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ABSTRACT

The presence of undesirable microstructural features in additively manufactured components,
such as cracks, pores and lack of fusion defects presents a challenge for engineers, particularly if
these components are applied in structure-critical applications. Such features might need to be
manually classified, counted and their size distributions measured during metallographic evalu-
ation, which is a time-consuming task. In this study, the performance of two supervisedmachine
learning methods (kth-nearest neighbours and decision trees) to automatically classify typical
defects found during metallographic examination of additively manufactured nickel alloys is
briefly outlined and discussed.
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Additive manufacturing is a near-net shape produc-

tion technology that utilises a high-energy heat source

to selectively melt or fuse together metallic powder to

produce a three-dimensional part [1]. Notwithstand-

ing the potential benefits of additive manufacturing

technologies for near-net shape production, the pres-

ence of internal and external defects in additively man-

ufactured components presents a problem for engi-

neers, particularly if these components are applied in

structure-critical applications and in situations where a

component is subject to a fluctuating load [2,3]. Com-

mon types of internal defects found within additively

manufactured parts include; lack of fusion defects, gas

porosity, solidification cracks, impurities, solid-state

cracks and void formation due to key-hole collapse

in certain high energy density processes [4]. Due to

their size, such defects (anomalous features or undesir-

able microstructural features) are detected using X-ray

computational tomography [5] or, perhaps more com-

monly, during metallographic inspection using light

microscopy. These features might need to be man-

ually classified, counted and their size distributions

measured, particularly in the early stages of process

development where parameters such as the heat source

power, velocity, hatch spacing and layer height are sys-

tematically varied to establish an optimised processing

window [6]. Clearly, this can be a somewhat laborious

and time-consuming task so the aim of this study is

to evaluate whether machine learning can be used to

automate this process.

Machine learning is a branch of Artificial Intelli-

gence (AI) originating from pattern identification and

cognitive acquisition concepts, which uses computa-

tional algorithms that effectively adapt an extensive

dataset and produce a usable model to generate pre-

dictions based on historical evidence [7,8]. Machine

learning is becoming an increasingly powerful tool in

the field of materials science and engineering, and has

been applied in a range of applications from the identifi-

cation of breakthrough, high-Tc superconductors [9] to

the prediction of unexplored hybrid organic–inorganic

perovskites for photovoltaics [10]. With regard to addi-

tive manufacturing, Snell et al. [11] explored the suit-

ability of unsupervised learning methods (k-means

clustering) for rapidly classifying three common types

of pores in titanium and nickel alloys observed via x-

ray computational tomography and light microscopy,

whilst Scime and Beuth [12] used a computer vision

algorithm to classify powder-bed anomalies, such as

re-coater streaking and incomplete spreading, during

a laser powder bed fusion process. Additionally, Nala-

jam et al. [13] used three machine learning methods

(k-means clustering, support vector machines and ran-

dom forests) for porosity detection in aluminium alloy

thin-walled structures produced by wire-arc additive

manufacture.

In this study, supervised machine learning and

more specifically, classification algorithms (kth-nearest

neighbours and decision trees) are employed to auto-

matically classify different types of defect that are

sometimes observed in additively manufactured nickel

alloys. A discussion about the basic principles of these

algorithms is beyond the scope of this paper and the

reader is directed to Lantz [14] for an informative
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Figure 1. (a) Example micrograph showing typical defects sometimes found in additively manufactured nickel alloys, along with
corresponding binary images of (b) cracks, (c) a pore, (d) a connected pore and crack and (e) a lack of fusion defect.

Table 1. Structure of the labelled dataset of defect types observed in additively manufactured Nickel alloys.

Defect Type Area (µm2)
Major Axis
(µm)

Minor Axis
(µm) Angle Circularity

Feret
Diameter
(µm)

Aspect
Ratio Roundness Solidity

Crack 337 40.1 10.3 95.7 0.21 57.8 4.56 0.30 0.49
Pore 757 30.4 25.6 93.3 0.82 32.5 1.22 0.84 0.92
PwC 1752 62.0 32.9 89.9 0.27 91.9 2.16 0.55 0.60
LoF 25621 230.9 95.1 89.5 0.32 301.8 2.57 0.45 0.65

Notes: The dataset contains 590 instances and 9 attributes. The mean values for measured defect characteristics (e.g. Area and Circularity) are also included
(PwC = Pore with Crack; LoF = Lack of Fusion Defect).

introduction to the topic. Classification algorithms are

best used when clean, labelled datasets are available for

the machine to learn from. For classification problems,

the labelled dataset is typically split into a larger train-

ing set and a smaller test set. The larger training set is

used to ‘teach’ the algorithm, which is then applied to

the training set as a predictive model, from which cor-

rect and incorrect predictions of defect type can easily

be compared.

A labelled dataset of commonly observed defect

types in additively manufactured nickel alloys was cre-

ated via metallographic examination of the following

three nickel alloys processed by selective laser melt-

ing: CM247LC, LR8 and Alloy 713C. These speci-

mens were fabricated over the course of a range of

research programmes at The University of Sheffield

[15,16] and example micrographs showing the typical

defects observed in these alloys are given in Figure 1.

Data pertaining to the size and morphology of these

defects were obtained from the polished cross-sections

using a thresholding and particle analysis tool in the

image analysis software, ImageJ [17]. For the purpose

of this study, the commonly observed defects were

labelled as: ‘Pore’, ‘Crack’, ‘Lack of Fusion (LoF) defect’

and ‘Pore with Crack (PwC)’. In total, 590 defects were

labelled and quantitative data describing their size and

shapewere collated in a comma-separated values (CSV)

file. Size and shape descriptors include Feret diam-

eter, circularity, roundness and aspect ratio, and the

full list of measured defect characteristics, along with

some typical values for these geometrical descriptors,

are given in Table 1.

Figure 2 is a three-dimensional scatter plot of the 590

defects listed in the labelled dataset in Feret diameter-

, circularity- and roundness-space. Pores are charac-

terised by high indices of roundness and circularity

and, due to having small Feret diameters, they form

a cluster in the top corner of the scatter plot. Cracks

are slightly larger than pores and they form a cluster

in the left-hand corner of Figure 2 as they are more

irregular in shape, although this cluster is considerably

more diffuse and is likely to also include ‘Pore with

Crack’-type defects. Lack of fusion defects are consider-

ably larger than the other types of defect and, although

they are also irregular in shape, they do not fall into a

well-defined group in Feret diameter-, circularity and

roundness-space.

Normalisation of the dataset was performed to

ensure that no single size or shape descriptor had a

larger influence on the defect classification outcome

due to its magnitude. All feature data (x) were re-scaled

to a standard range of 0–1 (Xn) using the following

minimum-maximum normalisation approach:

Xn =

x − xmin

xmax − xmin
(1)

Following this, the normalised dataset was split into a

training set (80%) and a test set (20%) using a stratified

sampling approach to provide a consistent proportion

of each defect type in both sets.
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Figure 2. Anormalised 3D scatter plot of the roundness, Feret diameter and circularity of the 590defects listed in the labelleddataset
of defects commonly found in additively manufactured nickel alloys. All feature data were re-scaled to a standard range of 0–1 using
Equation (1).

The kth-nearest neighbour (kNN) algorithm used in

this study was the ‘Class’ package, which can be embed-

ded into the statistical computing environment, R. The

‘Class’ package uses Euclidean distances to measure

the shortest path from a defect in a multi-dimensional

plane to the nearest cluster via a straight line and

studies have shown that this measurement approach

provides the highest classification accuracy if the data

are not particularly noisy [18]. With regard to deci-

sion trees, various algorithms exist – including classi-

fication and regression trees, Iterative Dichotomiser 3,

C4.5 and C5.0. Using the ‘divide and conquer strat-

egy’, decision trees find the optimal features within the

entire dataset to split recursively into more homoge-

neous subsets until they are all sufficiently homoge-

neous. Various splitting criterions exist, such as entropy

and information gain, Gini index, Chi-squared statis-

tic and gain ratio. For the classification of defects, the

C5.0 algorithm was implemented due to its reported

strong performance on ‘out-of-the-box’ problems [14].

The ‘Class’ kNN and the C5.0 decision tree algorithms

were selected as these are ‘off the shelf’ packages that

can readily be implemented in R.

Confusion matrices illustrating the performance of

the kNN and C5.0 decision tree algorithms for classi-

fying different types of defect are shown in Figure 3

(a) and (b). For kNN models, the number of nearest

neighbours (the k-value) is an important tuning param-

eter as it determines the bias-variance trade-off within

the model, which is crucial for representing its accu-

racy and ability to generalise towards new unseen data.

A range of k-values were therefore tested to monitor

its influence on model performance and it was found

that k values of 5 and 7 yielded the highest model accu-

racy by classifying 89.8% of the defects correctly. The

C5.0 decision tree performedmarginally better than the

kNN algorithm, with an overall accuracy of 92% after 5

trials. With an increasing number of trials, model accu-

racy fluctuated between 90% and 92% and, considering

aminimum trial value of 5 provided themaximumclas-

sification accuracy while keeping the mean tree size to

a minimum, it was deemed to be the optimal trial value

for this investigation. The accuracy of the algorithms

varied between the different defect categories however,

with both performing well when classifying pores and

cracks, but accuracy was significantly reduced for the

other defect types (in particular, the ‘Pore with Crack’-

type defects). The user and producer accuracies of the

kNN and C5.0 decision tree algorithms for each defect

category are listed in Figure 3(c).

It should be noted that only a limited amount

of information about classification performance on a
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Figure 3. Confusion matrices illustrating the performance of
the (a) kNN and (b) C5.0 decision tree algorithms for classifying
different types of defects in the test dataset. The user and pro-
ducer accuracies of the kNN and C5.0 decision tree algorithms
for each defect type are provided in (c). The total number of
defects in the test dataset is 118.

broader scale can be drawn from confusion matrices.

Additional performance measures such as sensitivity,

precision, recall and the kappa (κ) statistic are available

to engineers working with machine learning models

[14]. For instance, the (κ) statistic provides a metric of

how well the predicted and actual examples agree with

each other; values of κ < 0.2 suggest poor agreement,

whilst values in excess of 0.8 suggest good or very good

agreement [14]. Values of κ = 0.81 and 0.88 (2 d.p.)

were calculated for the kNN and decision tree models,

respectively.

Overall, the nearest neighbour and decision tree

algorithms performed well in classifying defect types

in the test dataset. Both algorithms were particularly

effective in correctly predicting whether a defect was

a crack or a pore, but were less effective at correctly

classifying lack of fusion features and situations where

a pore and crack were connected. The latter is prob-

ably because defects labelled as ‘Pore with Crack’ fall

somewhere between the clusters of pores and clusters of

cracks in Figure 2. Furthermore, there is a natural bias

in the defect type dataset (e.g. cracks and pores aremore

common that lack of fusion defects) and this may influ-

ence the prediction of themachine learning algorithms.

Nevertheless, the ‘Class’ kNN and C5.0 decision tree

algorithms are straightforward to implement in the sta-

tistical computer environment, R, and both undergrad-

uate and postgraduate taught aerospace engineering

students at The University of Sheffield have success-

fully deployed both approaches for classifying defects

found via metallography without any prior experience

of machine learning. The labelled dataset of 590 defects

and the R scripts for importing the dataset and applying

the ‘Class’ kNN and C5.0 decision tree algorithms can

be made available on request.
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