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Abstract: On general Carnot groups, the definition of a possible hypoelliptic Hodge-Laplacian on forms using

the Rumin complex has been considered in (M. Rumin, “Differential geometry on C-C spaces and application

to the Novikov-Shubin numbers of nilpotent Lie groups,” C. R. Acad. Sci., Paris Sér. I Math., vol. 329, no. 11, pp.

985–990, 1999, M. Rumin, “Sub-Riemannian limit of the differential form spectrum of contact manifolds,” Geom.

Funct. Anal., vol. 10, no. 2, pp. 407–452, 2000), where the author introduced a 0-order pseudodifferential opera-

tor on forms. However, for questions regarding regularity for example, where one needs sharp estimates, this

0-order operator is not suitable. Up to now, there have only been very few attempts to define hypoelliptic Hodge-

Laplacians on forms thatwould allow for such sharp estimates. Indeed, this question is rather difficult to address

in full generality, the main issue being that the Rumin exterior differential dc is not homogeneous on arbitrary

Carnot groups. In this note, we consider the specific example of the free Carnot group of step 3 with 2 generators,

and we introduce three possible definitions of hypoelliptic Hodge-Laplacians. We compare how these three pos-

sible Laplacians can be used to obtain sharp div-curl type inequalities akin to those considered by Bourgain &

Brezis and Lanzani & Stein for the de Rham complex, or their subelliptic counterparts obtained by Baldi, Franchi

& Pansu for the Rumin complex on Heisenberg groups.
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1 Introduction

Div-curl inequalities in ℝn read as follows

‖u‖Ln∕(n−1)(ℝn ) ≤ C
(‖du‖L1(ℝn ) + ‖𝛿u‖L1(ℝn )

)
(1)

when u is a compactly supported smooth differential h-formwith h ≠ 1, n− 1. Here, d is the exterior differential,

and 𝛿 the exterior co-differential. In addition, denoting by H 1(ℝn ) the Hardy space, one also has

‖u‖Ln∕(n−1)(ℝn ) ≤ C
(‖du‖L1(ℝn ) + ‖𝛿u‖H 1(ℝn )

)
when h = 1 and
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‖u‖Ln∕(n−1)(ℝn ) ≤ C
(‖du‖H 1(ℝn ) + ‖𝛿u‖L1(ℝn )

)
when h = n− 1.

These estimates have been proved by Lanzani & Stein [1] and by Bourgain & Brezis [2], and are applied to

the study of div-curl systems and of more general Hodge systems in ℝn. They contain in particular the famous

Bourgain–Brezis inequality [3], [4] for divergence-free vector fields in ℝn (see also [5]).

We stress that the previous inequality for h = 1 (and analogously for h = n− 1) fails if we replace the Hardy

norm with the L1-norm, i.e. an estimate like (1) is false for 1-forms (and (n− 1)-forms), with a counterexample

given by Stein in [6], p. 191.

Obtaining analogous estimates in the setting of Carnot groups has proven much more difficult. In [7],

Chanillo & Van Schaftingen extended these Bourgain–Brezis inequalities to a class of vector fields in Carnot

groups and, outside the Euclidean setting, estimates akin to (1) have been proved in [8], [9] in the setting of the

Heisenberg groups for differential forms belonging to the so-called Rumin complex.

The Rumin complex
(
E∗
0
, dc

)
is a subcomplex of de Rham complex (Ω∗

, d) that Rumin constructed on Carnot

groups [10]–[12]. It is a complex, homotopic to the de Rham complex, that better fits the geometry of the group.

Recently, Rumin’s theory has been fruitfully used to address several questions in differential geometry, as well

as in pde’s theory in Carnot groups (and more generally in sub-Riemannian structures). In the particular case

of Heisenberg groups, with homogeneous dimension Q = 2n+ 2, one can obtain the following sharp estimates

if u is a form in Eh
0
, 1 < h < 2n and h ≠ n, n+ 1, so that

‖u‖LQ∕(Q−1)(ℍn,Eh
0)
≤ C

(‖dcu‖L1(ℍn,Eh+1
0 ) + ‖𝛿cu‖L1(ℍn,Eh−1

0 )

)
. (2)

On the other hand, if h = n, n+ 1, then the differential dc, and the co-differential 𝛿c respectively, have order

2. The estimates (2) then take the form

‖u‖LQ∕(Q−2)(ℍn,En
0)
≤ C

(‖dcu‖L1(ℍn,En+1
0 ) + ‖dc𝛿cu‖L1(ℍn,En

0)

)
;

‖u‖LQ∕(Q−2)(ℍn,En+1
0 ) ≤ C

(‖𝛿cdcu‖L1(ℍn,En+1
0 ) + ‖𝛿cu‖L1(ℍn,En

0)

)
.

For a more precise statement, including the cases when h = 1, 2n, see Theorem 1.3 of [9]. The proof of this

result relies on the precise estimates for the fundamental solution of the hypoelliptic Laplace-type operators

defined for forms of any degree for Heisenberg groups. These Laplacians have been introduced by Rumin in

[10].

In this work, we focus on extending this type of limiting Sobolev inequalities in the spirit of (1) to the Car-

tan group. This is achieved by defining three different classes of hypoelliptic Hodge-Laplacian operators on the

Rumin complex, all of which turn out to be suitable for obtaining such estimates. More precisely, we aim to

compare the possible div-curl type estimates that we obtain for each class of Laplacians.

The Cartan group is the 5-dimensional free nilpotent Carnot group whose Lie algebra is spanned by

(X1,X2,X3 = [X1,X2],X4 = [X1,X3],X5 = [X2,X3]). This group, and more generally 5-dimensional nilmanifolds

with generic1 rank two distribution, have been extensively studied as they arise in several contexts. For example,

the mechanical system of a surface rolling without slipping and twisting on another surface gives rise to a 5-

dimensional configuration space equipped with a rank two distribution encoding the no slipping and twisting

condition. This provides a basic example of (2,3,5) nilmanifolds (under suitable conditions see e.g. Section 4.4

in [13]). The Cartan group also provides an example of conformal geometry which is naturally associated with

ordinary differential equations [14], [15].

So far, there has been extensive work dealing with hypoelliptic Hodge-Laplace operators of order 12 on the

Cartan group [16]–[18]. In these quoted works, these operators (referred to as Rumin-Seshadri operators) are

1 We recall that a 2-dimensional distribution is said to be generic, or (2,3,5) on a nilmanifold M, if it admits the Cartan group as a

local frame.
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constructed using the Rumin differential,2 with application to heat kernel expansion and analytic torsion, as a

generalisation of the work done by Rumin on contact manifolds.

In our paper, these homogeneous order 12 Laplacians on forms will be denoted byΔ𝔾, since they are essen-

tially (up to a possible rescaling of the metric) the hypoelliptic Hodge-Laplace operators in [16]–[18]. In addition,

we also define two other different families of Hodge-Laplace operators. They are again constructed using Rumin

differentials. A first family will be denoted by ΔA which turn out of order 6, except for degrees 0 and 5, where

they have order 2 (see Definition 4.4). The second family denoted by ΔR differs from ΔA in degrees 2 and 3,

where ΔR has differential order 12 (see Definition 4.3). Moreover, ΔR also differs from the Laplacian Δ𝔾 which

has homogeneous order 12 in each degree.

All the operatorsΔ𝔾,ΔR andΔA are hypoelliptic, as shown in Proposition 4.6. Moreover, the operatorsΔA

have differential orders 6 and 2 strictly less than the homogeneous dimension of the Cartan group (which is 10).

Hence,ΔA has a fundamental solution to which it is possible to apply the theory of singular integrals of Folland

and Stein [19], as shown in Theorem 3.1 of [20]. For the other two Laplacians, the differential order can be 12,

higher than the homogenous dimension Q = 10. It is however still possible to obtain estimates of the derivative

of the fundamental solutions of bothΔ𝔾 andΔR,h (h = 2, 3) thanks to a recent result obtained by Van Schaftingen

and Yung for vector-valued operators (see Theorem 3.3 in [21]).

Rumin’s theory needs a quite technical introduction that is sketched in Section 3 to make the paper self-

constained. The main properties of
(
E∗
0
, dc

)
can be summarised in the following points:

– Rumin 1-forms are horizontal 1-forms, i.e. forms that are dual of horizontal vector fields.

– The “intrinsic” exterior differential dc on a smooth function is its horizontal differential (that is dual oper-

ator of the gradient along a basis of the horizontal bundle). Instead, when acting on forms of degree ≥1,

the differential dc can be identified with a matrix-valued operator where each entry is a homogeneous

left-invariant differential operator of order ≥1. We stress that, in general, different entries have different

differential orders, and so dc, viewed as a matrix-valued operator, is not homogeneous.

– The complex
(
E∗
0
, dc

)
is exact and self-dual under Hodge ∗ -duality.

Among all Carnot groups, Heisenberg groups ℍn provide the simplest examples of noncommutative Carnot

groups (of step 2). Recently, Rumin’s Laplacians in Heisenberg groups, or in sub-Riemannian contact manifolds

with bounded geometry have been used to get Poincaré inequalities and sharp estimates on 𝓁q,p-cohomology.
Indeed, thanks to its scale invariance, Rumin’s Laplacian allows to apply the theory of singular integral opera-

tors, to get the sharp exponent inHeisenberg groups, also in degree h = n, n+ 1where the operator dc is of order

two (see [22]–[26]). Moreover, Sobolev-Gaffney inequalities associated to the Rumin complex in this same setting

have also relied on such hypoelliptic Laplacians (see [8], [9]). The Sobolev-Gaffney inequalities obtained in [8]

on Heisenberg groups have made it possible to obtain analogous estimates on general contact manifolds with

bounded geometry [22], [23], [27]. In addition, very recently, in the setting of compact contact sub-Riemannian

manifolds, a Lp-global maximal hypoellipticity of the Rumin Laplacian has been obtained in [28]. This estimate

and the Gaffney inequality proved in [27], are themain ingredients which allow to prove a Hodge decomposition

for Sobolev classes.

Unfortunately, the geometry of arbitrary Carnot groups is radically different to that of Heisenberg groups.

One of the difficulties that one encounters is related to the fact that the structure of intrinsic differential forms is

much more complex and, in general, the exterior differential is not homogeneous as a matrix-valued operator.

As a consequence, it is not obvious how to construct a hypoelliptic Laplacian on forms (as instead is the case in

the Heisenberg groups). This lack of homogeneity is connected to the notion ofweight of a differential form (see

Definition 2.6). As far as we know, except for the 0-order Hodge-Laplacians introduced by Rumin e.g. in [11], [12],

the only attempt to construct hypoelliptic Hodge-Laplacians in the case where the Rumin differentials are not

2 More precisely, their construction of the subcomplex relies on the BGG machinery, which has been recently shown to coincide

with the Rumin complex on homogeneous groups, and hence on Carnot groups [53].
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homogeneous can be found in [29], where we discuss the case of the Engel group (which is the model of a class

of so-called filiform groups) and the 7-dimensional quaternionic Heisenberg group.

However, in the case of the Cartan group, the Rumin differentials dc are homogeneous on each degree. This

property has been used in [30] to construct the Rumin-Seshadri operatorsΔ𝔾, and it’s also the reason behind the

homogeneity of the Hodge-LaplaciansΔR. In our paper, we again use the homogeneity of dc to construct a brand

new Laplace-type hypoelliptic operator on formsΔA. All three operatorsΔ𝔾,ΔR, andΔA can be used to obtain

sharp estimates of div-curl type on the Cartan group. These results are contained in Theorems 5.1, 5.2, and 5.4.

The fundamental solution of the hypoelliptic ΔA plays a crucial role in obtaining the estimates of

Theorem 5.1. On the other hand, the different div-curl type estimates of Theorem 5.2 follow from the definition

of LaplaciansΔ𝔾 andΔR given in Definitions 4.2 and 4.3, respectively. Even though for arbitrary forms the esti-

mates of Theorem 5.2 are not equivalent to those of Theorem 5.1 (obtained using ΔA), it is important to stress

that if one instead considers a differential form u ∈ Eh
0
which is either closed or co-closed, the relative estimates

from all three Laplacians coincide. For example, in the case of a co-closed form, the statement of Theorem 5.4

can be roughly summarised as follows.

Denote by
(
E∗
0
, dc

)
the complex of Rumin forms in the 5-dimensional Cartan group 𝔾. Then there exists C > 0

such that, for any compactly supported smooth Rumin h-form u so that 𝛿cu = 0, we have

‖u‖LQ∕(Q−1)(𝔾) ≤ C‖dcu‖L1(𝔾,E10) if h = 0;

‖u‖LQ∕(Q−3)(𝔾,E10) ≤ C‖dcu‖L1(𝔾,E20) if h = 1;

‖u‖LQ∕(Q−2)(𝔾,E20) ≤ C‖dcu‖L1(𝔾,E30) if h = 2.

where Q = 10 is the homogeneous dimension of 𝔾. The estimates for the other degrees can be readily obtained by
Hodge duality.

Moreover, interestingly, when considering interpolation-type Lp-spaces, the relative div-curl estimates read

as follows (see Section 5.6 for the precise statement, here we write only the case h = 1 and h = 2):

Denote by
(
E∗
0
, dc

)
the complex of intrinsic forms in 𝔾. Then there exists C > 0 such that for any h-form u ∈

D
(
𝔾, Eh

0

)
, h = 1, 2, such that {

dcu = f

𝛿cu = g

we have

‖u‖LQ∕(Q−3)+LQ∕(Q−1)(𝔾,E10) ≤ C

(‖ f ‖L1(𝔾,E20) + ‖g‖H 1(𝔾)

)
i f h = 1;

‖u‖LQ∕(Q−3)+LQ∕(Q−2)(𝔾,E20) ≤ C

(‖ f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10)) i f h = 2.

The paper is organised as follows. In Section 2, we give some basic definitions related to Carnot groups

and multilinear algebra and present the main analytic results that we will use in later sections. Section 3 con-

tains a quick review of the Rumin complex. Moreover, in Section 4, we address the particular example of the

5-dimensional Cartan group 𝔾 and present some explicit computations of the Rumin complex in this specific

setting. In addition, in the same section, we write the definitions for the three families of Hodge-Laplace oper-

ators Δ𝔾, ΔR, and ΔA. We provide an explicit proof of the hypoellipticity of ΔA, and we recall some properties

of its fundamental solution. Finally, in Section 5, we present the statements of our limiting Sobolev-type esti-

mates (see Theorems 5.1, 5.2 and 5.4). These results follow from the properties of the fundamental solutions of

the three associated Laplace-type operators, together with a result of Chanillo and Van Schaftingen, stated in

Theorem 5.5, that can be applied after an appropriate rephrasing of the closeness of forms in terms of symmet-

ric tensors (see Subsection 5.1). Finally, in Subsection 5.6, we provide an alternative family of L1-estimates using

interpolation-type Lp-spaces.
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2 Notations and preliminary results on Carnot group

A Lie group G is a smooth manifold endowed with the smooth mappings

G × G ∋ (x, y) ↦ xy ∈ G and G ∋ x ↦ x−1 ∈ G

satisfying, for all x, y, z ∈ G, the properties

1. x(yz) = (xy)z;

2. ex = xe = x;

3. xx−1 = x−1x = e,

where e ∈ G is the unit element of the group G.

A Carnot group 𝔾 of step 𝜅 is a connected, simply connected Lie group whose Lie algebra g admits a step 𝜅
stratification, i.e. there exist linear subspaces V 1,… ,V𝜅 such that

g = V1 ⊕…⊕ V𝜅, [V1,Vi] = Vi+1, V𝜅 ≠ {0}, Vi = {0} if i > 𝜅, (3)

where [V 1,Vi] is the subspace of g generated by the commutators [X, Y] with X ∈ V 1 and Y ∈ Vi. Let mi =
dim(Vi), for i = 1, . . . , 𝜅 and hi = m1 + · · · +mi with h0 = 0 and, clearly, h𝜅 = n. Choose a basis e1, . . . , en of g
adapted to the stratification, that is such that

eh j−1+1,… , eh j
is a basis of Vj for each j = 1,… , k.

LetX1, . . . ,Xn be the family of left-invariant vector fields such thatXi(0) = ei. Given (3), the subsetX1,… ,Xm1

generates by commutations all the other vector fields; wewill refer toX1,… ,Xm1
as generating vector fields of the

group. The exponential map is a one-to-one map from g onto𝔾, i.e. any p ∈ 𝔾 can be written in a unique way as

p = exp(p1X1 + · · · + pnXn). Using these exponential coordinates, we identify p with the n-tuple ( p1,… , pn ) ∈
ℝn and we identify 𝔾 with (ℝn, ⋅) where the explicit expression of the group operation ⋅ is determined by the
Campbell–Hausdorff formula (see [31], [32]).

The subbundle of the tangent bundle T𝔾 that is spanned by the vector fields X1,… ,Xm1
plays a particularly

important role in the theory, it is called the horizontal bundle H𝔾. The sections of H𝔾 are called horizontal

sections, and a vector of Hx𝔾 is an horizontal vector.

A subriemannian structure is defined on𝔾, endowing each fiber ofH𝔾with a scalar product ⟨⋅, ⋅⟩x andwith
a norm | ⋅ |x that make the basis X1(x),… ,Xm1

(x) an orthonormal basis.

Adopting the standard notation, given f ∈ D(𝔾), we denote by ∇𝔾 f the usual horizontal gradient of the

function f , i.e.

∇𝔾 f = (X1 f ,X2 f ,… ,Xm1
f ).

Two important families of automorphisms of𝔾 are the group translations and the group dilations of𝔾. For
any x ∈ 𝔾, the (left) translation 𝜏x:𝔾→ 𝔾 is defined as

z ↦ 𝜏xz := x ⋅ z.

For any 𝜆 > 0, the dilation 𝛿𝜆:𝔾→ 𝔾, is defined as

𝛿𝜆(x1,… , xn ) =
(
𝜆d1x1,… , 𝜆dnxn

)
, (4)

where di ∈ ℕ is called homogeneity of the variable xi in 𝔾 (see [19] Chapter 1) and is defined as

d j = i whenever hi−1 + 1 ≤ j ≤ hi, (5)

hence 1 = d1 = … = dm1
< dm1+1 = 2 ≤ … ≤ dn = 𝜅. In particular, the generating vector fields are homoge-

neous of degree 1 with respect to group dilations.

Several distances equivalent to dc have been used in the literature. If p = (p̃1,… , p̃𝜅 ) ∈ ℝm1 × · · · ×ℝm𝜅 =
ℝn, then we set

𝜌( p) := max
{
𝜀 j‖p̃ j‖1∕ jℝm j

, j = 1,… , 𝜅
}
. (6)
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Here 𝜀1 = 1, and 𝜀2,… 𝜀𝜅 ∈ (0, 1) are suitable positive constants depending on the group structure (see

Theorem 5.1 in [33]). We can consider the following gauge distance

d(x, y) := 𝜌(y−1 ⋅ x).

The metric d well behaves with respect to left translations and dilations, that is

d(z ⋅ x, z ⋅ y) = d(x, y), d(𝛿𝜆(x), 𝛿𝜆(y)) = 𝜆d(x, y)

for x, y, z ∈ 𝔾 and 𝜆 > 0.

The integer

Q =
𝜅∑
i=1

i dim Vi (7)

is the homogeneous dimension of 𝔾. It is also the Hausdorff dimension of ℝn with respect to the d.

The n-dimensional Lebesgue measure L n, is the Haar measure of the group 𝔾. Hence if E ⊂ ℝn is mea-

surable, then L n(x ⋅ E) = L n(E) for all x ∈ 𝔾. Moreover, if 𝜆 > 0 then L n(𝛿𝜆(E)) = 𝜆QL n(E). All the spaces

Lp(𝔾) that appear throughout this paper are defined with respect to theL n Lebesgue measure.

Following e.g. [19], we can define a group convolution in 𝔾: if, for instance, f ∈ D(𝔾) and g ∈ L1
loc
(𝔾), we

set

f ∗ g( p) :=
∫

f (q)g(q−1 ⋅ p) dq for q ∈ 𝔾. (8)

We remind that, if (say) g is a smooth function and L is a left-invariant differential operator, then L( f ∗ g) =
f ∗ Lg. We remind also that the convolution is again well defined when f , g ∈ D′(𝔾), provided at least one of
them has compact support (as customary, we denote by E ′(𝔾) the class of compactly supported distributions in
𝔾 identified with ℝn, the dual of E (𝔾), the space of smooth functions).

We now recall the notion of kernel of order 𝜇. Following [32], a kernel of order 𝜇 is a homogeneous distri-

bution of degree 𝜇 − Q (with respect to group dilations 𝛿r as in (4), see [19]), that is smooth outside of the origin.

Alternatively, we shall also write kernel of type 𝜇 to mean the same thing.

Proposition 2.1. Let K ∈ D′(Ω) be a kernel of order 𝜇. If 𝜇 > 0, then K ∈ L1
loc
(𝔾). Moreover, X𝓁K is a kernel of

order 𝜇 − 1 for any horizontal derivative X𝓁K.

In Proposition 1.11 in [32], the following result is proved.

Theorem 2.2. Suppose 0 < 𝜇 < Q, 1 < p < Q∕𝜇 and
1

q
= 1

p
− 𝜇

Q
. Let K be a kernel of type 𝜇. If u ∈ Lp(𝔾) the

convolutions u ∗K and K ∗ u exist a.e. and are in Lq(𝔾) and there is a constant Cp > 0 such that‖u ∗K‖q ≤ Cp‖u‖ p and ‖K ∗ u‖q ≤ Cp‖u‖ p
Following [19], we also adopt the following multi-index notation for higher-order derivatives. If I =

(i1, . . . , in) is a multi-index, we set

XI = X
i1
1
· · ·Xin

n . (9)

By the Poincaré–Birkhoff–Witt theorem (see, e.g. [34], I.2.7), the differential operators XI form a basis for

the algebra of left invariant differential operators in 𝔾. Furthermore, we set |I| := i1 + · · · + in the order of the

differential operator XI , and d(I) := d1i1 + · · · + dnin its degree of homogeneity with respect to group dilations.

From the Poincaré–Birkhoff–Witt theorem, it follows, in particular, that any homogeneous linear differential

operator in the horizontal derivatives can be expressed as a linear combination of the operators XI of the special

form above. Thus, we can restrict ourselves to consider operators of the special form XI .

We finish this section recalling the definition of free Carnot group.
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Definition 2.3. Letm1 ≥ 2 and𝜅 ≥ 1 be fixed integers.We say that fm1,𝜅
is the free Lie algebrawithm1 generators

X1,… ,Xm1
and nilpotent of step 𝜅 if:

(i) fm1,𝜅
is a Lie algebra generated by its elements X1,… ,Xm1

;

(ii) fm1,𝜅
is nilpotent of step 𝜅;

(iii) for every Lie algebran nilpotent of step 𝜅 and for everymap𝜙 from the set {X1,… ,Xm1
} ton, there exists

a (unique) homomorphism of Lie algebrasΦ from fm1,𝜅
to n which extends 𝜙.

A Carnot group 𝔾 is said free if its Lie algebra g is isomorphic to a free Lie algebra.

The Cartan group is the free Carnot group withm1 = 2 and 𝜅 = 3.

Example 2.4 (The Cartan group). Let us consider now the free group of step 3 with 2 generators, also known

as the Cartan group, i.e. the Carnot group whose Lie algebra is g = V1 ⊕ V2 ⊕ V3 with V 1 = span{X1,X2}, V2 =
span{X3}, and V3 = span{X4,X5}, the only non zero commutation relations being

[X1,X2] = X3, [X1,X3] = X4, [X2,X3] = X5.

In exponential coordinates, the group can be identifiedwithℝ5, and an explicit representation of the vector

fields is

X1 = 𝜕1, X2 = 𝜕2 + x1𝜕3 +
x2
1

2
𝜕4 + x1x2𝜕5

X3 = 𝜕3 + x1𝜕4 + x2𝜕5, X4 = 𝜕4, X5 = 𝜕5.

For an alternative expression of Xi, we refer to group N5,2,3 in [35].

2.1 Multilinear algebra

The dual space of g is denoted by
⋀1 g and indicate by ⟨⋅, ⋅⟩ also the inner product in⋀1 g. Given {X1,… ,Xn}

an orthonormal basis of g, its dual basis is denoted by {𝜃1, · · · , 𝜃n}.
Following Federer (see [36] 1.3), the exterior algebras of g and of

⋀1 g are the graded algebras indicated as⋀
∗
g = ⊕n

h=0
⋀

hg and
⋀

∗ g = ⊕n

h=0
⋀h g where

⋀
0g = ⋀0 g = ℝ and, for 1 ≤ h ≤ n,⋀

h
g := span{Xi1 ∧ · · · ∧ Xih : 1 ≤ i1 < · · · < ih ≤ n},⋀h
g := span{𝜃i1 ∧ · · · ∧ 𝜃ih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
⋀

hg and
⋀h g are called h-vectors and h-covectors.

We denote by Θh
the basis {𝜃i1 ∧ · · · ∧ 𝜃ih : 1 ≤ i1 < · · · < ih ≤ n} of

⋀h g. We remind that dim
⋀h g =

dim
⋀

hg =
(
n

h

)
.

The dual space
⋀1

(
⋀

hg) of
⋀

hg can be naturally identified with
⋀h g. The action of a h-covector 𝜑 on a

h-vector v is denoted as ⟨𝜑|v⟩.
The inner product ⟨⋅, ⋅⟩ extends canonically to⋀hg and to

⋀h gmaking the bases Xi1 ∧ · · · ∧ Xih and 𝜃i1 ∧
· · · ∧ 𝜃ih orthonormal.

Starting from
⋀

∗
g and

⋀
∗ g, by left translation, we can define now two families of vector bundles over

𝔾 (still denoted by
⋀

∗
g and

⋀
∗ g) (see [37] for details). Smooth sections of these vector bundles are said

respectively vector fields and differential forms.

Definition 2.5. If 0 ≤ h ≤ n and 1 ≤ p ≤ ∞, we denote by Lp(𝔾,
⋀h g) the space of all sections of

⋀h g such that
their components with respect to the basis Θh

belong to Lp(𝔾). Clearly, this definition is independent of the

choice of the basis itself.
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We conclude this section by recalling the notion of Hodge duality, see [36] 1.7.8.

For 0 ≤ h ≤ n, we denote by⋆:
⋀h g ⟷

⋀n−h g, the⋆-Hodge isomorphismassociated to the scalar product⟨⋅, ⋅⟩ and the volume form 𝜃1 ∧ · · · ∧ 𝜃n.

We recall that,⋆⋆𝜑 = (−1)(n−h)h𝜑 for any 𝜑 ∈ ⋀h g.

2.2 Weight of forms

The notion of weight of a differential form plays a key role when considering the de Rham complex on a Carnot

group.

Definition 2.6. If 𝛼 ∈⋀1 g, 𝛼 ≠ 0, we say that 𝛼 has pure weight p, and we write w(𝛼) = p, if 𝛼♮ ∈ V p. More

generally, if 𝛼 ∈ ⋀h g, we say that 𝛼 has pure weight p if 𝛼 is a linear combination of covectors 𝜃i1 ∧ · · · ∧ 𝜃ih
with w(𝜃i1 )+ · · · + w(𝜃ih ) = p.

In particular, the volume form has weight Q (the homogeneous dimension of the group).

Remark 2.7 (Remark 2.4 in [37]). If 𝛼, 𝛽 ∈ ⋀h g and w(𝛼) ≠ w(𝛽), then ⟨𝛼, 𝛽⟩ = 0.

From this Remark, we readily have the orthogonal decomposition
⋀h g = ⊕

Mmax
h

p=Mmin
h

⋀h, p g, where
⋀h, p g

is the linear span of the h-covectors of weight p and Mmin
h

, Mmax
h

are respectively the smallest and the largest

weight of left-invariant h-covectors.

Since the elements of the basisΘh
have pure weights, a basis of

⋀h, p g is given by

Θh, p
:=Θh ∩

⋀h, p
g.

In other words, the basisΘh = ∪pΘh,p
is a basis adapted to the filtration of

⋀h g.

We denote byΩh,p
the vector space of all smooth h−forms in𝔾 of pure weight p, i.e. the space of all smooth

sections of
⋀h, p g. We have

Ωh =
Mmax

h

⊕
p=Mmin

h

Ωh, p
. (10)

Lemma 2.8 (Section 2.1 in [12]). We have d(
⋀h, p g) ⊂

⋀h+1, p g, i.e., if 𝛼 ∈ ⋀h, p g is a left invariant h-form of

weight p with d𝛼 ≠ 0, then w(d𝛼) = w(𝛼).

Definition 2.9. Let now 𝛼 = ∑
𝜃h
i
∈Θh, p𝛼i 𝜃

h

i
∈ Ωh, p

be a (say) smooth form of pure weight p. Then we can write

d𝛼 = d0𝛼 + d1𝛼 + · · · + d𝜅𝛼,

where

d0𝛼 =
∑

𝜃h
i
∈Θh, p

𝛼id𝜃
h

i

does not increase the weight,

d1𝛼 =
∑

𝜃h
i
∈Θh, p

m1∑
j=1

(Xj𝛼i )𝜃 j ∧ 𝜃h
i

increases the weight of 1, and, more generally,

dp𝛼 =
∑

𝜃h
i
∈Θh, p

∑
X j∈V p

(Xj𝛼i )𝜃 j ∧ 𝜃h
i
,

when p = 0, 1, . . . , 𝜅. In particular, d0 is an algebraic operator.
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3 The Rumin complex on Carnot groups

The notion of intrinsic form in Carnot groups is due to Rumin ([11], [12]). A more extended presentation of the

results of this section can be found in [37], [38].

Definition 3.1 (Rumin). If 0 ≤ h ≤ n we set

Eh
0
:= ker d0 ∩ ker 𝛿0 = ker d0 ∩ (R(d0 ))

⊥ ⊂ Ωh

Here 𝛿0:
⋀h+1 g→

⋀h g is the adjoint of d0 with respect to our fixed scalar product.
In the sequel, we refer to the elements of Eh

0
as to Rumin or intrinsic h-forms on 𝔾.

Since the construction of Eh
0
is left invariant, this space of forms can be seen as the space of sections of a

fiber subbundle of
⋀h g, generated by left translations and still denoted by Eh

0
. In particular, Eh

0
inherits from⋀h g the scalar product on the fibers.

As a consequence, we can obtain a left invariant orthonormal basis Ξh

0
= {𝜉 j} of Eh0 such that

Ξh

0
=

Mmax
h⋃

p=Mmin
h

Ξh, p

0
,

whereΞh, p

0
:=Ξh ∩⋀h, p g is a left-invariant orthonormal basis of Eh, p

0
. All the elements ofΞh, p

0
have pureweight

p. Without loss of generality, the indices j of Ξh

0
=
{
𝜉h
j

}
are ordered once and for all in an increasing way

according to the weight of the respective element of the basis.

Correspondingly, the set of indices
{
1, 2,… , dim Eh

0

}
can be written as the union of finite (possibly empty)

sets of indices {
1, 2,… , dim Eh

0

}
=

Mmax
h⋃

p=Mmin
h

Ih
p
,

where

j ∈ Ih
0, p

if and only if 𝜉h
j
∈ Ξh, p

0
.

Without loss of generality, ifm := dimV 1, we can take

Ξ1
0
= Ξ1,1

0
= {𝜃1,… , 𝜃m}.

Once the basis Ξh

0
is chosen, the space D

(
𝔾, Eh

0

)
, can be identified with D(𝔾)dim Eh

0 .

In the last few years, there have been several instances that show the “naturalness” of using the Rumin

complex instead of de Rham complex for Carnot groups. For example, we can quote [38], Theorem 3.16, where

the authors study the naturalness of dc in terms of homogeneous homomorphisms of the group𝔾, or [39] where
the authors show that dc appears, in the spirit of the Riemannian approximation, as limit.

Definition 3.2. If 0 ≤ h ≤ n and 1 ≤ p ≤ ∞, we denote by Lp
(
𝔾, Eh

0

)
the space of all sections of Eh

0
such that their

components with respect to the basisΞh

0
belong to Lp(𝔾), endowed with its natural norm. Clearly, this definition

is independent of the choice of the basis itself.

Lemma 3.3 ([37], Lemma 2.11). If 𝛽 ∈ ⋀h+1 g, then there exists a unique 𝛼 ∈ ⋀h g ∩ (ker d0 )
⊥ such that

𝛿0d0𝛼 = 𝛿0𝛽 . We set 𝛼 := d−1
0
𝛽 .

In particular

𝛼 = d−1
0
𝛽 if and only if d0𝛼 − 𝛽 ∈ R(d0 )

⊥.

Moreover

(i) (ker d0 )
⊥ = R

(
d−1
0

)
;

(ii) d−1
0
d0 = Id on (ker d0 )

⊥;
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(iii) d0d
−1
0
− Id:

⋀h+1 g→ R(d0 )
⊥.

The following theorem summarizes the construction of the intrinsic differential dc (for details, see [12], [37],

Section 2).

Theorem 3.4. The de Rham complex (Ω∗
, d) splits in the direct sum of two sub-complexes, denoted by Rumin as

(E∗, d) and (F∗, d). Moreover, we have:

(i) LetΠE be the projection on E along F, then for any 𝛼 ∈ E
h, p

0
, if we denote by (ΠE𝛼 ) j the component ofΠE𝛼

of weight j, then

(ΠE𝛼 ) p = 𝛼

(ΠE𝛼 ) p+k+1 = −d−1
0

( ∑
1≤𝓁≤k+1

d𝓁(ΠE𝛼 ) p+k+1−𝓁

)
.

(11)

Notice that 𝛼 → (ΠE𝛼 ) p+k+1 is an homogeneous differential operator of order k + 1 in the horizontal

derivatives.

(ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

Set now

dc = ΠE0
d ΠE: E

h
0
→ Eh+1

0
, h = 0,… , n− 1,

whereΠE0
is the orthogonal projection ofΩ∗

onto E∗
0
.

Then
(
E∗
0
, dc

)
is a complex computing the de Rham cohomology of the underlying Carnot group such

that

(iii) the differential dc acting on h-forms can be identified, with respect to the bases Ξh

0
and Ξh+1

0
, with a matrix-

valued differential operator Lh :=
(
Lh
i, j

)
. If j ∈ Ih

p
and i ∈ Ih+1

q
, then the Lh

i, j
’s are homogeneous left invariant

differential operator of order q− p ≥ 1 in the horizontal derivatives, andLh
i, j
= 0 if j ∈ Ih

0, p
and i ∈ Ih+1

0,q
, with

q− p < 1

(iv) the space of Rumin forms E∗
0
is closed under Hodge-star duality and the L2-formal adjoint 𝛿c of dc on E

h
0

satisfies

𝛿c = (−1)n(h+1)+1 ⋆ dc ⋆ . (12)

4 The Rumin complex for the 5-dimensional Cartan group and

hypoelliptic Laplace operators on the group

From now on, we denote by 𝔾 the free group of step 3 with 2 generators, also known as the Cartan group,

introduced in Example 2.4.

Following Example B.7 of [37], denote by 𝜃1, . . . , 𝜃5 the dual left invariant forms. An orthonormal basis of E
1
0

is given by

Ξ1
0
= Ξ1,1

0
= {𝜃1, 𝜃2}. (13)

We have d𝜃1 = d𝜃2 = 0 and

d𝜃3 = d0𝜃3 = −𝜃1 ∧ 𝜃2, d𝜃4 = d0𝜃4 = −𝜃1 ∧ 𝜃3, d𝜃5 = d0𝜃5 = −𝜃2 ∧ 𝜃3. (14)

We explicitly note that, according to Definition 2.6, we have the following weights:

w(𝜃1 ) = w(𝜃2 ) = 1, w(𝜃3 ) = 2, w(𝜃4 ) = w(𝜃5 ) = 3.

The volume form 𝜃1 ∧ 𝜃2 ∧ 𝜃3 ∧ 𝜃4 ∧ 𝜃5 is also denoted by dV .
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Using the notations introduced in Subsection 2.2, we can chose an orthonormal basis of
⋀h g, h = 1,… , 5

as follows:

h= 1:Θ1,1 = {𝜃1, 𝜃2},Θ1,2 = {𝜃3}, andΘ1,3 = {𝜃4, 𝜃5}.
h= 2: Θ2,2 = {𝜃1 ∧ 𝜃2}, Θ2,3 = {𝜃1 ∧ 𝜃3, 𝜃2 ∧ 𝜃3}, Θ2,4 = {𝜃1 ∧ 𝜃4, 𝜃1 ∧ 𝜃5, 𝜃2 ∧ 𝜃4, 𝜃2 ∧ 𝜃5}, Θ2,5 =

{𝜃3 ∧ 𝜃4, 𝜃3 ∧ 𝜃5},Θ2,6 = {𝜃4 ∧ 𝜃5}.
h= 3: Θ3,4 = {𝜃1 ∧ 𝜃2 ∧ 𝜃3}, Θ3,5 = {𝜃1 ∧ 𝜃2 ∧ 𝜃4, 𝜃1 ∧ 𝜃2 ∧ 𝜃5}, Θ3,6 = {𝜃1 ∧ 𝜃3 ∧ 𝜃4, 𝜃1 ∧ 𝜃3 ∧ 𝜃5, 𝜃2 ∧ 𝜃3 ∧

𝜃4, 𝜃2 ∧ 𝜃3 ∧ 𝜃5},Θ3,7 = {𝜃1 ∧ 𝜃4 ∧ 𝜃5, 𝜃2 ∧ 𝜃4 ∧ 𝜃5},Θ3,8 = {𝜃3 ∧ 𝜃4 ∧ 𝜃5}.
h= 4:Θ4,7 = {𝜃1 ∧ 𝜃2 ∧ 𝜃3 ∧ 𝜃4, 𝜃1 ∧ 𝜃2 ∧ 𝜃3 ∧ 𝜃5},Θ4,8 = {𝜃1 ∧ 𝜃2 ∧ 𝜃4 ∧ 𝜃5},Θ4,9 = {𝜃1 ∧ 𝜃3 ∧ 𝜃4 ∧ 𝜃5, 𝜃2 ∧

𝜃3 ∧ 𝜃4 ∧ 𝜃5}.
h= 5:Θ5,10 = {𝜃1 ∧ 𝜃2 ∧ 𝜃3 ∧ 𝜃4 ∧ 𝜃5}.

One can readily obtain that

Ξ1
0
= Ξ1,1

0
= {𝜃1, 𝜃2}

and by Hodge duality

Ξ4
0
= Ξ4,9

0
= {𝜃1 ∧ 𝜃3 ∧ 𝜃4 ∧ 𝜃5, 𝜃2 ∧ 𝜃3 ∧ 𝜃4 ∧ 𝜃5}.

Moreover, as computed in Example B.7 of [37], orthonormal basis for the space of intrinsic forms of E2
0
is

given by

Ξ2
0
= Ξ2,4

0
=
{
𝜃1 ∧ 𝜃4,

1√
2
(𝜃2 ∧ 𝜃4 + 𝜃1 ∧ 𝜃5 ), 𝜃2 ∧ 𝜃5

}
. (15)

By Hodge duality, an orthonormal basis of E3
0
is given by

Ξ3
0
= Ξ3,6

0
= {𝜃1 ∧ 𝜃3 ∧ 𝜃4,

1√
2
(𝜃1 ∧ 𝜃3 ∧ 𝜃5 + 𝜃2 ∧ 𝜃3 ∧ 𝜃4 ), 𝜃2 ∧ 𝜃3 ∧ 𝜃5}. (16)

Remark 4.1. Let us nowpresent the action of themap d0: Ωh →Ωh+1
according to theweights of the covectors.

(i) h = 1: the map d0 acting on 1-forms d
(1)
0
:Ω1 →Ω2

acts in such a way that R(d(1)
0
) = Ω2,2

⊕Ω2,3
;

(ii) h = 2: the map d
(2)
0
:Ω2 →Ω3

is such that R(d(2)
0
) = spanC∞(𝔾){d(2)0

(𝜃1 ∧ 𝜃5 − 𝜃2 ∧ 𝜃4 )}⊕Ω3,5
⊕Ω3,6 =

spanC∞(𝔾){𝜃1 ∧ 𝜃2 ∧ 𝜃3}⊕Ω3,5
⊕Ω3,6

(iii) h = 3: the map d(3)
0
:Ω3 →Ω4

is such that R(d(3)
0
) = Ω4,7

⊕Ω4,8
.

For general h = 0,… , 4, we should denote by d(h)c the differential operators d(h)c : Eh
0
→ Eh+1

0
. To avoid cumber-

some notation, when clear from the context, we shall remove the superscript (h) indicating the degree of forms

it acts on.

We recall that the differentials dc are left invariant and homogeneous with respect to the group dilations.

The differential d(h)c is a first order homogeneous operator in the horizontal derivatives in degree h = 0 and

h = 4, it is a third order homogeneous operator in degree h = 1 and h = 3, and it is a second order homogeneous

operator in degree h = 2. As remarked in Theorem 3.4-(iii), once we fix the bases for the spaces of forms Eh
0
, it is

possible to express each operator dc: E
h
0
→ Eh+1

0
in matrix form (Li, j). We will now consider the ordered basesΞh

0

listed above. We have:

– dc: E
0
0
→ E1

0
can be seen in matrix form as

dc =
(
X1

X2

)
– dc: E

1
0
→ E2

0
can be expressed as

dc =
⎛⎜⎜⎜⎝

−X2
1
X2 − X1X3 − X4 X3

1

−
√
2
(
X1X

2
2
+ X5

) √
2
(
X2X

2
1
− X4

)
−X3

2
X2
2
X1 − X2X3 − X5

⎞⎟⎟⎟⎠
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– dc: E
2
0
→ E3

0
is given by

dc =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−X1X2 − X3
1√
2
X2
1

0

− 1√
2
X2
2

−3

2
X3

1√
2
X2
1

0 − 1√
2
X2
2

X2X1 − X3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
– dc: E

3
0
→ E4

0
can be expressed as

dc =
⎛⎜⎜⎝
(
X1X2 + X3

)
X2 − X5

√
2
(
−X2

1
X2 + X4

)
X3
1

X3
2

−
√
2
(
X2
2
X1 + X5

)
X2X

2
1
− X3X1 + X4

⎞⎟⎟⎠
– dc: E

4
0
→ E5

0
can be expressed as

dc =
(
−X2 X1

)

An idea of how to get the explicit expression for the operators dc: E
h
0
→ Eh+1

0
can be found in the proof of

Proposition 5.6.

By Hodge duality, one can find the explicit expressions for the codifferentials 𝛿c. Once expressed in terms of

the ordered basesΞh

0
, the matrix form of 𝛿c can be expressed as the transpose of the matrix (Li, j) of differentials

dc (up to a sign). We recall the action of the Hodge-⋆ operator is expressed in matrix forms as

– ⋆1: E
1
0
→ E4

0
and⋆4: E

4
0
→ E1

0
have the form

⋆1 =
(
0 −1
1 0

)
and ⋆4 =

(
0 1

−1 0

)
,

– ⋆2: E
2
0
→ E3

0
and⋆3: E

3
0
→ E2

0
have the form

⋆2 =
⎛⎜⎜⎜⎝
0 0 1

0 −1 0

1 0 0

⎞⎟⎟⎟⎠ and ⋆3 =
⎛⎜⎜⎜⎝
0 0 1

0 −1 0

1 0 0

⎞⎟⎟⎟⎠
Therefore, using the formula (12), the codifferential is expressed as

𝛿c = (−1)5h⋆5−h+1d
(5−h)
c

⋆h : E
h
0
→ Eh−1

0

so that

– 𝛿c: E
1
0
→ E0

0
has the form

𝛿c =
(
−X1 −X2

)
– 𝛿c: E

2
0
→ E1

0
has the form:

𝛿c =
⎛⎜⎜⎝
(
X2X1 − X3

)
X1 + X4

√
2
(
X2
2
X1 + X5

)
X3
2

−X3
1

√
2
(
−X2

1
X2 + X4

)
−
(
X1X2 + X3

)
X2 + X5

⎞⎟⎟⎠
– 𝛿c: E

3
0
→ E2

0
has the form:

𝛿c =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−X2X1 + X3 − 1√
2
X2
2

0

1√
2
X2
1

3

2
X3 − 1√

2
X2
2

0
1√
2
X2
1

X1X2 + X3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
– 𝛿c: E

4
0
→ E3

0
has the form:

𝛿c =
⎛⎜⎜⎜⎝
−X2

2
X1 + X2X3 + X5 −X3

2√
2
(
X2X

2
1
− X4

) √
2
(
X1X

2
2
+ X5

)
−X3

1
−X2

1
X2 − X1X3 − X4

⎞⎟⎟⎟⎠
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– 𝛿c: E
5
0
→ E4

0
has the form:

𝛿c =
(

X2

−X1

)
.

4.1 Definition of three possible Laplacians following the Rumin-Seshadri approach

In this subsection, we propose three possible constructions of hypoelliptic Laplace-type operators on forms on

the Cartan group. The three definitions are inspired by the paper [40], where Rumin and Seshadri define a

Laplacian of fourth order for differential forms of any degree on Heisenberberg groups in order to define a sub-

Riemannian version of the classical analytic torsion. An analogous construction to the one in [40] has also been

proposed by Dave and Haller in [30] for the particular case of Carnot groups where the d(h)c are homogeneous

for all h. In both of the papers already quoted, the Hodge-Laplacians are homogeneous left-invariant differential

operators on forms of the same order across all degrees. In particular, the “Rumin-Seshadri” operator consid-

ered in [30] has always order 12 on the Cartan group. Here we recall the definition of these 12-order Laplacians

applied to our context:

Definition 4.2.

Δ𝔾,h =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝛿cdc )
6 if h = 0;

(dc𝛿c )
6 + (𝛿cdc )

2 if h = 1;
(dc𝛿c )

2 + (𝛿cdc )
3 if h = 2;

(dc𝛿c )
3 + (𝛿cdc )

2 if h = 3;
(𝛿cdc )

6 + (dc𝛿c )
2 if h = 4;

(dc𝛿c )
6 if h = 5.

Notice that −Δ𝔾,0 has order 12 and is NOT the usual sub-Laplacian on 𝔾, i.e. Δ0 :=X2
1
+ X2

2
. Also for forms

of higher degree, the Laplacians always have differential order 12.

As proved in [30], for any h = 0, · · · , 5 the operatorsΔ𝔾,h are hypoelliptic self-adjoint.

In this paper we propose, in addition, two other possible classes of Laplacians. First, the operatorsΔR below

have different differential order depending on the degree of the forms they act on, and they are defined exclu-

sively via the Rumin differentials dc and co-differentials 𝛿c, in the spirit of the initial works of Rumin to define

the Hodge-Laplacian on contactmanifolds [10]. In the second case, we define Laplace-type operatorsΔA of lower

differential order, and the order stays the same across all degrees (except on functions and top-degree forms,

see below for details).

Definition 4.3. Here, we consider the following class of Laplacians for the Cartan group:

ΔR,h =

⎧⎪⎪⎨⎪⎪⎩

(dc𝛿c )
3 + 𝛿cdc if h = 0, 1;

(dc𝛿c )
2 + (𝛿cdc )

3 if h = 2;
(dc𝛿c )

3 + (𝛿cdc )
2 if h = 3;

dc𝛿c + (𝛿cdc )
3 if h = 4, 5.

Notice that now−ΔR,0 = Δ0 = X2
1
+ X2

2
is the usual sub-Laplacian on𝔾. Moreover,ΔR,1 andΔR,4 have order

6 as differential operators, while on 2 and 3-forms the Laplacians have differential order 12.

We now introduce the last class of Laplace operators. In particular, we stress the new part of the definition

below deals with the operators acting on forms of degree 2 and 3. We will denote such operators by ΔA,h and

we stress again that they have the same differential order across all degrees h (except for h = 0, 5). To achieve

this, we introduce new operators acting on 2 and 3-forms which, after composing with the dc and 𝛿c, produce

Laplacians of homogeneous differential order 6. Apart from degrees h = 2, 3,ΔR andΔA coincide.
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Definition 4.4. In 𝔾, it is possible to define the following homogeneous Laplace-type operators ΔA,h acting on

Eh
0
, by setting

ΔA,h =

⎧⎪⎪⎨⎪⎪⎩

(dc𝛿c )
3 + 𝛿cdc if h = 0, 1;

dc𝛿c + 𝛿cAΔdc if h = 2;
dcAΔ𝛿c + 𝛿cdc if h = 3;
dc𝛿c + (𝛿cdc )

3 if h = 4, 5.

where

AΔ := −Δ0 I3

with I3 is the 3 × 3 identity matrix andΔ0 = X2
1
+ X2

2
is again the usual subLaplacian of 𝔾.

Once a basis of Eh
0
is fixed, the operator Δ𝔾,h can be identified with a matrix-valued map, still denoted by

Δ𝔾,h

Δ𝔾,h =
(
Δi j

𝔾,h

)
i, j=1,…,Nh

:D′(𝔾,ℝNh )→ D′(𝔾,ℝNh ), (17)

whereD′(𝔾,ℝNh ) is the space of vector-valued distributions on 𝔾, and Nh is the dimension of E
h
0
(see [20]). The

same is true forΔA,h andΔR,h.

Remark 4.5. By construction, it is straightforward to see that also the operatorsΔR,h andΔA,h are self-adjoint.

The same is true forΔA, since

ΔA,3 = ⋆2ΔA,2⋆3.

Indeed, from the definition ofΔA,2, we get that

⋆ΔA,2⋆ = ⋆dc𝛿c ⋆+⋆ 𝛿cAΔdc⋆ = ⋆dc ⋆⋆𝛿c ⋆+⋆ 𝛿c ⋆⋆AΔ ⋆⋆dc⋆ = 𝛿cdc + dc ⋆ AΔ ⋆ 𝛿c

and using the matrix form of⋆2: E
2
0
→ E3

0
and⋆3: E

3
0
→ E2

0
, we get

⋆3AΔ⋆2 =
⎛⎜⎜⎜⎝
0 0 1

0 −1 0

1 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
−Δ0 0 0

0 −Δ0 0

0 0 −Δ0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
0 0 1

0 −1 0

1 0 0

⎞⎟⎟⎟⎠ = AΔ

Proposition 4.6. The operatorsΔ𝔾,h,ΔR,h andΔA,h are hypoelliptic for each h = 0, · · · , 5.

The proof of the hypoellipticity of the operatorsΔR,h andΔ𝔾,h is essentially covered by Lemma 2.14 of [30].

The hypoellipticity of the new operatorsΔA,h when h = 2, 3 is shown in the next section (see Proposition 4.15).

Since for any h = 0, 1,… , 5, the operators ΔA,h are homogeneous hypoelliptic operators of order 6 < Q =
10, we can apply the following result.

Theorem 4.7 (see [20], Theorem 3.1). There exist

Ki j ∈ D′(𝔾 ∩ C∞(𝔾∖{0}) for i, j = 1,… ,Nh, (18)

where, again, Nh := dim Eh
0
, with the following properties:

(i) the Kij’s are kernels of type 6, for i, j = 1, . . . ,Nh.

(ii) when 𝛼 = (𝛼1,… , 𝛼Nh
) ∈ D(𝔾,ℝNh ), if we set

Δ−1
A,h
𝛼 :=

(∑
j

𝛼 j ∗K1 j,… ,
∑
j

𝛼 j ∗KNh j

)
, (19)

then

ΔA,hΔ−1
A,h
𝛼 = 𝛼. and Δ−1

A,h
ΔA,h𝛼 = 𝛼.
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We stress that the same statement holds for ΔR,1 and ΔR,4, but not for Δ𝔾,h (for any h) and not for ΔR,2

and ΔR,3, since in the latter cases the differential order is 12 > Q. However, since as stated in Proposition 4.6

they are homogeneous hypoelliptic operators, it is well-known that such 12-order operators admit an associated

fundamental solution that belongs to S ′(𝔾, Eh
0

)
of the form

K̃ = K 0 + p(x) log(𝜌(x)), (20)

where K 0 is a vector-valued C∞(𝔾∖{0} function, homogeneous of degree 12− Q, and p(x) is a homogeneous

vector-valued polynomial of degree 12− Q (see e.g. Theorem 3.2.40-(b) in [41] and also Theorem 3.1 in [21]).

In the sequel, we would need to estimate some higher-order derivatives of the fundamental solutions. The

following result is contained in Theorem 3.3. of [21], and it ensures that the horizontal derivatives of order 𝓁 of

the fundamental solution ofΔ𝔾,h can be seen associated to vector-valued kernels of type 12− 𝓁.

Theorem 4.8 (Theorem 3.3 in [21]). Given the self-adjoint hypoelliptic operators

Δ𝔾,h:D
′(𝔾,ℝNh

)
→ D′(𝔾,ℝNh

)
with h = 0, · · · , 5, there exists K ∈ D′(𝔾,ℝNh

)
so that for every 𝛼 ∈ D

(
𝔾,ℝNh

)
, if we set

Δ−1
𝔾,h𝛼 :=

(∑
j

𝛼 j ∗K1 j,… ,
∑
j

𝛼 j ∗KNh j

)
,

and, as a shorthand notation we also write

Δ−1
𝔾,h𝛼 = 𝛼 ∗ K ,

then it holds that for any 𝛼 ∈ D
(
𝔾,ℝNh

)
Δ𝔾,hΔ−1

𝔾,h𝛼 = Δ𝔾,h(𝛼 ∗ K ) = 𝛼.

Moreover, if |I| = 𝓁, there exists K I a vector-valued distribution so that

XI𝛼 = Δ𝔾,h(𝛼 ∗ K I )

for every 𝛼 ∈ D
(
𝔾,ℝNh

)
. If 𝓁 > 2, K I is a homogeneous vector-valued distribution of degree 2− 𝓁, and K I

agrees with a vector-valued C∞-function on 𝔾∖{0}, so if further 𝓁 < 12, then K I is a kernel of type 12− 𝓁.

Remark 4.9. Roughly speaking, up to using right-invariant differential operators acting onK , one can think of

K I as being the same as X
IK (see the proof of Theorem 3.3 in [21] for details).

Remark 4.10. Applying again Theorem 3.3. of [21], we can also say that the horizontal derivatives of order 𝓁 of

the fundamental solution of both ΔR,2 and ΔR,3 can be seen associated to vector-valued kernels of type 12− 𝓁
when 2 < 𝓁 < 12.

4.2 A proof of the hypoellipticity of 𝜟
A,h

We prove now the hypoellipticity of the Rumin Laplacians introduced in Definition 4.4. Moreover, we will also

state the div-curl inequalities associated with the Rumin complex
(
E∗
0
, dc

)
for the Cartan group, when consider-

ing these particular Laplacians.

4.2.1 Preliminaries on irreducible group representations

Definition 4.11 (Group representations). A representation 𝜋 of a Lie group G on a Hilbert space H𝜋 ≠ {0} is a
homomorphism 𝜋 of G into the group of bounded linear operators on H𝜋 with bounded inverse. This means

that

– for every x ∈ G, the linear mapping 𝜋(x):H𝜋 → H𝜋 is bounded and has bounded inverse,

– for any x, y ∈ G, we have 𝜋(xy) = 𝜋(x)𝜋(y).
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A representation 𝜋 is unitary if 𝜋(x) if unitary for every x ∈ G, i.e. 𝜋:G→ U(H𝜋). A representation 𝜋 is called

irreducible when it has no closed invariant subspace.

Definition 4.12. Let G be a simply connected Lie group and let 𝜋 be a representation of G on a Hilbert spaceH𝜋 .

A vector v ∈ H𝜋 is said to be smooth or of type C
∞ if the function

G ∋ x→ 𝜋(x)v ∈ H𝜋

is of class C∞. We denote by S𝜋 the space of all smooth vectors of 𝜋.

We refer to the book [41] for more details on the subject of group representations.

Remark 4.13. The representation 𝜋 determines a representation 𝜋 of the Lie algebra g of G as linear maps

S𝜋 → S𝜋 (which extends uniquely to the algebra of all left-invariant differential operator ofG). If 𝜋 is irreducible

then, as pointed out in Rockland ([42]), there is a unitary equivalence, taking H𝜋 as L
2(ℝk ) (for some integer k,

possibly 0) and S𝜋 = S (ℝk ).

In particular, our proof is concentrated on the laplacian ΔA,2. Going back to Definition 4.11, since we have

described the operatorsΔA,h as matrix-valued operators, we can think of the operator 𝜋(ΔA,2) as corresponding

to a matrix of the same size whose entry are operators on S𝜋 obtained by applying 𝜋 to the corresponding entry

ofΔA,h. As in Remark 4.13, we can then think S𝜋 = S (ℝk ) for a suitable k. The same argument applies to 𝜋(dc)

and 𝜋(𝛿c).

We recall that Rumin proved that the
(
E∙
0
, dc

)
complex is CC-elliptic for an arbitrary graded Lie group, see

[12] for details.When applied to our current setting of the Cartan group𝔾, the proof of Theorem 5.2 in [12] implies

the following result. For sake of completeness, we also recall the scheme of the proof given by Rumin.

Lemma 4.14 (Theorem 5.2 in [12]). Using the above notation, in the Cartan group 𝔾 the system 𝜋(dc)+ 𝜋(𝛿c) is

injective in S 𝜋 .

Proof. By [12], proof of Theorem 5.2, there exists X ∈ g such that, for any v ∈
(
S (ℝk )

)3
,

v = QX𝜋(dc )v+ 𝜋(dc )QXv, (21)

where

QX :=𝜋(ΠE0
ΠE )PXiX𝜋(ΠEΠE0

).

Here PX is the inverse of 𝜋(L X ), L X being the Lie derivative along X. The above identity says that the

smooth cohomology of the complex 𝜋(dc) vanishes i.e.

Ker(𝜋(dc )) ∩ S𝜋 = 𝜋(dc )(S𝜋 ). (22)

Keeping in mind thatR(𝜋(dc ))
⊥ = ker(𝜋(𝛿c )), the equality (22) implies the injectivity of the system 𝜋(dc)+

𝜋(𝛿c). □

Proposition 4.15. The operatorsΔA,h are hypoelliptic for each h = 0,… , 5.

Proof. Weuse Rockland’s approach as in [43]–[45]. The cases of h ≠ 2, 3 are already covered by [30], Lemma 2.14.

Let us deal now with the case of h = 2. The case of h = 3 will follow directly from the fact thatΔA,3 = ⋆ΔA,2⋆.

Let us consider𝜋 a nontrivial irreducible representation of𝔾 on theHilbert spaceL2(ℝk ), which determines

a representation 𝜋 of the Lie algebra g on S𝜋 . “Then the hypoellipticity of the operatorΔA,2 is equivalent to the

injectivity of 𝜋
(
ΔA,2

)
on S𝜋 here for sake of simplicity we denote by S𝜋 also (S (ℝk ))3.”
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Therefore, assume that 𝜋(ΔA,2)u = 0 with u ∈ (S (ℝk ))3, i.e.,

𝜋(dc )𝜋(𝛿c )u+ 𝜋(𝛿c )𝜋(AΔ )𝜋(dc )u = 0. (23)

Hence for any u = (u1, u2, u3 ) ∈
(
S (ℝk )

)3
, if we multiply (23) by u and we integrate the identity on (ℝk )3,

we have

0 =
∫

𝔾

⟨𝜋(dc )𝜋(𝛿c )u, u⟩dV +
∫

𝔾

⟨𝜋(𝛿c )𝜋(AΔ )𝜋(dc )u, u⟩dV
=

∫

𝔾

‖𝜋(𝛿c )u‖2dV +
∫

𝔾

⟨𝜋(AΔ )𝜋(dc )u, 𝜋(dc )u⟩dV
We consider the second addend and we integrate by parts. Since

𝜋(−Δ0 ) = 𝜋
(
−X2

1

)
+ 𝜋

(
−X2

2

)
= 𝜋(X1 )

∗𝜋(X1 )+ 𝜋(X2 )
∗𝜋(X2 ).

We obtain

∫

𝔾

⟨⎛⎜⎜⎜⎝
𝜋(−Δ0 ) 0 0

0 𝜋(−Δ0 ) 0

0 0 𝜋(−Δ0 )

⎞⎟⎟⎟⎠𝜋(dc )u, 𝜋(dc )u⟩ dV

=
2∑
i=1 ∫𝔾

⟨𝜋(Xi )∗𝜋(Xi ) ⋅ 𝜋(dc )u, 𝜋(dc )u⟩dV =
2∑
i=1 ∫𝔾

‖𝜋(Xi )𝜋(dc )u‖2dV
Hence, (23) is equivalent to

𝜋(Xi )𝜋(dc )u = 0 for each i = 1, 2 and (24)

𝜋(𝛿c )u = 0. (25)

Expressing (24) component wise dc: E
2
0
→ E3

0
with dc = (Lj,k), we get

3∑
k=1

𝜋(X1 )𝜋(Lj,k )uk = 0, ∀ j = 1, 2, 3 and (26)

3∑
k=1

𝜋(X2 )𝜋(Lj,k )uk = 0, ∀ j = 1, 2, 3. (27)

Applying 𝜋(X1 )
∗ to (26), 𝜋(X2 )

∗ to (27), and taking the sum, we get

𝜋(−Δ0 )

3∑
k=1

𝜋(Lj,k )uk = 0

which implies that
∑3

k=1𝜋(Lj,k )uk = 0 for all j = 1, 2, 3 by the hypoellipticity of the subLaplacianΔ0, and shortly

𝜋(dc )u = 0. (28)

Hence, by (25) and (28), the injectivity of 𝜋(ΔA,2) on S𝜋 is proved if we show that, for u ∈ S𝜋 belonging to

Ker(𝜋(dc )) ∩ Ker(𝜋(𝛿c )),

then u = 0, which directly follows from the injectivity of the system 𝜋(dc)+ 𝜋(𝛿c) proved in Lemma 4.14. □

5 Div-curl estimates associated to the three possible Laplacians

Given the previous results, we can prove the following limiting Sobolev-type estimates. The estimates presented

in Theorem 5.1 relate to the fundamental solutions of the Laplacians ΔA,h of Definition 4.4, while the ones in
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Theorem 5.2 relate to the properties of the fundamental solutions of the LaplaciansΔ𝔾,h andΔR,h. In particular,

the estimates we obtain in the two following Theorems differ in degrees h = 2, 3. Luckily, when considering dif-

ferential forms that are either closed or co-closed, we obtain the same estimates using any Laplacian, as proved

in Theorem 5.4.

Theorem 5.1. Denote by
(
E∗
0
, dc

)
the complex of intrinsic forms in 𝔾. Then there exists C > 0 such that for any

h-form u ∈ D
(
𝔾, Eh

0

)
, 0 ≤ h ≤ 5, such that {

dcu = f

𝛿cu = g

we have

‖u‖LQ∕(Q−1)(𝔾) ≤ C‖ f ‖L1(𝔾,E10) i f h = 0;

‖u‖LQ∕(Q−3)(𝔾,E10) ≤ C

(‖ f ‖L1(𝔾,E20) + ‖𝛿cdcg‖H 1(𝔾)

)
i f h = 1;

‖u‖LQ∕(Q−3)(𝔾,E20) ≤ C

(‖∇𝔾 f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10)) i f h = 2;

‖u‖LQ∕(Q−3)(𝔾,E30) ≤ C

(‖ f ‖L1(𝔾,E40) + ‖∇𝔾g‖L1(𝔾,E20)) i f h = 3.

‖u‖LQ∕(Q−3)(𝔾,E40) ≤ C

(‖dc𝛿c f ‖H 1(𝔾,E50)
+ ‖g‖L1(𝔾,E30)) i f h = 4;

‖u‖LQ∕(Q−1)(𝔾,E50) ≤ C‖g‖L1(𝔾,E40) i f h = 5.

Here∇𝔾 f and∇𝔾g denote the horizontal gradient applied component-wise.

Theorem 5.2. Denote by
(
E∗
0
, dc

)
the complex of intrinsic forms in 𝔾. Then there exists C > 0 such that for any

h-form u ∈ D
(
𝔾, Eh

0

)
, 0 ≤ h ≤ 5, such that {

dcu = f

𝛿cu = g

we have

‖u‖LQ∕(Q−1)(𝔾) ≤ C‖ f ‖L1(𝔾,E10) i f h = 0;

‖u‖LQ∕(Q−3)(𝔾,E10) ≤ C

(‖ f ‖L1(𝔾,E20) + ‖𝛿cdcg‖H 1(𝔾)

)
i f h = 1;

‖u‖LQ∕(Q−6)(𝔾,E20) ≤ C

(‖dc𝛿c f ‖L1(𝔾,E30) + ‖dcg‖L1(𝔾,E20)) i f h = 2;

‖u‖LQ∕(Q−6)(𝔾,E30) ≤ C

(‖𝛿c f ‖L1(𝔾,E30) + ‖𝛿cdcg‖L1(𝔾,E20)) i f h = 3;

‖u‖LQ∕(Q−3)(𝔾,E40) ≤ C

(‖dc𝛿c f ‖H 1(𝔾,E50)
+ ‖g‖L1(𝔾,E30)) i f h = 4;

‖u‖LQ∕(Q−1)(𝔾,E50) ≤ C‖g‖L1(𝔾,E40) i f h = 5.

Since the proofs of both results require some lengthy algebraic steps, they will be included in Sections 5.3

and 5.4 respectively.

Remark 5.3. It is worth explicitly noting that with each of the three definitions of Laplacian, when dealing with

functions (i.e. 0-forms) we recover the well known Sobolev inequality (see [46]–[49]). In particular, this fact was

not obvious when dealing with the 12-order Laplacian Δ𝔾,0. The proof for this latter case is given in the next

section.
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We end this section by stating a last result that holds when a differential form u is closed or co-closed.

Indeed, for closed or co-closed forms, some of the previous estimates can be sharpened as follows, according to

the degree of the exterior differential dc. Moreover, all the subsequent estimates coincide with each of the three

definitions of Laplacian.

Theorem 5.4. Denote by
(
E∗
0
, dc

)
the complex of intrinsic forms in 𝔾. Then there exists C > 0 such that for any

h-form u ∈ D
(
𝔾, Eh

0

)
, 0 ≤ h ≤ 5, such that {

dcu = f

𝛿cu = 0

using either Definition 4.2, Definition 4.4 or Definition 4.3, we have always the same estimates (according to the

differential order of d
(h)
c ):

‖u‖LQ∕(Q−1)(𝔾) ≤ C‖ f ‖L1(𝔾,E10) i f h = 0;

‖u‖LQ∕(Q−3)(𝔾,E10) ≤ C‖ f ‖L1(𝔾,E20) i f h = 1;

‖u‖LQ∕(Q−2)(𝔾,E20) ≤ C‖ f ‖L1(𝔾,E30) i f h = 2;

‖u‖LQ∕(Q−3)(𝔾,E30) ≤ C‖ f ‖L1(𝔾,E40) i f h = 3.

‖u‖LQ∕(Q−1)(𝔾,E40) ≤ C‖ f ‖L1(𝔾,E50) i f h = 4;

Analogously, there exists C > 0 such that for any h-form u ∈ D
(
𝔾, Eh

0

)
, 0 ≤ h ≤ 5, such that{

dcu = 0

𝛿cu = g

we have the following estimates (according to the differential order of 𝛿(h)c ):

‖u‖LQ∕(Q−1)(𝔾,E10) ≤ C‖g‖L1(𝔾) i f h = 1;

‖u‖LQ∕(Q−3)(𝔾,E20) ≤ C‖g‖L1(𝔾,E10) i f h = 2;

‖u‖LQ∕(Q−2)(𝔾,E30) ≤ C‖g‖L1(𝔾,E20) i f h = 3.

‖u‖LQ∕(Q−3)(𝔾,E40) ≤ C‖g‖L1(𝔾,E30) i f h = 4;

‖u‖LQ∕(Q−1)(𝔾,E50) ≤ C‖g‖L1(𝔾,E40) i f h = 5.

5.1 Rephrasing the closedness of forms on the Cartan group

Let us quickly revise some notations about tensors on a general Carnot group𝔾, in order to state a result due to
Chanillo & Van Schaftingen that we will need later on.

5.2 Tensors on𝔾

Given a Carnot group 𝔾, the first layer V 1 of its Lie algebra g will be here denoted as g1. We are also assuming

m1 = dim g1
For k ∈ ℕ, let⊗kg1 be the k-fold tensor product of g1. We will writeIk for the index set {1, · · · ,m1}k , and

X
⊗

I
= Xi1 ⊗ · · ·⊗ Xik for I = (i1,… , ik ) ∈ Ik

so that
{
X
⊗

I

}
I∈I k

is a basis of ⊗kg1. Then we have a linear surjection from ⊗kg1 to the vector space of all
homogeneous left-invariant linear partial differential operators of order k on 𝔾 with real coefficients, given by
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X
⊗

I
→ XI .

Moreover, we denote by Sym
(
⊗kg1

)
the subspace of all symmetric tensors in⊗kg1. There is a symmetriza-

tion map

Sym:⊗kg1 → Sym
(
⊗kg1

)
,

which is a linear surjection given by

X
⊗

I
→

1

k!
∑

𝜎∈S k

X
⊗

𝜎(I )
, I ∈ Ik

where here S k denotes the symmetric group on k elements, and 𝜎(I) := (i𝜎(1), · · · , i𝜎(k)) if I = (i1, · · · ik ) ∈ Ik

as above, and 𝜎 ∈ S k .

Denoting by D(𝔾, Sym
(
⊗kg1

)
) the subspace of compactly supported smooth symmetric horizontal k-

tensors, we recall now the following result due to Chanillo & Van Schaftingen that turns to be a key step in

our proof of Theorem 5.1.

Theorem 5.5 ([7], Theorem 5). Let k ≥ 1 and

F ∈ L1
(
𝔾,⊗kg1

)
, Φ ∈ D(𝔾, Sym

(
⊗kg1

)
).

Suppose that F has vanishing generalised divergence, i.e.∑
i1,…,ik

Xik · · ·Xi1Fi1,…,ik
= 0 in D′(𝔾). (29)

Then |||||||∫𝔾 ⟨Φ, F⟩⊗kg1
dp

||||||| ≤ C‖F‖L1(𝔾,⊗kg1)‖∇𝔾Φ‖LQ(𝔾,⊗kg1),

where∇𝔾Φ denotes the horizontal gradient applied component-wise.

Let k ≥ 1 be fixed, and let F ∈ L1
(
𝔾,⊗kg1

)
belong to the space of horizontal k-tensors. We can write

F =
∑

i1,…,ik

Fi1,…,ik
Xi1 ⊗ · · ·⊗ Xik .

As mentioned before, F can be identified with the differential operator

u→ Fu :=
∑

i1,…,ik

Fi1,…,ik
Xi1 · · ·Xiku.

As in [8], [9], our proof of Theorem 5.1 relies on the fact (precisely stated in Proposition 5.6 below) that the

components with respect to a given basis of closed forms in Eh
0
can be viewed as the components of a horizontal

vector field which satisfies (29). More precisely, in our case where𝔾 is again the Cartan group, we have the have

the following result.

Proposition 5.6. Let 𝛼 = ∑
J𝛼 J𝜉

h
J
∈ D

(
𝔾, Eh

0

)
, 1 ≤ h ≤ 4, be such that

dc𝛼 = 0.

Then each component of 𝛼 is of the form 𝛼 J = C JF J , where C J is a real constant and F J is the component of a

horizontal symmetric s-tensor F associated to a differential operator

F =
dim Eh

0∑
J=1

F JXi1 · · ·Xis

of order s, where s coincides with the order of the Rumin differential dh
c
: Eh

0
→ Eh+1

0
, i.e. s = 2 if h = 2 and s = 3

otherwise.
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Moreover, the differential operator F satisfies

dim Eh
0∑

J=1
Xi1 · · ·XisF J = 0. (30)

In order to prove this result we will use the following classical Cartan’s formula in𝔾 (see, e.g., [50], identity

(9) p. 21, though with a different normalization of the wedge product).

Theorem 5.7 (Cartan’s formula). Let 𝜔 be a smooth h-form of (Ω∗
, d) (the usual de Rham’s complex), and let

Z0, Z1, . . . , Zh be smooth vector fields in 𝔾. Then

⟨d𝜔|Z0 ∧ · · · ∧ Zh⟩ = h∑
i=0

(−1)iZi
⟨
𝜔|Z0 ∧ · · · Ẑi · · · ∧ Zh

⟩
+

∑
0≤i< j≤h

(−1) i+ j
⟨
𝜔| [Zi, Zj] ∧ · · · ∧ Ẑi ∧ · · · ∧ Ẑ j · · ·

⟩
.

(31)

Lemma 5.8. Let 𝛼 = ∑
J𝛼 J𝜉

h
J
∈ Eh

0
, 1 ≤ h ≤ 4, be such that

dc𝛼 = 0.

Then dΠE𝛼 = 0, i.e.ΠE𝛼 is closed in the usual sense.

Proof. Since 0 = dc𝛼 :=ΠE0
dΠE𝛼 = ΠE0

ΠEd𝛼, by Theorem 3.4, (ii), if we applyΠE to this equation, we get

0 = ΠEΠE0
ΠEd𝛼 = ΠEd𝛼 = dΠE𝛼, (32)

by Theorem 3.4, (iv), i.e,ΠE𝛼 is closed in the usual sense, as claimed. □

Remark 5.9. Notice that, given an arbitrary Ruminh-form𝛼 ∈ Eh
0
, theh+ 1-form dΠE𝛼 is not in general a Rumin

form, but it is still an element in (R(d0 ))
⊥ = E∙

0
⊕ (ker d0 )

⊥.

Proof of Proposition 5.6. Keeping in mind the previous remarks, we are going to apply Cartan formula choosing

a suitable simple h-vector such that its dual does not belong to R(d0 ). We divide the proof according to the

degree h of the form.

case h = 1: Let us consider 𝛼 = 𝛼1𝜃1 + 𝛼2𝜃2 and dc𝛼 = 0. By Lemma 5.8, we have dΠE𝛼 = 0.Wewant to apply

Theorem 5.7 to 𝜔 = ΠE𝛼. By (11), we have

ΠE𝛼 = 𝛼 − d−1
0
d1𝛼 − d−1

0
d2𝛼 +

(
d−1
0
d1
)2
𝛼 − d−1

0
d3𝛼 + d−1

0
d2d

−1
0
d1𝛼 + d−1

0
d1d

−1
0
d2𝛼+

−
(
d−1
0
d1
)3
𝛼 + terms of weight 5 and 6 = 𝛼 − d−1

0
d1𝛼 − d−1

0
d2𝛼 +

(
d−1
0
d1
)2
𝛼,

since R(d(1)
0
) = Ω2,2

⊕Ω2,3
by Remark 4.1 (i), we have that d−1

0
vanishes onΩ2,4

,Ω2,5
, andΩ2,6

.

We now use (31) applied to d𝜔 = dΠE𝛼 = 0, taking Z0 = X4, Z1 = X1. Hence, keeping in mind that

[Z0, Z1] = [X4,X1] = 0, we can write

0 = Z0⟨𝛼|Z1⟩− Z1⟨𝛼|Z0⟩− (
Z0
⟨
d−1
0
d1𝛼|Z1⟩− Z1

⟨
d−1
0
d1𝛼|Z0⟩)+

−
(
Z0
⟨
d−1
0
d2𝛼|Z1⟩− Z1

⟨
d−1
0
d2𝛼|Z0⟩)+ (

Z0

⟨(
d−1
0
d1
)2
𝛼|Z1⟩− Z1

⟨(
d−1
0
d1
)2
𝛼|Z0⟩).

Arguing using theweights of the forms and the vector fields, we know thatw
(
d−1
0
d1𝛼

)
= 2, whilew(Z0) =

3 andw(Z1) = 1, and they are therefore orthogonal by Remark 2.7. Moreover,w
(
d−1
0
d2𝛼

)
= w(

(
d−1
0
d1
)2
𝛼 ) = 3,

and so they act trivially on Z1. Finally, since w(𝛼) = 1, the expression then simplifies to

0 = Z0⟨𝛼|Z1⟩+ Z1
⟨
d−1
0
d2𝛼|Z0⟩− Z1

⟨(
d−1
0
d1
)2
𝛼|Z0⟩
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= X4𝛼1 + X1
⟨
d−1
0
(−X3𝛼1𝜃1 ∧ 𝜃3 − X3𝛼2𝜃2 ∧ 𝜃3 )|X4⟩− X1

⟨
d−1
0
d1d

−1
0
(X1𝛼2 − X2𝛼1 )𝜃1 ∧ 𝜃2|X4⟩

=
⏟⏟⏟
by (14)

X4𝛼1 + X1⟨X3𝛼1𝜃4 + X3𝛼2𝜃5|X4⟩+ X1
⟨
d−1
0
d1(X1𝛼2 − X2𝛼1 )𝜃3|X4⟩

= X4𝛼1 + X1X3𝛼1 + X1
⟨
d−1
0

(
X1(X1𝛼2 − X2𝛼1 )𝜃1 ∧ 𝜃3 + X2(X1𝛼2 − X2𝛼1 )𝜃2 ∧ 𝜃3

)|X4⟩
= X4𝛼1 + X1X3𝛼1 − X1⟨X1(X1𝛼2 − X2𝛼1 )𝜃4 + X2(X1𝛼2 − X2𝛼1 )𝜃5|X4⟩
= X4𝛼1 + X1X3𝛼1 − X1X1(X1𝛼2 − X2𝛼1 ).

Hence, the differential operator

F :=
(
X4 + X1X3 + X2

1
X2
)
𝛼1 − X3

1
𝛼2 =

(
3X2

1
X2 + X2X

2
1
− 3X1X2X1

)
𝛼1 − X3

1
𝛼2

satisfies (29). Moreover, it is associated to the horizontal 3-tensor F ∈ D
(
𝔾,⊗3g1

)
F := 𝛼1

3
(X1 ⊗ X1 ⊗ X2 + X1 ⊗ X2 ⊗ X1 + X2 ⊗ X1 ⊗ X1 )− 𝛼2X1 ⊗ X1 ⊗ X1. (33)

In this case, (Z1 ∧ Z0 )
♮ = 𝜃1 ∧ 𝜃4 belongs to Ξ2

0
(see (15)), and so the action of dΠE on X4 ∧ X1 could also

be recovered from the explicit formulae of dc in Section 4. However, we decided to include the computations

also for h = 1 as a simpler case, as compared to themore general case that we need to coverwhen considering

the following step of h = 2.

case h = 2: Let us consider the case when 𝛼 = ∑3

i=1𝛼i𝜉
2
i
and dc𝛼 = 0, keeping in mind that

𝜉2
1
= 𝜃1 ∧ 𝜃4, 𝜉2

2
= 𝜃1 ∧ 𝜃5 + 𝜃2 ∧ 𝜃4√

2
, 𝜉2

3
= 𝜃2 ∧ 𝜃5. (34)

By Lemma 5.8 we have dΠE𝛼 = 0. Again, we apply Theorem 5.7 to 𝜔 = ΠE𝛼. By (11),

ΠE𝛼 = 𝛼 − d−1
0
d1𝛼 − d−1

0
d2𝛼 + d−1

0
d1d

−1
0
d1𝛼 + terms of weight 7 and 8

= 𝛼 − d−1
0
d1𝛼 − d−1

0
d2𝛼 + d−1

0
d1d

−1
0
d1𝛼.

since R(d(2)
0
) = spanC∞(𝔾){𝜃1 ∧ 𝜃2 ∧ 𝜃3}⊕Ω3,5

⊕Ω3,6
by Remark 4.1 (ii), and so d−1

0
vanishes on Ω3,7

, and

Ω3,8
.

We use (31) applied to d𝜔 = dΠE𝛼 = 0, taking Z0 = X5, Z1 = X1, Z2 = X3. Notice that the corresponding

3-covector 𝜃1 ∧ 𝜃3 ∧ 𝜃5 does not belong to Ξ3
0
, but it is in (R(d0 ))

⊥. In this case, it is not sufficient to use the

explicit computations of the dc contained in Subsection 4 to recover the action of dΠE .

We can write

0 = Z0⟨𝛼|Z1 ∧ Z2⟩− Z1⟨𝛼|Z0 ∧ Z2⟩+ Z2⟨𝛼|Z0 ∧ Z1⟩
−
(
Z0
⟨
d−1
0
d1𝛼|Z1 ∧ Z2

⟩
− Z1

⟨
d−1
0
d1𝛼|Z0 ∧ Z2

⟩
+ Z2

⟨
d−1
0
d1𝛼|Z0 ∧ Z1

⟩)
−
(
Z0
⟨
d−1
0
d2𝛼|Z1 ∧ Z2

⟩
− Z1

⟨
d−1
0
d2𝛼|Z0 ∧ Z2

⟩
+ Z2

⟨
d−1
0
d2𝛼|Z0 ∧ Z1

⟩)
+
(
Z0

⟨(
d−1
0
d1
)2
𝛼|Z1 ∧ Z2

⟩
− Z1

⟨(
d−1
0
d1
)2
𝛼|Z0 ∧ Z2

⟩
+ Z2

⟨(
d−1
0
d1
)2
𝛼|Z0 ∧ Z1

⟩)
− ⟨𝛼|[Z0, Z1] ∧ Z2⟩+ ⟨𝛼|[Z0, Z2] ∧ Z1⟩− ⟨𝛼|[Z1, Z2] ∧ Z0⟩
−
(
−
⟨
d−1
0
d1𝛼|[Z0, Z1] ∧ Z2

⟩
+
⟨
d−1
0
d1𝛼|[Z0, Z2] ∧ Z1

⟩
−
⟨
d−1
0
d1𝛼|[Z1, Z2] ∧ Z0

⟩)
−
(
−
⟨
d−1
0
d2𝛼|[Z0, Z1] ∧ Z2

⟩
+
⟨
d−1
0
d2𝛼|[Z0, Z2] ∧ Z1

⟩
−
⟨
d−1
0
d2𝛼|[Z1, Z2] ∧ Z0

⟩)
+
(
−
⟨(
d−1
0
d1
)2
𝛼|[Z0, Z1] ∧ Z2

⟩
+
⟨(
d−1
0
d1
)2
𝛼|[Z0, Z2] ∧ Z1

⟩
−
⟨(
d−1
0
d1
)2
𝛼|[Z1, Z2] ∧ Z0

⟩)
.

(35)

This long expression simplifies greatly thanks to the particular choice of the vector fields Z0, Z1, Z2. In

fact [Z0, Z1] = [Z0, Z2] = 0.
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Moreover, arguing using the weights of the forms and the vector fields, we know that w(𝛼) = 4, while

w(Z0 ∧ Z2) = 5, and w(Z1 ∧ Z2) = 3, and so the expression simplifies to

0 = Z2⟨𝛼|Z0 ∧ Z1⟩
−
(
Z0
⟨
d−1
0
d1𝛼|Z1 ∧ Z2

⟩
− Z1

⟨
d−1
0
d1𝛼|Z0 ∧ Z2

⟩
+ Z2

⟨
d−1
0
d1𝛼|Z0 ∧ Z1

⟩)
−
(
Z0
⟨
d−1
0
d2𝛼|Z1 ∧ Z2

⟩
− Z1

⟨
d−1
0
d2𝛼|Z0 ∧ Z2

⟩
+ Z2

⟨
d−1
0
d2𝛼|Z0 ∧ Z1

⟩)
+
(
Z0

⟨(
d−1
0
d1
)2
𝛼|Z1 ∧ Z2

⟩
− Z1

⟨(
d−1
0
d1
)2
𝛼|Z0 ∧ Z2

⟩
+ Z2

⟨(
d−1
0
d1
)2
𝛼|Z0 ∧ Z1

⟩)
− ⟨𝛼|[Z1, Z2] ∧ Z0⟩+ ⟨

d−1
0
d1𝛼|[Z1, Z2] ∧ Z0

⟩)
+
⟨
d−1
0
d2𝛼|[Z1, Z2] ∧ Z0

⟩
−
⟨(
d−1
0
d1
)2
𝛼|[Z1, Z2] ∧ Z0

⟩
(36)

Again, considering the weights of the formsw
(
d−1
0
d2𝛼

)
= w(

(
d−1
0
d1
)2
𝛼 ) = 6, while the highest weight of

a 2-vector considered here is 5. Finally, since w
(
d−1
0
d1𝛼

)
= 5 and w(Z0 ∧ Z1) = 4, the expression (36) further

simplifies to

0 = Z2⟨𝛼|Z0 ∧ Z1⟩+ Z1
⟨
d−1
0
d1𝛼|Z0 ∧ Z2

⟩
+
⟨
d−1
0
d2𝛼|[Z1, Z2] ∧ Z0

⟩
−
⟨(
d−1
0
d1
)2
𝛼|[Z1, Z2] ∧ Z0

⟩ (37)

Since

d0(𝜃4 ∧ 𝜃5 ) = −𝜃1 ∧ 𝜃3 ∧ 𝜃5 + 𝜃2 ∧ 𝜃3 ∧ 𝜃5

we obtain

d−1
0
d1
(
d−1
0
d1𝛼

)
=
(
X2
2

2
𝛼1 + (−X2X1 − X1X2 )

𝛼2

2
√
2
+ X2

1

𝛼3
2
𝛼2

)
𝜃4 ∧ 𝜃5,

Finally,

d−1
0
d2𝛼 = d−1

0

(
−X3𝛼1𝜃1 ∧ 𝜃3 ∧ 𝜃4 −

X3√
2
𝛼2(𝜃1 ∧ 𝜃3 ∧ 𝜃4 + 𝜃2 ∧ 𝜃3 ∧ 𝜃5 )− X3𝛼3𝜃2 ∧ 𝜃3 ∧ 𝜃5

)
= 0,

Hence, (37) became

0 = −X3
𝛼2√
2
+ X2

1
𝛼3 − X1X2

𝛼2√
2
+ X2

2

2
𝛼1 + (−X2X1 − X1X2 )

𝛼2

2
√
2
+ X2

1

𝛼3
2

= X2
1

3𝛼3
2

+
(
− 5

2
√
2
X1X2 +

X2X1√
2

)
𝛼2 +

X2
2

2
𝛼1,

Therefore we can consider the following differential operator

F := 3𝛼3
2
X2
1
+ 𝛼1

2
X2
2
+ 𝛼2√

2

(
−5

2
X1X2 + X2X1

)
that satisfies (30). Notice that F can be identified with the tensor F ∈ D(𝔾,⊗2

⋀
1g1 ) as

F := 3𝛼3
2
X1 ⊗ X1 +

𝛼1
2
X2 ⊗ X2 +

𝛼2√
2

(
−5

2
X1 ⊗ X2 + X2 ⊗ X1

)
. (38)

case h = 3 Let us consider the case when 𝛼 = ∑3

i=1𝛼i𝜉
3
i
and dc𝛼 = 0. As above, we have dΠE𝛼 = 0 and by (11)

ΠE𝛼 = 𝛼 − d−1
0
d1𝛼 − d−1

0
d2𝛼 − d−1

0
d3𝛼 +

(
d−1
0
d1
)2
𝛼 + d−1

0
d2d

−1
0
d1𝛼+

+ d−1
0
d1d

−1
0
d2𝛼 −

(
d−1
0
d1
)3
𝛼 = 𝛼 − d−1

0
d1𝛼 +

(
d−1
0
d1
)2
𝛼,

since R(d(3)
0
) = Ω4,7

⊕Ω4,8
by Remark 4.1 (iii), and so d−1

0
vanishes onΩ4,9

.
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Moreover, for any i = 1, 2, 3 the fact that w
(
𝜉3
i

)
= 6 implies that 𝜉3

i
, as a 3-covector, always contains 𝜃3

(see (16)). As 𝜃3 is the only covector of weight 2, the action of d2 on such a 𝛼 will necessarily be trivial.

We could use (31) applied to dΠE𝛼 = 0, taking Z0 = X1, Z1 = X3, Z2 = X4, Z3 = X5. Instead, in this case

we can argue straightforwardly using the explicit expression of dc acting on 3-forms as shown in Section 4.

Indeed, notice that the 4-covector 𝜃1 ∧ 𝜃3 ∧ 𝜃4 ∧ 𝜃5 belongs toΞ4
0
, and so the action of dΠE on X1 ∧ X3 ∧ X4 ∧

X5 is recovered from the explicit formulae in Section 4.

Therefore, we get that the differential operator

F :=
(
3X1X

2
2
+ X2

2
X1 − 3X2X1X2

)
𝛼1 +

√
2
(
−2X1X2X1 + X2X

2
1

)
𝛼2 + X3

1
𝛼3

=
(
X1X

2
2
+ X3X2 − X5

)
𝛼1 +

√
2
(
−X2

1
X2 + X4

)
𝛼2 + X3

1
𝛼3

corresponds to the horizontal 3-tensor F ∈ D
(
𝔾,⊗3g1

)
F := 𝛼1

3
(X1 ⊗ X2 ⊗ X2 + X2 ⊗ X1 ⊗ X2 + X2 ⊗ X2 ⊗ X1 )+

−
√
2𝛼2
3

(X1 ⊗ X1 ⊗ X2 + X1 ⊗ X2 ⊗ X1 + X2 ⊗ X1 ⊗ X1 )+ 𝛼3X1 ⊗ X1 ⊗ X1.

and satisfies (29).

case h = 4 The case of 4-forms is much more simpler, given the expression of the differential dc: E
4
0
→ E5

0
,

which is an operator of order 1 in the horizontal derivatives. Therefore, it suffices to take F = −𝛼1X2 + 𝛼2X1 ∈
D(𝔾,g1 ) which has vanishing divergence in the usual sense. □

5.3 Proof of Theorem 5.1

We are now ready to prove one of our main theorems.

Proof of Theorem 5.1. The case h = 0 is well known (see [46]–[49]), and hence by Hodge-star duality this also

sets the case of h = 5. Similarly, we can restrict our proof of the result to forms in Eh
0
, with h = 1, 2, and obtain

the cases h = 3, 4 by applying Hodge-star duality to the complex
(
E∗
0
, dc

)
.

Case h= 1. If u, 𝜙 ∈ D
(
𝔾, E1

0

)
, we can write

⟨u, 𝜙⟩L2(𝔾,E10) = ⟨u,ΔA,1Δ−1
A,1
𝜙⟩L2(𝔾,E10)

= ⟨u, (𝛿cdc + (dc𝛿c )
3
)
Δ−1
A,1
𝜙⟩L2(𝔾,E10). (39)

Consider now the first term in the previous sum,⟨u, 𝛿cdcΔ−1
A,1
𝜙⟩L2(𝔾,E10) = ⟨dcu, dcΔ−1

A,1
𝜙⟩L2(𝔾,E20).

Moreover, since f , dcΔ−1
A,1
𝜙 ∈ E2

0
, we can write f = ∑3

𝓁=1 f𝓁𝜉
2
𝓁 , dcΔ

−1
A,1
𝜙 = ∑3

𝓁=1

(
dcΔ−1

A,1
𝜙
)
𝓁
𝜉2𝓁 , and hence

we can reduce ourselves to estimate

⟨ f𝓁,(dcΔ−1
A,1
𝜙
)
𝓁
⟩L2(𝔾) for 𝓁 = 1, 2, 3. (40)

Consider now the horizontal 2-tensor F ∈ D
(
𝔾,⊗2g1

)
as defined in (38)

F := 3 f3
2
X1 ⊗ X1 +

f1
2
X2 ⊗ X2 +

f2√
2

(
−5

2
X1 ⊗ X2 + X2 ⊗ X1

)
,

which, by Proposition 5.6, satisfies the hypotheses of Theorem 5.5.

Suppose f𝓁 = f1 and consider the horizontal 2-tensor F. We consider now the symmetric horizontal 2-tensor

Φ:
Φ :=

(
dcΔ−1

A,1
𝜙
)
1

(
X2 ⊗ X2

)
,
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so that ⟨ f1,(dcΔ−1
A,1
𝜙
)
1
⟩L2(𝔾) = ⟨F,Φ⟩L2(𝔾,⊗2g1).

By Theorem 5.5 ||||⟨ f1,
(
dcΔ−1

A,1
𝜙
)
1
⟩L2(𝔾)|≤ ‖G‖L1(𝔾,⊗2g1)‖∇𝔾

(
dcΔ−1

A,1
𝜙
)
1
‖LQ(𝔾)

≤ ‖ f ‖L1(𝔾,E20)‖∇𝔾dcΔ−1
A,1
𝜙‖LQ(𝔾,E20).

(41)

On the other hand, keeping in mind that dc has order 3,∇𝔾dcΔ−1
A,1
𝜙 can be expressed as a sum of terms with

components of the form

𝜙 j ∗XIK̃i j with d(I ) = 4.

By Theorem 4.7, (iv) and Proposition 2.1, XIK̃i j are kernels of order 2, so that, by Theorem 2.2, we have

|⟨ f1,(dcΔ−1
A,1
𝜙
)
1
⟩L2(𝔾)| ≤ C‖ f ‖L1(𝔾,E20)‖𝜙‖LQ∕3(𝔾,E10). (42)

The same argument applies to f2 and f3 using again the 2-tensor F, with a suitable choice for the symmetric

tensorΦ. We obtain eventually

|⟨ f , dcΔ−1
A,1
𝜙⟩L2(𝔾,E20)| ≤ C‖ f ‖L1(𝔾,E20)‖𝜙‖LQ∕3(𝔾,E10). (43)

Consider now the second term in (39)⟨u, (dc𝛿c )3Δ−1
A,1
𝜙⟩L2(𝔾,E10) = ⟨𝛿cdc𝛿cu, 𝛿cdc𝛿cΔ−1

A,1
𝜙⟩L2(𝔾).

By Theorem 4.7, formula (19), keeping in mind that 𝛿c is an operator of order 1 in the horizontal derivatives

when acting on E1
0
, the quantity 𝛿cdc𝛿cΔ−1

A,1
𝜙 can be written as a sum of terms such as

𝜙 j ∗XIK̃i j, with d(I ) = 3.

On the other hand,⟨𝛿cdc𝛿cu, 𝜙 j ∗XIK̃i j⟩L2(𝔾) = ⟨𝛿cdcg, 𝜙 j ∗XIK̃i j⟩L2(𝔾) = ⟨𝛿cdcg ∗
v
(
XIK̃i j

)
, 𝜙 j⟩L2(𝔾).

By Hölder, |⟨𝛿cdcg ∗
v
(
XIK̃i j

)
, 𝜙 j⟩L2(𝔾)| ≤ ‖𝛿cdcg ∗

v
(
XIK̃i j

)‖LQ∕Q−3‖𝜙 j‖LQ∕3 .
Notice the XIK̃i j’s and hence the

v
(
XIK̃i j

)
’s are kernels of type 3. Thus, by Theorem 6.10 in [19],|⟨𝛿cdc𝛿cu, 𝜙 j ∗XIK̃i j⟩L2(𝔾)| ≤ C‖𝛿cdcg‖H 1(𝔾)‖𝜙‖LQ∕3(𝔾,E10).

Combining this estimate with the one in (43), we get eventually|⟨u, 𝜙⟩L2(𝔾,E10)| ≤ C

(‖ f ‖L1(𝔾,E20) + ‖𝛿cdcg‖H 1(𝔾)

)‖𝜙‖LQ∕3(𝔾,E10),
and hence ‖u‖LQ∕(Q−3)(𝔾,E10) ≤ C

(‖ f ‖L1(𝔾,E20) + ‖𝛿cdcg‖H 1(𝔾)

)
,

which concludes the proof in the case h = 1.

Case h= 2. For sake of simplicity, we set K :=Δ−1
A,2

throughout this part of the proof. If u, 𝜙 ∈ E2
0
are

smooth compactly supported forms, then we can write

⟨u, 𝜙⟩L2(𝔾,E20) = ⟨u,ΔA,2K 𝜙⟩L2(𝔾,E20)
= ⟨u, (𝛿cAΔdc + dc𝛿c )K 𝜙⟩L2(𝔾,E20). (44)

Consider now the term ⟨u, 𝛿cAΔdcK 𝜙⟩L2(𝔾,E20) = ⟨dcu,AΔdcK 𝜙⟩L2(𝔾,E30).
Let us write f := dcu. We can write f = ∑3

𝓁=1 f𝓁𝜉
3
𝓁 . As above, dc f = 0, and again
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⟨dcu,AΔdcK 𝜙⟩L2(𝔾,E30) =∑
𝓁

⟨ f𝓁, (AΔdcK 𝜙)𝓁⟩L2(𝔾).
Since dcK 𝜙 = ∑3

𝓁=1(dcK 𝜙)𝓁𝜉
3
𝓁 and AΔ =

⎛⎜⎜⎜⎝
𝛿cdc 0 0

0 𝛿cdc 0

0 0 𝛿cdc

⎞⎟⎟⎟⎠, where the dc in the matrix entries are the
differentials acting on functions (i.e. 0-forms) and have order 1.

Since AΔ is a diagonal matrix, we have that (AΔdcK 𝜙)𝓁 = 𝛿(1)c d
(0)
c (d(2)c K 𝜙)𝓁 , where in the formula we are

highlighting the degree of the forms the operators 𝛿c and dc are acting on.

Hence, componentwise, for each 𝓁 = 1, 2, 3,⟨ f𝓁, (AΔd
(2)
c

K 𝜙)𝓁⟩L2(𝔾) = ⟨ f𝓁, 𝛿(1)c
d(0)
c
(d(2)

c
K 𝜙)𝓁⟩L2(𝔾) = ⟨d(0)

c
f𝓁, d

(0)
c
(d(2)

c
K 𝜙)𝓁⟩L2(𝔾,E10).

As above, by Proposition 5.6, each 𝛼 j = (dc f𝓁 ) j = (X1 f𝓁𝜃1 + X2 f𝓁𝜃2 ) j = Xj f𝓁 with j = 1, 2 is one of the com-

ponents of a horizontal 3-tensor, see (33), that satisfies (30).

To achieve the estimate of ⟨(d(0)c f𝓁 ) j, (d
(0)
c (d(2)c K 𝜙)𝓁 ) j⟩L2(𝔾), we define a new horizontal 3-tensor Φ as

before,so that ⟨(dc f𝓁 ) j, (dc(dcK 𝜙)𝓁 ) j⟩L2(𝔾) = ⟨F,Φ⟩L2(𝔾,⊗3 g1).

By Theorem 5.5, denoting by∇𝔾 f = (∇𝔾 f1,∇𝔾 f2,∇𝔾 f3 )|||⟨(d(0)c
f𝓁 ) j, (d

(0)
c
(d(2)

c
K 𝜙)𝓁 ) j⟩L2(𝔾)| ≤ ‖∇𝔾 f ‖L1(𝔾,E30)‖∇𝔾(d

(0)
c
(d(2)

c
K 𝜙)𝓁 )‖LQ(𝔾,E30)

On the other hand,∇𝔾

(
d
(0)
c (d(2)c K 𝜙)𝓁

)
can be expressed as a sum of terms with components of the form

𝜙 j ∗XIK̃i j, with d(I ) = 4,

since d(2)c : E2
0
→ E3

0
is an operator of order 2 and ∇𝔾 is of order 1 in the horizontal derivatives. The same can be

repeated for any 𝓁 = 1, 2, 3.

By Theorem 4.7, (iv) and Proposition 2.1, XIK̃i j are kernels of type 2, so that, by Theorem 2.2, we have|⟨ f𝓁, (AΔdcK 𝜙)𝓁⟩L2(𝔾)| ≤ C‖∇𝔾 f ‖L1(𝔾,E30)‖𝜙‖LQ∕3(𝔾,E20).
The same argument can be carried out for all the components of f , yielding

|⟨ f ,AΔdcK 𝜙⟩L2(𝔾,E30)| ≤ C‖∇𝔾 f ‖L1(𝔾,E30)‖𝜙‖LQ∕3(𝔾,E20). (45)

Consider now the term ⟨u, dc𝛿cK 𝜙⟩L2(𝔾,E20) = ⟨𝛿cu, 𝛿cK 𝜙⟩L2(𝔾,E10).
We have ⟨𝛿cu, 𝛿cK 𝜙⟩L2(𝔾,E10) = ⟨⋆𝛿cu, ⋆𝛿cK 𝜙⟩L2(𝔾,E40) = ⟨⋆g, ⋆𝛿cK 𝜙⟩L2(𝔾,E40).
We notice now that ⋆g is a dc-closed form in E4

0
. Indeed, dc ⋆ g = ⋆𝛿cg = ⋆𝛿2

c
u = 0 up to a sign. We can

then apply Proposition 5.6 to get|||⟨⋆g, ⋆𝛿cK 𝜙⟩L2(𝔾,E40)||| ≤ ‖g‖L1(𝔾,E10)‖∇𝔾 ∗ 𝛿cK 𝜙‖LQ(𝔾,E40) (46)

As above,∇𝔾 ⋆ 𝛿cK 𝜙 can be expressed as a sum of terms with components of the form

𝜙 j ∗XIK̃i j, with d(I ) = 4,

since 𝛿c: E
3
0
→ E2

0
is an operator of order 3 in the horizontal derivatives. By Theorem 4.7 and Proposition 2.1,XIK̃i j

are kernels of type 2, so that, again by Theorem 2.2, we have|||⟨g, 𝛿cK 𝜙⟩L2(𝔾,E10)||| ≤ C‖g‖L1(𝔾,E10)‖𝜙‖LQ∕3(𝔾,E20).
Combining this estimate with the one in (45), we get eventually|⟨u, 𝜙⟩L2(𝔾,E20)| ≤ C

(‖∇𝔾 f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10))‖𝜙‖LQ∕3(𝔾,E20),
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and hence ‖u‖LQ∕(Q−3)(𝔾,E20) ≤ C

(‖∇𝔾 f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10)).
This achieves the proof of the theorem. □

5.4 Proof of Theorem 5.2. Let us now prove Theorem 5.2

Proof of Theorem 5.2 using the Laplacians ΔR,h By definition, the two Laplacians ΔR,h and ΔA,h differ only on

degrees h = 2, 3. The arguments we can use here are analogous to the ones used in the proof of the previous

result, but we have differences coming from the fact that we are dealing with operators of order 12. Hence, for

completeness, we provide the crucial steps involved in the case of h = 2.

Case h= 2. If u, 𝜙 ∈ E2
0
are smooth compactly supported forms, then we can write

⟨u, 𝜙⟩L2(𝔾,E20) = ⟨u,ΔR,2Δ−1
R,2
𝜙⟩L2(𝔾,E20)

= ⟨u, [(𝛿cdc )3 + (dc𝛿c )
2
]
Δ−1
R,2
𝜙⟩L2(𝔾,E20). (47)

Consider now the term⟨u, (𝛿cdc )3Δ−1
R,2
𝜙⟩L2(𝔾,E20) = ⟨dc𝛿cdcu, dc𝛿cdcΔ−1

R,2
𝜙⟩L2(𝔾,E30).

Let us write f := dcu, and hence dc𝛿c f is closed.

With the same arguments as in the proof of Theorem 5.1, by Proposition 5.6 and Theorem 5.5,|||⟨dc𝛿cdcu, dc𝛿cdcΔ−1
R,2
𝜙⟩L2(𝔾,E30)| ≤ ‖ f ‖L1(𝔾,E30)‖∇𝔾dc𝛿cdcΔ−1

R,2
𝜙‖LQ(𝔾,E30)

On the other hand,∇𝔾dc𝛿cdcΔ−1
R,2
𝜙 can be expressed as

𝜙 ∗ K I , with d(I ) = 7,

since d(2)c : E2
0
→ E3

0
is an operator of order 2 in the horizontal derivatives.

By Theorem 4.8, and Proposition 2.1, K I is a kernel of type 5, so that, by Theorem 2.2, we have

|||⟨dc𝛿c f , dc𝛿cdcΔ−1
R,2
𝜙⟩L2(𝔾,E30)| ≤ C‖dc𝛿c f ‖L1(𝔾,E30)‖𝜙‖LQ∕6(𝔾,E20). (48)

Consider now the term ⟨u, (dc𝛿c )2Δ−1
R,2
𝜙⟩L2(𝔾,E20) = ⟨dc𝛿cu, dc𝛿cΔ−1

R,2
𝜙⟩L2(𝔾,E20).

By imposing 𝛿cu = g, we have that dcg is closed and we can again apply Proposition 5.6 and Theorem 5.5

to get |||⟨dcg, dc𝛿cΔ−1
R,2
𝜙⟩L2(𝔾,E20)||| ≤ ‖dcg‖L1(𝔾,E20)‖∇𝔾dc𝛿cΔ−1

R,2
𝜙‖LQ(𝔾,E20).

As above,∇𝔾dc𝛿cΔ−1
R,2
𝜙 can be expressed as

𝜙 ∗ K I , with d(I ) = 7,

since 𝛿c: E
3
0
→ E2

0
is an operator of order 3 in the horizontal derivatives. By Theorem 4.8 and Proposition 2.1,K I

is a kernel of type 5, so that, by Theorem 2.2, we have|||⟨dcg, dc𝛿cΔ−1
R,2
𝜙⟩L2(𝔾,E20)||| ≤ C‖dcg‖L1(𝔾,E20)‖𝜙‖LQ∕6(𝔾,E20).

Combining this estimate with the one in (48), we get eventually|⟨u, 𝜙⟩L2(𝔾,E20)| ≤ C

(‖dc𝛿c f ‖L1(𝔾,E30) + ‖dcg‖L1(𝔾,E20))‖𝜙‖LQ∕6(𝔾,E20),
and hence ‖u‖LQ∕(Q−6)(𝔾,E20) ≤ C

(‖dc𝛿c f ‖L1(𝔾,E30) + ‖dcg‖L1(𝔾,E20)).
This achieves the proof of the theorem. □
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Proof of Theorem 5.2 using the Laplacians Δ𝔾,h The proof differs from the previous one only for h = 0, 1 and

again uses the same arguments. Therefore, we only give a gist of the proof for h = 0, since the proof of the case

h = 1 can be easily adapted from the corresponding one given right above.

For u ∈ E0
0
, 𝛿cu = 0 andΔ𝔾,0 = (𝛿cdc )

6. Keeping in mind that dc: E
0
0
→ E1

0
is a differential operator of order

1, given u, 𝜙 ∈ D(𝔾) we start again from the identity

⟨u, 𝜙⟩L2(𝔾) = ⟨u,Δ𝔾,0Δ−1
𝔾,0𝜙⟩L2(𝔾)

= ⟨dcu, (𝛿c(𝛿cdc )5Δ−1
𝔾,0𝜙⟩L2(𝔾,E10). (49)

Now, since dcu = f is closed, arguing as in the previous proofs by means of Proposition 5.6, Theorem 5.5 we

eventually get an estimate of the form|⟨u, 𝜙⟩L2(𝔾)| ≤ ‖ f ‖L1(𝔾,E10)‖∇𝔾dc(𝛿cdc )
5Δ−1

𝔾,0𝜙‖LQ(𝔾,E10) □

In the next subsection, we prove Theorem 5.4, while in the subsequent Subsection 5.6 we will present a way

to obtain different results than the ones achieved in Theorem 5.2 by considering new Lp-type spaces.

5.5 Proof of Theorem 5.4 and final remarks. Let us show now the main changes for
the proof of Theorem 5.4

Proof of Theorem 5.4 using Definition 4.4. We show the result in the case of a co-closed form (i.e. g = 0) onlywhen

h = 2 and h = 4 (since in the other degrees the result is an immediate consequence of Theorem 5.1 by imposing

g = 0).

Arguing as in proof of Theorem 5.1, writing again the identities in (44) we have only the term⟨u, 𝛿cAΔdcΔ−1
A,2
𝜙⟩L2(𝔾,E20) = ⟨dcu,AΔdcΔ−1

A,2
𝜙⟩L2(𝔾,E30).

We write f = dcu hence dc f = 0, and again⟨dcu,AΔdcΔ−1
A,2
𝜙⟩L2(𝔾,E30)

The operator AΔdcΔ−1
A,2

is associated with kernels of type 2, hence again by Theorem 5.5, being∇𝔾AΔdcΔ−1
A,2

associated to a kernel of type 1

|⟨ f ,AΔdcΔ−1
A,2
𝜙⟩L2(𝔾,E30)| ≤ C‖ f ‖L1(𝔾,E30)‖𝜙‖LQ∕2(𝔾,E20) (50)

and hence, by duality, the inequality for the case h = 2 is proved.

Let us consider now h = 4. If u is co-closed, starting from the same procedure, we have to analyze the term⟨u, (𝛿cdc )3Δ−1
A,4
𝜙⟩L2(𝔾,E40) = ⟨dcu, dc𝛿cdc𝛿cdcΔ−1

A,4
𝜙⟩L2(𝔾,E50).

Keeping in mind that dc is an operator of order 1 in the horizontal derivatives when acting on E
4
0
, roughly

speaking the quantity dc𝛿cdc𝛿cdcΔ−1
A,4

is associated to a kernel of type 1 and hence, after applying Theorem 5.5

we get that∇𝔾dc𝛿cdc𝛿cdcΔ−1
A,4

is of type 0. Hence, the conclusion follows by the following inequality|⟨u, (𝛿cdc )3Δ−1
A,4
𝜙⟩L2(𝔾,E40)| ≤ ‖ f ‖L1(𝔾,E50)‖𝜙‖LQ(𝔾,E40).

This concludes the proof in the case of co-closed forms u ∈ Eh
0
.

When u satisfies dcu = 0 and 𝛿cu = g, we can argue in a similar way. □

Wenowprove again Theorem 5.4 using the second definition of the Laplacian operators for co-closed forms.

Therefore, the only case that we are left to show is for forms of degree h = 2, 3, since the LaplaciansΔA andΔR

coincide when h = 4.

Proof of Theorem 5.4 using Definition 4.3. If u, 𝜙 ∈ E2
0
are smooth compactly supported forms, let us use the

formula (47). Since we are assuming that 𝛿cu = 0, we need to estimate only the term
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⟨u, (𝛿cdc )3Δ−1
R,2
𝜙⟩L2(𝔾,E20) = ⟨dcu, dc(𝛿cdc )2Δ−1

R,2
𝜙⟩L2(𝔾,E30).

With the same arguments as in the proof of Theorem 5.2, by Proposition 5.6 and Theorem 5.5,|||⟨dcu, dc(𝛿cdc )2Δ−1
R,2
𝜙⟩L2(𝔾,E30)| ≤ ‖ f ‖L1(𝔾,E30)‖∇𝔾dc(𝛿cdc )

2Δ−1
R,2
𝜙‖LQ(𝔾,E30)

On the other hand,∇𝔾dc(𝛿cdc )
2Δ−1

R,2
𝜙 can be expressed in the form

𝜙 ∗ K I , with d(I ) = 11,

since d(2)c : E2
0
→ E3

0
is an operator of order 2 in the horizontal derivatives.

By Theorem 4.8, and Proposition 2.1, K I is a kernel of type 1, so that, by Theorem 2.2, we have

|⟨u, 𝜙⟩L2(𝔾,E20)| ≤ C‖ f ‖L1(𝔾,E30)‖𝜙‖LQ∕2(𝔾,E20). (51)

Reasoning by duality, we obtain the claim.

The case of degree h = 3 is very similar and yields the following estimate|⟨u, 𝜙⟩L2(𝔾,E30)| ≤ C‖ f ‖L1(𝔾,E40)‖𝜙‖LQ∕3(𝔾,E30),
from which one obtains the required estimate by duality.

The arguments to obtain the estimates for a closed form u ∈ Eh
0
are again very similar. □

To avoid excessive repetitions, we omit the proof of Theorem 5.4 using the Laplacian Δ𝔾,4, since it is suffi-

cient to follow the same idea.

5.6 An alternative Gagliardo–Niremberg type estimate

It is possible to prove Gagliardo–Niremberg estimates also considering some variants of Lp type spaces, as

already considered in [29]. Indeed, in Theorems 5.1 and 5.2, the estimates obtained for h = 1, 2 (and by Hodge

duality also when h = 3, 4) the right-hand-side of the estimates contains not only the terms dcu = f and 𝛿cu = g,

but also some derivatives of them due to homogeneity required by the Laplacians. In this section, our aim

is instead to obtain Gagliardo–Niremberg type inequalities where on the right-hand side we only have the

L1-norm (orH 1-norm) of f and g alone, i.e. without any of their derivatives (see the statement of Theorem 5.10).

Let us now set the function spaces that we are going to consider for such inequalities. First, if p, q ∈ [1,∞],

we can define the Banach spaces

Lp,q(𝔾) := Lp(𝔾) ∩ Lq(𝔾)

endowed with the norm ‖u‖L p,q(𝔾) := (‖u‖2
L p(𝔾) + ‖u‖2

Lq(𝔾) )
1∕2,

and D(𝔾) is dense in Lp,q(𝔾). Analogous spaces of differential forms can be defined in the usual way.
Using these Lp,q-spaces, we manage to obtain the following estimates by duality.

Theorem 5.10. Denote by
(
E∗
0
, dc

)
the complex of intrinsic forms in 𝔾. Then there exists C > 0 such that for any

h-form u ∈ D
(
𝔾, Eh

0

)
, 1 ≤ h ≤ 4, such that {

dcu = f

𝛿cu = g

we have

‖u‖LQ∕(Q−3)+LQ∕(Q−1)(𝔾,E10) ≤ C

(‖ f ‖L1(𝔾,E20) + ‖g‖H 1(𝔾)

)
i f h = 1;

‖u‖LQ∕(Q−3)+LQ∕(Q−2)(𝔾,E20) ≤ C

(‖ f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10)) i f h = 2;



30 — A. Baldi and F. Tripaldi: Comparison of three possible Laplacians

‖u‖LQ∕(Q−3)+LQ∕(Q−2)(𝔾,E30) ≤ C

(‖ f ‖L1(𝔾,E40) + ‖g‖L1(𝔾,E20)) i f h = 3.

‖u‖LQ∕(Q−3)+LQ∕(Q−1)(𝔾,E40) ≤ C

(‖ f ‖H 1(𝔾,E50)
+ ‖g‖L1(𝔾,E30)) i f h = 4;

In the previous statement, we have used the vector spaces Lp(𝔾)+ Lq(𝔾) that, roughly speaking, can be

identifiedwith the duals of the spaces Lp,q(𝔾). Indeed, we can consider the vector space Lp(𝔾)+ Lq(𝔾) endowed
with the norm ‖u‖L p(𝔾)+Lq(𝔾):= inf

{
(‖u1‖2L p(𝔾) + ‖u2‖2Lq(𝔾) )1∕2;

u1 ∈ Lp(𝔾), u2 ∈ Lq(𝔾), u = u1 + u2},

notice that Lp(𝔾)+ Lq(𝔾) ⊂ L1
loc
(𝔾).

Moreover, if p, q ∈ (1,∞) and p′, q′ are their conjugate exponents, (Lp,q(𝔾))∗ is isometrically equals to

Lp′ (𝔾)+ Lq
′
(𝔾) (see e.g. [51] exercice 6 pag. 175, and [52], exercises 3 and 4 p. 186, and also [29] Proposition 3.1).

Proof of Theorem 5.10. The arguments used for the proof of this result are analogous to the ones used several

times in the previous theorems. To avoid repeating the same steps, we only give the gist of the proof for only

one of the possible Laplacians considered in this paper, keeping in mind the final estimates hold for all of them.

Case h = 1. If u, 𝜙 ∈ E1
0
are smooth and compactly supported forms, we can write

⟨u, 𝜙⟩L2(𝔾,E10) = ⟨u, [𝛿cdc + (dc𝛿c )
3
]
Δ−1
R,1
𝜙⟩L2(𝔾,E10). (52)

The estimate for the term ⟨dcu, dcΔ−1
R,1
𝜙⟩L2(𝔾,E20) is already contained in (43) and then we have also

|⟨ f , dcΔ−1
R,1
𝜙⟩L2(𝔾,E20)| ≤ C‖ f ‖L1(𝔾,E20)(‖𝜙‖LQ∕3(𝔾,E10) + ‖𝜙‖LQ(𝔾,E10)). (53)

The estimate for the second addend is obtained by writing⟨u, (dc𝛿c )3Δ−1
R,1
𝜙⟩L2(𝔾,E10) = ⟨g, 𝛿c(dc𝛿c )2Δ−1

R,1
𝜙⟩L2(𝔾).

The quantity 𝛿c(dc𝛿c )
2Δ−1

R,1
𝜙 can be written as a sum of terms of the form

𝜙 j ∗XIK̃i j with d(I ) = 5.

On the other hand, ⟨g, 𝛿c(dc𝛿c )2Δ−1
R,1
𝜙⟩L2(𝔾) = ⟨g ∗

v
(
XIK̃i j

)
, 𝜙 j⟩L2(𝔾). Moreover, the terms XIK̃i j are kernels

of type 1. Hence, using the same argument of the proof of Theorem 5.1 in the case when h = 1, we get

|⟨g, 𝛿c(dc𝛿c )2Δ−1
R,1
𝜙⟩L2(𝔾)| ≤‖g‖H 1(𝔾)‖𝜙‖LQ(𝔾,E10)

≤‖g‖H 1(𝔾)

(‖𝜙‖LQ(𝔾,E10) + ‖𝜙‖LQ∕3(𝔾,E10)).
This estimate, together with the one for f given by (53), gives|⟨u, 𝜙⟩L2(𝔾,E10)| ≤ C

(‖ f ‖L1(𝔾,E20) + ‖g‖H 1(𝔾)

)(‖𝜙‖LQ∕3(𝔾,E10) + ‖𝜙‖LQ(𝔾,E10)),
and hence, by duality, ‖u‖LQ∕(Q−3)+LQ∕(Q−1)(𝔾,E10) ≤ C

(‖ f ‖L1(𝔾,E20) + ‖g‖H 1(𝔾)

)
,

Case h = 2. If u, 𝜙 ∈ E2
0
are smooth compactly supported forms, again we can use (47).

Consider now the term ⟨u, (𝛿cdc )3Δ−1
R,2
𝜙⟩L2(𝔾,E20) = ⟨dcu, dc(𝛿cdc )2Δ−1

R,2
𝜙⟩L2(𝔾,E30).

that as already been estimated in (51). Therefore we have also

|⟨ f , (𝛿cdc )3Δ−1
R,2
𝜙⟩L2(𝔾,E30)| ≤ C‖ f ‖L1(𝔾,E30)(‖𝜙‖LQ∕2(𝔾,E20) + ‖𝜙‖LQ∕3(𝔾,E20)). (54)
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Consider now the term ⟨u, (dc𝛿c )2Δ−1
R,2
𝜙⟩L2(𝔾,E20) = ⟨𝛿cu, 𝛿cdc𝛿cΔ−1

R,2
𝜙⟩L2(𝔾,E10).

We have ⟨𝛿cu, 𝛿cdc𝛿cΔ−1
R,2
𝜙⟩L2(𝔾,E10) = ⟨⋆g, ⋆𝛿cdc𝛿cΔ−1

R,2
𝜙⟩L2(𝔾,E40).

As already noticed, ⋆g is a dc-closed form in E4
0
and we can then apply Proposition 5.6 and Theorem 5.5 to

get |||⟨g, 𝛿cdc𝛿cΔ−1
R,2
𝜙⟩L2(𝔾,E40)||| ≤ ‖g‖L1(𝔾,E10)‖∇𝔾 ∗ 𝛿cdc𝛿cΔ−1

R,2
𝜙‖LQ(𝔾,E40).

As above,∇𝔾 ⋆ 𝛿cdc𝛿cΔ−1
R,2
𝜙 can be expressed as

𝜙 ∗ K I , with d(I ) = 10.

By Theorem 4.8 and Proposition 2.1, K I is a kernel of type 2, so that, by Theorem 2.2, we have

|||⟨g, 𝛿cK𝜙⟩L2(𝔾,E10)||| ≤C‖g‖L1(𝔾,E10)‖𝜙‖LQ∕3(𝔾,E20)
≤C‖g‖L1(𝔾,E10)(‖𝜙‖LQ∕2(𝔾,E20) + ‖𝜙‖LQ∕3(𝔾,E20)).

Combining this estimate with the one in (54), we get eventually|⟨u, 𝜙⟩L2(𝔾,E20)| ≤ C

(‖ f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10))‖𝜙‖LQ∕3,Q∕2(𝔾,E20),
and hence, by duality ‖u‖LQ∕(Q−3)+LQ∕(Q−2)(𝔾,E20) ≤ C

(‖ f ‖L1(𝔾,E30) + ‖g‖L1(𝔾,E10)).
By Hodge-star duality, we get the corresponding estimates for h = 3, 4.

This achieves the proof of the theorem. □

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contributions: All authors contributed equally to the research, development of mathematical proofs,

and writing of the manuscript. All authors reviewed and approved the final manuscript.

Use of Large Language Models, AI and Machine Learning Tools: None declared.

Conflict of interest: The authors state no conflict of interest.

Research funding: A.B. is supported by the University of Bologna, funds for selected research topics, PRIN2022

Regularity problems in sub-Riemannian structures– CUP J53D23003760006 (ref. 2022F4F2LH), and by GNAMPA

of INdAM (Istituto Nazionale di Alta Matematica “F. Severi”), Italy. F.T. would like to thank the Centro di Ricerca

Matematica Ennio De Giorgi and the Scuola Normale Superiore for the hospitality and support, as well as the

Pure Mathematics Department of the University of Leeds.

Data availability: Not applicable.

References

[1] L. Lanzani and E. M. Stein, “A note on div curl inequalities,” Math. Res. Lett., vol. 12, no. 1, pp. 57−61, 2005..
[2] J. Bourgain and H. Brezis, “New estimates for elliptic equations and Hodge type systems,” J. Eur. Math. Soc. (JEMS), vol. 9, no. 2,

pp. 277−315, 2007..
[3] J. Bourgain and H. Brezis, “On the equation div Y= f and application to control of phases,” J. Am. Math. Soc., vol. 16, no. 2,

pp. 393−426, 2003..
[4] J. Bourgain and H. Brezis, “New estimates for the Laplacian, the div-curl, and related Hodge systems,” C. R. Math. Acad. Sci. Paris,

vol. 338, no. 7, pp. 539−543, 2004..
[5] J. Van Schaftingen, “Estimates for L1-vector fields,” C. R. Math. Acad. Sci. Paris, vol. 339, no. 3, pp. 181−186, 2004..
[6] E. M. Stein, “Singular integrals and differentiability properties of functions,” in Princeton Mathematical Series, No. 30, Princeton, N.J.,

Princeton University Press, 1970.



32 — A. Baldi and F. Tripaldi: Comparison of three possible Laplacians

[7] S. Chanillo and J. Van Schaftingen, “Subelliptic Bourgain-Brezis estimates on groups,” Math. Res. Lett., vol. 16, no. 3, pp. 487−501,
2009..

[8] A. Baldi and B. Franchi, “Sharp a priori estimates for div-curl systems in Heisenberg groups,” J. Funct. Anal., vol. 265, no. 10,

pp. 2388−2419, 2013..
[9] A. Baldi, B. Franchi, and P. Pansu, “Gagliardo-Nirenberg inequalities for differential forms in Heisenberg groups,”Math. Ann.,

vol. 365, nos. 3−4, pp. 1633−1667, 2016..
[10] M. Rumin, “Formes différentielles sur les variétés de contact,” J. Differ. Geom., vol. 39, no. 2, pp. 281−330, 1994..
[11] M. Rumin, “Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups,” C. R.

Acad. Sci., Paris Ser. I Math., vol. 329, no. 11, pp. 985−990, 1999..
[12] M. Rumin, “Around heat decay on forms and relations of nilpotent Lie groups,” in Séminaire de Théorie Spectrale et Géométrie, Vol.

19, Année 2000−2001, Sémin. Théor. Spectr. Géom., vol. 19, Univ. Grenoble I, 2001, pp. 123−164.
[13] R. L. Bryant and L. Hsu, “Rigidity of integral curves of rank 2 distributions,” Invent. Math., vol. 114, no. 2, pp. 435−461, 1993..
[14] P. Nurowski, “Differential equations and conformal structures,” J. Geom. Phys., vol. 55, no. 1, pp. 19−49, 2005..
[15] A. Čap and K. Neusser, “On automorphism groups of some types of generic distributions,” Differ. Geom. Appl., vol. 27, no. 6,

pp. 769−779, 2009..
[16] S. Haller, “Analytic torsion of generic rank two distributions in dimension five,” J. Geom. Anal., vol. 32, no. 10, 2022, Art. no. 248.

https://doi.org/10.1007/s12220-022-00987-z.

[17] S. Haller, “Analytic torsion of nilmanifolds with (2, 3, 5) distributions,” arXiv:2311.16647, 2023. https://doi.org/10.48550/arXiv.2311

.16647.

[18] S. Haller, “Regularized determinants of the Rumin complex in irreducible unitary representations of the (2,3,5) nilpotent Lie

group,” arXiv:2309.11159, 2023. https://doi.org/10.48550/arXiv.2309.11159.

[19] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28, Princeton, N.J., Princeton University

Press, 1982.

[20] A. Baldi, B. Franchi, and M. Carla Tesi, “Hypoellipticity, fundamental solution and Liouville type theorem for matrix−valued
differential operators in Carnot groups,” J. Eur. Math. Soc., vol. 11, no. 4, pp. 777−798, 2009..

[21] J. Van Schaftingen and P.-L. Yung, “Limiting Sobolev and Hardy inequalities on stratified homogeneous groups,” Ann. Fenn. Math.,

vol. 47, no. 2, pp. 1065−1098, 2022..
[22] A. Baldi, B. Franchi, and P. Pansu, “L1-Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups,”

Adv. Math., vol. 366, 2020, Art. no. 107084. https://doi.org/10.1016/j.aim.2020.107084.

[23] A. Baldi, B. Franchi, and P. Pansu, “Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact

manifolds,” J. Inst. Math. Jussieu, vol. 21, no. 3, pp. 869−920, 2022..
[24] A. Baldi, B. Franchi, and P. Pansu, “Cohomology of annuli, duality and L∞-differential forms on Heisenberg groups,” J. Funct. Anal.,

vol. 285, no. 2, 2023, Art. no. 109944. https://doi.org/10.1016/j.jfa.2023.109944.

[25] A. Baldi, B. Franchi, and P. Pansu, “Continuous primitives for higher degree differential forms in Euclidean spaces, Heisenberg

groups and applications,” Commun. Contemp. Math., 2025. https://doi.org/10.1142/S0219199725500233.

[26] P. Pansu and F. Tripaldi, “Averages and the 𝓁q,1 cohomology of Heisenberg groups,” Ann. Math. Blaise Pascal, vol. 26, no. 1,
pp. 81−100, 2019..

[27] A. Baldi, M. C. Tesi, and F. Tripaldi, “Sobolev-Gaffney type inequalities for differential forms on sub-Riemannian contact manifolds

with bounded geometry,” Adv. Nonlinear Stud., vol. 22, no. 1, pp. 484−516, 2022..
[28] A. Baldi and A. Rosa, “Hodge decomposition for Sobolev classes in sub-Riemannian contact manifolds,” arXiv:2502.16620, 2025.

https://arxiv.org/abs/2502.16620.

[29] A. Baldi, B. Franchi, and F. Tripaldi, Gagliardo-Nirenberg Inequalities for Horizontal Vector Fields in the Engel Group and in the

7-dimensional Quaternionic Heisenberg Group, vol. 13, Cham, Springer, 2015, pp. 287−312.
[30] S. Dave and S. Haller, “Graded hypoellipticity of BGG sequences,” Ann. Glob. Anal. Geom., vol. 62, no. 4, pp. 721−789, 2022..
[31] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Berlin, Springer

Monographs in Mathematics, Springer, 2007.

[32] G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., vol. 13, no. 2, pp. 161−207, 1975..
[33] B. Franchi, R. Serapioni, and F. Serra Cassano, “On the structure of finite perimeter sets in step 2 Carnot groups,” J. Geom. Anal.,

vol. 13, no. 3, pp. 421−466, 2003..
[34] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285,

Hermann, Paris, 1960.

[35] E. Le Donne and F. Tripaldi, “A cornucopia of Carnot groups in low dimensions,” Anal. Geom. Metr. Spaces, vol. 10, no. 1,

pp. 155−289, 2022..
[36] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, New York, Springer-Verlag New

York Inc., 1969.

[37] A. Baldi, B. Franchi, N. Tchou, and M. C. Tesi, “Compensated compactness for differential forms in Carnot groups and

applications,” Adv. Math., vol. 223, no. 5, pp. 1555−1607, 2010..

https://doi.org/10.1007/s12220-022-00987-z
https://doi.org/10.48550/arXiv.2311.16647
https://doi.org/10.48550/arXiv.2311.16647
https://doi.org/10.48550/arXiv.2309.11159
https://doi.org/10.1016/j.aim.2020.107084
https://doi.org/10.1016/j.jfa.2023.109944
https://doi.org/10.1142/S0219199725500233
https://arxiv.org/abs/2502.16620


A. Baldi and F. Tripaldi: Comparison of three possible Laplacians — 33

[38] B. Franchi and M. Carla Tesi, “Wave and Maxwell’s equations in Carnot groups,” Commun. Contemp. Math., vol. 14, no. 5, 2012, Art.

no. 1250032. https://doi.org/10.1142/s0219199712500320.

[39] A. Baldi and B. Franchi, “Differential forms in Carnot groups: a Γ-convergence approach,” Calc. Var. Partial Differ. Equ., vol. 43, no. 1,
pp. 211−229, 2012..

[40] M. Rumin and N. Seshadri, “Analytic torsions on contact manifolds,” Ann. Inst. Fourier (Grenoble), vol. 62, no. 2, pp. 727−782, 2012..
[41] V. Fischer and M. Ruzhansky, Quantization on Nilpotent Lie Groups, Progress in Mathematics, vol. 314, Cham, Birkhäuser, Springer,

2016.

[42] C. Rockland, “Hypoellipticity on the Heisenberg group-representation-theoretic criteria,” Trans. Am. Math. Soc., vol. 240, pp. 1−52,
1978..

[43] M. Christ, D. Geller, P. Głowacki, and L. Polin, “Pseudodifferential operators on groups with dilations,” Duke Math. J., vol. 68, no. 1,

pp. 31−65, 1992..
[44] P. Głowacki, “The Rockland condition for nondifferential convolution operators. II,” Stud. Math., vol. 98, no. 2, pp. 99−114, 1991.
[45] B. Helffer and J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics,

vol. 58, Boston, MA, Birkhäuser Boston Inc., 1985.

[46] L. Capogna, D. Danielli, and N. Garofalo, “The geometric Sobolev embedding for vector fields and the isoperimetric inequality,”

Commun. Anal. Geom., vol. 2, no. 2, pp. 203−215, 1994..
[47] B. Franchi, S. Gallot, and R. L. Wheeden, “Sobolev and isoperimetric inequalities for degenerate metrics,” Math. Ann., vol. 300,

no. 4, pp. 557−571, 1994..
[48] N. Garofalo and D.-M. Nhieu, “Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of

minimal surfaces,” Commun. Pure Appl. Math., vol. 49, no. 10, pp. 1081−1144, 1996.
[49] P. Maheux and L. Saloff-Coste, “Analyse sur les boules d’un opérateur sous-elliptique,” Math. Ann., vol. 303, no. 4, pp. 713−740,

1995..

[50] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34, Providence, RI,

American Mathematical Society, 2001, Corrected Reprint of the 1978 Original.

[51] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, vol. 129, Boston, MA, Academic Press, Inc.,

1988.

[52] G. B. Folland, Real Analysis, Second ed., Pure and Applied Mathematics, New York, John Wiley & Sons, Inc., 1999, Modern Techniques

and their Applications, A Wiley-Interscience Publication.

[53] V. Fischer and F. Tripaldi, “An alternative construction of the Rumin complex on homogeneous nilpotent Lie groups,” Adv. Math.,

vol. 429, p. 109192, 2023..

https://doi.org/10.1142/s0219199712500320

	1 Introduction
	2 Notations and preliminary results on Carnot group
	2.1 Multilinear algebra
	2.2 Weight of forms

	3 The Rumin complex on Carnot groups
	4 The Rumin complex for the 5-dimensional Cartan group and hypoelliptic Laplace operators on the group
	4.1 Definition of three possible Laplacians following the Rumin-Seshadri approach
	4.2  A proof of the hypoellipticity of tnqx394;A,h
	4.2.1  Preliminaries on irreducible group representations


	5  Div-curltnqx202f;estimates associated to the three possible Laplacians
	5.1 Rephrasing the closedness of forms on the Cartan group
	5.2  Tensors on G
	5.3  Proof of Theoremtnqxa0;5.1
	5.4  Proof of Theoremtnqxa0;5.2. Let us now prove Theoremtnqxa0;5.2
	5.5  Proof of Theoremtnqxa0;5.4 and final remarks. Let us show now the main changes for the proof of Theoremtnqxa0;5.4
	5.6  An alternative Gagliardotnqx2013;Niremberg type estimate



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


