. Introduction

Let {ut}t≥0 ∈ Rd be a Markov process which determines the state of the system
arising from a stochastic dynamics model. In particlular, we assume the model
dynamics is associated with a stochastic differental equation (SDE) driven by the
Wiener process. Suppose also we are given partially observed observations {yn}n∈N
arriving sequentially at discrete time instances {tn}n∈N. We wish to approximate
the expected value of a quantity of interest φ : Rd → R applied to un := utn , taking
into account the accumulated observation data Yn := (y1, y2, ..., yn) up to time tn,
i.e., we seek to approximate E[φ(un)|Yn].

Data assimilation is a powerful methodology to combine the observation data
with the model forecast to produce more reliable estimates of true states of the
system. There are various data assimilation techniques with their strengths and
limitations. Among them, the ensemble Kalman filter (EnKF) has quickly become
popular for performing inference online in many applications due to its simplicity
in implementation and efficiency in high dimensional problems [26, 47, 1, 45, 64].
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However, the EnKF is impractical when the system exhibits very unlikely, unusual
fluctuations, i.e., in failure/rare event occurrences. Suppose we want to estimate the
probability of a failure event of a dynamic system between two observation times tn
and tn+1 before obtaining the next measurement at time tn+1. For example, we may
want to detect a hazard for an aircraft caused by extreme turbulence given radar
observations [28], predict a financial crisis using stock market data [49], or forecast
a severe weather event provided different sources of weather measurements [46, 74,
56].

Objective: In this work, we are concerned with a particular type of rare event.
More precisely, we want to track the probability of the running maximum of the
projected one-dimensional stochastic process exceeding a critical threshold K > 0
until the next observation time tn+1 within the framework of the EnKF given the
data Yn:

αn := P
(

max
tn≤t≤tn+1

P1ut ≥ K
∣∣∣Yn),

where P1 ∈ R1×d is a pre-defined projection applied to ut ∈ Rd.

Figure 1. Illustration of the IS idea for the rare event tracking in the context of the EnKF.

The size of blue circles, which depends on the rareness of the estimated event, may differ from
the original EnKF ensemble (red circles) size. Rare event paths (blue dashed line) are not

reused or propagated in the next observation interval, do not affect the standard EnKF ensem-
bles, and are not involved in data assimilation.

Since the EnKF is a Monte Carlo (MC)-based filtering method, the estimation
of a very small over-threshold probability by EnKF ensembles is computationally
expensive for rare event regimes αn ≪ 1. Various variance reduction techniques
exist to improve the efficiency of the MC simulation. One famous technique to
reduce the variance is importance sampling (IS). It is based on the idea of changing
the original probability density to another biasing density such that the rare event is
more likely to occur [52, 2, 11]. To ensure the unbiasedness of the new IS estimator,
one must reweight each sample by an appropriate likelihood ratio. However, a key
challenge in IS is to select a good choice of biasing density, which results in a
significantly smaller variance of the estimator compared to the one provided by the
standard MC.
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In this work, we incorporate IS techniques into the EnKF framework to enable
tracking of rare event probabilities in real time. Specifically, we propose three IS
strategies that can be applied at each observation time tn as a post-processing
step, that is, using the output of the EnKF without modifying its internal filtering
procedure. These strategies include: IS with respect to (wrt) the initial condition of
the SDE (i.e., a change of measure from the original density ρun|Yn

to the biasing IS

density ρISun|Yn
); IS wrt the Wiener process via a stochastic optimal control (SOC)

problem [35]; and the combination of IS wrt both initial condition and Wiener
process. The idea is illustrated in Figure 1, where the red circles form the standard
EnKF ensemble and the red trajectories are induced by the Wiener paths, while the
blue circles are the auxiliary EnKF ensemble to estimate the rare event probability
and the blue trajectories are driven by the controlled SDE obtained via change of
measure wrt the Wiener process, thus, allowing to monitor the failure probability
between observation times. Here, we note that the auxiliary EnKF ensemble size,
which depends on the rareness of the estimated event, is not necessarily the same as
the original EnKF ensemble size. We also note that our methodology is designed to
be applied independently at each observation time, using only the updated EnKF
ensemble available at that step. The generated rare event paths from previous
observation time window are not reused or propagated at the next observation
time interval, have no influence on the main EnKF ensemble, and are excluded
from the data assimilation process. The proposed IS schemes are based on solving
the Kolmogorov backward equation (KBE), which is not computationally feasible
in high dimensions. To overcome this issue, we employ the Markovian projection
technique [32, 6] that allows us to approximate the multidimensional KBE by a
lower-dimensional KBE. We compare our proposed approaches with the multilevel
cross entropy (CE) method which is another widely-used technique to estimate rare
event probabilities [51, 52].

Remark 1 (Aspects beyond the present scope). Note that we operate strictly within
the framework of the EnKF. By this we assume that the posterior distribution of the
system state at each observation time is approximated by the updated EnKF ensem-
ble and our proposed methodology is applied as a post-processing step. Our goal is to
construct and verify rare event tracking methods between two consecutive observa-
tions in practical data assimilation contexts where the EnKF is considered a reason-
able and computationally efficient filtering approach. While the EnKF converges to
the so-called mean-field Kalman filter under sufficient regularity assumptions and
introduces an approximation error relative to the true Bayes filter, addressing or
quantifying this discrepancy is beyond the scope of the present study. For more
detailed discussions on the accuracy, limitations and convergence properties of the
EnKF, we refer the reader to [55, 43, 54, 53].

Literature review. An accurate estimation of rare event probabilities based on
dynamic systems is a challenging problem that usually lacks analytical solutions and
needs both sophisticated theory and efficient computational tools [14, 8, 66]. A con-
siderable amount of literature has been dedicated to analytical and semi-analytical
approximation methods from the structural reliability analysis, for instance, the
first and second order reliability methods (FORM and SORM) based on first and
second order Taylor series expansions, respectively, to find the most likely fail-
ure point [58, 40, 23]. However, these methods can be computationally costly in
high-dimensional settings since they involve an optimization problem to solve and
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exhibit large approximation errors of estimates [70]. An additional perspective to
tackle the problem is based on the theory of large deviations which indicates that,
in cases of low noise, trajectories may converge towards the most likely path lead-
ing to a rare event. The large deviation principle allows to estimate the rare event
probability by solving a deterministic optimization problem based simply on the
ordinary differential equations. However, this is possible only in the context of the
small noise limit. The estimation of extreme events within the framework of large
deviations is reviewed in [31]. A combination of large deviations theory with the
PDE-constrained optimization is proposed in [69], with the importance sampling is
in [63], and with the cross entropy-based importance sampling is in [68].

An alternative approach that has garnered significant attention and is being
studied extensively is the use of sampling-based methodologies for rare events in
dynamic models. Since a crude Monte Carlo method is unsuitable for the simu-
lation of small probabilities [65], different advanced variance reduction techniques
have been developed to speed up its efficiency while the accuracy is maintained
(e.g., subset simulation/splitting algorithms [3, 12, 16, 13, 73], sequential MC and
IS [41, 15, 61], line sampling [20, 67], cross-entropy [51, 21] methods). In general,
sampling methods have demonstrated their strength and efficiency in estimating
rare events accurately for high-dimensional settings, as evidenced by their success-
ful implementation in various applications [4, 7, 75]. Another effective sampling
method designed for rare events is referred to as genealogical particle analysis.
This approach involves selecting and replicating the most favorable realizations of
an ensemble of trajectories in an iterative form similar to the idea of MC acceptance-
rejection techniques [22].

Recent studies have also explored the relationship between IS schemes and SOC
theory when the underlying dynamics is governed by diffusion [39, 36, 38] with the
further application for rare event simulation problems [35]. The latter is based on
a Gibbs variational principle to find the optimal change of measure, which can be
formulated as a SOC problem and solved by the Feynman–Kac representation of the
dynamic programming equations [35]. However, these approaches consider a change
of measure with respect to the Wiener path only, while keeping the initial condition
fixed. The SOC theory is also applied for estimating rare event probabilities in the
case of the McKean-Vlasov SDEs [10, 62] and stochastic reaction networks [9] with
further application of the Markovian projection technique in [33].

In the context of data assimilation, the approaches to tracking rare events pro-
posed in this article align with the study presented in [71]. The authors combine
features of both sampling-based filters and variational methods, resulting in the
development of hybrid data assimilation techniques, and test their idea on the
Kuroshio model. The study is focused only on the low noise regime and with a
small stochastic forcing term, which allows the application of large deviation anal-
ysis. However, this work does not consider a change of measure with respect to the
initial condition, which is a key component of our proposed importance sampling
framework. The work [72] employed the EnKF as a tool to estimate failure proba-
bilities where the rare event problem is reformulated as a Bayesian inverse problem.
In particular, the auxiliary EnKF ensembles are used to generate failure samples
but not for tracking rare events in real-time, which is the focus of the current study.

Main contributions. This work introduces novel IS strategies for rare event esti-
mation, implemented as a post-processing step within the EnKF framework. While
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importance sampling and rare event simulation are well-studied in the SDEs lit-
erature, particularly via stochastic control and large deviations techniques, our
approach introduces new directions that remain largely unexplored. To the best of
our knowledge, IS strategies that involve a change of measure with respect to the
initial condition, either independently or in combination with a change of measure
with respect to the Wiener process, have not been previously explored or tested
numerically in the rare event estimation and SDEs literature. Existing SOC-based
approaches typically focus on modifying the path measure while assuming a fixed
initial condition [35, 36, 38, 71, 24]. In contrast, our work introduces a principled
framework for constructing IS estimators that modify the distribution of the ini-
tial condition, as well as a combined approach that jointly alters both the initial
distribution and the path measure.

Additionally, the technical approach we introduce for IS wrt the initial condition
and IS wrt both initial condition and Wiener process — specifically, the PDE-based
approximation of the optimal density combined with Gaussian fitting and the use of
the Markovian projection technique for dimensionality reduction — has not, to the
best of our knowledge, been previously proposed or evaluated in the filtering context
and rare event analysis. We are not aware of any prior work that implements this
combination of methods in the manner presented in our manuscript.

Outline. The subsequent sections of the work are structured in the following
manner. Section 2 describes a discrete-time filtering problem, followed by a concise
summary of the EnKF framework. It also includes a discussion of how the problem
relates to the concept of stopping time and the numerical approximation of the
quantity of interest (QoI). In Section 3, we propose several IS techniques that can
be combined with the EnKF framework. Finally, Section 4 exhibits the numerical
part where the proposed IS schemes are applied to three different examples: Double
Well SDE, Langevin dynamics and noisy Charney-deVore model.

2. Problem setting

We first describe the discrete-time filtering problem with observations arriving at
times {tn}n∈N, and later return to the problem of estimating rare event probabilities
between observations.

Let the triple (Ω,F ,P) denote a complete probability space on which we consider
the filtering problem. The primary goal in the filtering problem is to track the
underlying signal un governed by the stochastic dynamics

(1) un(ω) = Ψ(un−1, ω), n = 1, 2, ...

provided the accumulated data Yn up to time tn with noisy observations given by

(2) yn(ω) = Hun(ω) + ηn(ω), n = 1, 2, ...

where ω ∈ Ω, H ∈ Rm×d, and {ηk}k∈N is an independent and identically distributed
(i.i.d.) sequence being independent of {uk}k∈N∪{0} with η1 ∼ N(0,Γ) for a positive

definite Γ ∈ Rm×m. For the sake of simplicity, we further drop the dependence on
ω in the notation throughout the paper if there is no confusion.

In other words, the filtering problem is concerned with an approximation of
the conditional random variable un|Yn in real-time as soon as the data at time
tn is acquired. Let ρun|Yn

denote the probability density function of un given Yn
and ρun|un−1

denote the transition density of un given the previous value un−1

typically taken from the model equation in (1). Based on Bayes’ theorem, the
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filtering problem can be expressed formally via two recursive steps of computing
the probability density of un|Yn as follows

prediction step: ρun|Yn−1
(u) ∝

∫
Rd

ρun|un−1
(u)ρun−1|Yn−1

(v)dv,

update step: ρun|Yn
(u) ∝ exp

(
−
∣∣Γ−1/2(yn −Hu)

∣∣2/2) ρun|Yn−1
(u).

If the initial density of u0|Y0 is assumed to be Gaussian and the dynamics Ψ is
linear with additive Gaussian noise, the filtering density becomes Gaussian, which
can be entirely described by only two statistics (mean and covariance). In this case,
the Kalman filter provides an exact algorithm to track the mean and covariance at
each observation timestep. However, in a more general case, when Ψ is nonlinear,
an exact solution to the filtering problem is usually not attainable, and we mostly
rely on approximation methods. In this work, we focus on an important class of
such approximation methods in filtering, namely, the EnKF.

The EnKF is an extension of the Kalman filter to nonlinear settings, which
produces an ensemble of particles whose empirical measure approximates the true
filtering distribution of un|Yn. Let P denote the EnKF ensemble size and the pair
(vn,i, v̂n,i) denote the prediction and updated ensemble particles, respectively, cor-
responding to the sample ωi at time tn. Then, the EnKF algorithm with perturbed
observations consists of two iterative steps for n ∈ N, namely

(3) prediction step:



vn,i = ΨN
n−1(v̂n−1,i), i = 1, 2, ..., P,

mn =
1

P

P∑
i=1

vn,i,

Cn =
1

P − 1

P∑
i=1

(vn,i −mn) (vn,i −mn)
T
,

where ΨN
n−1 denotes the numerical discretization of the dynamics Ψn−1 using N ≥ 1

uniform timesteps, and

(4) update step:


ỹn,i = yn + ηn,i, i = 1, 2, ..., P,

Kn = CnH
T(HCnH

T + Γ)−1,

v̂n,i = (I −KnH)vn,i +Knỹn,i, i = 1, 2, ..., P,

where ηn,i are i.i.d. draws from N(0,Γ), the matrix Kn is known as the Kalman
gain and H is the observation matrix in (2) [43, 44].

Let us consider discrete observation time points over the interval [0, T ], denoted
by 0 = t0 < t1 < ... < tO = T . In the remainder of this work, we will consider low
probability events between two consecutive observations, at times tn and tn+1. As
mentioned earlier, it will be assumed that the underlying signal process is considered
as the evolution of the dynamics Ψ associated with an SDE of the form

(5)

{
dut = a(ut)dt+ b(ut)dW

P
t , t ∈ (tn, tn+1),

un ∼ ρ0,

where a : Rd → Rd is called the drift coefficient, b : Rd → Rd×dW is called the
diffusion coefficient, W P

t : Ω × [tn,∞) → RdW×1 is an dW -dimensional Wiener
process, independent of uk, k ≤ n, under the probability measure P, and the initial
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condition ρ0 is defined by the updated EnKF density ρ̂un|Yn
at time tn

1. The drift
and diffusion coefficients are generally expected to satisfy the regularity conditions
to ensure the existence and uniqueness of the solution to (5) (see, e.g. [50, Section
4.5] for sufficient conditions).

Remark 2 (Tail assumptions). Note that this work does not consider more chal-
lenging cases such as SDEs resulting in heavy-tailed events. For that purpose, we
assume that the drift coefficient a is measurable and has a linear growth in space,
and the diffusion coefficient b is bounded and satisfies the usual uniform ellipticity
condition. This ensures that the SDE (5) has a unique weak solution and admits
the density whose tails decay as Gaussian (see, e.g. [59, Eq. (1.2)-(1.3)]).

According to the main objective of the work, we restrict our attention to the
observation interval [tn, tn+1] (although the proposed approaches in this work will
be applicable for all observation time intervals). We define the first time when the
running maximum process {maxtn≤t≤tn+1 P1ut} hits the threshold K given P1un <
K at the initial time tn by

τK := inf{t > tn : P1ut ≥ K |P1un < K}.
In the literature, the random variable τK is referred to as a first exit/passage time
and τ := min{τK, tn+1} is a stopping time. There is a connection between the
events {maxtn≤t≤tn+1

P1ut ≥ K} and {τK ≤ tn+1}, which allows us to write

(6) αn = Eρ0⊗P[1{maxtn≤t≤tn+1
P1ut≥K}|Yn] = Eρ0⊗P[1{P1uτ≥K}|Yn],

where 1{·} is an indicator function. Furthermore, for convenience, we will omit the
notation for dependence on the data Yn.

A standard procedure to estimate the QoI in (6) is to employ a time-discretization
scheme such as Euler-Maruyama and use an MC simulation for computing the mean
estimation of the exit events. Let tn = tn,0 < tn,1 < ... < tn,k < ... < tn,K = tn+1

be a partition of the interval [tn, tn+1] with tn,k := tn + k∆t and ∆t = tn+1−tn
K .

The discrete forward Euler-Maruyama (EM) approximation of the SDE (5) is

(7)

{
ūn,k+1 = ūn,k + a(ūn,k)∆t+ b(ūn,k)∆W

P
n,k,

ūn,0 = un,

for k = 0, ...,K− 1, with ∆W P
n,k =W P

n,k+1−W P
n,k ∼ N(0,∆tIdW

) where IdW
is the

dW -dimensional identity matrix.
For sufficiently small ∆t, we can approximate the QoI by a function of K discrete

EM points, i.e.,

αn ≈ Eρ0⊗P[1U (ūn,0:K)],(8)

where ūn,0:K := {ūn,k}Kk=0 and

U := {xk ∈ Rd, k = 0, ...,K : P1xk ≥ K for some k}.
Hereafter, we work with this EM approximation of the QoI to perform IS techniques.

Remark 3 (Stopped diffusions). One of the challenges in approximating the QoI
involving stopped diffusions on the boundary is that a continuous path may leave
the domain (i.e., hit the threshold) even if a discrete approximate solution does

1refers to a Gaussian density characterized by the empirical mean and covariance matrix
computed from the EnKF ensemble at time tn.
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Figure 2. Illustration of the challenge with stopped diffusions in the boundary discussed in Re-
mark 3. The continuous path (red) hits the threshold at τK although the discrete EM solutions

do not exit the boundary (or may exit after τK).

not exit the boundary (see Figure 2). This leads to a slow convergence of the
time-discretization error (for more discussions, see [29, 30, 25]). In particular,

the EM scheme in (7) achieves a weak convergence, O(
√
∆t), of the relative error,

as ∆t → 0, compared to a standard Euler-type convergence O(∆t) under certain
conditions [50, 5, 42]. One way to recover the first-order convergence of the EM
method is by performing a straightforward hitting test after each time step. This
involves examining the distribution of the Brownian bridge between two discrete EM
nodes to determine if the threshold was crossed during the given time step. This
approach is referred to as the Brownian bridge technique [29] and implemented in
this work (see Algorithm 2 in Appendix D). However, note that this is not the main
challenge considered in this work.

3. Importance Sampling techniques

The primary focus of the work is to reduce the variance effectively via appropriate
importance sampling techniques. For that purpose, observe that there are two
sources of randomness in (5) coming from the initial condition and also from the
Wiener process. Correspondingly, we can perform IS wrt ρ0, IS wrt W P

t and IS wrt
both ρ0 and W P

t . In this section, we describe the methodology of each proposal
applied to the EM approximation of the QoI.

3.1. IS with respect to initial condition. Let us consider the joint density
ρūn,0:K

of a random vector (ūn,0:K) with ρūn,0
= ρ0. Now we introduce an alterna-

tive density function ρ̃0, such that it is non-negative and
∫
ρ̃0(x0)dx0 = 1. Using

the shorthand x1:K for a K-tuple (x1, ..., xK), rewrite the approximation of the QoI
as
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α̂n := Eρ0⊗P[1U (ūn,0:K)] =

∫
1U (x0:K) ρūn,0:K

(x0:K)dx0:K

=

∫
1U (x0:K) ρ0(x0)ρūn,1:K |ūn,0

(x1:K |x0)dx0:K

=

∫
1U (x0:K)

ρ0(x0)

ρ̃0(x0)
ρūn,1:K |ūn,0

(x1:K |x0)ρ̃0(x0)dx0:K

= Eρ̃0⊗P

[
1U (ūn,0:K)L0(ūn,0)

]
,

(9)

where L0(x0) :=
ρ0(x0)
ρ̃0(x0)

is the likelihood ratio.

In order to select a proper density ρ̃0 that results in a smaller variance, let us
consider the second moment of the QoI approximation,

Eρ̃0⊗P

[
1U (ūn,0:K)L2

0(ūn,0)
]
=

∫
1U (x0:K)

ρ20(x0)

ρ̃20(x0)
ρūn,1:K |ūn,0

(x1:K |x0)ρ̃0(x0)dx0:K

=

∫
1U (x0:K)

ρ20(x0)

ρ̃0(x0)
ρūn,1:K |ūn,0

(x1:K |x0)dx0:K

=

∫
E[1U (ūn,0:K) |ūn,0 = x0]

ρ20(x0)

ρ̃0(x0)
dx0

(10)

where the last equality follows from Fubini’s theorem. Now employing a classical
inequality from analysis to the last term2, we have∫ (√

E[1U (ūn,0:K) |ūn,0 = x0]
ρ0(x0)√
ρ̃0(x0)

)2

dx0

∫ (√
ρ̃0(x0)

)2
dx0︸ ︷︷ ︸

=1

≥
(∫ ∣∣∣∣√E[1U (ūn,0:K) |ūn,0 = x0]ρ0(x0)

∣∣∣∣ dx0)2

,

(11)

which shows that the second moment of the QoI approximation is always at least
large as right-hand side of (11). We can deduce that (11) becomes an equality if
ρ̃0(x0) is proportional to

ρ̃0(x0) ∝ ρ0(x0)
√

E[1U (ūn,0:K) |ūn,0 = x0]

= ρ0(x0)

√
P
(

max
0≤k≤K

P1ūn,k ≥ K
∣∣∣ūn,0 = x0

)
,

(12)

which is the strategy for the optimal importance sampling density when we change
a measure only with respect to initial condition.

Here, ρ0 is given and the exit probability needs to be approximated.

3.1.1. PDE-based method. We propose a PDE-based approach to computing the
probability in (12). Let us define the function

γ(x, t) := P
(

max
t≤s≤tn+1

P1us ≥ K
∣∣∣ut = x

)
.

This γ(x, t) solves the Kolmogorov Backward Equation (KBE) associated with
the SDE (1). We will first state this problem for d = 1, where the standard

2The Cauchy-Schwartz inequality:
(∫

|u(x)v(x)| dx
)2 ≤

∫
u2(x)dx

∫
v2(x)dx. Note that the

inequality becomes an equality when two functions u and v are proportional to each other.
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discretization-based numerical PDE approximation methods are efficient, and then
propose the use of Markovian projection [32, 6] as a way of approximating the
solution of the d-dimensional PDE by a solution of a lower dimensional one.

One-dimensional setup. For d = 1, the process P1ut = ut is a one-dimensional
Markov process, and thus, γ(x, t) satisfies the KBE with a Dirichlet boundary
condition on the domain (−∞,K]× [tn, tn+1],

(13)


∂γ
∂t = −a(x)∂γ∂x − 1

2b(x)b(x)
T ∂2γ

∂x ,
γ(x, tn+1) = 0, x < K,
γ(K, t) = 1, t ∈ [tn, tn+1],
lim

x→−∞
γ(x, t) = 0, t ∈ [tn, tn+1].

Note that there is a discontinuity in the data at (K, tn+1). By numerically ap-
proximating (13) backward in time with the technique of freezing the coefficients
in a neighborhood of the discontinuity (see Appendix C for more details about
the numerical solver), we can obtain a sufficiently accurate approximation for the
discrete-time exit probability in (12) by a terminal time solution

P
(

max
0≤k≤K

P1ūn,k ≥ K
∣∣∣ūn,0 = x0

)
≈

{
γ(x0, tn), if x0 < K,
1, if x0 ≥ K,

and compute for x0 ∈ R

(14) ρ̃PDE,1
0 (x0) ∝ ρ0(x0)

√
γ(x0, tn).

For simplicity, due to the Gaussian assumption of EnKF, we fit a Gaussian density
with parameters (µfit

0 , σ
fit
0 ) to the optimal IS initial density via a moment match-

ing approach. Specifically, we first evaluate the product ρ0(x0)
√
γ(x0, tn) over a

sufficiently fine 1D grid covering the relevant domain. We then normalize it us-
ing numerical integration via the trapezoidal rule. The Gaussian parameters µfit

0

and σfit
0 are obtained by matching the first and second moments of the normalized

optimal IS initial density:

µfit
0 =

∫
x0 · ρ̃PDE,1

0 (x0) dx0, (σfit
0 )2 =

∫
x20 · ρ̃

PDE,1
0 (x0) dx0 − (µfit

0 )2.

where the integrals are approximated numerically via the trapezoidal integration
rule.

Let us assume ρ0(x0) ∼ N(µ0, σ0). Then, the likelihood L0 is defined by the
ratio of two Gaussian densities

L0(x0) =
ρ0(x0)

ρ̃PDE,1
0 (x0)

=
σfit
0

σ0
exp

(
− (x0 − µ0)

2

2σ2
0

+

(
x0 − µfit

0

)2
2
(
σfit
0

)2
)
.

Note that the methodology is initially developed within the EnKF framework
because its Gaussian structure simplifies both sampling and likelihood ratio com-
putations in the IS setting. Without this assumption, identifying and sampling
from an optimal initial distribution would require additional techniques—such as
nonparametric density estimation or variational inference—which are beyond the
scope of this study.

High-dimensional setup. For d > 1, the process St := P1ut with ut ∈ Rd is in
general no longer Markovian, and thus, we apply a Markovian projection technique



TRACKING RARE EVENTS WITHIN ENKF 11

to be able to employ the proposed PDE-based method above [32, 6]. We introduce
a Markovian surrogate process Št ∈ R which follows the SDE

(15)

{
dŠt = ǎ(Št, t)dt+ b̌(Št, t)dW̌

P
t , t ∈ (tn, tn+1),

Štn = P1un, un ∼ ρ0,

where W̌ P
t : Ω × [0,∞) → R is an one-dimensional Wiener process independent of

the initial condition Štn , and ǎ, b̌ : R × [0,∞) → R are non-random coefficients
defined by

(16)

{
ǎ(y, t) = E[P1a(ut)|P1ut = y],

b̌2(y, t) = E[(P1bb
TPT

1 )(ut)|P1ut = y].

It is proved that, in the case of a fixed initial condition, if P1a(x) and P1b(x)
are bounded measurable functions such that (P1bb

TPT
1 )(x) is uniformly positive

definite, then the SDE (15) admits a weak solution Št which has the same one-
dimensional probability distribution as St for every t [32]. Since we have a random
initial condition, it is assumed that the conditional expected values in (16) exist
and are well-defined too. One can use a discrete L2 regression to approximate (16).
We provide the details of the approximation method in Appendix A.

For simplicity, we assume that the coordinate system is oriented so that one
component is orthogonal to the hyperplane that defines the rare event threshold,
e.g., P1ut = uit for a given i = 1, ..., d. For a general form of the projection P1, we
can use an orthogonal coordinate transformation such that the rare event is defined
by a single component in the transformed coordinates with the condition that the
first row of the rotation matrix and PT

1 are collinear
Following the same idea as in one dimension, we solve the KBE corresponding

to the surrogate process Št defined by

(17)


∂γ̌
∂t = −ǎ(y, t)∂γ̌∂y − 1

2 b̌(y, t)b̌(y, t)
T ∂2γ̌

∂y ,

γ̌(y, tn+1) = 0, y < K,
γ̌(K, t) = 1, t ∈ [tn, tn+1],
lim

s→−∞
γ̌(y, t) = 0, t ∈ [tn, tn+1].

and approximate the high-dimensional optimal IS initial density for x0 ∈ Rd by

(18) ρ̃PDE,1
0 (x0) ∝ ρ0(x0)

√
γ(x0, tn) ≈ ρ0(x0)

√
γ̌(P1x0, tn).

Note that ρ0(x0) is here a multivariate Gaussian density. For simplicity, let us pro-

vide an example of how we fit a Gaussian density to the product ρ0(x0)
√
γ̌(P1x0, tn)

in the two-dimensional case.

Example 1. Let x0 = (x10, x
2
0) ∈ R2 and the projection P1x0 = x10. Let ρ0(x0) be a

bivariate Gaussian density with mean

[
µ1
0

µ2
0

]
and covariance

[
(σ1

0)
2 ϱσ1

0σ
2
0

ϱσ1
0σ

2
0 (σ2

0)
2

]
where

ϱ is a correlation coefficient between x10 and x20. Then, the optimal IS initial density

ρ̃0(x
1
0, x

2
0) ∝ ρ0(x

2
0|x10)ρ0(x10)

√
γ̄(x10, x

2
0; tn) can be approximated by the probability

density

ˇ̃ρ0(x
1
0, x

2
0) ∝ ρ0(x

2
0|x10)ρ0(x10)

√
γ̌(x10, tn).
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We can fit the univariate Gaussian density to the product ρ0(x
1
0)
√
γ̌(x10, tn) with

parameters µfit
0 and σfit

0 via the moment matching approach as described in one-
dimensional setting. Note that ˇ̃ρ0(x

2
0|x10) = ρ0(x

2
0|x10) and

ˇ̃ρ0(x
1
0) ∝

∫
ρ0(x

2
0|x10)ρ0(x10)

√
γ̌(x10, tn)dx

2
0 = ρ0(x

1
0)
√
γ̌(x10, tn).

Applying a definition of the conditional bivariate Gaussian distribution, we have

ˇ̃ρ0(x
2
0|x10) ∼ N

(
µ2
0 + ϱ

σ2
0

σ1
0

(x10 − µ1
0), (1− ϱ2)(σ2

0)
2
)
,

where x10 ∼ N(µfit
0 , σ

fit
0 ). The likelihood ratio, in this case, is defined by

L0(x0) =
ρ0(x

1
0)

ˇ̃ρ0(x10)
=
σfit
0

σ1
0

exp

(
− (x10 − µ1

0)
2

2(σ1
0)

2
+

(x10 − µfit
0 )2

2(σfit
0 )2

)
A similar approach is used in the numerical section 4.2.

3.1.2. Multilevel Cross-Entropy method. For the purpose of comparison, we
consider a simple, efficient iterative procedure known as the multilevel cross-entropy
(CE) method to estimate the optimal IS density (12). The core idea of the CE is
to assume ρ̃0(x0) to be from a particular family of densities {ρ0(x0;ν)} (in the
framework of EnKF - Gaussian family) and select the parameter vector ν such
that the distance between ρ0(x0;ν) and ρ̃0(x0) in (12) is minimal [21, 51]. A
methodology and basic algorithm of the multilevel CE adjusted to the EnKF setting
are briefly provided in Appendix B. We denote the optimal IS density obtained via
the multilevel CE method by ρ̃CE

0 .

3.2. IS with respect to Wiener processes using SOC. Here, we base the
analysis on the continuous time problem (5). We apply IS wrt Wiener processes
obtained by stochastic optimal control for the SDEs of the form (5) with a fixed
initial condition x0.

One-dimensional setup. Let us introduce a process

WQ
t =W P

t −
∫ t

tn

ξ(us, s)ds

where ξ : R× [tn, tn+1] → RdW×1 and substitute it in (5) for t ∈ (tn, tn+1) to get

(19)

{
dut = (a(ut) + b(ut)ξ(ut, t))dt+ b(ut)dW

Q
t ,

un = x0.

Girsanov’s theorem [48] states under certain conditions that (WQ(t))t≥0 is a
Wiener process under the probabilty measure Q with the likelihood ratio

(20)
dP
dQ

|[tn,t] = exp

(
−
∫ t

tn

ξ(us, s)
T dWQ

s − 1

2

∫ t

tn

ξ(us, s)
T ξ(us, s)ds

)
.

Then, a change of measure wrt the Wiener process is as follows

Eρ0⊗P[1{uτ≥K}] = Eρ0⊗Q

[
1{uξ

τ≥K}
dP
dQ

|[tn,τ ]
]
,

where uξt follows the controlled SDE{
duξt = (a(uξt ) + b(uξt )ξ(u

ξ
t , t))dt+ b(uξt )dW

Q
t ,

uξn = x0.
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Now, the aim is to find a control ξ that minimizes the variance of the QoI. Note
that it is sufficient to minimize the second moment of the estimator that is

min
ξ

Eρ0⊗Q

[
1{uξ

τ≥K}e
−2

∫ τ
tn

ξ(uξ
s,s)

T dWQ
s −

∫ τ
tn

ξ(uξ
s,s)

T ξ(uξ
s,s)ds

∣∣∣uξn = x0

]
.

Let us define the value function that minimizes the second moment of the MC
estimator:

θ(x, t) = min
ξ

Eρ0×Q

[
1{uξ

τ≥K}e
−2

∫ τ
t

ξ(uξ
s,s)

T dWQ
s −

∫ τ
t

ξ(uξ
s,s)

T ξ(uξ
s,s)ds

∣∣∣uξt = x
]
.

Then, θ(x, t) satisfies the following terminal-boundary problem [27, 37, 36, 35, 60]

(21)


∂θ
∂t = −a(x) ∂θ∂x − 1

2b(x)b(x)
T ∂2θ

∂x2 + 1
2θ b(x)b(x)

T
(
∂θ
∂x

)2
,

θ(x, tn+1) = 0, x < K,
θ(K, t) = 1, t ∈ [tn, tn+1]
lim

x→−∞
θ(x, t) = 0, t ∈ [tn, tn+1],

with the optimal control

ξ⋆(x, t) =
1

2
b(x)T

∂ log θ(x, t)

∂x
.

Alternatively, we can consider θ(x, t) = γ2(x, t) which leads to the KBE defined
in (13) with the optimal control [27, 37, 36, 35, 60, 10]

(22) ξ∗(x, t) = b(x)T
∂ log γ(x, t)

∂x
.

High-dimensional setup. In more than one dimension, similarly to Section 3.1.1,
we apply the Markovian projection technique and apply a change of measure wrt
the Wiener process to the one-dimensional surrogate process Št. Then, the value
function satisfies the above-mentioned PDEs since the Markov property for Št holds.
The high-dimensional optimal control with x ∈ Rd can be approximated via a
solution of the one-dimensional PDE by

(23) ξ∗(x, t) ≈ b(x)TPT
1

∂ log γ̌(P1x, t)

∂y
,

where the partial derivative is taken wrt the component on which we project.
Correspondingly, the high-dimensional controlled SDE takes the form{

duξt = (a(uξt ) + b(uξt )ξ(u
ξ
t , t))dt+ b(uξt )dW

Q
t ,

uξn = x0,

where ξ : Rd × [tn, tn+1] → RdW×1 and the likelihood ratio is

(24)
dP
dQ

|[tn,t] = exp

(
−
∫ t

tn

ξ(us, s)
T dWQ

s − 1

2

∫ t

tn

ξ(us, s)
T ξ(us, s)ds

)
.

3.3. IS with respect to both initial condition and Wiener processes. Recall
that ρūn,0:K

denotes the joint density of a random vector (ūn,0:K) with ρūn,0
= ρ0.
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Now we introduce an alternative joint density function ρ̃ūξ
n,0:K

and consider

Eρ0⊗P[1U (ūn,0:K)] =

∫
1U (x0:K) ρūn,0:K

(x0:K)dx0:K

=

∫
1U (x0:K)

ρūn,0:K
(x0:K)

ρ̃ūξ
n,0:K

(x0:K)
ρ̃ūξ

n,0:K
(x0:K)dx0:K

= Eρ̃0⊗Q

[
1U

(
ūξn,0:K

) ρūn,0:K
(ūξn,0:K)

ρ̃ūξ
n,0:K

(ūξn,0:K)

]
= Eρ̃0⊗Q

[
1U

(
ūξn,0:K

)
L0(ū

ξ
n,0)LW (ūξn,1:K)

]
,

(25)

where L0(·) is a likelihood ratio of the IS wrt the initial condition and LW (·) is a
likelihood ratio of the IS wrt the Wiener processes.

Using the Cauchy-Schwartz inequality, similarly to (11), the optimal importance
joint density that reduces the variance of the estimator is proportional to

ρ̃ūξ
n,0:K

(x0:K) ∝ 1U (x0:K) ρūn,0:K
(x0:K).

Furthermore, we can deduce that

ρ̃ūξ
n,0

(x0) =

∫
ρ̃ūξ

n,0:K
(x0:K)dx1:K ∝

∫
1U (x0:K) ρūn,0:K

(x0:K)dx1:K

=

∫
1U (x0:K) ρ0(x0)ρūn,1:K |ūn,0

(x1:K |x0)dx1:K

= ρ0(x0)

∫ (
1{P1x0≥K}(x0) + 1{P1x0<K}(x0)1U (x1:K)

)
ρūn,1:K |ūn,0

(x1:K |x0)dx1:K

= ρ0(x0)

{
P(max1≤k≤K P1ūn,k ≥ K|ūn,0 = x0), P1x0 < K,
1, P1x0 ≥ K.

(26)

One-dimensional setup. Similarly to Section 3.1, for d = 1, the optimal impor-
tance initial density in the IS wrt both initial condition and Wiener process is given
by

ρ̃PDE,2
0 (x0) ∝ ρ0(x0)γ(x0, tn), x0 < K,

where γ(x0, tn) is an approximation for the terminal time solution of the KBE (13).
Notice that (12) differs from (26) by having a square root in the exit probability.

The optimal control is defined similar to (22) and the likelihood ratios are cor-
respondingly given by

L0(ū
ξ
n,0) =

ρ0(ū
ξ
n,0)

ρ̃PDE,2
0 (ūξn,0)

=
σfit
0

σ0
exp

(
− (x0 − µ0)

2

2σ2
0

+

(
x0 − µfit

0

)2
2
(
σfit
0

)2
)
,

LW (ūξn,1:K) =

K−1∏
k=1

exp

(
−ξ(tn,k, ūξn,k)

T∆WQ
n,k − 1

2
∆tn,kξ(tn,k, ū

ξ
n,k)

T ξ(tn,k, ū
ξ
n,k)

)
,

(27)

where the control ξ is the zero vector after a stopping time. Note that LW here is
the discrete form of the likelihood defined in (20).

High-dimensional setup. For d > 1, similarly to the previous sections, as a result
of the Markovian projection technique, the optimal control is given by (23), the
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optimal initial density is approximated by

ρ̃PDE,2
0 (x0) ∝ ρ0(x0)γ(x0, tn) ≈ ρ0(x0)γ̌(P1x0, tn), P1x0 < K,

and the likelihood ratios are respectively given by

L0(ū
ξ
n,0) =

ρ0(ū
ξ
n,0)

ρ̃PDE,2
0 (ūξn,0)

,

LW (ūξn,1:K) =

K−1∏
k=1

exp

(
−ξ(tn,k, ūξn,k)

T∆WQ
n,k − 1

2
ξ(tn,k, ū

ξ
n,k)

T ξ(tn,k, ū
ξ
n,k)∆tn,k

)
,

(28)

where the control ξ is the zero vector after a stopping time. Note that LW here is
the discrete form of the likelihood defined in (24).

4. Numerical examples

In this section, we provide numerical examples that showcase the application of
the IS techniques presented in Section 3. We test the proposed IS approaches in a
range of problems: a Double Well SDE, Langevin dynamics and a noisy Charney-
deVore model [43, 44, 31]. Experimental support for the variance reduction of
the proposed methods is provided in comparison with the standard MC and the
multilevel CE methods.

The standard MC estimator to approximate the probability α̂n in (9) of the
discretized dynamics is

α̂MC
n :=

1

J

J∑
i=1

1U

(
ū
[i]
n,0:K

)
where

{
1U

(
ū
[i]
n,0:K

)}J

i=1
are i.i.d realizations of

{
1U (ūn,0:K)

}
. The estimator is

unbiased, which means E[α̂MC
n ] = α̂n, and the variance is

V[α̂MC
n ] =

α̂n − α̂2
n

J
.

The asymptotic result in the CLT motivates the confidence interval (CI) for α̂n as

α̂MC
n ± zc

√
V[α̂MC

n ],

where zc is a constant corresponding to a given level of confidence. We consider
95% CI in our numerical simulations by setting zc = 1.96.

In the regime of rare events, that is, α̂n tends to be very small, it is appropriate
to measure the accuracy of the estimation as a relative statistical error, which we
estimate by the ratio of the standard deviation and the mean

ϵMC
st = zc

√
V[α̂MC

n ]

α̂MC
n

.

The method of numerical approximation to (13) is desribed in Appendix C. A
numerical approximation of the corresponding optimal control is obtained by a cen-
tral difference with linear interpolation throughout the domain (see [10, Appendix
E] for more details).
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4.1. Double-Well problem. We consider nonlinear dynamics with a constant
diffusion and a drift arising for a double well (DW) potential

dut = −V ′(ut)dt+ bdWt,

where V (u) = 1
2+4u2 + u2

4 . Figure 3 serves an illustrative purpose, visualizing
the metastable behaviour of the DW dynamics between two wells over T = 100
observation times. Notice that the trajectory tends to remain in one well for a
considerably longer time horizon and transit to another well.

Figure 3. A trajectory of the DW SDE from Section 4.1 over T = 100 observation times

with given observations and the double-well potential. The model parameters: b = 0.5,

u0 ∼ N(−0.7, 0.1). The EnKF parameters: H = 1, Γ = 0.1.

K Estimator with 95% CI

α̂MC α̂CE,ρ̃0 α̂PDE,ρ̃0 α̂PDE,Wt α̂PDE,both

0
4.65× 10−2 4.66× 10−2 4.65× 10−2 4.63× 10−2 4.63× 10−2

[0.0461, 0.0469] [0.0462, 0.0470] [0.0461, 0.0469] [0.0462, 0.0464] [0.04626, 0.04632]

0.5
4.83× 10−3 4.76× 10−3 4.84× 10−3 4.81× 10−3 4.82× 10−3

[0.0047, 0.0050] [0.0046, 0.0049] [0.0047, 0.0050] [0.00480, 0.00483] [0.004815, 0.004822]

1
1.81× 10−4 - 1.90× 10−4 1.89× 10−4 1.89× 10−4

[1.6e-04, 2.1e-04] [1.7e-04, 2.1e-04] [1.88e-04, 1.90e-04] [1.891e-04, 1.895e-04]

1.2
3.70× 10−5 - 3.18× 10−5 3.12× 10−5 3.13× 10−5

[2.5e-05, 4.9e-05] [2.4e-05, 4.0e-05] [3.1e-05, 3.2e-05] [3.125e-05, 3.132e-05]

K Relative statistical error Variance reduction

ϵMC
st ϵCE,ρ̃0

st ϵPDE,ρ̃0

st ϵPDE,Wt

st ϵPDE,both
st

VMC

VCE,ρ̃0

VMC

VPDE,ρ̃0

VMC

VPDE,Wt

VMC

VPDE,both

0 0.9% 0.8% 0.9% 0.2% 0.06% 1.00 1.14 28 208
0.5 2.8% 3.0% 2.5% 0.3% 0.07% 0.90 1.29 96 1534
1 14.6% - 10.4% 0.5% 0.09% - 1.78 691 20992
1.2 32.2% - 26.2% 0.7% 0.11% - 2.06 2975 124939

Table 1. Double Well example. Model parameter: b = 0.5. Simulation parameters: T = 1,
∆t = 0.01, J = 106, u0 ∼ N(µ0, σ0) with µ0 = −1, σ0 = 0.2. Numerical results for the last two
lines of the CE method are missing due to the impracticability of the algorithm for the given
parameter setting and a limit of computer capacity to accomplish the simulation.
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Figure 4. Double Well example. The original initial density (ρu0 ∼ N(−1, σ0) in red solid

line) is centered in one well with the threshold K in the other well. For all three values of σ0,
K is such that the rare event probability is around 10−3. A comparision of the approximated

optimal initial densities based on: IS wrt ρ0 (ρ̃PDE,1
u0 in cyan dash-dotted line), IS wrt both ρ0

and W (t) (ρ̃PDE,2
u0 in blue dash-dotted line), and CE-based IS (ρ̃CE

u0
in green dashed line).

In Figure 4, we illustrate a comparison of the approximations to the optimal IS
initial density ρ̃u0

obtained via the PDE-based and multilevel CE-based methods
when the original initial density ρu0 is given in one well and the threshold K is set
in the other well. Three subplots demonstrate how the IS densities change from the
original one in the cases of different initial standard deviation σ0. With a relatively
small σ0, all IS densities shift towards the threshold slightly, whereas with larger
σ0 values, they shift significantly to the rare event region. In particular, the CE-
based IS density exhibits a considerable shift towards the threshold, however, it
has the same scale as the original density by design. The PDE-based IS density
ρ̃PDE,2
u0

wrt both initial condition and Wiener process has a larger shift and a

higher concentration in the rare event region compared to the initial density ρ̃PDE,1
u0
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obtained by IS wrt the initial condition. This is because of the difference in the
optimal IS initial density formulas of each approach presented in (12) and (26).
The IS approach wrt the initial condition gives a substantial variance reduction
only for comparatively large standard deviation values (see Table 2 for the example
σ0 = 1). In the regime of small σ0, the IS approach wrt Wiener processes via
the SOC theory proposed in Section 3.2 works well (see Table 1 for the example
σ0 = 0.2. The combination of both approaches (i.e., IS wrt both initial condition
and Wiener processes) provides considerably better variance reduction over a crude
MC method for all three cases of σ0 (see Table 1 and 2). Figure 5 illustrates the
consistency of the rare event probability estimates produced by different methods
for the case of σ0 = 0.5, where the 95% confidence intervals (CI) overlap and
converge as the MC sample size increases, and even with relatively small sample
sizes, the IS wrt both ρ0 and Wt demonstrates superior improvement in reducing
variance. A robustness of the numerical results is verified via bootstrapping. In
particular, Figure 6 shows 95% CI of two independent runs, which are overlapping,
for the sample standard deviation (std) produced by the CE- and the PDE-based
methods via bootstrap sampling with a bootstrap number B = 104 over J = 106

i.i.d. samples for the parameter setting of Table 2.

K Estimator with 95% CI

α̂MC α̂CE,ρ̃0 α̂PDE,ρ̃0 α̂PDE,Wt α̂PDE,both

1.5
1.48× 10−2 1.47× 10−2 1.48× 10−2 1.47× 10−2 1.48× 10−2

[0.0145, 0.0150] [0.0147, 0.0148] [0.0147, 0.0149] [0.0145, 0.0149] [0.01479, 0.01480]

2
2.5× 10−3 2.58× 10−3 2.59× 10−3 2.53× 10−3 2.58× 10−3

[0.0024, 0.0026] [0.00256, 0.00260] [0.00257, 0.00260] [0.0025, 0.0026] [0.002578, 0.002584]

2.5
3.8× 10−4 3.98× 10−4 3.98× 10−4 3.81× 10−4 3.97× 10−4

[3.4e-04, 4.2e-04] [3.96e-04, 4.00e-04] [3.96e-04, 3.99e-04] [3.5e-04, 4.1e-04] [3.96e-04, 3.97e-04]

3
5.8× 10−5 5.06× 10−5 5.06× 10−5 5.98× 10−5 5.07× 10−5

[4.3e-05, 7.3e-05] [5.03e-05, 5.09e-05] [5.04e-05, 5.09e-05] [4.6e-05, 7.3e-05] [5.06e-05, 5.07e-05]

K Relative statistical error Variance reduction

ϵMC
st ϵCE,ρ̃0

st ϵPDE,ρ̃0

st ϵPDE,Wt

st ϵPDE,both
st

VMC

VCE,ρ̃0

VMC

VPDE,ρ̃0

VMC

VPDE,Wt

VMC

VPDE,both

1.5 1.6% 0.5% 0.4% 1.3% 0.06% 9 15 1.6 677
2 3.9% 0.6% 0.5% 3.2% 0.10% 40 61 1.4 1327
2.5 10.1% 0.6% 0.5% 8.7% 0.10% 261 360 1.3 6150
3 25.7% 0.6% 0.4% 22.4% 0.10% 2641 4580 1.2 46372

Table 2. Double Well example. Model parameter: b = 0.5. Simulation parameters: T = 1,
∆t = 0.01, J = 106, u0 ∼ N(µ0, σ0) with µ0 = −1, σ0 = 1.

4.2. Langevin dynamics. We consider two-dimensional Langevin dynamics

(29)

{
dut = vtdt,

dvt = −V ′(ut)dt− κvtdt+ (2κT )1/2dWt,

where V is the same double-well potential as in Section 4.1. Figure 7 illustrates
trajectories of the Langevin dynamics in different temperature T settings. The rare
event threshold is defined by the velocity, so that the projection is P1 = [0 1]. In
Figure 8, a change of the initial density towards the importance region with K = 3
is shown for, respectively, PDE- and CE-based IS techniques wrt ρ0.

Similarly to the previous DW example, from Table 3, we can observe that the
combination of the PDE-based method wrt the initial distribution and Wiener
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Figure 5. Double Well example Model parameter: b = 0.5. 95% CI of the estimator with
the simulation parameters: T = 1, ∆t = 0.01, K = 1, u0 ∼ N(µ0, σ0) with µ0 = −1, σ0 = 0.5.

paths reduces the variance significantly compared to its single approaches and the
multilevel CE approach. Figure 9 shows the consistency of the estimates produced

by different methods for the case of correlated initial condition

[
1 0.7
0.7 1

]
, where

the 95% confidence intervals (CI) overlap and converge as the MC sample size
increases, and the IS wrt both ρ0 and Wt provides the highest level of variance
reduction when compared to alternative methods. Once again, Figure 10 exhibits
a robustness of methods by displaying 95% CI of two independent pilot runs for
the parameter setting indicated in Table 3.

K Estimator with 95% CI

α̂MC α̂CE,ρ̃0 α̂PDE,ρ̃0 α̂PDE,Wt α̂PDE,both

2
2.53× 10−2 2.55× 10−2 2.53× 10−2 2.54× 10−2 2.56× 10−2

[0.025, 0.026] [0.0252, 0.0256] [0.0251, 0.0255] [0.0252, 0.0256] [0.02559, 0.02569]

2.5
4.2× 10−3 4.2× 10−3 4.25× 10−3 4.17× 10−3 4.27× 10−3

[0.0041, 0.0043] [0.0041, 0.0043] [0.0042, 0.0043] [0.0041, 0.0042] [0.00426, 0.00428]

3
4.7× 10−4 4.6× 10−4 4.7× 10−4 4.8× 10−4 4.68× 10−4

[4.3e-04, 5.1e-04] [4.5e-04, 4.8e-04] [4.5e-04, 4.8e-04] [4.6e-04, 4.9e-04] [4.67e-04, 4.69e-04]

3.5
3.8× 10−5 3.3× 10−5 3.4× 10−5 3.3× 10−5 3.43× 10−5

[2.6e-05, 5.0e-05] [3.0e-05, 3.6e-05] [3.1e-05, 3.7e-05] [3.1e-05, 3.6e-05] [3.42e-05, 3.44e-05]

K Relative statistical error Variance reduction

ϵMC
st ϵCE,ρ̃0

st ϵPDE,ρ̃0

st ϵPDE,Wt

st ϵPDE,both
st

VMC

VCE,ρ̃0

VMC

VPDE,ρ̃0

VMC

VPDE,Wt

VMC

VPDE,both

2 1.21% 1.18% 0.8% 0.7% 0.2% 1.1 2.6 3.5 35
2.5 3.0% 2.5% 1.5% 1.5% 0.2% 1.3 3.9 5.8 180
3 9.1% 3.8% 3.5% 2.9% 0.2% 5.7 6.6 9.3 2000
3.5 31.8% 8.9% 9.1% 7.3% 0.3% 15.2 15.4 24.7 12156

Table 3. Langevin dynamics. The model parameters: κ = 2−5π2, T = 1. Simulation
parameters: T = 1, ∆t = 0.01, J = 106, [u0, v0] ∼ N([0 0], [0.5 0; 0 0.5]). PDE-based methods
uses ∆xPDE = 0.006, ∆tPDE = ∆xPDE/5.
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Figure 6. Double Well example. Two independent simulation results of the bootstrapping
for a sample standard deviation produced by the CE- and PDE-based methods with parameters

of the Table 2 and with the bootstrap number B = 104.

4.3. A noisy Charney-deVore model. We consider the six-dimensional Char-
ney–deVore (CdV) model polluted with additive Gaussian noise [31]

(30)



du1 = (γ̃1u3 − C(u1 − u∗1))dt+
√
2bdW1,

du2 = (−(ζ1u1 − β1)u3 − Cu2 − δ1u4u6)dt+
√
2bdW2,

du3 = ((ζ1u1 − β1)u2 − γ1u1 − Cu3 + δ1u4u5)dt+
√
2bdW3,

du4 = (γ̃2u6 − C(u4 − u∗4) + η(u2u6 − u3u5))dt+
√
2bdW4,

du5 = (−(ζ2u1 − β2)u6 − Cu5 − δ2u3u4)dt+
√
2bdW5,

du6 = ((ζ2u1 − β2)u5 − γ2u4 − Cu6 + δ2u2u4)dt+
√
2bdW6,
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Figure 7. Example: trajectories of the Langevin dynamics with different temperature T values

up to time T = 100. The red star represents the initial value and the dashed black line repre-
sents the double well potential.

where for m ∈ 1, 2,

ζm =
8
√
2

π

m2

4m2 − 1

q2 +m2 − 1

b2 +m2
, βm =

βq2

q2 +m2
,

γm = γ

√
2q

π

4m3

(4m2 − 1)(q2 +m2)
, γ̃m = γ

√
2q

π

4m

4m2 − 1
,

δm =
64
√
2

15π

q2 −m2 + 1

q2 +m2
, η =

16
√
2

5π
.

The CdV was among the pioneering atmospheric models that demonstrated multi-
ple invariant measures. The model (30) features two distinct metastable modes: one
is the ”zonal” mode and the other is the ”blocked” mode. These modes correspond
to atmospheric blocking phenomena commonly observed in meteorology [17, 19, 57].

In all numerical tests, we use the parameters provided in [19] which result in a
chaotic behavior of dynamics: zonally symmetric forcing terms u∗1 = 0.95 and u∗4 =
−0.76095; the thermal relaxation damping timescale C = 0.1 corresponding to 10
days; the orographic height γ = 0.2 corresponding to a 200m amplitude; the Coriolis
parameter β = 1.25 defining a central latitude of 45o; the channel width–length ratio
q = 0.5 corresponding to a channel of 6300km×1600km. For simplicity, we consider
the rare event defined by the first component, i.e., the projection P1 = [1 0 0 0 0 0].
We set the initial condition u0 := [u1(0) u2(0) u3(0) u4(0) u5(0) u6(0)] such that
the first component is sampled from the blocked region

u0 ∼ N([0.7650, 0.2288,−0.2990,−0.3657,−0.1636, 0.3108], σ2
0I)

where I is a 6-dimensional identity matrix and the rare event threshold is defined
from the zonal region. The metastable feature of the dynamics can be observed in
Figure 11, which illustrates a sample trajectory of the tracked component u1 for
a given different values of the diffusion parameter b = 0, 0.0001, 0.001, 0.01 over
time T = 1000.

In a similar fashion to previous examples, Table 4 provides numerical results of
the CdV model with the diffusion parameter b = 0.01. In this case, we observe
a considerable variance reduction in the PDE-based IS technique wrt the Wiener
process and a much more significant reduction in the IS approach wrt both the
initial condition and the Wiener process. Similar to the Double Well problem in
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Figure 8. Langevin dynamics. A comparison of the original initial denstiy (top left) with

the approximately optimal IS initial densities based on the multilevel CE method (top right),
the PDE approaches wrt only initial condition (bottom left) and wrt both initial condition and

Wiener process (bottom right).

Section 4.1, it is expected to get a variance reduction in IS wrt the initial condition
if much larger values of σ2

0 are considered in the initial condition. Furthermore, we
provide the bootstrapping results for the sample standard deviation in Figure 10
for the parameter setting indicated in Table 4 as numerical evidence of the robust-
ness of the considered methods. We have to note that when a diffusion coefficient
is very small, the simple numerical PDE solvers with uniform discretization (see
Appendix C) may not provide accurate solutions, and special adaptive mesh refine-
ment strategies may be needed to solve the PDEs numerically. Instead, the large
deviation principle-based methods might be more efficient in a very small noise
regime [31, 71].
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Figure 9. Langevin dynamics. The model parameters: κ = 2−5π2, T = 1. Simulation

parameters: T = 1, ∆t = 0.01, K = 2.5, [u0, v0] ∼ N([0 0], [1 0.7; 0.7 1]). PDE-based methods

uses ∆xPDE = 0.006, ∆tPDE = ∆xPDE/5.

K Estimator with 95% CI

α̂MC α̂CE,ρ̃0 α̂PDE,ρ̃0 α̂PDE,Wt α̂PDE,both

1.1
3.1× 10−2 3.1× 10−2 3.1× 10−2 3.08× 10−2 3.08× 10−2

[0.0308, 0.0314] [0.0308, 0.0315] [0.0308, 0.0314] [0.0307, 0.0309] [0.0308, 0.0309]

1.2
4.2× 10−3 4.2× 10−3 4.2× 10−3 4.1× 10−3 4.11× 10−3

[0.0041, 0.0043] [0.0040, 0.0043] [0.0041, 0.0043] [0.00409, 0.00412] [0.00411, 0.00412]

1.3
3.3× 10−4 3.4× 10−4 3.44× 10−4 3.5× 10−4 3.45× 10−4

[2.9e-04, 3.7e-04] [3.0e-04, 3.8e-04] [3.2e-04, 3.8e-04] [3.42e-04, 3.46e-04] [3.44e-04, 3.46e-04]

1.4
2.1× 10−5 − 1.5× 10−5 1.8× 10−5 1.81× 10−5

[1.2e-05, 3.0e-05] [8.9e-06, 2.2e-05] [1.78e-05, 1.81e-05] [1.80e-05, 1.81e-05]

K Relative statistical error Variance reduction

ϵMC
st ϵCE,ρ̃0

st ϵPDE,ρ̃0

st ϵPDE,Wt

st ϵPDE,both
st

VMC

VCE,ρ̃0

VMC

VPDE,ρ̃0

VMC

VPDE,Wt

VMC

VPDE,both

1.1 1.1% 1.1% 1.0% 0.2% 0.1% 1.0 1.1 21 78
1.2 3.0% 3.1% 2.6% 0.4% 0.2% 1.0 1.3 75 296
1.3 11% 12% 8.5% 0.5% 0.2% 0.8 1.4 394 1985
1.4 43% −% 42% 0.7% 0.3% − 2.0 5395 38467

Table 4. A noisy Charney-deVore model with b = 0.01. Simulation parameters: σ2
0 =

0.0025, T = 1, ∆t = 0.01, J = 106. Numerical results for the last line of the CE method is
missing due to the impracticability of the algorithm for the given parameter setting and a limit

of computer capacity to accomplish the simulation.

5. Conclusion

In this study, we made use of IS techniques to monitor a rare event probability
exceeding a critical threshold in relation to the running maximum associated with
the solution of an SDE. We conducted this investigation within the framework
of EnKF. In the interval between two observations in the EnKF method, we put
forward three IS strategies: one that changes a measure wrt the SDE’s initial
condition, another that involves a change of measure wrt the Wiener process using
a SOC formulation, and a third that combines these IS approaches for both the
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Figure 10. Langevin dynamics. Two independent simulation results of the bootstrapping for

a sample standard deviation produced by the CE- and PDE-based methods with parameters of
the Table 3 and with the bootstrap number B = 104.

initial condition and the Wiener process. To our knowledge, the use of IS with
respect to the initial condition and its combination with path-space IS has not
been previously explored or tested in the filtering and SDEs literature. All of these
IS methods hinge on approximating the solution of the KBE while considering
specific boundary conditions. In more than one-dimensional setting, we employed
a dimension reduction technique through the Markovian projection. This technique
allows us to approximate the KBE solution by solving a simpler one-dimensional
PDE.

A key feature of our methodology is that these rare event estimations are carried
out in a post-processing step, independently at each observation time, using only
the EnKF output. This design ensures flexibility and modularity in practical data
assimilation workflows. It was demonstrated through numerical examples that the
proposed estimation methods significantly reduced relative variance compared to
the standard MC and the multilevel CE techniques.
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Figure 11. Charney-deVore model. Sample trajectories of the first component correspond-

ing to different values of the diffusion parameter b over T = 1000 time with ∆t = 0.01.

The future research trajectory will involve extending the proposed IS methodol-
ogy to particle filtering frameworks [18], which can provide more accurate filtering
distributions in highly nonlinear or non-Gaussian systems. This extension would
enable broader applicability and facilitate a more comprehensive comparison be-
tween filtering methods in the context of rare event estimation.

Appendix A. A discrete L2 regression

We want to approximate ǎ and b̌, in (16), by linear combinations of bivariate
polynomials defined as

ψp(t, s) = tp1sp2 , p = (p1, p2) ∈ N2.

Restrict p to a tensor product index set Λ(ϖ) ⊂ N2 such that max
p∈Λ

max
k=1,2

pk ≤ ϖ and

let VΛ(ϖ) = span{ψp, p ∈ Λ(ϖ)}. We approximate ǎ and b̌ by ˆ̌a and ˆ̌b respectively,
obtained by computing

(31)


ˆ̌a = arg min

ha∈VΛ

1
NM

∑N−1
n=0

∑M
i=1 |P1a(u

(i)(tn))− ha(tn, P1u
(i)(tn))|2,

ˆ̌b2 = arg min
hb∈VΛ

1
NM

∑N−1
n=0

∑M
i=1 |(P1bb

TPT
1 )(u(i)(tn))− hb(tn, P1u

(i)(tn))|2.

First, in order to ensure the stabilty, we consider the orthonormalised basis ex-
pansion ψ̄p via orthonormalising ψp by the modified Gram-Schmidt algorithm wrt
a discrete scalar product for ∀p, q ∈ Λ(ϖ):

< ψp, ψq >=
1

NM

N−1∑
n=0

M∑
i=1

ψp(tn, P1u
(i)(tn))ψq(tn, P1u

(i)(tn)).
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Figure 12. Charney-deVore model. Two independent simulation results of the bootstrap-

ping for a sample standard deviation produced by the CE- and PDE-based methods with pa-
rameters of the Table 4 and with the bootstrap number B = 104.

The modified Gram-Schmidt algorithm produces a QR decomposition for non-
orthonormalised matrix Ψ as follows:

 ψ1
p ψ2

p ... ψ#Λ
p


︸ ︷︷ ︸

Ψ

=

 ψ̄1
p ψ̄2

p ... ψ̄#Λ
p


︸ ︷︷ ︸

Q


r11 r12 r1#Λ

r22 ... r2#Λ

...
r#Λ#Λ


︸ ︷︷ ︸

R

where QTQ = I and R is the upper-triangular matrix. Note that since Q = ΨR−1,
we can use the entries of R−1 to construct the orthonormalised function ψ̄p(t, s).
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Then, solving (31) is equivalent to solving the least squares problem for the
expansion coefficients ap and bp:

(32)

{
ĥa(t, s) =

∑
p∈Λ apψ̄p(t, s),

ĥb(t, s) =
∑

p∈Λ bpψ̄p(t, s).

The expansion coefficients in (32) are computed via solving the respective normal
equations for a = {ap}p∈Λ and b = {bp}p∈Λ:

(33)



QTQa = QT f

QTQb = QT g,

(f)j = P1a(tn, u
(i)(tn)),

(g)j = P1bb
TPT

1 (tn, u
(i)(tn)),

Qjp = ψ̄p(tn, P1u
(i)(tn)) for p ∈ Λ, j = 1, ..., NM.

Appendix B. Multilevel Cross-Entropy method

Wemainly follow the description of the method provided in [21, 51]. In the frame-
work of the EnKF, the optimal original initial density is assumed to be Gaussian.
Let ρ0(x0) = ϕ(x0;υ) belong to a family of Gaussian densities with a parameter
vector υ which is approximated by the EnKF ensembles. Then, similarly, to (12),
the optimal importance sampling density is

(34) ρ̃0(x0) ∝ ϕ(x0;υ)
√
P( max

0≤k≤K
P1ūn,k ≥ K|ūn,0 = x0).

We want to approximate ρ̃0(x0) by a member of the Gaussian family, ϕ(x0; ζ),
for some parameters ζ. We consider the Kullback-Leibler divergence defined as

D(ρ̃0(·), ϕ(·; ζ)) =
∫

(log ρ̃0(x0)− log ρ0(x0; ζ))ρ̃0(x0)dx0.(35)

This is also known as the cross-entropy between the given densities.
Finding a minimizer of (35) is equivalent to finding

ζ∗ = argmax
ζ

−D(ρ̃0(·), ϕ(·; ζ)) = argmax
ζ

∫
ρ̃0(x0) log ϕ(x0; ζ)dx0

= argmax
ζ

∫
ϕ(x0,υ)

√
P
(

max
0≤k≤K

P1ūn,k ≥ K|ūn,0 = x0

)
log ϕ(x0; ζ)dx0

= argmax
ζ

Ew

[√
P
(

max
0≤k≤K

P1ūn,k ≥ K|ūn,0 = X0

)
log ϕ(X0; ζ)L(X0;υ,w)

]
(36)

where the likelihood ratio is defined by

L(x0;υ,w) =
ρ0(x0;υ)

ϕ(x0;w)
.

Ew[·] means the expectaction is taken wrt the density ϕ(·;w), which is, in our
setting, another family of Gaussian densities with an arbitrary parameter vector

w. The reason of introducing it is to estimate ζ∗ using random samples {X(j)
0 }Jj=1
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from ϕ(·;w). Then, the approximate optimization becomes

(37) max
ζ

1

J

J∑
j=1

√
P( max

0≤k≤K
P1ūn,k ≥ K|ūn,0 = X

(j)
0 ) log ρ0(X

(j)
0 ; ζ)L(X

(j)
0 ;υ,w)︸ ︷︷ ︸

−D̂

.

Assuming that D̂ is convex and differentiable with respect to ζ, we solve the system
of equations

1

J

J∑
j=1

√
P( max

0≤k≤K
P1ūn,k ≥ K|ūn,0 = X

(j)
0 )∇ log ρ0(X

(j)
0 ; ζ)L(X

(j)
0 ;υ,w) = 0

where the gradient is with respect to ζ and 0 denotes a zero vector in size of υ.
We can often compute the analytical solution for the above problem if the random
variable distributions belong to a natural exponential family, which is the case in
the EnKF.

It is crucial to note that the optimization problem (37) can be difficult to carry

out due to the rareness of the events {max0≤k≤K P1ūn,k ≥ K|ūn,0 = X
(j)
0 }. We can

employ a so-calledmultilevel algorithm to overcome the difficulty with the rare event
probability [21]. The main idea is to construct a sequence of reference parameters
{ζℓ, ℓ ≥ 0} and a sequence of threshold levels {Kℓ, ℓ ≥ 1} (see Algorithm 1).

Algorithm 1: Multilevel Cross-Entropy method for Rare-Event Probabil-
ity

1 Define ζ̂0 = υ. Set ℓ = 1.

2 Generate {ū(i)n,0}
J1
i=1 ∼ ϕ(x0; ζ̂ℓ−1) and {ū(i)n,1:K}J1

i=1 ∼ ρ
ūn,1:K |ū(i)

n,0
(x1:K |x0).

Compute the sample (1− β)−quantile K̂ℓ by calculating

M̄n
∆t,(i) = max0≤k≤K P1ū

(i)
n,k and arranging them in ascending order

M̄n
∆t,(1) ≤ ... ≤ M̄n

∆t,(J1)

where β is an usually not small number, say β ≃ 10−2. Evaluate
K̂ℓ = M̄n

∆t,(⌈(1−β)J1⌉) if K̂ℓ < K, otherwise K̂ℓ = K.

3 Given ζℓ−1, K̂ℓ and the same sample ū
(1)
n,0:K , ..., ū

(J1)
n,0:K , find

ζ̂ℓ = argmax
ζ

1

J1

J1∑
i=1

√
P( max

0≤k≤K
P1ū

(i)
n,k ≥ K|ū(i)

n,0)L(ū
(i)
n,0;υ, ζ̂ℓ−1) log ϕ(ū

(i)
n,0; ζ)

4 If K̂ℓ < K, set ℓ = ℓ+ 1 and go to Step 2, otherwise, go to Step 5.

5 Estimate the rare event probability αn by

α̂n =
1

J2

J2∑
i=1

P( max
0≤k≤K

P1ū
(i)
n,k ≥ K|ū(i)n,0)L(ū

(i)
n,0;υ, ζ̂L)

where L denotes the final number of levels/iterations.

For example, let ζ = [µ̃0, σ̃0] and ϕ(x0,υ) = 1√
2πσ0

e−(x0−µ0)
2/2σ2

0 , where υ =

[µ0, σ0]. Then, in Step 3 of the Algorithm 1, we have to solve the following system
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of equations
(38)

1
J1

∑J1

i=1

√
P(max0≤k≤K P1ū

(i)
n,k ≥ K|ū(i)n,0)L(ū

(i)
n,0;υ, ζ̂ℓ−1)

(
ū
(i)
n,0−µ̃0

σ̃2
0

)
= 0

1
J1

∑J1

i=1

√
P(max0≤k≤K P1ū

(i)
n,k ≥ K|ū(i)n,0)L(ū

(i)
n,0;υ, ζ̂ℓ−1)

(
(ū

(i)
n,0−µ̃0)

2

σ̃3
0

− 1
σ̃0

)
= 0

which have the following analytical solutions

(39)



µ̃0,ℓ =
∑J1

i=1

√
P(max0≤k≤K P1ū

(i)
n,k≥K|ū(i)

n,0)L(ū
(i)
n,0;υ,ζ̂ℓ−1)ū

(i)
n,0∑J1

i=1

√
P(max0≤k≤K P1ū

(i)
n,k≥K|ū(i)

n,0)L(ū
(i)
n,0;υ,ζ̂ℓ−1)

,

σ̃2
0,ℓ =

∑J1
i=1

√
P(max0≤k≤K P1ū

(i)
n,k≥K|ū(i)

n,0)L(ū
(i)
n,0;υ,ζ̂ℓ−1)

(
ū
(i)
n,0−µ̃0

)2

∑J1
i=1

√
P(max0≤k≤K P1ū

(i)
n,k≥K|ū(i)

n,0)L(ū
(i)
n,0;υ,ζ̂ℓ−1)

.

Note that the CE method with a Gaussian assumption for the initial condition
may lead to an infinite variance of the estimator. Therefore, we observe certain
non-robustness of the estimator variance produced by the CE method. To resolve
this issue, we propose to fix σ̃0 = σ0 and shift only µ̃0 by (39). ρ̃CE

0 corresponds
to the optimal IS density obtained via the multilevel CE method with the shifted
mean and fixed variance.

Appendix C. Numerical PDE solver for the problem with a
discontinuity at the boundary

Here, we briefly describe the numerical method used to approximate the solution
to the auxiliary terminal-boundary value problem of the type

(40a)
∂γ

∂t
= −a(x, t)∂γ

∂x
− 1

2
b(x, t)b(x, t)T

∂2γ

∂x
, (x, t) ∈ (−∞,K)× (0, T )

(40b)


γ(x, T ) = 0, x < K,
γ(K, t) = 1, t ≤ T,
lim

x→−∞
γ(x, t) = 0, t ≤ T.

Compare (13) and (17).
Since the accuracy of the approximation to (40) does not directly affect the

accuracy of the estimate of the rare event probability αn, only the efficiency of the
proposed IS algorithm, and since even a qualitatively correct approximation can
give us a useful IS we may use a simple method here. In our numerical tests, we
used the Crank-Nickolson scheme with the uniform discretization of a truncated
domain (xmin,K) × (0, T ) with an artificial boundary condition ∂2γ(x,t)

∂x2 = 0 at
x = xmin approximated from known neighboring values by a linear extrapolation.
However, the jump discontinuity in the corner (K, T ) requires special care with this
very basic approach. We outline our treatment here.
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The constant coefficient version, a(x, t) ≡ a, b(x, t) ≡ b of (40) has the closed-
form solution

γconst(x, t) =
1

2
erfc

(
K − x− a(T − t)

2
√

b2

2 (T − t)

)

+
1

2
e

a(K−x)

b2/2 erfc

(
K − x+ a(T − t)

2
√

b2

2 (T − t)

)
,

(41)

where erfc(z) := 2√
π

∫∞
z
e−t2dt is a complementary error function; see e.g., [34].

Let γfr(x, t) be the solution to the constant coefficient problem with the frozen
coefficients a = a(K, T ) and b = b(K, T ), i.e.,

γfr(x, t) =
1

2
erfc

(
K− x− a(K, T )(T − t)

|b(K, T )|
√

2(T − t)

)

+
1

2
e

a(K,T )(K−x)

b2(K,T )/2 erfc

(
K− x+ a(K, T )(T − t)

|b(K, T )|
√

2(T − t)

)
.

(42)

We divide the computational domain into three regions, see Figure 13, and for
appropriately chosen (∆xPDE,∆tPDE) and (∆xfr,∆tfr) approximate γ as follows:

Figure 13. Division of the problem domain for the PDE solver

I. In the rectangle [K − ∆xfr,K] × [T − ∆tfr, T ], we approximate γ(x, t) by
γfr(x, t). Observe that γfr decays very fast toward 0 as x decreases.

II. In [xmin,K−∆xfr)× [T −∆tfr, T ], we use the finite difference approximation
of (40a) with the terminal-boundary conditions

γ(x, T ) = 0, x ∈ (xmin,K −∆xfr),
γ(K −∆xfr, t) = γfr(K −∆xfr, t), t ∈ [T −∆tfr, T ],
∂2γ(xmin,t)

∂x2 = 0, t ∈ [T −∆tfr, T ].

Denote this approximation γ1.
III. In [xmin,K]× [0, T −∆tfr], we use the same finite difference approximation

of (40a) with the terminal-boundary conditions
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K Double Well K Langevin
∆xfr ∆tfr ∆xfr ∆tfr

0 0.185 0.0225 2 0.170 0.00625
0.5 0.195 0.0250 2.5 0.121 0.0025
1 0.185 0.0225 3 0.120 0.0025
1.2 0.185 0.0225 3.5 0.1365 0.00375
1.5 0.185 0.0225
2 0.185 0.0225
2.5 0.200 0.0275
3 0.195 0.0250

Table 5. The choice for (∆xfr,∆tfr) used in the numerical PDE solver for the problems con-

sidered in Section 4.

γ(x, T −∆tfr) =

{
γ1(x, T −∆tfr), x ∈ (xmin,K −∆xfr),
γfr(x, T −∆tfr), x ∈ [K −∆xfr,K),

γ(K, t) = 1, t ∈ [0, T −∆tfr],

∂2γ(xmin, t)

∂x2
= 0, t ∈ [0, T −∆tfr].

Denote this approximation γ2.
We patch together the numerical approximation from the three subdomains and

denote the PDE solution obtained via this strategy by γPDE
fr (x, t) and the corre-

sponding control by ξPDE
fr (x, t).

The appropriate choice of the pair (∆xfr,∆tfr) depends on the discretization
parameters (∆xPDE,∆tPDE) of the finite-difference scheme for γ1 and γ2. One
can choose (∆xfr,∆tfr) such that the gradient of the closed-form solution at (K −
∆xfr, T − ∆tfr) should closely match with (∆xPDE,∆tPDE). In the numerical
tests in Section 4, we use ∆xPDE = 0.005, ∆tPDE = ∆xPDE

2 with xmin = −5 in the

Double Well problem, and ∆xPDE = 0.006, ∆tPDE = ∆xPDE

5 with xmin = −3 in
the Langevin problem. Correspondingly, the choice (∆xfr,∆tfr) used to define the
red region in Figure 13 is provided in Table 5 for both problems given the different
thresholds K.

Appendix D. Adaptive time-stepping scheme for IS simulation

The optimal control given by (22) blows up as t → T . For this reason, it is not
appropriate to use uniform time discretizations in the Euler-Maruyama approxi-
mation of the controlled SDE. Our numerical experiments used a simple adaptive
time-stepping scheme based on the solution γfr to the frozen coefficient problem.
The control corresponding to γfr is

ξfr(x, t) =b(K, T )
∂(log(γfr(x, t)))

∂x
=

b(K, T )

γfr(x, t)

∂(γfr(x, t))

∂x

=
b(K, T )

γfr(x, t)

[
1

|b(K, T )|
√

2π(T − t)

(
e−(R−(x))2 + e

−(R+(x))2+
2a(K,T )(K−x)

b(K,T )2

)

−
a(K, T )

b(K, T )2
e

2a(K,T )(K−x)

b(K,T )2 erfc(R+(x))

]
,

(43)
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where R±(x) := K−x±a(K,T )(T−t)

|b(K,T )|
√

2(T−t)
.

Asymptotically, as t→ T , for fixed x

ξfr(x, t) ∼= ξ∞fr (x, t) :=
1

b(K, T )

(K − x

T − t

)
− a(K, T ).

We extend this asymptotic formula for the control to non-constant coefficients
as

ξ∞(x, t) =
1

b(x, t)

(K − x

T − t

)
− a(x, t).

and use the control ξ∞(x, t) for t ∈ (T − δt, T ], while we use ξPDE
fr (x, t), based on

the numerical approximation γPDE
fr (x, t), for t ∈ [0, T − δt].

In Algorithm 2, below, we provide a sketch of the adaptive time-stepping scheme
with the Brownian bridge technique used in Monte Carlo simulations of all methods
(Crude MC, IS wrt ρ0, IS wrt W (t), IS wrt both ρ0 and W (t) and IS with CE)
considered in this work.

Algorithm 2: Adaptive time-stepping scheme with Brownian bridge
technique

Input: T , K, K, model parameters, δt and ε.

1 Define the uniform Euler-Maruyama timestep: ∆t = T
K ;

2 Set the optimal control such that

(44) ξ(x, t) =

{
ξPDE
fr (x, t), if t ∈ [0, T − δt],
ξ∞(x, t), if t ∈ (T − δt, T ];

3 k = 0, tn,k = 0, h = ∆t;

4 Set the initial condition ūn,0 according to each method;

5 while (tn,k ≤ T ), (P1ūn,k < K) and (h > ε) do

6 Adaptive rule: h = min(∆t,
T−tn,k

2 );

7 ∆W P
n,k ∼ N(0,hIdW

);

8 Simulate the trajectory

ūn,k+1 = ūn,k + a(ūn,k)h + b(ūn,k)ξ(ūn,k, tn,k)h + b(ūn,k)∆W
P
n,k

∗
;

9 Compute the corresponding likelihood according to each method;

10 Hitting test via Brownian bridge technique:

11 compute the exiting probability

q = exp
(
− 2max(K−P1ūn,k,0)max(K−P1ūn,k+1,0)

(P1b(ūn,k)b(ūn,k)TPT
1 )h

)
;

12 sample a uniform random variable r ∼ U(0, 1);

13 if r < q then
14 set P1ūn,k+1 = K and the stopping time τ = tn,k + 0.5h;

15 else
16 tn,k = tn,k + h;

17 k = k + 1;

∗ ξ(x, t) = 0 in the crude MC, IS wrt ρ0 and CE simulations.
In both numerical tests in Section 4, we set δt = 10∆t and ε = 10−6 as this

choice was sufficient to ensure a high level of variance reduction for each method.



TRACKING RARE EVENTS WITHIN ENKF 33

Acknowledgments The authors would like to thank the anonymous reviewer
and the external examiner of G. Shaimerdenova’s Ph.D. dissertation for their con-
structive and insightful feedback, which greatly helped to improve the clarity and
presentation of this manuscript.
This work was supported by the KAUST Office of Sponsored Research (OSR) un-
der Award No. URF/1/2584-01-01 and the Alexander von Humboldt Foundation.
E. von Schwerin, G. Shaimerdenova and R. Tempone are members of the KAUST
SRI Center for Uncertainty Quantification in Computational Science and Engi-
neering.
For the purpose of open access, the authors have applied a Creative Commons
Attribution (CC BY) licence to any Author Accepted Manuscript version arising
from this submission.

References

[1] Sigurd I Aanonsen, Geir Nævdal, Dean S Oliver, Albert C Reynolds, and Brice Vallès. The

ensemble Kalman filter in reservoir engineering–a review. SPE Journal, 14(03):393–412,

2009.
[2] Søren Asmussen and Peter W. Glynn. Stochastic simulation: algorithms and analysis, vol-

ume 57 of SMAP. Springer, New York, 2007.

[3] Siu-Kui Au and James L Beck. Estimation of small failure probabilities in high dimensions
by subset simulation. Probabilistic engineering mechanics, 16(4):263–277, 2001.

[4] Siu-Kui Au and James L. Beck. Subset simulation and its application to seismic risk based

on dynamic analysis. Journal of Engineering Mechanics, 129(8):901–917, 2003.
[5] Vlad Bally and Denis Talay. The law of the Euler scheme for stochastic differential equa-

tions: I. Convergence rate of the distribution function. Probability theory and related fields,

104:43–60, 1996.
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