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A B S T R A C T

Deploying energy storage (ES), alongside renewable generation, can help to decarbonise electricity grids. A key
aspect of deploying these is choosing a suitable location, which is both geographically feasible and economical.
Previous studies identify locations with suitable geographies; here we focus on the economic impact of
location. We explore how the maximised profits, determined using a mixed integer linear programming (MILP)
optimisation model, of a solar farm co-located with ES vary in different regions around Great Britain (GB) as
a case study. We perform a cost–benefit analysis from the point of view of a distribution-connected solar
farm owner. Real solar generation data is used, along with a weather model, to accurately represent forecast
and actual output. For solar farms without ES profits are higher in locations with greater solar irradiance.
However for sites with ES we find greater profit variation, primarily due to different distribution charges. For
the majority of GB, ES does not add sufficient value to offset its high upfront costs and is not worth adding to
solar sites. Additionally, it is found to be uneconomical to add ES to most existing solar farms, despite many
studies highlighting the grid benefits this would bring. We recommend that distribution network operator
and market pricing better reflects the value which ES can bring to the electricity system economical to add
to solar sites. To encourage increased co-location distribution operators should offer greater a differential
between non-intermittent generation and intermittent generation payments, in particular at times of high
system demand.

1. Introduction

1.1. Overview

Climate change is a major geopolitical issue, and the transition from
fossil fuels to renewables is crucial [1]. Solar photovoltaics (PV) are a
key component of this transition, accounting for 11% of renewable elec-
tricity generation in the UK [2]. Energy storage (ES) is also important,
as it can mitigate fluctuations in renewable output and enable optimal
use of variable electricity sources [3–5].

ES can be economically beneficial for renewable generators and
grid operators by creating value through energy arbitrage and lowering
system costs [6].

Co-locating ES alongside renewables can also provide additional
benefits such as attractive economics, improved operation, and reduced
power curtailment. In this work, we explore the economic impact of
location on solar PV farms co-located with ES in Great Britain, to assess
the feasibility of deploying ES under current market conditions. Whilst
ES does not necessarily need to be co-located alongside renewable
generation to reap aforementioned grid benefits, there are other unique
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advantages to co-location. These include attractive economics, through
shared inverters and grid connection costs, and improved operation,
such as the battery capturing clipped power that may otherwise be
lost [7,8]. Co-locating ES alongside renewables can also reduce power
curtailment [9].

In this work we will explore the economic impact of location on
solar PV farms co-located with ES across Great Britain (GB). We will
calculate the maximum obtainable income with and without ES, and
hence the value it can bring. The aim is to study how feasible it
is to deploy ES, particularly alongside solar PV, since previous work
has shown how important this for decarbonisation, improving power
quality and reducing grid system costs. The following section will
explore literature on the topic of optimising the location of solar farms
and the scheduling of co-located ES and solar.

1.2. Literature review

The optimal choice of location for solar farms is a research area
currently receiving a great deal of attention, for example [10–17].
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Nomenclature

The abbreviations and symbols used are defined as follows:

Abbreviations

𝐸𝑆 Energy storage
𝑃𝑉 Photovoltaic
𝐷𝑁𝑂 District network operator
𝑀𝐼𝐿𝑃 Mixed integer linear programming
𝑁𝑃𝑉 Net present value

Indices

𝑡, 𝑡′ Time (hour)
𝑛 Solar site
𝑟 DNO regions
𝑦 Year

Sets

𝑇 Set of time/periods (hours)
𝑁 Set of solar sites
𝑅 Set of DNO regions in the UK
𝑌 Set of years of project lifetime

Parameters

𝜂𝑐
𝑛

Charge efficiency of energy storage device
at solar site 𝑛

𝜂𝑑
𝑛

Discharge efficiency of energy storage de-
vice at solar site 𝑛

𝜇𝑟𝑛 1 if solar site 𝑛 is located in DNO region 𝑟,
0 otherwise

𝑃𝑛 Maximum power of energy storage device
at solar site 𝑛 (MW)

𝑝𝐵𝑀
𝑡

Price of electricity in the balancing market
at time 𝑡 (£/MWh)

𝑝̂𝐵𝑀
𝑡

Predicted price of electricity in the balanc-
ing market at time 𝑡 (£/MWh)

𝑝̂𝐷𝐴
𝑡

Predicted price of electricity in the day-
ahead market at time 𝑡 (£/MWh)

𝑝𝐷𝑁𝑂
𝑟𝑡

Charges for DNO region 𝑟 at time 𝑡

(£/MWh)
𝑆𝑛𝑡 Actual solar output power from site 𝑛 at

time 𝑡 (MW)
𝑆̂𝑛𝑡 Predicted solar output power from site 𝑛 at

time 𝑡 (MW)
𝑋𝑛,0 Initial capacity of energy storage device in

site 𝑛 at time 𝑡 = 0 (MWh)
𝑋̄𝑛 Maximum capacity of energy storage de-

vice in site 𝑛 (MWh)
X
𝑛

Minimum capacity of energy storage device
in site 𝑛 (MWh)

𝐶 𝑖
𝑛

Installation cost of energy storage in site 𝑛

(£)
𝐶𝑚
𝑛𝑦

Yearly maintenance cost of energy storage
in site 𝑛 (£)

𝐶𝑆𝐵 Energy storage block cost (£/kWh)
𝐶𝐵𝑂𝑆 Energy storage balance of system cost

(£/kWh)
𝐶𝐶𝐶 Energy storage construction and commis-

sioning cost (£/kWh)
𝐶𝑆𝐼 Energy storage integration cost (£/kWh)

𝐶𝑃𝐷 Energy storage project development cost
(£/kWh)

𝐶𝑃𝐸 Energy storage power equipment cost
(£/kW)

𝐶𝐶𝑂𝑀𝑆 Energy storage controls and communication
cost (£/kW)

𝐶𝐺𝐼 Energy storage grid integration cost (£/kW)
𝐶𝑂𝑀𝑉
𝑦

Energy storage yearly variable operation
and maintenance cost (£/kWh)

𝐶𝑂𝑀𝐹 Energy storage yearly fixed operation and
maintenance cost (£/kWh-year)

𝑁𝑃𝑉𝑛 Net present value of energy storage in site
𝑛 (£)

𝐼𝑛𝑦 Yearly total income of energy storage in site
𝑛 (£)

𝐼𝐷𝐴
𝑛𝑦

Yearly day-ahead income of energy storage
in site 𝑛 (£)

𝐼𝐷𝑁𝑂
𝑛𝑦

Yearly DNO income of energy storage in site
𝑛 (£)

𝐼𝐵𝑀
𝑛𝑦

Yearly balancing market income of energy
storage in site 𝑛 (£)

𝑅𝑛 Residual value of energy storage after
project lifetime in site 𝑛 (£)

𝑑 Net present value discount rate
𝑎 Acceleration of depreciation

Continuous variables

𝑃 𝑐
𝑛𝑡

Charging power of energy storage device in
solar site 𝑛 at time 𝑡

𝑃 𝑑
𝑛𝑡

Discharging power of energy storage device
in solar site 𝑛 at time 𝑡

𝑃
𝑒𝑥𝑝

𝑛𝑡
Power exported to grid from solar site 𝑛 at
time 𝑡 in the day-ahead market

𝑃
𝑒𝑥𝑝

𝑛𝑡
Power exported to grid from solar site 𝑛 at
time 𝑡 in real time

𝑋𝑛𝑡 Capacity of energy storage device in site 𝑛

at time 𝑡

These studies can be broadly split up into two categories: those that
consider location within an electrical network, and those that con-
sider geographical location. The first category optimises locations of
power-grid connections, to reduce power losses and improve voltage
profile [10,11], the latter of which presents a novel algorithm to
improve system performance, and to minimise connection costs [12].
These studies are valuable from purely a grid point-of-view; however,
they do not consider factors such as geography, weather and socio-
economics, which may vary regionally and affect optimal choice of
location.

In the second category, the studies look at large areas; for instance,
the authors of [13,14] study the optimal locations of PV in Brazil and
PV–wind hybrid in Iran, respectively. Both use Technique of Order
Preference Similarity to the Ideal Solution (TOPSIS) to rank locations
according to factors such as climate, environment, geography and
economics. Other papers using similar ranking methods include [15,
16], which study the deployment of solar farms in India and Bali,
respectively. In [17], the authors use GIS analysis to identify suitable
locations for solar farms in the UK; they find that by not considering
local planning permission and grid constraints, area overestimations
may occur up to 97%.

Few studies have explored the optimal location for solar PV farms
co-located with energy storage (ES), with most focusing solely on solar.
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Some studies, such as [18,19], consider network connection optimi-
sation rather than geographical location. Another study, [20], models
the performance of solar and molten salt storage in three locations in
Egypt. However, these studies are limited in scope and do not consider
differences in geography or weather. Studies such as [21,22] explore
the optimal battery size in different locations but only on a small scale.
It is important to investigate the impact of location on a larger scale,
considering numerous possible sites throughout the country.

Recent developments in energy storage (ES) technology are im-
portant for optimising the location of ES with solar. Reviews on ES
technologies, such as [23,24], should be taken into account. Lithium
ion batteries are found to be more efficient than lead acid and flow
batteries, with flow batteries having the greatest number of cycles.
Costs of lithium iron phosphate, lithium nickel manganese cobalt ox-
ide, and lead acid batteries are similar, with LFP being slightly more
economical. Redox flow batteries are less economical. Whilst this study
focuses on co-located battery storage with solar, it should be noted that
the methodology can be applied to other types of storage.

Optimised ES scheduling is crucial to maximise profits for the solar
co-located site. Mixed Integer Linear Programming (MILP) and Convex
Optimisation (CO) algorithms are used in [25,26] to minimise the elec-
tricity bills of consumers on particular tariffs with access to solar and
storage. Larger grid-scale systems with access to wholesale markets,
as considered in this work, are studied in [27,28]. The latter uses a
Model Predictive Control (MPC) algorithm to optimise ES in day-ahead
and real-time wholesale markets. Other studies expand upon these by
including market uncertainties [29,30] and battery degradation [31,
32]. However these studies do not consider batteries co-located with
solar. In [33] they optimise the economics of lithium ion and lead acid
batteries co-located with grid connected solar with consideration of
degradation. They find that the levelised cost of energy and net present
cost of energy are lower for the lead acid battery, suggesting that this
is the more economical battery chemistry to use in combination with
grid connected solar.

Finally, there are several methods for calculating the value added
by ES (in this case, by co-locating it with solar); these can be split
into different categories. In [33–35] they present a Net Present Value
(NPV) analysis to assess the value of ES performing arbitrage and
different batteries in distribution substations, respectively. On the other
hand, [33,36] present methods to calculate Levelised Cost of Stor-
age/Energy (LCOS/LCOE), respectively, in order to compare the effects
of different technical characteristics of ES on its economics. Another
method to assess the value of storage is Real Options (RO) analysis, as
considered in [37–39]. Since NPV is the most ubiquitous method, it will
be used here.

1.3. Locational factors GB

The criteria for solar farm site suitability in the UK is presented
in [17]; these are geographical (including land slope), weather re-
lated and constraints due to network connections. Since this work is
interested in identifying the optimal region, which will be a large
area rather than a specific site, finer details such as distance from
network connections, rivers, woodland and urban areas will be omitted.
Additionally, as the aim is to find the region where profits can be
maximised only factors affecting this will be considered. These are:

• Weather - Solar irradiance and cloud cover will affect solar farm
power output, and hence total income made through selling this
in wholesale markets.

• Regional Electricity Grid Charges - These are outlined subse-
quently and will also affect the total income.

In common with other countries, in GB there are a number (14) of
licensed DNOs (Distribution Network Operators), illustrated in Fig. 1,
which are responsible for the distribution of electricity around a par-
ticular region of the national grid. These are operated independently

Fig. 1. Map showing the 14 different DNOs and their regions in GB.

and hence each DNO may impose a different set of charges on the
distribution grid users, which may be consumers or generators. This is
particularly important because a solar farm may face different charges
for exporting power depending on which DNO region it is located
in [40].

Information on Use-of-System charges imposed by each DNO can be
found on their websites [41–46]. Negative charges are given to genera-
tors for exporting power to the distribution networks, with intermittent
generators receiving a set payment and non-intermittent generators
receiving varying payments following a red, amber, and green charging
structure. Fig. 2 shows this for Western Power Distribution (East Mid-
lands). It should be noted that at weekends these payment structures
differ slightly: there are normally no red time bands. Weekly time series
of payments were generated for each DNO, considering the full weekly
structures.

In Fig. 3 the payments received by the different generator types are
shown for the different DNO regions. It can be seen that there is a dis-
tinct difference between the payments received in the different regions
for both intermittent and non-intermittent generators. Additionally,
the mean payments received by non-intermittent generators is greater
than for intermittent, and the red time band payments are significantly
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Fig. 2. Red, amber and green time bands for Western Power Distribution (East
Midlands).

greater. Since ES is defined as non-intermittent [47], by co-locating
storage with solar the red payment band can be taken advantage of.

1.4. Contributions of this work

This work builds upon grid scale battery storage optimisation mod-
els in the literature, such as [28], and co-located with solar, in as [33].
Whilst many research papers have answered the question - what is the
best way to use batteries to generate revenue? Far fewer papers have
considered - where is the best location to locate a battery to generate
revenue? Yet, location is an important factor to consider when it comes
to practically deploying these devices.

Novelty lies within the exploration of how the battery’s economics
varies with its location on country-wide scale. This work addresses
a gap in the literature - previous studies optimising the location of
solar with battery storage are few and far between, and limited to a
local scale, or else limited to a small number of possible locations.
It brings together two important deployment considerations usually
studied separately: economics and location. Another key strength is that
the model can easily be replicated and applied to different case studies,
making it a useful tool for decision-making for battery storage projects.
Additionally, it has implications that are important to solar farm owners
and investors interested in this technology, and policy-makers wishing

to predict the future solar-storage landscape. The novel contributions
of this work are as follows:

• This study will explore the economic impact of location on solar
co-located with storage on a large, country-wide scale consid-
ering a large number of possible sites. Specifically, it studies
Great Britain (GB) using historical solar generation data and
corresponding market price data from 2016–2017, with loca-
tional charging prices from the most recently available reports
(2020–2021).

• A novel MILP optimisation model is introduced to determine the
scheduling of ES with solar which maximises profits in day-ahead
and balancing markets, whilst considering location dependent
distribution grid charges. This is a non-deterministic model with
solar output and market prices unknown ahead of time.

• The locational study will examine the effects of changing ES size
(maximum power and capacity rating) on its NPV in different
regions, to determine optimal size to maximise value.

The rest of this paper is structure as follows: Section 2 presents the
methodology, this includes prediction models for solar output and mar-
ket prices, as well as the MILP optimisation model; Section 3 presents
the results and discussion; finally, Section 4 presents the conclusions
and future work.

2. Methodology

In this section we firstly outline the source and manipulation of the
solar data, and the weather model applied to predict solar generation.
Then we discuss electricity markets in Great Britain and the methods
employed to predict prices. Next, we present models to optimise co-
located ES revenues in the day-ahead and real-time markets. Finally,
we outline how we determined the economic feasibility of installing
ES in each location.

2.1. Solar sites

Data regarding 150 solar panel sites in GB has been provided for
this work [48]. The data set contains information about location, size
and hourly generation (from 2016–2017) for each site. For this work
each of these solar sites is scaled up to have the same maximum power
output (1 MW - as this is representative of a distribution connected
solar farm [49]) so that direct comparisons between sites can be made.
The co-located ES will be smaller than the maximum solar output, since

Fig. 3. DNO payments (p/kWh) for intermittent generators (Int), non-intermittent generators red band (Non-Int Max) and non-intermittent generators mean (Non-Int Mean).
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average yearly solar in GB has a load factor of 0.112 [2]. Preliminary
analysis of solar data suggests that the storage should be sized on the
order 10−1 MW for a 1 MW sized solar farm.

In [50] a weather model is developed and used to predict hourly
solar generation for each of these sites using information about their
location, size and elevation. It uses a Gradient Boosted Tree machine
learning model (based on methods in [51,52]) that was trained using
historical weather forecast and solar outturn data to forecast solar
outturn and, therefore, solar PV generation at different sites in the
UK. The weather forecast data included irradiance, air temperature,
humidity, wind speed, and wind direction (data from the European
Centre for Medium-Range Weather Forecasts [53]). It was found that
including all of these variables improved accuracy. The model also
considered time of day, year, and solar geometry, as well as time-lagged
variables to improve performance further.

2.2. Electricity markets

Energy trading can occur bilaterally or on exchanges. A bilateral
contract is an agreement between two parties (eg. a supplier and gener-
ator) to exchange energy under a set of specified conditions [54]. These
are difficult to model as data is not readily available. In GB the two
main exchanges are European Power Exchange and Nord Pool (N2EX)
where electricity can be traded for next day delivery and usage [55].
Within each of these exchanges electricity can be sold in a day-ahead
auction market (which closes one day ahead of delivery at 9:50 am UK
time), or an intra-day market (where trading occurs continuously up to
one hour before delivery). The day-ahead market is much more liquid
than the intra-day market, which means that market price is more likely
to reflect intrinsic value [56]. Additionally, prices are less volatile in
the day-ahead market, hence this is less risky for participants to trade
in and will be considered here rather than the intra-day market.

In real-time, it is up to National Grid to balance supply and demand
on a second-by-second basis. It does so by accepting offers (generation
increases and demand reductions) and bids (generation reductions and
demand increases) made in near real-time. This is referred to as the
Balancing Mechanism. Balancing Mechanism trading is performed in
half hourly intervals and market closure to submit bids/offers is 30
minutes before the start of each interval. For a solar generator that has
sold its predicted output in the day-ahead market, it must settle any
discrepancies in actual output in the balancing market.

When solar is co-located with ES there is the option to shift energy
trading to times when prices are more advantageous; the optimisation
procedure to maximise profits through this means is presented in the
following section. Since market prices are not known in advance, they
must be predicted. Day-ahead market prices generally follow a certain
daily pattern and hence can be predicted reasonably accurately using
a simple 7-day rolling average method. The MAPE (Mean Absolute
Percentage Error) for this method using N2EX data from 2016 to 2018
was found to be 11% [57]. Balancing market prices are very difficult
to predict. Some studies in the literature use SARIMA (Seasonal Auto-
regressive Integrated Moving Average) models [58,59]. However, when
this was tested on National Grid’s Balancing Mechanism it did not per-
form well [60]. A SARIMA(2,1,2)(0,1,2,24)1 model was found to give
an RMSE (Root Mean Squared Error) of 99.7, whereas simply using the
same predictions as for the day-ahead market gave an RMSE of 34.4.
It is not unreasonable to assume that these two markets will follow
similar patterns, since hours with greater electricity demand (and hence
higher prices) may be more likely to have greater discrepancies in real-
time. Hence, the 7-day rolling average day-ahead values were used as
predicted prices for both markets.

1 Other SARIMA models were tested on September 2016 data however this
one was chosen as it had the lowest AIC (Alkaike Information Criterion) value.

2.3. Day-ahead optimisation model

This section presents the MILP optimisation model used to maximise
the day-ahead profits of ES co-located with solar in GB, with considera-
tion of local DNO pricing structures. The equations governing the MILP
are outlined as follows. Eqs. (1) and (2) ensure that the power used to
charge/discharge each ES, n, at time, t, does not exceed its maximum
limit.

0 ≤ 𝑃 𝑐
𝑛𝑡
≤ 𝑃𝑛 ∀ 𝑛, 𝑡 (1)

0 ≤ 𝑃 𝑑
𝑛𝑡
≤ 𝑃𝑛 ∀ 𝑛, 𝑡 (2)

The capacity of each ES at the end of time period, 𝑡, is described
by Eq. (3); it depends upon the capacity at the end of time period
𝑡−1, plus/minus the effects of charging/discharging in the current time
period. Eq. (4) maintains capacity within its maximum and minimum
limits, and Eq. (5) states that charging power may not exceed predicted
solar output power.

𝑋𝑛𝑡 = 𝑋𝑛,𝑡−1 + 𝜂𝑐
𝑛
𝑃 𝑐
𝑛𝑡
−

𝑃 𝑑
𝑛𝑡

𝜂𝑑
𝑛

∀ 𝑛, 𝑡 (3)

X
𝑛
≤ 𝑋𝑛𝑡 ≤ 𝑋̄𝑛 ∀ 𝑛, 𝑡 (4)

𝑃 𝑐
𝑛𝑡
≤ 𝑆̂𝑛𝑡 ∀ 𝑛, 𝑡 (5)

Power exported to the grid is described by Eq. (6), and is equal to
predicted solar output, minus ES charging and plus ES discharging.

𝑃
𝑒𝑥𝑝

𝑛𝑡
= 𝑆̂𝑛𝑡 − 𝑃 𝑐

𝑛𝑡
+ 𝑃 𝑑

𝑛𝑡
∀ 𝑛, 𝑡 (6)

Finally, the objective function is given by Eq. (7); it maximises day-
ahead profits, due to predicted market prices and time-band dependent
DNO payments, subject to Eqs. (1)–(6).

𝑚𝑎𝑥
∑

𝑛𝑡

(

𝑝̂𝐷𝐴
𝑡

+
∑

𝑟

𝜇𝑟𝑛𝑝
𝐷𝑁𝑂
𝑟𝑡

)

𝑃
𝑒𝑥𝑝

𝑛𝑡
(7)

2.4. Real-time optimisation model

For the real-time optimisation, the MPC algorithm proposed in [28]
is adopted and developed here; it works by implementing the following
algorithm.

Algorithm 1: Real time optimisation

1 Solve DA model for all 𝑡 ∈ 𝑇 ;
2 while 𝑡 ∈ 𝑇 do
3 Obtain solar output at current time period 𝑆𝑛𝑡 ;
4 Forecast real-time settlement price 𝑝̂𝐵𝑀

𝑡
at current time 𝑡,

and future solar generation and price: 𝑆̂𝑛𝑡, 𝑝̂
𝐵𝑀

𝑡′
at time

𝑡′ ∈ 𝑇 ′′ where 𝑇 ′′ = {𝑡 + 1, ..., 𝑡 + 24} ;
5 Solve real time optimisation model:

max
∑

𝑛

[

(

𝑝̂𝐵𝑀
𝑡

+
∑

𝑟

𝜇𝑟𝑛𝑝
𝐷𝑁𝑂
𝑟𝑡

)

(𝑃
𝑒𝑥𝑝

𝑛𝑡
− 𝑃

𝑒𝑥𝑝

𝑛𝑡
)

+

𝑡+24
∑

𝑡′=𝑡+1

(

(𝑝̂𝐵𝑀
𝑡′

+
∑

𝑟

𝜇𝑟𝑛𝑝
𝐷𝑁𝑂

𝑟𝑡′
)(𝑃

𝑒𝑥𝑝

𝑛𝑡′
− 𝑃

𝑒𝑥𝑝

𝑛𝑡′
)
)

]

(8)

subject to equations (1) - (4) for 𝑇 ′ = {𝑡, ..., 𝑡 + 24},
equations (5) - (6) for 𝑇 ′′ = {𝑡 + 1, ..., 𝑡 + 24}, and:

𝑃 𝑐
𝑛𝑡
≤ 𝑆𝑛𝑡 ∀ 𝑛, 𝑡 (9)

𝑃
𝑒𝑥𝑝

𝑛𝑡
= 𝑆𝑛𝑡 − 𝑃 𝑐

𝑛𝑡
+ 𝑃 𝑑

𝑛𝑡
∀ 𝑛, 𝑡 (10)

6 𝑡 = 𝑡 + 1

7 end

Optimisations are carried out over 1 year from November 2016
to November 2017, corresponding to the solar data. Day-ahead and
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balancing market price data corresponding to this (November 2016 to
November 2017) is used, since it is more realistic to use price data
corresponding to the same time periods as the solar generation data.
This is because factors affecting solar output, such as weather, will
also affect market prices (via change in electricity demand and national
renewable generation) and this needs to be taken into account.

The DNO payment data is taken from the most recent reports
(2020–2021). We use more recent data for DNO payments, since these
payments are decided upon before the start of each year and do not
vary with factors such as solar output. Therefore, more recent data is
preferred to capture more recent trends in use-of-system charges. On
the other hand market prices, such as day-ahead and balancing market
prices, may vary as a function of solar generation/weather; hence,
day-ahead and balancing market prices need to correspond to solar
generation data. The resolution of this model is hourly, since both day-
ahead market prices and solar generation data have hourly resolution.
Balancing market prices are half-hourly, therefore every other price,
corresponding to half past the hour, was omitted. Most DNO time bands
start and end on the hour; any other time band commencements not on
the hour were rounded to the nearest hour.

In the optimisation models for both day-ahead and real-time mar-
kets, we assume that future prices and solar generation are unknown
and we lack perfect knowledge of the future, which reflects the real-
world operation of an ES optimiser. We also assume that the ES trading
has no impact on prices and is considered a price-taker rather than a
price-maker, which is valid when traded volumes are small relative
to the total market. Previous research has shown that when price
forecasting is imperfect, there is no significant difference in modelling
storage as a price-maker or price-taker for storage capacities up to 500
MW in both day-ahead and real-time markets [61]. For the sake of
simplicity the ES is modelled as a price-taker.

2.5. NPV calculations

The economic viability of installing ES in each location is also
explored through calculations of its Net Present Value (NPV). This
is of interest when (a) deciding whether the install ES with a pre-
existing solar farm, or (b) deciding whether or not to include ES
in plans for an upcoming solar farm. In [62] they present a report
summarising a cost analysis of ES technologies based upon 2020 data,
along with estimates for 2030. These were projected from the 2020
values by considering each technology’s current state of development
and using low, medium and high learning rates. Data was obtained from
an extensive study of the literature, conversations with vendors, and
responses to questionnaires.

The installation and maintenance costs associated with lithium iron
phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC)
batteries is presented in Table 1. This is shown for 2020, with estimated
values for 2030 in brackets. It can be seen that the prices of these
batteries are incredibly similar; for the purposes of this work LFP
batteries will be considered, since they perform the same or better
than NMC on all cost metrics except for 𝐶𝐵𝑂𝑆 . The typical lifetimes
of these batteries are given in Table 1; they can also be calculated as
the amount of time before capacity degrades to 80% of its initial value.
The installation cost associated with ES, n, is shown in Eq. (11), and
the yearly maintenance costs for year, y, in (12).

𝐶 𝑖
𝑛
= (𝐶𝑆𝐵 + 𝐶𝐵𝑂𝑆 + 𝐶𝑆𝐼 + 𝐶𝑃𝐷 + 𝐶𝐶𝐶 )𝑋̄𝑛

+(𝐶𝑃𝐸 + 𝐶𝐶𝑂𝑀𝑆 + 𝐶𝐺𝐼 )𝑃𝑛 ∀ 𝑛 (11)

𝐶𝑚
𝑛𝑦

= 𝐶𝑂𝑀𝑉
𝑦

𝑋̄𝑛 + 𝐶𝑂𝑀𝐹𝑃𝑛 ∀ 𝑛 (12)

The NPV of an ES project can be calculated using the following
equation:

𝑁𝑃𝑉𝑛 = −𝐶 𝑖
𝑛
+

𝑌
∑

𝑦=1

(𝐼𝑛𝑦 − 𝐶𝑚
𝑛𝑦
)

(1 + 𝑟)𝑦
∀ 𝑛 (13)

Table 1
Costs associated with installation and maintenance of lithium iron phosphate (LFP) and
lithium nickel manganese cobalt oxide (NMC) batteries, and their lifetime, in 2020 and
estimates for 2030 in brackets [62]. A conversion of $1 = £0.78 is used to convert these
to pounds.

LFP NMC

Storage block ($/kWh) 182 (109) 194 (116)
Balance of system ($/kWh) 42 (30) 37 (26)
Power equipment ($/kW) 85 (73) 85 (73)
Controls and communication ($/kW) 40 (28) 40 (28)
System integration ($/kWh) 50 (36) 51 (42)
Construction and commissioning ($/kWh) 61 (50) 63 (51)
Project development ($/kWh) 73 (60) 75 (62)
Grid integration ($/kW) 31 (25) 31 (25)
Operations & maintenance fixed ($/kW-yr) 4.40 (3.61) 4.51 (3.70)
Operations & maintenance variable ($/kWh) 0.5125 0.5125
Lifetime 10 10

where 𝑟 represents the discount rate and 𝑌 the end of project lifetime
in years. The cash flow is equal to yearly ES income minus operations
and maintenance costs, where yearly income is shown in Eq. (14) and is
comprised of income from (1) the day-ahead market, (2) DNO payments
and (3) the balancing market (this may be negative). In the final year
the ES’s residual value is also included as income; this is shown in
Eq. (15).

𝐼𝑛𝑦 = 𝐼𝐷𝐴
𝑛𝑦

+ 𝐼𝐷𝑁𝑂
𝑛𝑦

+ 𝐼𝐵𝑀
𝑛𝑦

∀ 𝑛 (14)

𝐼𝑛𝑌 = 𝐼𝐷𝐴
𝑛𝑌

+ 𝐼𝐷𝑁𝑂
𝑛𝑌

+ 𝐼𝐵𝑀
𝑛𝑌

+ 𝑅𝑛 ∀ 𝑛 (15)

The residual value is calculated using the declining balance method
of depreciation, as described in [63]. It can be calculated using Eq. (16),
where 𝑎 is acceleration of depreciation and 𝐿 is useful battery life-
time. Here, double depreciation, 𝑎 = 2, is used since it is assumed
battery value degrades quickly. The useful lifetime is calculated as:
𝐿 = 𝑌 + 𝑌 2𝑛𝑑𝑙𝑖𝑓𝑒. In other words, the lifetime of the project considered
here (shown in Table 1) plus the second life lifetime. In [64] they
assess the 2nd-lifetime of nickel metal hydride (NiMH) and lithium-ion
batteries used for different purposes; an average value of 7 years can
be calculated from this and will be used here.

𝑅𝑛 = 𝐶 𝑖
𝑛
(1 −

𝑎

𝐿
)𝑌 ∀ 𝑛 (16)

3. Results and discussion

In this section we firstly explore the effects of location on the eco-
nomics of a solar site, under the assumption that the solar generation is
the same in all locations. This allows us to directly compare the effect
of locational prices on economics. Then we remove this assumption and
also examine the region differences due to weather. We then examine
the economics required for a profitable co-located site, the effects of
economies of scale and the minimum installation costs for profitable
economics. Finally we discuss implications and limitations of this work.

3.1. Locational effects

For the initial simulations each solar site was co-located with ES
with parameter values: 𝑃𝑛 = 0.4 MW, 𝑋𝑛 = 0.2 MWh, X

𝑛
= 0.04 MWh,

𝜂𝑑
𝑛
= 𝜂𝑐

𝑛
= 0.9. Fig. 4 shows the results of when one arbitrarily chosen

solar site was replicated in each of the DNO regions. In other words,
each region contained one site with the same predicted/actual solar
generation profile. The purpose of doing this is to compare directly
the change in income due to different DNO payments. The mean and
standard deviation of income through the different revenue streams:
day-ahead market (DA), balancing market (BM) and DNO payments, is
also shown in Fig. 5 for PV only and PV with ES.

Several things can be inferred from these results; firstly, the regional
variation in income for PV only is very small (∼£250), and the bulk
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Fig. 4. Total yearly income (£) for one repeated solar profile in each region for PV only, PV with ES and improvement in income due to ES.

Fig. 5. Income breakdown for PV (left) and PV with ES (left) in day-ahead (DA) and balancing (BM) markets, due to DNO payments and total.

of the income comes from the DA market with very little DNO contri-
bution. However, when storage is included a much larger variation in
regional income is observed (∼£7000). Additionally, the inclusion of
ES improves total income significantly; this is seen in all three revenue
streams but in particular due to DNO payments. The consequences of
this are that when considering locational options for PV only, regional
income differences are not important. However, when looking to either
install ES with existing PV or construct a new PV farm with ES, these
regional differences will have a great impact on the site’s economics
(under current market conditions).

All 150 sites were used for the next simulation. Each one was
located and its associated DNO identified, then they were all optimised
using their unique solar profiles. The results of this therefore combine
the regional DNO effects, previously discussed, with regional differ-
ences due to weather which affect the solar output. In Fig. 6 the average
yearly income per site in each of the different DNO regions is presented.
It can be seen that there is greater variation in PV income now that
different solar profiles in each region have been used. As expected,
the general trend is that PV in the southernmost regions generate high
incomes due to improved solar irradiance. The outlier is the Western
Power Distribution Midlands DNO region, which generates the least
income. It can be seen in Fig. 3 that this region receives the lowest DNO
payments. Additionally, the solar generation of sites within this region
may compound this effect; for example, previous work suggests that

inland solar sites may make greater financial losses in the balancing
market [50]. The ES income follows the same trends as seen in Fig. 4,
confirming that when deciding whether to include storage the DNO
payments are the most important factor, rather than the output of the
solar itself.

3.2. Economic viability

Fig. 7 shows the yearly ES income required (each year over its
lifetime) to make NPV zero; this is done for LFP batteries using 2020
and 2030 cost values. A conversion rate of 0.78 pounds to one dollar
has been used. In the previous section, ES incomes for a 0.2 MWh/0.4
MW battery were in the range £0.4–1.4 × 104; an LFP battery of this
size needs to have an income of £1.7 × 104 or 1.4 × 104, using 2020
and 2030 prices respectively, in order to have a zero NPV. This is
therefore are not profitable under current (2020) market conditions
without additional incentives. However, it appears that smaller sized
batteries could be profitable, hence, simulations will be done for 0.1
MWh/0.1 MW, 0.1 MWh/0.2 MW and 0.2 MWh/0.1 MW ES.

In Fig. 8 the average NPV for ES installed with solar in each region
is shown. This is done using 2020 LFP battery costs and for different
sized ES. It can be seen that ES is profitable in London, however, as
this is a highly urban area it is unlikely for a solar farm to be installed
here. For regions in south-east England and north Wales ES becomes
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Fig. 6. Average total yearly income (£) across each region for PV only, PV with ES and improvement in income due to ES.

Fig. 7. Yearly ES income (£) required to make NPV zero for different sized Lithium-ion batteries.

profitable when it is smaller e.g. 0.1 MWh/0.1 MW, although north
Wales is also impractical due to its mountains. In other regions and for
larger storage it is not profitable to co-locate ES with a solar farm.

Fig. 9 compares the average NPV values (for 0.1 MWh/0.1 MW)
against the number of existing solar sites in each region as of June
2020; this data is obtained from the UK’s Renewable Energy Planning
Database [65]. We see that in the regions where ES is profitable there
are relatively few solar farms - 25% of the total. In regions with the
most solar farms, e.g. the South West, it is not profitable to add ES.
One possible reason for this may be that due to the high capacity of
solar generation in these regions there is less need for ES, and hence
there is less need for advantageous DNO payments. Conversely, for
regions where large scale solar is impractical due to population density
(London) and mountains (North Wales), ES is more highly valued.
This may be because their distribution grids have greater need for
the support that energy storage can offer, for instance dispatchable
generation and balancing services.

3.3. Economies of scale

The results presented thus far have modelled small-scale storage,
10−1 − 100 MW. This is small relative to grid storage; according to

the most recent Renewable Planning Database (April 2022), currently
operational battery storage in the UK ranges from 0.1–50 MW, with
larger projects submitted for planning permission [49]. Additionally,
there is 2828 MW of pumped hydro storage in the UK. The largest
of these, Dinorwig (1728 MW), provides fast acting response to bal-
ance the grid [66]. In comparison with these storage projects, the
batteries modelled here are small. However, we are more concerned
with performing a cost–benefit analysis from the point of view of
a distribution-connected solar farm owner, than a transmission scale
investor.

It is worth considering how the economics of adding battery storage
to a solar farm varies as its scale increases. In particular, it is interesting
to analyse whether it would benefit from economies of scale. In Fig. 10
the relative CAPEX (%) per MWh storage, compared against 1 MWh,
is shown for different duration LFP batteries as duration increases to
10 and 100 MWh. It can be seen that increasing the size of the battery
decreases the unit cost, particularly for lower duration/higher power
batteries. This is since costs that scale with kW, shown in Table 1,
such as controls and communication, and grid integration decrease
relative to size [62]. It is likely that NPV is overestimated for the
batteries in the previous section due to a decrease in size leading to
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Fig. 8. Average NPV across each region using 2020 lithium ion battery costs for different sized ES.

Fig. 9. Number of pre-existing solar sites in each DNO region as of June 2020. Plotted
on 0.1 MWh/0.1 MW lithium ion battery average NPV (£).

an increase in relative costs. Hence, causing these batteries to also be
an uneconomical investment for a solar farm participating in day-ahead
and balancing markets.

To examine the effects of economies of scale, the simulations in
Section 3.1 were repeated with solar and storage scaled by a factor of
50. The maximum output of the solar farms is 50 MW (representative
of the maximum sized operating solar farms in the UK [49]) and the
storage has maximum power 20 MW and capacity 10 MWh. The results
of this are presented in Fig. 10 and Table 3. In Fig. 11 it can be seen that
the scaled-up ES income follows the same geographic trends observed
in Section 3.1. This is unsurprising as the optimised scheduling of the
storage unchanged, the only difference is the magnitude of energy
quantities exported. Table 2 compares the mean NPV and its standard
deviation for the small-scale storage and the scaled-up storage. This
calculation factors in the ES CAPEX, that is relatively reduced for the

Fig. 10. Relative CAPEX (%) per MWh storage compared against 1 MWh, for different
duration LFP batteries, as scale increases from 1 MWh to 10 and 100 MWh [62].

Table 2
Mean NPV and standard deviation for different solar and storage of different scale
factors.

Max solar output, battery power/capacity Mean NPV (£) Std NPV (£)

1 MW, 0.4 MW/0.2 MWh −6.02 × 104 1.35 × 104

50 MW, 20 MW/10 MWh −2.38 × 106 6.68 × 105

scaled-up battery. For both cases mean NPV is negative. However, it
can be observed that the scaled-up battery benefits from economies of
scale; if there were no economies of scale, it would be expected that
mean NPV would be 50 times that of the small scale storage ≈−3×106.
Despite the slight improvement, it is still not economical for a solar
farm owner to add ES for arbitrage.

3.4. Minimum installation cost

The cost of lithium-ion batteries fluctuates due to various factors,
including raw material prices, manufacturing scale, technological ad-
vancements, and government policies and incentives. This means that
the prices used here might not reflect current market values. Therefore,
it is instructive to flip the research question and ask: at what cost does
it become profitable to add ES to a solar PV site?

We calculate the minimum installation cost at which it becomes
profitable to add ES by rearranging Eq. (13) with NPV equal to zero.
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Fig. 11. Average total yearly income (£) across each region for PV only, PV with ES and improvement in income due to ES. Scaled up by factor 50, in comparison with Fig. 6.

Table 3
Mean minimum installation costs (£/kWh) required to make NPV zero.

Power (kW) Capacity (kWh) Duration (h) Mean minimum installation
costs (£/kWh)

100 50 0.5 394
100 100 1 410
100 200 2 258

The results are shown in Table 3, for different battery durations. It
should be noted that these values include all aspects of installation
costs, including system integration, project planning, power equipment
etc. as well as the material cost of the battery.

Adding a 1-h duration (100 kW/100 kWh) battery to a solar PV
site becomes profitable when the installation cost reaches or falls
below £410/kWh. However, as the duration increases to 2-h, a lower
installation cost of £258/kWh is required to generate a profit. This
is because while the energy capacity of a 2-h battery doubles that
of a 1-h battery, the profits are less than double, making a cheaper
cost necessary for a profitable installation. The minimum installation
cost for a 0.5-h duration battery is similar to that of a 1-h battery, at
£394/kWh. Although material costs are lower for a 0.5-h battery, the
profits are also lower.

In Fig. 12 we show how the mean minimum installation costs
vary for the different DNO regions. As seen previously, greater income
can be achieved in London, the south-east and north Wales. In these
regions, the minimum installation costs required for ES to become prof-
itable are much higher. In London, the mean cost is £839/kWh. Adding
ES in these regions is still beneficial when material and manufacturing
costs are high. In the West Midlands, installation costs must fall below
£100/kWh to be profitable to add ES to a PV site.

3.5. Discussion

The findings suggest that under the studied market conditions it
is uneconomical to add ES to most existing solar farms in the UK
for arbitrage. Consequently the unique benefits of co-locating ES with
solar, such as capturing clipped power and reducing curtailment, may
not be realised. To encourage increased co-location, there should be
greater cost benefits for the solar farm owner. These might include
greater differential Use-of-System pricing to favour non-intermittent
generation over intermittent generation. Specifically, ES investments
could be encouraged by increasing Use-of-System payments during red
time bands, when demand is at its peak.

Fig. 12. Mean minimum installation cost (£/kWh) in each DNO region for a 1-h (100
kWh/100 kW) battery.

Interestingly, it was observed that due to the regional nature of GB’s
DNO Use-of-System charges, it is more economical to incorporate ES
in some regions than others. However, the regions where adding ES
is economically favourable do not correspond to those with the most
existing solar sites, nor those with the greatest solar irradiance. This
is an unusual observation, and reflects the fact that in GB different
regional operators may set their own pricing. Similar analysis may
be performed in regions outside of GB, where differences in regional
market structures lead to differing locational economics. In [67] the
authors explore the economics of hybrid renewable-storage systems
participating in 7 different US wholesale markets; these include CAISO
(California Independent System Operator), ERCOT (Electric Reliability
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Council of Texas) and NYISO (New York Independent System Oper-
ator), amongst others. The net value is found to differ regionally,
and also as a function of battery duration and capacity, and year.
A review of Distribution System Operators (DSOs) in Europe shows
that some countries have a larger number of DSOs (Germany, Spain,
Poland), whereas other countries have 1 (Croatia, Greece, Ireland) [68].
Examining these further is outside of the scope of this work, but it
would be interesting to explore whether similar regional effects are
observed within these countries.

Limitations of this study are that it only considers battery revenues
from merchant markets, namely the day-ahead market and Balancing
Mechanism. In reality, a battery might also generate revenue by par-
ticipating in ancillary service market. For example, it could participate
in frequency response and reserve markets during times when it is not
trading in merchant markets. Additionally, this model does not consider
battery degradation. Heavily battery cycling (charging and discharging)
leads to accelerated degradation and reduces its lifetime. This can be
expensive, due to the cost of replacing the battery. Often batteries have
warranties in place to limit cycling. It would be interesting future work
to include revenues from ancillary service markets and to also include
some degradation constraints in the optimisation model, to examine
how these factors affect the economics.

Finally, it is acknowledged that changes will shortly be taking place
in the way distribution grids function. DNOs will be transitioning to-
wards DSOs (Distribution System Operators); this reflects the transition
towards more decentralised electricity grids, with local generation and
changes in usage patterns. The DSOs will have more control over the
local grids and use smart technologies for the management of the
network [69]. It is unclear what the consequences will be for the
Use-of-System charges, however, there is emphasis on supporting low
carbon technologies, such as ES, in local electricity grids [70]. Hence,
it is expected that the upcoming changes will improve the profitability
of ES. Specifically, for co-location of ES with solar to become more
economically advantageous for solar farmers, it is recommended to
increase the differential between non-intermittent generation and inter-
mittent generation payments, and increase non-intermittent payments
during red time bands.

4. Conclusion

In this work we have presented a mixed integer linear programming
(MILP) optimisation model to explore the economic impact of loca-
tion on a solar farm co-located with energy storage (ES). The model
combines economics and location (usually considered separately). It
is easy to replicate and apply to different case studies, making it a
useful tool for decision-making for battery storage projects. This work
is of interest to distribution-connected solar owners and organisations
considering investing in low-carbon energy assets. We determine how
the maximum achievable profits of a solar farm with and without ES in
different regions around Great Britain (GB) vary, and in which regions
ES adds more value. Our results show that solar farms without ES are
more profitable in regions with higher solar irradiance and profits are
relatively unaffected by differences in local grid charges. On the other
hand for solar farms with ES the regional profits are more varied and
strongly affected by local charges.

We find that ES adds greater value in regions where there are
fewer existing solar farms. These are often regions where it is geo-
graphically impractical to build solar farms. Additionally net present
value (NPV) calculations show that it is only profitable to add small
ES (0.1 MWh/0.1 MW) to a solar farm. This is only profitable in
select regions containing 25% of GB’s total existing solar farms. Hence
for the majority of these it is not economical to add ES. These find-
ings are important because recent studies suggest that we should be
adding more ES to solar; since it can reduce clipping and curtailment,
and optimises its usage. Our findings suggest that solar owners could
lose out on these benefits unless distribution network and market

pricing is changed to favour ES, specifically by increasing the differen-
tial between non-intermittent generation and intermittent generation
payments.

Future work may look at studying the degradation of ES due to
its co-location with solar. It may be interesting to examine how in-
cluding degradation in the optimisation function affects its profits
and lifetime, and if this in turn affects its optimum location. Future
work may also aim to predict future distribution grid charges, using
historic trends, and repeating this analysis as and when any changes
are made. Modelling the future volatility of day-ahead and balancing
market prices is also an area of development which will influence
the value of ES. Finally, the model outlined here may be applied to
any other country, or countries, where there is variation in regional
distribution grids. It is hoped that work will bolster the deployment
of ES, particularly co-located with solar, to improve power grids and
enable the decarbonisation of electricity systems.
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