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Abstract 

Violations of transitive preference can be accounted for by both the noncompensatory 

lexicographic semiorder heuristic and the compensatory additive difference model. However, 

the two have not been directly compared. Here we fully develop a simplified additive 

difference (SAD) model, which includes a graphical analysis of precisely which parameter 

values are consistent with adherence to, or violation of, transitive preference, as specified by 

weak stochastic transitivity (WST) and triangle inequalities (TI). The model is compatible 

with compensatory, within-dimension evaluation. We also develop a stochastic difference 

threshold (SDT) model which also predicts intransitive preferences and encompasses a 

stochastic lexicographic semiorder model. We apply frequentist methods to compare the 

goodness of fit of both of these models to Tversky’s (1969) data and four replications, and 

Bayes factor methods to determine the strength of evidence for each model. We find that the 

two methods of analysis converge and that, for two-thirds of the participants for whom 

predictions can be made, one of these models predicting violations of WST has a good, and 

the best, fit, and has strong Bayesian support relative to an encompassing model. 

Furthermore, for about twenty percent of all participants the SAD model (consistent with 

violations of WST or TI) is significantly better-fitting and has stronger Bayesian support than 

the SDT model. Finally, Bayes factor analysis finds strong evidence against transitive models 

for most participants for whom the SAD model consistent with violation of WST or TI is 

strongly supported. 

 

Keywords:  Risky choice; weak stochastic transitivity; triangle inequalities; simplified 

additive difference model; stochastic difference threshold model; lexicographic 

semiorder model; violation of transitive preference 
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Violations of transitive preference: A comparison of compensatory and 

noncompensatory accounts 

 The transitivity of preferences, the axiom that if A is preferred to B and B to C then A 

is preferred to C, is a cornerstone of rational models of decision making (Savage, 1954; von 

Neumann & Morgenstern, 1944). However, the investigation of whether this is a property of 

human preferential choice is complicated by the fact that when people are presented with the 

same choice on multiple occasions, they do not always choose the same alternative. That is, 

preferential choice is probabilistic (Mosteller & Nogee, 1951; Rieskamp, 2008). To 

accommodate this, the basic research question has become: does preferential choice adhere 

to, or violate, probabilistic specifications of transitivity? Here we focus on two differing ways 

in which probabilistic specifications of transitivity have been operationalized: weak 

stochastic transitivity (WST) as investigated by Tversky (1969); and the mixture model of 

transitive preference1, analyzed by Regenwetter, Dana & Davis-Stober (2010, 2011). WST is 

satisfied when, for all a, b, c from a set of alternatives,   

   p(a, b) ≥ .5 and p(b, c) ≥ .5 implies p(a, c) ≥ .5,  

where p(x, y) represents the probability of choosing x on presentation of alternatives (x, y).  

The mixture model of transitive preference is, for up to five alternatives, equivalent to the so-

called triangle inequalities (TI) condition (cf. Marschak, 1960), 

  p(a, b) + p(b, c) – p(a, c) ≤ 1,  

for all a, b, c from a set of alternatives. 

We contribute to this fundamental question for the understanding of human decision 

making in several ways. First, unlike previous studies, we evaluate both compensatory and 

noncompensatory dimension-based accounts of violations of transitivity. Some previous 

 
1 Both WST and the mixture model of transitive preference have their origins in the late 1950s and 

early 1960s, in the work of Block and Marschak (1955) and others; see also Loomes and Sugden (1995), who 

describe the mixture model of transitive preference as the random preference model, and Regenwetter et al. 

(2010, 2011) for further details.  
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studies have focused wholly on transitive models, which, by definition, cannot account for 

violations (Cavagnaro & Davis-Stober, 2014; Regenwetter, Dana & Davis-Stober, 2010, 

2011). Others have investigated the extent to which either the noncompensatory 

lexicographic semiorder model (Birnbaum & Gutierrez, 2007; Davis-Stober, Brown & 

Cavagnaro, 2015) or the compensatory additive difference model (Kalenscher et al., 2010; 

Ranyard, Montgomery, Konstantinidis & Taylor, 2020) can account for violations of 

transitivity. However, few have compared the two (but see Montgomery, 1977). Here, in 

order to compare these alternative accounts, we: (1) devise a graphical analysis for the 

simplified additive difference (SAD) model (Ranyard et al., 2020) which identifies precisely 

the parameter values consistent with adherence to, or violation of, transitive preference as 

specified by both WST and TI; and (2) compare the SAD model to a new stochastic 

difference threshold (SDT) model, which encompasses a stochastic lexicographic semiorder 

model. We fully investigate violations of both of the above probabilistic specifications of 

transitivity (WST and TI) by examining the extent to which violations of, as well as 

adherence to, these models are consistent with the SAD or SDT model. In addition, we 

extend Tversky’s (1969) test of predictions of WST violation from a pretest to two additional 

data sets. Finally, we analyze violations of, and adherence to, WST and TI by using two 

different analytic methods: classical frequentist tests of model fit; and Bayes factor strength 

of evidence techniques. These analyses are supported by the graphical analysis which gives a 

visual representation of the correspondence between the SAD model’s description of 

violations and adherences to WST and TI, and observed choice proportion’s violations and 

adherences to WST and TI. In the above ways we offer the most complete analysis yet 

undertaken of alternative dimension-based accounts of violations of transitive preference. 

Tversky’s (1969) dimension-based models 
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From the 1950s, economists and psychologists conjectured whether there are 

circumstances in which preferences might be systematically intransitive (Edwards, 1954; 

May, 1954). However, Tversky (1969) was the first to present evidence of intransitive 

preferences that were both systematic and predictable, and could not be explained away as 

errors on the part of study participants. Developing the ideas of May, Tversky argued that 

intransitive preferences might occur when people construe decision alternatives as varying on 

two or more dimensions (such as lotteries which differ in outcome probability and outcome 

amount) and process information within dimensions rather than within alternatives. He 

proposed two different dimension-based models to account for intransitive preferences: the 

above-mentioned lexicographic semiorder heuristic and the additive difference model. 

The lexicographic semiorder heuristic is a noncompensatory process model in which 

only some of the available information is processed in some contexts. For two-dimensional 

alternatives, Tversky (1969, p. 32) defined it as follows: “if the difference between the two 

alternatives on dimension I is (strictly) greater than [a threshold value,] ε, choose the 

alternative that has the higher value on dimension I. If the difference between the alternatives 

is less than or equal to ε, choose the alternative that has the higher value on dimension II”. 

This noncompensatory model can explain violations of transitive preference in a set of 

alternatives where some dimension differences are below the threshold and others are above 

it.  Tversky investigated this prediction in an experiment involving choice between simple 

monetary lotteries with the structure win s dollars with probability p, otherwise win zero 

(dimensions S and P). The five lotteries he used are shown in Table 1, labelled a, b, c d e. 

According to the lexicographic semiorder heuristic, if the win probability, P, is dimension I, 

people will prefer the lottery with the better P-value when the P-dimension difference 

between them is greater than a threshold (say, 2/24 in Tversky’s lottery set). However, they 

will switch to a preference for the lottery with the better S-value (winning amount) if the P-
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dimension difference is less than or equal to the threshold. In this case some preferences will 

violate transitivity, for example, a ≻ b, b ≻ d, but d ≻ a (where x ≻ y denotes x is preferred 

to y). Tversky defined preference stochastically, such that if x ≻ y then p(x, y) > .5, and his 

specific prediction was that participants’ choices would violate WST. 

Tversky’s (1969) second model to account for violations of transitivity, the additive 

difference model, fully utilizes all available information by evaluating and comparing all 

dimension differences. This model, fully described later, is a mathematical, as-if, model that 

is compatible with a compensatory process of weighing subjective dimension differences, the 

advantages and disadvantages of alternatives, against each other. In the case of simple 

lotteries, the difference between the alternatives in win probability, P, is weighed against the 

difference in winning amounts, S. Tversky proved that preferences are transitive under this 

model only in certain restricted cases, including where all alternatives are one-dimensional. 

He did not, however, specify any subjective difference functions that could account precisely 

for violations of transitivity.  

Tversky’s seminal work on this issue left many open questions to which he did not 

return in his subsequent research. The final words of his paper were: “The main interest in the 

present results lies not so much in the fact that transitivity can be violated but rather in what it 

reveals about the choice mechanism and the approximation method that govern preference 

between multidimensional alternatives” (1969 p. 46). He did not, in subsequent empirical 

studies, return to his 1969 lottery paradigm2. Neither did he further develop the implications 

of the additive difference model, even though both of these dimension-based models were 

consistent with his results. Rather, the focus of his discussion of the findings, both in the 

original paper and later, was in terms of the noncompensatory lexicographic semiorder 

 
2  Nor did he return to the second study of his 1969 paper that presented hypothetical choices between 

job applicants varying in three dimensions, intellectual ability, emotional stability and social facility. 
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heuristic as an approximation method that could explain intransitive preferences. Consistent 

with this account, Kahneman and Tversky (1979) interpreted the 1969 findings as evidence of 

prospect theory’s editing phase; specifically, the editing operation whereby small differences 

are eliminated as part of the simplification of decision alternatives prior to their evaluation. 

This editing process was retained in their subsequent development of cumulative prospect 

theory (Tversky & Kahneman, 1992). In later work on preference reversals, with Slovic and 

others, Tversky argued that the lexicographic semiorder heuristic account was consistent with 

later evidence that decision makers tend to rely on evaluating the prominent dimension in 

multidimensional decisions (Lichtenstein & Slovic, 2006; Montgomery, Selart, Gärling, & 

Lindberg, 1994; Slovic, 1995; Tversky, Sattath & Slovic, 1988). 

 While the lexicographic semiorder account of intransitive preferences is consistent 

with prospect theory, any evidence supporting a compensatory dimension-based account 

would present a significant difficulty for this theory. The evaluation phases of both the 

original prospect theory and cumulative prospect theory predict transitive preferences. If the 

evidence reviewed here supports an additive difference model, then the intransitive 

preferences in Tversky’s (1969) lottery context cannot be interpreted in terms of an editing 

operation with rather minor theoretical importance. Rather, it would be consistent with a 

compensatory process weighing dimension differences against each other, which is at 

variance with prospect theory’s within-alternative evaluation function. It is important, then, to 

evaluate these two accounts of intransitive preference, which we do here. 

Evidence of violations of transitive preference: Tversky’s (1969) lottery study 

As mentioned earlier, Tversky (1969) investigated the above-described prediction of 

the lexicographic semiorder heuristic in an experiment involving choice between pairs of 

lotteries from the set shown in Table 1. In the first session of the experiment (N = 18), the 

pretest, student participants chose between adjacent lotteries from the set, i.e., pairs (a, b), (b, 
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c), (c, d) and (d, e) as well as the extreme pair, (a, e). Each of these was presented three times 

with filler pairs interspersed. Participants were told that, after the session, they would play 

one of the lotteries they had chosen on a randomly selected trial for real to determine their 

only session payment. Then those (eight) participants who had chosen the higher S on the 

majority of adjacent pairs at least twice, but the higher P on the extreme pair at least twice, 

returned for the main experiment. Tversky predicted that the preferences of these participants 

(n = 8) would violate WST in the second stage of the experiment. In this stage, participants 

chose from each of the ten pairs of the lottery set 20 times across five sessions, one week 

apart. As before, filler choices were interspersed and at the end of a session participants 

played one chosen lottery for real.  

Tversky tested the goodness of fit of WST via frequentist likelihood ratio (LR) tests 

and found that the choices of five of these eight participants significantly violated WST at p < 

.05. He did not assess the transitivity of the other ten participants in his study as these were 

not predicted to be intransitive. His main finding, then, was that based on a pretest, 8/18 

participants were predicted to violate WST, and when tested, 5/8 did so. The choice 

proportions of three of Tversky’s participants predicted to violate WST are reproduced in the 

middle panels of Table 1. In each of these it can be seen that, descriptively, choice 

proportions violate WST for several triads of lotteries. This basic finding has been replicated 

several times over the years (Budescu & Weiss, 1987; Cavagnaro & Davis-Stober, 2014; 

Kalenscher et al., 2010; Montgomery, 1977; Ranyard, 1977). However, the evidence that 

WST is significantly violated by 5/8 of Tversky’s participants predicted to do so has been 

disputed. Iverson and Falmagne (1985) identified an error in Tversky’s frequentist LR test of 

WST, and when they applied a valid, inequality-constrained LR test, they found that WST 
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was a poor fit to the data of only one of the eight participants3. On the other hand, Ranyard et 

al. (2020) found that the SAD model consistent with violation of WST was a good fit to the 

data for 6/8 of Tversky’s participants. So, for five of the six participants, for each of whom 

Tversky observed choice proportions violating WST, both a model consistent with adherence 

to WST (Iverson and Falmagne, 1985), and one consistent with violation (Ranyard et al., 

2020), are well-fitting models. 

Regenwetter et al. (2011) argued that before concluding that preferences are 

intransitive one should investigate other probabilistic specifications of transitivity, in 

particular, the mixture model of transitive preference, which as mentioned earlier is 

equivalent to TI for five or fewer alternatives. These authors applied their frequentist 

inequality-constrained test of the goodness-of-fit of TI to Tversky’s data and found that this 

probabilistic specification of transitivity was a good fit for at least six participants and a poor 

fit for at most two participants; the rest of the participants did not violate TI. 

In a later analysis, Cavagnaro and Davis-Stober (2014) computed Bayes factors to 

assess the strength of evidence for and against both WST and TI for Tversky’s data. 

Comparing each of these transitive models to an unconstrained model that allows violations 

of transitivity, they found strong evidence against WST for six of Tversky’s participants, and 

strong evidence against TI for three of them (their choice proportions are shown in Table 1).  

Overall, then, there exists evidence of violations of transitive preference in Tversky’s 

original lottery study. However, it is somewhat incomplete. For one thing, Iverson and 

Falmagne’s (1985) conservative goodness of fit analysis of WST has not been corroborated 

by the subsequently developed more accurate methods of Regenwetter, Davis-Stober and 

their colleagues. Although these methods have been applied to some replications of 

 
3 We show later that the subsequently developed more accurate methods find that WST was 

significantly violated by 3/8 participants. 
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Tversky’s study (Regenwetter et al., 2010; 2011), their application to Tversky’s original data, 

and several other published replications, is not on the published record. The evidence is 

incomplete in other respect too, as explained shortly. 

Evidence of violations of transitive preference: replications of Tversky’s lottery study 

In this paper we focus on Tversky’s (1969) lottery experiment and four of the six 

replications we analyzed in our earlier study4: Cavagnaro & Davis-Stober, (2014), 

Kalenscher et al. (2010), Montgomery (1977) and Regenwetter et al. (2011). We selected 

these data sets for review and reanalysis here because they all adopted the lottery set that 

Tversky devised (adjusted for currency and inflation) and had sufficient replications of each 

lottery pair to enable the planned analysis to be conducted.  

The available evidence of violations of transitive preference in these replications can 

be summarized as follows. With respect to the frequentist analysis of WST, Regenwetter et 

al. (2010) found that the model was a good fit for all participants in their replication. 

However, Ranyard et al. (2020) found that the SAD model consistent with violation of WST 

was a good fit for four of these participants. With respect to TI, in addition to Tversky’s 

study, Regenwetter et al. (2011) tested its goodness of fit for two of the replications reviewed 

here, namely Montgomery (1977) and the cash I data set of Regenwetter et al. (2011).  

Summarizing their results, we calculate that across the three studies the model was a poor fit 

for 9% of participants (p < .02), with low p-values (p < .15) for a further 16% of them. 

Turning to Bayesian analyses, Cavagnaro and Davis-Stober (2104) computed Bayes factors 

for WST and TI, in comparison to an encompassing model, for three of the above 

replications, while Brown et al. (2015) did so for the other (Kalenscher et al, 2010). Across 

 
4 In the present review we have excluded Tsai and Böckenholt’s (2006) study because only the first 

four lotteries of Tversky’s set were used and it was the only study that did not have a real consequence of a 

lottery choice. We also dropped Ranyard’s (1977) study because it involved less than ten replications and a 
rather low sample size. One other study met our criteria, by Budescu and Weiss (1987), but unfortunately the 

choice proportion data for this was not available. 
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all these studies: (1) for over twenty percent of participants there is strong Bayes factor 

evidence against WST when compared to the unconstrained model (BF < .3); and (2) for 

about one quarter of participants there is strong evidence against TI.  

Aims and objectives 

Taken together, previous frequentist and Bayesian analyses show that violation of 

transitive preference is a phenomenon in need of an explanation. As explained at the 

beginning, in this study we comprehensively compare the validity of the noncompensatory 

lexicographic semiorder heuristic and the compensatory additive difference accounts in a 

reanalysis of Tversky’s (1969) lottery experiment and four published replications. This 

requires new theoretical developments, presented in the next section. First, we present the 

SAD model together with a new graphical analysis of how it relates to violations of, and 

adherence to, WST and TI. Second, we present the new SDT model, which encompasses a 

stochastic lexicographic semiorder model.  

In the two following sections we present our methods of analysis and our findings. 

The main aim of the frequentist analysis is to identify for each participant the good and best-

fitting model, from a set of nested models, and whether this is consistent with adherence to, 

or violations of, probabilistic specifications of transitivity (WST and TI). Two secondary 

aims are to investigate the extent to which the SAD model successfully predicts violations of 

WST from pretests, and for Tversky’s data only, to compare the goodness of fit of 

dimensional models consistent with violation of transitivity (SAD and SDT) with transitive 

models (WST and TI). The latter involves the analysis of WST using the methods of 

Regenwetter et al. (2014) and Zwilling et al. (2019) not reported in previous studies. 

The aims of the Bayesian analyses are to compare the strength of Bayes factor 

evidence for the SAD and SDT models against each other, and to compare more broadly the 

Bayesian strength of evidence for dimensional models consistent with violations of 
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transitivity (SAD and SDT) against that for transitive models (WST and TI). Finally, the 

main aim of the graphical analysis is to describe in detail the relationship between the best-

fitting SAD model’s consistency with violation of, or adherence to, WST and TI, and that of 

the observed choice proportions for each participant. This provides additional, detailed 

information on the performance of the SAD model, especially with respect to how it accounts 

for observed violations of transitive preference. In the final section we conclude with a 

discussion of the implications of these analyses for decision research, and document some 

open questions still to be addressed. 
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Table 1  

Tversky’s (1969) lottery, the observed choice proportions (cps) of three participants, and the 

maximum likelihood estimates (MLEs) of choice probabilities for the SAD model (r = 20 

presentations of each lottery pair) 

 

Lotteries Tversky’s (1969) participants: 1 (top), 3 (middle), 6 (bottom) 

Observed cp MLE  

P S Label a b c d e  a b  c d e  

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- .75 

- 

.70 

.85 

- 

.45 

.65 

.80 

- 

.15 

.40 

.60 

.85 

- 

- .823 

- 

.637 

.823 

- 

.397 

.637 

.823 

- 

.198 

.397 

.637 

.823 

- 

 Observed cp  MLE 

P S Label a b c d e a b  c  d  e  

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- .75 

- 

.70 

.80 

- 

.60 

.65 

.95 

- 

.25 

.40 

.80 

1.00 

- 

- .875 

- 

.721 

.875 

- 

.488 

.721 

.875 

- 

.261 

.488 

.721 

.875 

- 

 Observed cp  MLE 

P S Label a b c d e a b c d e  
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7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- 1.00 

- 

.90 

.80 

- 

.65 

.75 

.90 

- 

.20 

.55 

.65 

.75 

- 

- .883 

- 

.746 

.883 

- 

.533 

.746 

.883 

- 

.308 

.533 

.746 

.883 

- 

 

Notes: P is the win probability of the lottery, otherwise win nothing; S is the payoff in USD; 

MLE is the maximum likelihood estimate. 
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Theory 

The simplified additive difference (SAD) model 

We first specify the algebraic SAD model for Tversky’s (1969) lottery paradigm and 

explain the conditions under which, depending on its parameter values, it describes transitive 

or intransitive preferences. We then present the stochastic SAD model5 and its relationship to 

the WST and TI conditions. Finally, we consider models nested within the SAD model whose 

goodness of fit can be compared. 

The algebraic SAD model 

Tversky’s (1969) lottery paradigm comprises a set of two-dimensional lottery alternatives, A 

= S x P, of the form (si, pi) such that payoff si is won with probability, pi, otherwise nothing is 

won, i = 1, … 5. The set of payoffs, s1, …., s5 are decreasing in equal intervals, ds, and the set 

of probabilities, p1, …. , p5 are increasing in equal intervals, dp. We also denote the five 

lotteries of set A as a = (s1, p1), b = (s2, p2), c = (s3, p3), d = (s4, p4), e = (s5, p5). The specific 

values of Tversky’s original lottery set are shown in Table 1. For this lottery set the additive 

difference model assumes that there are scales us(si) and us(pi) which represent the subjective 

values of payoffs on dimension S, and probabilities on dimension P, respectively (i = 1, …, 

5).  The difference between the subjective values on the S and P dimensions are denoted δs 

and δp respectively. The additive difference model also specifies the functions φs(δs) and 

φp(δp), which are the subjective values of the differences between the subjective values on 

each dimension. These can be viewed as the perceived advantages or disadvantages of lottery 

x over y on the P and S dimensions. According to Tversky, φp(-δp) = -φp(δp) and φs(-δs) = -

φs(δs). In the context of A = S x P, Tversky’s algebraic additive difference model states that:  

(1) x ≽ y if and only if φs(δs) - φp(δp)  ≥ 0 

 
5 Subsequently, we refer to the extended (stochastic) SAD model as the SAD model, and its algebraic 

component as the algebraic SAD model. 
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where x has a lower P and higher S value than y in Tversky’s lottery set, δs is 

the difference between the subjective values of the payoffs of x and y, and δp is 

the difference between the subjective values of the win probabilities of x and 

y. 

To specify the SAD model we simplify Tversky’s additive difference model as 

follows. First, we assume that the subjective values of the payoffs and win probabilities of the 

lotteries are equal to their objective values, i.e., us(s) = si and up(p) = pi. Second, we assume 

that the differences in subjective values of the payoffs (dimension S) and of the win 

probabilities (P dimension) are the differences between their objective values, standardized 

by the objective difference between them, i.e., δp = (pi – pj)/dp and δs = (si – sj)/ds. This 

standardizes the differences in subjective dimension values, δp and δs, to a common scale, the 

objective standard difference level between lotteries of the set, dc. That is, δp = δs  = dc, which 

for Tversky’s lottery set takes the values 1, 2, 3 or 4. It follows from these simplifications that  

the subjective value functions, φp and φs, of the differences between the subjective values on 

each dimension, are also functions of dc. The algebraic additive difference model becomes:  

(2) x ≽ y if and only if φs(dc) - φp(dc) ≥ 0 

where x has a lower P and higher S value than y in Tversky’s lottery set, and 

dc is the objective standard difference between x and y. 

If either φs(dc) or φp(dc) is nonlinear and the other is linear, or if both are linear but not related 

by φs(dc) = φp(kdc) for some positive k, then Tversky’s (1969) transitivity condition is not 

met and preferences may be intransitive under the model. 

The algebraic SAD model is completed by one further simplification. The overall 

subjective difference function, osd(dc) = φs(dc) - φp(dc) is modelled (rather than separately 

modelling each subjective dimension difference function, φs(dc) and φp(dc)).  If the overall 

subjective difference function, osd(dc), is either monotone increasing or monotone 
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decreasing, and changes from positive to negative, or vice versa, in the range 1 <   dc < 4, 

then preferences will be intransitive. Any overall difference function with the above 

properties, either curvilinear, linear, or a step function, would be consistent with intransitive 

preferences. However, a linear function is the most parsimonious, and at the same time is 

compatible with a compensatory process of weighing advantages and disadvantages against 

each other. For these reasons we complete the specification of the algebraic SAD model for 

Tversky’s lottery paradigm by a two-parameter linear function: 

(3) osd(dc) = a0 + a1dc 

where dc is the objective dimension difference level between lotteries x and y 

described earlier. 

Condition 2 and Equation 3 together provide the full specification of the algebraic SAD 

model. 

The algebraic SAD model and intransitive preferences  

Identifying when preferences will be transitive or intransitive in Tversky’s lottery 

paradigm under the algebraic SAD model is straightforward. This is illustrated in Figure 1, 

which shows the graphs of four specifications of the model. In two of them the linear 

function crosses the horizontal axis, osd(0), at dc = -a0/a1, between dc = 1 and dc = 4. In these 

cases, preference switches from the better S to the better P, or vice versa, in the range 1 < dc < 

4, and some preference cycles will be intransitive; for example, for the functions with a 

negative slope that cross the horizontal axis, osd(dc) > 0 for pairs (a, b) and (b, d), but osd(dc) 

< 0 for pair (a, d) in the lotteries of Tversky’s paradigm, resulting in the cycle a ≻ b, b ≻ d 

and d ≻ a. For the function with the positive slope that crosses the axis, the opposite 

intransitive cycle occurs. On the other hand, for two functions in the figure that do not cross 

the horizontal axis, the value of -a0/a1 is not in the above range. Consequently, for these 
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specifications of the model preferences will be transitive, since osd(dc) is either always 

positive, or always negative, in the range 1 < dc < 4. 

Table 2 illustrates combinations of binary preference in Tversky’s lottery paradigm 

consistent with adherence to, or violation of, transitivity under the algebraic SAD model, for 

three ranges of -a0/a1 (1 <  -a0/a1  < 2; 2 <  -a0/a1 < 3; and 3 <  -a0/a1 < 4), and for positive and 

negative slopes of the a1 parameter. These six combinations lead to violations of transitivity 

for different triples of lotteries, as shown in Table 3. As the table shows, which triples violate 

transitivity depends on whether -a0/a1, is positioned between 1 and 2, 2 and 3, or 3 and 4. As  

discussed later, the same patterns of violation are consistent with parallel specifications of the 

algebraic difference threshold model. 

---Figure 1 in here --- 
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Table 2 

Six combinations of binary preferences for specifications of the algebraic SAD and DT 

models consistent with violations of transitivity in Tversky’s lottery set 

Lotteries  

1 < t < 2; c1 < 0 

1 < -a0/a1 < 2; a1 < 0 

1 < t < 2; c1 > 0 

1 < -a0/a1 < 2; a1 > 0 

P S Label a b  c d  e   a b c d e  

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- 1 

- 

0 

1 

- 

0 

0 

1 

- 

0 

0 

0 

1 

- 0 

- 

1 

0 

- 

1 

1 

0 

- 

1 

1 

1 

0 

- 

 2 < t < 3; c1 < 0 

2 < -a0/a1 < 3; a1 < 0 

 2 < t < 3; c1 > 0 

2 < -a0/a1 < 3; a1 > 0 

P S Label a b  c d  e  a b c d e  

7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- 1 

- 

1 

1 

- 

0 

1 

1 

- 

0 

0 

1 

1 

- 

- 0 

- 

0 

0 

- 

1 

0 

0 

- 

1 

1 

0 

0 

- 

 3 < t < 4; c1 < 0 

3 < -a0/a1 < 4; a1 < 0 

 3 < t < 4; c1 > 0 

3 < -a0/a1 < 4; a1 > 0 

P S Label a b c d  e  a b c d e  
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7/24 

8/24 

9/24 

10/24 

11/24 

5.00 

4.75 

4.50 

4.25 

4.00 

a 

b 

c 

d 

e 

- 1 

- 

1 

1 

- 

1 

1 

1 

- 

0 

1 

1 

1 

- 

- 0 

- 

0 

0 

- 

0 

0 

0 

- 

1 

0 

0 

0 

- 

Notes: 1 = row lottery preferred; 0 = column lottery preferred; a0 and a1 are parameters of the 

SAD model; t and c1 are parameters of the DT model (see text). 
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Table 3 

Triads of lotteries from Tversky’s lottery set for which the algebraic SAD and DT models are 

consistent with adherence to, or violation of, transitivity for three ranges of the function, -

a0/a1, of the parameters of the SAD model, and of the threshold parameter, t, of the DT model 

(V = violate transitivity; otherwise adhere to transitivity)  

 

Lottery Triple 1 < t, -a0/a1 < 2 2 < t, -a0/a1 < 3 3 < t, -a0/a1 < 4 

abc V   

abd  V  

abe   V 

acd  V  

ace  V V 

ade   V 

bcd V   

bce  V  

bde  V  

cde V   

Number of triads 

predicted to violate 

transitivity 

3 5 3 

 

  



22 

 

 

 

The stochastic SAD model and probabilistic specifications of transitivity (WST and TI) 

We complete the specification of the SAD model by including, as Tversky did for the 

extended additive difference model, a function that relates the overall subjective difference 

function of the algebraic model to choice probabilities. We follow one of Tversky’s 

suggestions and specify the logistic function. The stochastic SAD model is satisfied 

whenever condition (2) and equation (3) hold and 

(4) p(x, y) = exp(osd(dc))/(1+ exp(osd(dc))) 

 where dc is the objective difference level for lottery pair (x, y), and p(x, y) is 

the choice probability of choosing x over y. 

The SAD model belongs to the broader category of degree of preference models, which 

directly map the strength of preference of one alternative over another to choice probability, 

without assuming error between preference and choice, or variability of preferences. The 

SAD model is consistent with violations of WST in the same way that the algebraic SAD 

model is consistent with intransitive preference cycles; that is, WST is violated when 1 ≤ -

a0/a1 ≤ 4, and conversely, WST is satisfied when -a0/a1 is outside that range. For example, 

when -a0/a1 = 1.5, p(a, b) > .5, p(a, c) >.5 but p(a, c) < .5, which violates WST. Thus, Figure 1 

and Tables 2 and 3 also elucidate the relationship between the SAD model and WST. That is, 

the figure and tables define precisely for which SAD model parameter values (a0, a1 and the 

function -a0/a1), and for which lottery triples, WST will be adhered to or violated. 

Unlike for WST, there is not a straightforward algebraic rule determining when the 

SAD model is consistent with adherence to, or violation of, TI. Here we develop graphical 

methods to reveal the precise relationship between the SAD model and both WST and TI. We 

first present an analysis for each lottery triple, followed by an overall analysis across triples. 

There are four different dimension difference (dc) combinations, each with a different set of 

choice probability triples permitted under the SAD model: (1) abc, bcd and cde, where dc = 1 
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or 2; (2) abd, bce acd and bde, where dc = 1, 2 or 3; (3) abe and ade, where dc = 1, 3 or 4 ; and 

(4) ace, where dc = 2 or 4. The graphs in Figure 2 show regions of the parameter space where 

the SAD model describes adherence to, or violation of, WST and/or TI for each of the ten 

lottery triples. The figure shows that the graphs for triples within each of the four groups 

listed above are identical, for example those triples in the first group, abc, bcd and cde. The 

graphs only show one quadrant of the parameter space, bounded by 0 and 5 for a0, and by -5 

and 0 for a1, because all the violations described by the model for our five data sets are within 

this quadrant. The opposite quadrant, bounded by -5 and 0 for a0, and by 0 and 5 for a1, also 

contains regions where violations of the transitivity conditions are described by the model. 

These are mirror images of the regions in the quadrant shown. In the remaining two quadrants 

of the parameter space, the model describes adherence to both WST and TI. It can be seen 

that each graph has a similar structure but different regions of violation; that for WST is 

within the triangle, and that for TI is within the curve. For each lottery triple there are four 

regions of the parameter space in which neither, either, or both conditions are violated. Thus, 

the graphs show how the SAD model can describe violations of both WST and TI, at the level 

of the lottery triple. 

--- Figure 2 in here --- 

 Turning to the overall analysis, Regenwetter et al. (2010, 2011) explain that both 

WST and TI are fully specified as conjunctions, across all lottery triples, of the inequality 

condition that specifies them at the level of the triple. Thus, WST and TI are satisfied if and 

only if the relevant condition is satisfied for each triple in the set, and, conversely, they are 

violated if the relevant condition is violated in at least one triple. Figure 3 presents regions of 

the SAD model parameter space where the model describes overall adherence to, or violation 

of, TI and WST. The triangle shows the region within which the SAD model parameters 
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describe violation of WST in at least one triple, and the curve shows the region within which 

TI is violated in at least one triple.  

--- Figure 3 in here --- 

Nested models 

 It is useful to define two models that are nested within the SAD model. First, the 

algebraic constant choice probability (CCP) model is a one-parameter model where the slope 

of the linear relationship of the SAD model is zero: 

(5) osd(dc) = a0. 

In this case the overall subjective difference, or strength of preference, is constant across all 

ten pairs of the lottery set. Consequently, under the stochastic CCP model, binary choice 

probabilities are constant across all lottery pairs, i.e. not sensitive to differences between P or 

S values, and WST will be satisfied. Different values of overall subjective difference, a0, can 

be interpreted differently: a0 > 0 reflects a constant strength of preference for the higher S, 

whereas a0 < 0 reflects a constant strength of preference for a higher P. Additionally, a value 

of a0 ≤ -1.39 represents a very strong preference for the better P and can be interpreted as a 

stochastic 'take the best P' heuristic. On the other hand, a0 ≥ 1.39 represents a very strong 

preference for the better S, interpretable as a stochastic 'take the best S' heuristic (Gigerenzer 

& Goldstein, 1999).  

 The second special case of the SAD model, also nested within the CCP model, is the 

zero-parameter model in which a1 = a0 = 0. This is the random choice (RC) model, equivalent 

to having no preference for one or other of the lotteries of any pair, such that osd(dc) = 0 and 

p(x, y) = .5 across all pairs. In this case, a person is indifferent and chooses at random. The 

RC model serves an important function in our analysis. As we explain later, it is the first 

model tested in a series of likelihood ratio (LR) tests of the nested models, i.e., RC, followed 

by CCP, SAD and the unrestricted model. If RC is a good fit to the data, and no other model 
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is a significantly better fit, we conclude that indifference and random choice is the most 

parsimonious, well-fitting model for that data (see Ranyard et al., 2020, where such cases 

were identified). On the other hand, if CCP is a significantly better fitting model, random 

choice as a mechanism to account for the data can be ruled out, and we can begin to 

distinguish which of the remaining models, is the better-fitting. 

Difference threshold and lexicographic semiorder models 

A difference threshold model is a special case of an additive difference model in 

which the overall subjective difference between two lotteries is a step function. A 

lexicographic semiorder model is a special case of a difference threshold model which 

describes intransitive preference cycles. 

The algebraic difference threshold model 

To specify the algebraic difference threshold model the same simplifications as for the 

SAD model are applied (see Condition 2). We then specify a step function for the overall 

subjective difference function between lotteries x and y, osddt(dc), with three parameters, t, c1 

and c2: 

 (6) If dc  < t then osddt(dc) = c1 ; if dc  > t then osddt(dc) = c2, 

where dc is the objective dimension difference level between lotteries x and y; t is the 

difference threshold parameter in the range 1 < t < 4; and c1 and c2 are in the range -5 

to 5. 

The function osddt(dc) models the difference between the subjective differences of the S and P 

dimensions in the same way that the osd(dc) function does for the algebraic SAD model. The 

difference between them is that the SAD function is linear, whereas the difference threshold 

model has a step function, as illustrated in Figure 4. Whereas the linear function of the SAD 
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model is compatible with a compensatory process, the step function of the difference 

threshold model is compatible with a noncompensatory process. As with the SAD model, 

under the difference threshold model preferences will either be intransitive for some lottery 

triples, or transitive for all, depending on the parameter values. Specifically, if both c1 and c2 

are positive, or if they are both negative, preferences will be transitive. However, if c1 > 0 and 

c2 < 0, or vice versa, preferences will be intransitive for some subset of triples, depending on 

the value of the threshold parameter t.  

We refer to an algebraic difference threshold model with this configuration of 

parameters as an algebraic lexicographic semiorder model, because preferences switch, at 

some threshold level of dc, from the better S to the better P (or vice versa). This is an 

alternative specification of the lexicographic semiorder model to Tversky’s (1969) definition, 

a specification defined in terms of strength of preference, i.e., overall subjective difference. 

We define it in this way in order to compare the goodness of fit of the SAD and difference 

threshold models as explanations of intransitive preferences.  

--- Figure 4 in here --- 

The relation between the algebraic difference threshold model and transitivity in Tversky’s 

paradigm  

 The basic similarity between the algebraic SAD and difference threshold models is 

that they describe when preference adheres to, and when it violates, transitivity in Tversky’s 

paradigm in the same way. Specifically, the lexicographic semiorder variants of the algebraic 

difference threshold model describe the same intransitive preference cycles for three different 

ranges of t as does the algebraic SAD model for ranges of the parameter function -a0/a1. This 

is illustrated in Tables 2 and 3 in matrix and list representations respectively. Table 2 shows 

the six combinations of binary preferences which lead to violations of transitivity under 

different specifications of the lexicographic semiorder model, and Table 3 lists, for the ten 
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triples of lotteries from Tversky’s set, the triples which are transitive or intransitive under 

different specifications of the model. Figure 4 illustrates four specifications of difference 

threshold models, which are lexicographic semiorder models consistent with different 

intransitive preference cycles for different values of the model’s parameters. 

The stochastic difference threshold and stochastic lexicographic semiorder models 

 To complete the specification of a stochastic difference threshold (SDT) model for 

Tversky’s lottery paradigm, the logistic function is applied to determine choice probability, 

p(x, y), from the overall difference function, osddt(dc), in the same way as it is applied to the 

osd(dc) function of the SAD model (equation 4). The SDT model is fully specified, then, by 

condition 2, and equations 4 and 6. The SDT model and the SAD model make the same 

predictions of adherence to, or violation of, WST, exactly as stated in Tables 2 and 3. 

However, the two models can be distinguished in terms of their goodness of fit to the 

observed choice proportions. They also differ in their relationship with TI, an issue we do not 

explore here. Cases of the SDT model where the sign of parameters c1 and c2 are opposite 

define the stochastic lexicographic semiorder model. The two models nested within the SAD 

model are also nested within the SDT model. The CCP model is a one-parameter model 

where, c1 = c2 for any value of t, which is fixed, say, at t = 2.5 . The RC model is nested 

within the CCP model and has no parameters, since c1 = c2 = 0 for any t, again fixed at an 

arbitrary value, e.g. t = 2.5.   
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Method 

Frequentist goodness of fit comparison of the SAD and SDT models 

In this analysis we extend the analysis of Ranyard et al. (2020) as follows. First, we 

include a little more detail in our descriptive and initial, basic inferential analysis, for 

example, the number of observed violations of WST and TI (see the supplemental material). 

Second, we extend the goodness of fit tests of the SAD model, which applied likelihood ratio 

(LR) tests to determine the best fitting model out of four nested models (number of 

parameters in parentheses): M0 (10), SAD (2), CCP (1) and RC (0). Model M0 is referred to 

by Tversky (1969) as the nonrestrictive model, which allows intransitive preferences as it 

places no restrictions on the ten binary choice probabilities of the lottery set. It therefore has 

ten parameters, one for each lottery pair. Cavagnaro and Davis-Stober (2014) refer to M0 as 

the encompassing, or baseline mode. In this extended analysis we identify when the 

maximum likelihood estimates (MLEs) of the SAD model’s parameters are consistent with 

adherence to, or violation of, both WST and TI. 

 The MLEs of each model’s parameters are first calculated, along with the goodness of 

fit statistic, -2lnLL, which is assumed to approximate a chi-square distribution with degrees 

of freedom equal to the number of parameters of the model. Following this, a series of LR 

tests of difference in goodness of fit between models is carried out, the test statistic being the 

difference between the -2lnLLs of the two models in question. This is also assumed to 

approximate a chi-square distribution, with degrees of freedom equal to the difference in the 

number of parameters of the models. In comparisons with M0, if this chi-square value is less 

than the critical value for p = .05 (i.e., p > .05), we conclude that the model has a good fit to 

the data, i.e., the non-restrictive model is not significantly better. In comparisons between the 

other models, if the chi-square statistic is significant at p < .05, we conclude that the model 
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with the higher number of parameters has a significantly better fit. Otherwise, we conclude 

that the additional parameters do not significantly improve model fit. By the principle of 

parsimony, we conclude that out of all models with a good fit, the one with the lowest 

number of parameters is the best fit. Thus, if the CCP model has a good fit, and the SAD 

model does not have a significantly better fit in comparison with it, we conclude that the CCP 

model is a good, and the best fit. On the other hand, if the SAD model does have a 

significantly better fit, we test it against M0, and if SAD has a good fit (i.e., p > .05), we 

identify the SAD model as a good, and the best fit; otherwise, we conclude that M0 is the best 

fitting model. The outcomes of these tests, together with the MLE parameters, determine our 

categorization of each individual’s choice data. When the SAD model is both a good, and the 

best fit, we categorize it further according to whether the MLE parameters are consistent with 

adherence to, or violation of, WST and TI.   

After applying the above approach to the SAD model, we apply it to assess the 

goodness of fit of the three-parameter SDT model. We then merge the two analyses and 

categorize all participants according to whether the best fitting model was the unconstrained 

model M0, CCP (including those cases identified as not probabilistic in the exploratory 

analysis), SAD or SDT. In the case of the latter two, we identify from the MLE parameters 

whether the model was consistent with adherence to, or violation of either or both of WST 

and TI. In the final classification we apply the AIC (Akaike information criterion) to test 

whether the SAD model is a significantly better fit than the SDT model (or vice versa) or 

whether the data are inconclusive between the two. We adopted a p < .05 significance level 

for these tests. 

Finally, only for Tversky’s (1969) data, we compare the frequentist analysis of the 

SAD and SDT models described above with those of the transitive models, WST and TI, 

derived from the established inequality-constrained methods of Regenwetter et al. (2011) and 
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Zwilling et al. (2019). While those for TI have previously been published (Regenwetter et al., 

2011), the analysis of WST that we present has not. 

Pretest predictions of violations of WST 

An important test of the validity of a model is to delineate conditions in which 

participants would be expected to behave in line with the model. In our case it becomes a 

matter of identifying participants who could be expected to exhibit intransitive preferences in 

line with the SAD or lexicographic semiorder models. To identify such participants, we 

follow Tversky’s (1969) approach and evaluate the extent to which a certain quantitative 

indicator derived from the choice proportions in a pretest can predict whether the SAD model 

consistent with violation of WST is a good fit in other choices from the same participant. We 

do not estimate the parameters of the SAD model in the first test and check their similarity to 

those estimated in the second sample, an approach frequently used in model evaluation. 

Rather, we extend the approach adopted by Tversky, also followed by Montgomery, to two 

other replications (Regenwetter et al., 2011; Cavagnaro and Davis-Stober, 2014). 

As mentioned earlier, Tversky (1969) adopted a two-stage experimental design 

specifically to make predictions of violation of WST in the second stage. Montgomery (1977) 

also adopted this design, but the other three studies reviewed here analyzed all of their 

participants without making such selective predictions. Nevertheless, two of them included 

additional data sets from the same participants which we can use here to make predictions in 

the target sets. In the case of Regenwetter et al. (2011), we predict violations of WST in their 

Cash I data set, which replicated Tversky’s lotteries, from choices in their Cash II lottery set 

in which the lotteries were adjusted to equalize their expected values. In the case of 

Cavagnaro and Davis-Stober (2014), we predict violations of WST in the data set which 

replicated Tversky’s lotteries in a no time pressure condition, from choices in a separate 
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within-participant time pressure condition using the same lottery set. We can apply a criterion 

similar to that of Tversky’s stage 1 to these additional data sets to predict which participants 

will violate WST in the target sets. The criterion we used was the following: the participant 

most often chooses the better S for the smallest dimension difference, i.e., (a, b), (b, c), (c, d) 

and (d, e), but most often chooses the better P for the largest two-dimension differences, i.e., 

(a, d), (b, e) and (a, e), or vice versa.  

Bayes factor comparison of the SAD and SDT models 

Bayes factors provide a method for comparing models which takes into account both 

the fit of the model, and parsimony, by considering how well the model captures the observed 

data for all possible parameterizations of the model, weighted by the prior probability of each 

parameterization (i.e. by considering the marginal likelihood). To calculate Bayes factors for 

the distributional version of models SAD, SDT and CCP compared to M0, we estimated the 

marginal likelihood for each participant for each model using importance sampling 

(Vandekerckhove, Matzke, & Wagenmakers, 2015). We assumed uninformative uniform 

priors for all parameters. For continuous parameters the Beta(1,1) distribution was used, with 

a linear transformation applied for parameters which could take values outside the range of 0 

to 1. For the categorical threshold parameter of the SDT model, a categorical prior was used 

with equal weight on the three possible values. See Table S2 in the supplemental material for 

the details of the priors and transformations6. For the Bayes factors reported in Table S2, we 

 
6 For both the MLE and BF estimation of the SAD model, both parameters were constrained to be 

between -5 and 5. This constraint was chosen as: 1) this range covers the qualitatively interesting patterns of 

behaviour, as seen in the Figures; and 2) by specifying bounds we could place a uniform prior across these 

values, rather than specifying certain slopes or intercepts as more likely a priori. For consistency across models, 

the same bounds were used for the c1 an c2 parameters in the SDT model, allowing it to predict a similar range 

of probability strengths. In contrast, rather than parameterise the CCP model as an intercept only specification of 

SAD, we instead placed a Beta(1, 1) prior directly on the predicted probability, similar to the specification of the 

10 parameters of the unconstrained model, M0. To check the robustness of our results to these assumptions, we 

conducted three additional model comparisons varying these assumptions (see Table S3 in the supplemental 

materials). Conclusions were broadly the same across specifications. 
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used a proposal distribution for each parameter that was a 70:30 mix of the prior and 

posterior for that parameter and participant7. We used rjags (Plummer, 2003) to estimate the 

posterior distributions running eight chains for 15,000 iterations. For each parameter a beta 

distribution was fitted to the resulting distribution, so that probabilities could be calculated 

for the importance sampling procedure.   

Bayes factor comparison of transitive and intransitive models 

 The above Bayesian analyses focus on dimension-based models to clarify the extent 

of support for the SAD and SDT model consistent with violation of WST and TI, relative to 

M0. Next, we present an extended overview of the Bayesian analysis which also includes the 

transitive models, CCP, WST and TI.  Bayes factors for TI compared to M0 were computed 

using the order-constrained methods of Heck & Davis-Stober (2019), while those for WST 

compared to M0, were computed using the order-constrained methods of Zwilling et al. 

(2019). The extended overview identifies for each participant which model had the strongest 

support over all other models listed, and whether the model with the strongest support was 

strongly supported over all the others (BF > 3). For the SAD and SDT models this is further 

subdivided according to whether the MLE parameters are consistent with adherence to, or 

violation of WST and TI. This final analysis in particular identifies the extent of support for 

SAD or SDT models consistent with violation of WST or TI in comparison to the transitive 

models.  

Graphical analysis of the relationship between the SAD model, WST and TI 

  For this analysis we plot, for each individual and each lottery triple, the MLEs of the 

SAD model parameters, a0 and a1, onto Figure 2. In each graph of the figure the region of the 

parameter space within the triangle describes parameter values of the SAD model consistent 

 
7 Similar results were obtained using mixtures of 0% (i.e. pure prior), 50%, 70% and 90% posterior. 



33 

 

 

 

with violation of WST, while that within the curve describes parameter values consistent with 

violation of TI. The points on the graph represent the SAD model parameter MLEs of those 

participants from the five data sets (n = 71) for which the parameter values are within the 

range shown. We also color-code the data points according to whether, for each lottery triple, 

the observed choice proportions for that triple adhered to, or violate both WST and TI. This 

gives us a visual representation at the level of the lottery triple of the relationship between 

violation and adherence to WST and TI under the SAD model and observed violation and 

adherence to WST and TI. 

The remaining participants for whom data is available (n = 19) are not included in the 

graphical analysis because their MLE parameters are not in the quadrant of the parameter 

space shown. For these participants, the SAD model MLE parameter values are consistent 

with adherence to both WST and TI, as were the corresponding observed choice proportions. 

Results 

Goodness of fit and Bayes factor comparison of the SAD and SDT models 

 We first report two complementary analyses of Tversky’s (1969) data set, beginning 

with the frequentist approach followed by the Bayesian analysis. We then summarize and 

compare the analyses of all five data sets. This overview incorporates the analysis explained 

earlier of predictions of violations of WST for four of the data sets. The detailed analyses of 

the four replications of Tversky’s study are reported in the supplemental material. 

Tversky (1969) 

Table 4 shows the main outcomes of the frequentist LR analysis for Tversky’s (1969) 

eight participants predicted to violate WST. The columns to the left present the MLE 

parameter values and goodness of fit statistics for the SDT model. The signs of c1 and c2 are 

opposite for participants one to six, indicating stochastic lexicographic semiorder cases, i.e., 
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describing violation of WST. In contrast, c1 and c2 are the same sign for participants 7 and 8, 

consistent with adherence to WST. The SDT model was a good fit for two of the first six 

participants, with the asterisks indicating that it was not a good fit for the other four, since the 

LR test comparing it to M0 was significant (p < .05). The next columns show the equivalent 

statistics for the SAD model. The LR tests show that this is a good fit, consistent with 

violations of WST, in six cases. The two columns following show goodness of fit statistics 

for the CCP and M0 models, with the former being a good and the best fit for participant 7. In 

the Category column the classification identifies the best-fitting model, after applying the 

AIC tests. If these were inconclusive, both models are listed providing they were well-fitting 

compared to M0. Finally, the WST and TI columns indicate whether best fitting model’s 

MLE parameters are consistent with adherence to, or violation of WST or TI. 

The table shows that for the six participants where the SAD model consistent with 

violation of WST is a good fit, it is also significantly better than SDT for five of them, as 

determined by the LR and AIC tests. For three of these participants, the well-fitting SAD 

model is also consistent with violation of TI. For participant 5, both the SAD and SDT 

models are a good fit, and the AIC test is inconclusive between them. Finally, the 

classification shows that models predicting adherence to WST and TI are a good and the best 

fit in the other two cases, SAD or SDT in one, and CCP in the other. 

 Table 5 compares the frequentist p-values of goodness of fit of the SAD and SDT 

models with those of the transitive models, WST and TI, derived from established inequality-

constrained methods (Regenwetter et al., 2011; Zwilling et al. 2019). The table shows that 

WST is a poor fit (p < .05) for participants 1, 3 and 68, while TI is a poor fit (p ≤ .05) for 

participants 3 and 6. The Category column lists all well-fitting models for each participant. 

This shows that the SAD model consistent with violation of WST and TI is the only well-

 
8 This result supersedes the earlier findings of Iverson and Falmagne (1985). 
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fitting model for participants 3 and 6 (see also Table 1). However, for the other four 

participants with observed violation of transitive preference (participants 1, 2, 4 and 5) both a 

model consistent with violation, and one consistent with adherence, are well-fitting models. 

The Bayesian analysis reported next goes some way towards resolving this. 

Table 6 shows the main outcomes of the Bayesian analysis for the same participants; 

the Bayes factors presented are those for each model compared to M0. As mentioned, for all 

data sets, those for the mixture model of transitive preference, i.e., TI compared to M0, were 

computed using the inequality-constrained methods of Heck & Davis-Stober (2019).  The 

obtained values closely match those presented by Cavagnaro and Davis-Stober (2014) in their 

online supplement. Also, for all data sets, Bayes factors for WST compared to M0, were 

computed using the order-constrained methods of Zwilling et al. (2019). Again, these 

correspond very closely to those presented by Cavagnaro and Davis-Stober9. Bayes factors 

for other model comparisons are simply the ratio of those for each model compared to M0. 

For example, the Bayes factor for the comparison of WST and TI for participant 8 is 2.69, 

indicating moderate support for TI over WST, almost reaching the criterion for strong support 

(BF > 3). Comparing all models with each other in this way enables us to identify the model 

with the strongest support from the set, shown in the Category column. The final two 

columns indicate whether the best supported model is consistent with WST and TI 

respectively. In the case of the SAD model, this is determined by the MLE parameters for 

that individual. 

Table 6 shows that for three participants (1, 3 and 6) the SAD model consistent with 

violations of both TI and WST has strong Bayesian support relative to the other models, and 

M0 has strong Bayesian support when compared to the transitive models, CCP, WST and TI. 

 
9 We thank Daniel Cavagnaro for providing the BFs for WST not published in the online supplement of 

Cavagnaro and Davis-Stober (2014), and for guidance on using the QTest 2.1 software. 
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For participants 2 and 4 the SAD model consistent with violation of WST, but adherence to 

TI, is supported at least moderately (BF = 1.89 and > 3 respectively), whereas for participant 

5 there was strong Bayesian support for the SDT model consistent with violation of WST and 

adherence to TI. In these latter three cases there was strong Bayesian evidence against WST 

and CCP in comparison to M0, (but not TI). Finally, for participants 7 and 8 the model with 

the strongest support is consistent with adherence to WST and TI; in one case the CCP model 

is strongly supported, and in the other the SAD model is weakly supported.  

Overall, for Tversky’s (1969) data the Bayesian results comparing SAD and SDT 

correspond very closely to those of the LR and AIC frequentist analysis shown in Tables 4 

and 5. For three participants (1, 3 and 6) the SAD model consistent with violation of both 

WST and TI is a good, and the best fitting model, and has strong Bayesian support relative to 

M0, while for two participants (2 and 4), the SAD model consistent with violation of WST 

but adherence to TI is a good, and the best fitting model, and has some Bayesian support 

relative to M0. For participant 5, whose choices are consistent with violation of WST (but not 

TI), the AIC test is inconclusive between SAD and SDT, which are both well-fitting models, 

while the Bayesian analysis shows strong evidence in support of SDT over SAD. The 

Bayesian analysis is also more informative since the performance of SAD and SDT can be 

directly compared with the transitive models, WST and TI. As we saw, the frequentist 

goodness of fit analyses comparing SAD and SDT with the transitive models finds that both 

transitive models and those consistent with violation of transitivity are well-fitting models. 

However, the Bayes factor comparisons show that where the SAD or SDT model consistent 

with violation of WST or TI is supported, there is also corresponding strong Bayesian 

evidence against WST or TI. In conclusion, the SAD model provides the better account of 

intransitive preferences in five cases, and the SDT model does so in one case.  
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Table 4 

Reanalysis of Tversky (1969), r = 20: MLE parameter estimates and goodness of fit (-2lnLL) of the SDT model (left columns), the SAD model 

(middle columns), CCP and M0, (right, number of parameters in parentheses) 

 

Part. t c1 c2 SDT(3) 

 

a0 a1 SAD 

(2) 

CCP 

(1) 

M0(10) Category WST TI 

1 2.5 1.06 -.69 42.81 2.52 -0.98 33.73 72.44 31.75 SAD  No No 

2 2.5 0.41 -.54 47.97* 1.16 -0.52 44.42 57.19 33.46 SAD  No Yes 

3 2.5 1.43 -.34 49.64* 2.94 -1.00 40.65 78.49 28.38 SAD  No No 

4 2.5 0.23 -2.02 49.97* 1.97 -1.22 37.98 87.24 30.77 SAD  No Yes 

5 2.5 0.75 -0.33 41.18 1.30 -0.44 43.87 53.06 33.27 SAD and SDT  

 

No Yes 

6 3.5 1.22 -1.38 50.56* 2.97 -0.95 42.84 76.42 28.13 SAD No No 

7 1.5 0.25 0.44 42.50 0.20 0.08 42.68 43.02 33.93 CCP  Yes Yes 

8 1.5 0.25 1.29 37.26 -0.22 0.55 37.07 48.19 32.08 SAD and SDT 

 

Yes Yes 
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Notes: Part. is participant number; t, c1 and c2 are the parameters, and SDT(3) is the goodness of fit (-2lnLL), of the SDT model (3 parameters); 

a1 and a2 are the parameters, and SAD(2) is the goodness of fit (-2lnLL), of the SAD model (2 parameters); * significant departure from 

M0, p < .05, according to likelihood ratio tests (7  df. for the SDT and 8 df for the SAD model);  CCP and M0 columns show the goodness 

of fit (-2lnLL) of those models; statistics in bold indicate the model(s) with a good and the best fit; the Category column shows the best-

fitting model(s), if both SAD and SDT are a good fit but the AIC test is inconclusive, this is indicated by ‘SAD and SDT’; The WST and 

TI columns show whether the best fitting model is consistent with adherence o (Yes) or violation of (No)  that condition. 
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Table 5 

Reanalysis of Tversky (1969): Frequentist p-values for goodness of fit of  SAD, SDT, WST 

and TI in comparison with the unconstrained model (M0) 

Part. SAD SDT WST TI  Category WST TI 

1 .98 .12 .01 .34  SAD, SDT, TI No No 

2 .20 .04 .10 .59  SAD, WST, TI No Yes 

3 .14 < .01 .02 .01  SAD No No 

4 .51 .01 .15 .25  SAD, WST, TI No Yes 

5 .23 .34 .09 .20  SAD, SDT, WST, TI No Yes 

6 .07 < .01 .02 .05  SAD No No 

7 .36 .29 .46 1.00  SAD, SDT, WST, TI Yes Yes 

8 .50 .64 1.00 1.00  SAD, SDT, WST, TI Yes Yes 

 

Notes: Part. is participant number; the Category column shows the models that are a good fit 

to the data with p > .05.  The righthand WST and TI columns show whether the best 

fitting model is consistent with adherence to (Yes) or violation of (No) for that 

condition.  
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Table 6 

Reanalysis of Tversky (1969): Bayes Factors for comparisons of SAD, SDT, CCP, WST and 

TI with the unconstrained model (M0) 

Part. SAD SDT CCP WST TI Category WST TI 

1 1398.26 9.86 > .01 > .01 0.10 SAD No No 

2 5.21 1.29 0.56 0.03 2.76 SAD (weak) No Yes 

3 48.15 0.35 > .01 0.02 > .01 SAD No No 

4 196.35 0.41 > .01 0.27 1.02 SAD No Yes 

5 6.87 23.02 4.32 0.05 2.10 SDT No Yes 

6 16.08 0.50 > .01 0.02 > .01 SAD No No 

7 11.88 27.95 659.81 1.16 16.48 CCP Yes Yes 

8 262.58 165.43 46.65 6.67 18.24 SAD (weak) Yes Yes 

 

Notes: Part. is participant number; the Category column shows the model with strongest 

support compared to M0 (BF > 3), if more than one model has strong support 

compared to M0, and the BFs do not show one having strong support over the other, 

the model with the strongest support is listed as having moderate (3 > BF > 2) or weak 

(2 > BF > 0) support; The righthand WST and TI columns show whether the best 

fitting model is consistent with adherence to (Yes) or violation of (No)  that condition.  
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Overview of the main Likelihood ratio and Bayesian analyses in relation to WST 

Table 7 presents an overview of the LR and Bayesian analyses of SAD, SDT and CCP 

relative to M0 for all 116 participants across five studies with respect to adherence to, or 

violation of WST. Detailed results for each study are given in the supplemental material. The 

rows of the table labeled P and Not P distinguish, in four of the studies, those participants 

predicted to violate WST from those not so predicted. The studies by Tversky (1969) and 

Montgomery (1977) predicted from their pretests that eight and five participants, 

respectively, would violate WST, with the remaining participants not investigated further 

(indicated in column Unknown in the table). The three other studies conducted tests of 

intransitive preferences on the whole sample, without making pretest predictions, but as 

explained earlier, predictions of violations of WST can be made in the two studies that 

included additional data from the same individuals (Regenwetter et al., 2011; Cavagnaro & 

Davis-Stober, 2014). 

The LR rows of Table 7 show the number of participants for whom the model 

indicated in the column was a good, and the best-fitting model, and the BF rows show the 

number of participants for whom there was Bayes factor evidence in favor of that model. The 

‘WST violated’ columns show the number of cases where only the SAD model or only the 

SDT model consistent with violation of WST was a good fit, or had strong Bayesian support, 

or where both were a good fit according to the two sets of likelihood ratio tests, or had strong 

Bayesian support10. The LR rows show the results after the application of the AIC test which 

identified which of the SDT or SAD model was the better fit, and the BF rows show the 

number of participants for which there was strong Bayesian support for the SAD model over 

the SDT model or vice versa. The Both column shows the number of cases that were still 

 
10 For comparability, we used the MLE parameter estimates in classifying participants in both the 

likelihood ratio and Bayesian analyses, as these were very close to the modal posterior estimates of the Bayesian 

analysis.  



42 

 

 

 

inconclusive after the AIC and Bayes factor tests. The AIC tests reduced the number of 

inconclusive cases with respect to the SAD and SDT models from 16 to 9 on the LR analysis, 

and the Bayesian analysis reduced the number from 15 to 6, showing that the AIC test and the 

direct Bayes factor comparison between the two models were similarly effective in clarifying 

cases. 

First, we consider the P rows, which tabulate only those participants predicted to 

violate WST as described earlier. Overall, the P-row subtotals show that a dimension-based 

model, either SAD or SDT, predicting violations of WST was a good, and the best, fit for 

19/29 (65.5%) participants, and similarly, there was strong Bayesian support for such models 

for 20/29 (69.0%). These proportions were higher for three of the four studies, while for 

Regenwetter et al.’s study the prediction was fulfilled in only 2/6 cases.  The SAD model was 

rather more successful than the SDT model with respect to both analyses. The Not-P 

subtotals show that, in contrast, one of the dimension-based models predicting violations of 

WST was a good, and the best, fit for only 4/31 (12.9%) participants, and similarly, there was 

strong Bayesian support for only 5/31 (16.7%), excluding the unknown cases. 

We now consider the analysis of all 116 participants across five studies. The Total 

rows show that the unconstrained model, M0, was the best-fitting model for 18.1% of the 

sample across all studies according to the LR analysis, whereas according to the Bayesian 

analysis there was strong support for M0 for only 10.3%. Turning to the key findings, first 

consider the LR analysis. The LR totals and percentages rows of Table 7 show that overall, in 

almost 20% of cases the SAD model describing violations of WST was a good, and the best 

fit. In under 2% of cases (just two participants) it was the SDT model describing violations of 

WST that was the best fit, while for about 7% of participants both models were a good fit, 

with neither being the better fit according to the AIC tests. Overall, in comparison with the 



43 

 

 

 

unconstrained model, either or both of these two dimension-based models consistent with 

violations of WST were a good fit for almost 30% of participants over five experiments. 

Turning to the Bayesian analysis, the BF totals and percentages of Table 7 show a 

similar picture. Across all participants of the five data sets there was strong Bayesian 

evidence supporting a dimension-based model consistent with violation of WST for 35% of 

participants. The lowest proportion of participants in this category was in Regenwetter et al.’s 

data set (22%), with the other studies being in the range 24% to 43%. For a substantial 

majority of these participants the BF evidence supported the SAD model over the SDT 

model. 

It is striking that the findings from both analyses correspond very closely to each 

other. The relatively minor differences are that the Bayesian analysis found less support for 

the unconstrained model, and a little more support for both transitive models and dimension-

based models consistent with violations of WST.
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Table 7 

For five experiments, frequencies of participants for whom: (a) the likelihood ratio test (LR) identifies the best-fitting model as the SAD or SDT 

model expecting violation of  WST, or a model expecting adherence to WST (SAD or CCP), or where the unconstrained model is the best fit 

(M0); or (b) where there is strong Bayes factor (BF) evidence in favor of the SAD or SDT model consistent with violation of  WST, or a model 

consistence with adherence to WST, or where the unconstrained model is the best fit (M0); or (c) where the category is unknown because the 

data is not available 

Study P/Not LR/BF          WST violated WST not violated M0 Unknown N 

   SAD SDT Both SAD/SDT CCP    

Tversky (1969) P LR 5  1 1 1   8 

  BF 5 1  1 1   8 

 Not        10 10 

Montgomery (1977) P LR 2  2   1  5 

  BF 2  2   1  5 

 Not        16 16 

Regenwetter (2011) P LR 1  1 2 1 1  6 

  BF 2   3 1   6 
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 Not LR 1  1 1 7 2  12 

  BF 2   1 8 1  12 

Cavegnaro et al. (2014)  P LR 4  3 1  2  10 

  BF 5 1 2 1  1  10 

 Not LR 2   3 10 4  19 

  BF 1  2 5 10 1  19 

Kalenscher et al. (2010 All LR 8 2 1 3 5 11  30 

  BF 14 2  3 6 5  30 

Sub-totals P LR 12  7 4 2 4  29 

  BF 14 2 4 5 2 2  29 

 Not LR 3  1 4 17 6 26 57 

  BF 3  2 6 18 2 26 57 

Total All LR 23 2 9 11 24 21 26 116 

  BF 31 4 6 14 26 9 26 116 

Percent All LR 19.82 1.72 7.76 9.48 20.70 18.10 22.4  

  BF 26.72 3.45 5.17 12.07 22.41 7.76 22.4  
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 Note: The P and Not rows refer to the participants predicted to violate WST (P), or not so predicted (Not) in the first four studies; the 

All rows refer to all participants, in Kalenscher et al.’s study because no such prediction was made  .
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Overview of the LR and BF analyses in relation to TI 

Table 8 shows a similar summary of results to the above with respect to the TI 

condition. As Tversky (1969) made no predictions about violations of this, we present the 

analysis for all participants. The bottom four rows of Table 8 show the total frequencies and 

percentages, similar to the previous analyses presented in Table 7 but with respect to TI. We 

find a substantial minority of participants for whom the best fitting model was a dimensional 

model (SAD, SDT or both) consistent with violation of TI (15.5%), and for whom there was 

strong Bayes factor support for such models (23.3%). The aggregate proportions are lower 

than the corresponding proportions in Table 7 for violation of WST. Nevertheless, this is an 

important novel finding with respect to Tversky’s paradigm, and the concordance between 

the two analyses is very close. As before, the differences between the LR and Bayesian 

analyses are relatively minor. Support for M0 was rather less in the Bayesian analysis, 7.8% 

compared to 18.1% for the LR analysis, and correspondingly, the percent for which there was 

strong Bayes factor support was higher for both the SAD model and transitive models. The 

findings were similar for each data set, except for Regenwetter et al. (2011); in that study 

transitive models were supported, since there were no participants for whom the SAD model 

consistent with violation of TI was the best-fitting model, and there was only one instance 

where there was strong Bayesian support for such a model. In contrast, in the other four 

studies the percent of participants in this category ranged from 16.7% to 20.7% for the LR 

analysis, and 16.7% to 31.0% for the Bayesian analysis.
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Table 8 

For five experiments, frequencies of cases where: (a) the likelihood ratio test (LR) identifies the best-fitting model as either the SAD and/or the 

SDT model consistent with violation of  TI, a model consistent with adherence to TI (SAD, SDT or CCP), or where the unconstrained model is 

the best fit (M0); or (b) where there is strong Bayes factor (BF) evidence in favor of the SAD and/or SDT model consistent with violation of  TI, 

or a model consistent with adherence to TI, or the unconstrained model (M0); or (c) where the category is unknown because the data is not 

available 

Study Analysis Violate TI    Adhere to TI    M0 Unknown      N 

  SAD/SDT SAD/SDT/TI CCP    

Tversky (1969) LR 3 4 1 0 10 18 

 

 

BF 3 4 1 0 10 18 

Montgomery (1977) LR 4 0 0 1 16 21 

 

 

BF 4 0 0 1 16 21 

Regenwetter et al. 
(2011) 

LR 0 7 8 3  18 

 

 

BF 1 7 9 1  18 

Cavagnaro et al. (2014) LR 6 7 10 6  29 

 

 

BF 8 9 10 2  29 

Kalenscher et al. 
(2010) 

LR 5 9 5 11  30 

 

 

BF 11 8 6 5  30 

Total LR 18 27 24 21 26 116 
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 BF 27 28 26 9 26 116 

Percent LR 15.52 23.28 20.69 18.10 22.4  

 BF 23.28 24.14 22.41 7.76 22.4  
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Bayes factor comparison of the SAD, SDT, CCP, WST and TI models 

 In the previous presentation of the Bayes factor evidence, we focused on the 

dimension-based models, including the transitive CCP model, in order to clarify the extent of 

support for the SAD and SDT models consistent with violation of WST and TI, relative to the 

unconstrained model, M0. Here we present an extended overview which also includes the 

transitive models, WST and TI. The summary is presented in Table 9. The table shows the 

number of participants for whom each model had the strongest support over all other models 

listed. In most cases the model with the strongest support was strongly supported over all the 

others (BF > 3). For the SAD and SDT models this is further subdivided according to 

whether the MLE parameters are consistent with adherence to, or violation of WST and TI. 

The first column of frequencies shows that for all studies, except Regenwetter et al. 

(2011) for a substantial minority of participants, in aggregate over 20%, the strongest 

supported model is the SAD or SDT model consistent with violation of both WST and TI. In 

addition, the second column of frequencies shows that for three studies, including 

Regenwetter et al., the strongest supported model for over 10% of participants is the SAD or 

SDT model consistent with violation of WST but adherence to TI. The final three columns 

show the number of participants for whom a transitive model, consistent with adherence to 

both WST and TI, was the strongest supported model, or whether M0 was strongly supported 

over all other models. An interesting observation here is that in most cases where a transitive 

model has the strongest, and usually strong (BF > 3) support, the CCP model, and the SAD 

model consistent with adherence to the WST and TI, were strongly supported over the more 

general transitive models, WST and TI.
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Table 9 

Number of participants in each study for whom the model indicated had BF support over all other models. In the case of the SAD and SDT 

models, the columns show whether the best fitting model parameters were consistent with violation (No WST, No TI) or adherence to (WST, TI) 

that probabilistic specification of transitivity 

 

Study SAD/SDT CCP WST TI M0 Unknown N 

 No WST WST       

 No TI TI No TI TI       

Tversky (1969) 3 3  1 1    10 18 

Montgomery (1977) 4       1 16 21 

Regenwetter et al. (2011)  4 1 2 9  1 1  18 

Cavagnaro et al. (2014) 8 3  6 10   2  29 

Kalenscher et al. (2010) 11 5  3 6 2 3 0  30 

Total 26 15 1 12 26 2 4 4 26 116 

Percent 22.4 12.9 0.1 10.34 22.41 1.7 3.4 3.4 22.4  
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Note:  SAD/SDT indicates either or both of these models; Unknown refers to those participants for whom data is not available; N is the total 

number of participants in the study.
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A graphical analysis of the relationship between the SAD model, WST and TI 

Figure 5 shows, for each lottery triple, the regions of the SAD model parameter space 

within which the parameter values describe violation of WST (the triangles) and TI (the 

curves). Each point on each graph represents the SAD model parameter MLEs of a 

participant from the five data sets (n = 71) for which the parameter values are within the 

range shown. Table 10 summarizes the numerical information representing the 

correspondence between the SAD model MLEs and the empirical observations shown in 

Figure 5. 

First, consider the points colored in blue which represent individuals for whom the 

observed choice proportions for that triple violated both TI and WST. For perfect agreement 

with the SAD model consistent with violations of WST and TI, the blue points should all fall 

within both the curve and the triangle in each graph. It can be seen in Figure 5 that most of 

them do fall within (61%), or close to, this region. Second, we can consider the blue and 

green points together, since in these cases the choice proportions for the triple are observed to 

violate WST. If these observations are perfectly consistent with the SAD model, they should 

all fall within the triangles, which again, as seen in the figure, most either do (70%), or are 

close to it. Third, we can consider the blue and red points together, which are observed to 

violate TI in the triple concerned. In this case, for perfect agreement with the SAD model 

these should all fall within the curve of the relevant graph. Again, most do so (69%), 

although, there are several points outside the curve. Finally, turning to the yellow points, for 

perfect agreement with the SAD model, these should be outside both the triangle and the 

curve, as most of them are (84%).   

Figure 5 also shows patterns across different triples that are in line with the SAD 

model. For example, in the graphs for triples abc, bcd, and cde consider the left upper area of 

the curve which includes violations of both TI and WST. Note that this area is outside the 
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curve and triangle in the graphs for the other triples. The larger area of the curves and 

triangles for abc, bcd, and cde implies that one should expect more violations of both TI and 

WST for this group of triples, as compared to the other triples. More specifically, the yellow 

points (adherence to WST and TI) in the upper left corner of the graphs for the triples with 

the smaller curves and triangles, for example, abd and ace, in most cases change to blue 

(violations of both TI and WST) when they are included in the bigger curves and triangles for 

triples abc, bcd, cde.  In general, the points change color in line with the SAD model across 

different triples when they become covered or not by the curve (violations of TI) and the 

triangle (violations of WST).  

--- Figures 5 in here ---- 
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Table 10 

Cross-tabulation of frequencies of lottery triples which according to SAD are expected to be 

in line with or violate WST or TI (rows) with the corresponding observed frequencies of 

lottery triples (columns)        

 WST TI WST Not TI Not WST TI Not WST Not TI Sum 

WST TI 553  32 11  19  615 

WST Not TI  37  55   0    8  100 

Not WST TI  56   4  14  10   84 

Not WST Not TI   13  23   3  62  101  

Sum 659  114  28  99  900 

 

 

 

 

 

  



56 

 

 

 

General Discussion 

In reviewing previous analyses of choices in Tversky’s (1969) lottery paradigm, we 

found, for a significant minority of participants, strong evidence against models requiring 

adherence to probabilistic specifications of transitivity, either WST or the mixture model of 

transitive preference. We concluded from this that violation of transitive preference is a 

phenomenon that needs to be accounted for. In order to contribute to this, we compared two 

dimension-based accounts, the SDT model, compatible with a noncompensatory decision 

process, and the SAD model, compatible with a compensatory process of weighing 

dimension differences against each other. 

Our first step was to extend the SAD model (Ranyard et al., 2020) to determine 

precisely, by graphical analysis at the level of the lottery triple and overall, the parameter 

values for which the model is consistent with adherence to, and violation of, WST and TI. 

The latter is necessary and sufficient for the mixture model of transitive preference for up to 

five alternatives. Our empirical graphical analysis gave a full and detailed account of the 

relationship between the observed choice proportions’ adherence to, and violation of, WST 

and TI, and those of the choice probabilities statistically derived from the SAD model. We 

found that across five studies the observed choice proportions’ adherence to, or violation of, 

both TI and WST were mainly consistent with the SAD model across triples. The novel result 

from this analysis concerned the relation between the SAD model and TI, which is not 

straightforward. Specifically, our analysis showed with precision that the dimension-based 

SAD model accounts well for observed violation of, and adherence to, TI.  

We then conducted a detailed reanalysis of Tversky’s (1969) lottery study and four 

incentivized replications recognized as being of high quality. The replications all used 

Tversky’s lottery set adjusted for currency and inflation, and all involved at least ten 

presentations of each lottery pair. We compared classical frequentist and Bayes factor 
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analyses, and found that they converged on the same key findings. First, with respect to 

Tversky’s study we found that a simplified specification of Tversky’s additive difference 

model consistent with violations of transitivity is a well-fitting model with strong Bayesian 

support for a significant minority of participants (6/18 for violations of WST, and 3/18 for 

violations of TI). Furthermore, when we directly compared the Bayes factors of the SAD 

model consistent with violations of transitivity with those of models consistent with 

adherence, i.e., WST and TI, we found strong evidence in favor of the SAD model in the 

same numbers of cases. We also found, using the order-constrained methods of Regenwetter 

et al. (2011), that WST was a poor fit for 3/18 of Tversky’s participants. This previously 

unpublished result supersedes Iverson and Falmagne’s (1985) finding that applied a more 

conservative test.  

Turning to the four replications of Tversky’s study, for three of them we find similar 

strong support from frequentist, Bayesian and graphical analyses for the SAD or SDT model 

consistent with violations of transitivity. The exception was the Regenwetter et al. (2011) 

Cash I data set, for which there was strong support for the SAD model consistent with 

violations of TI for only 1/18 participants. Nonetheless, even in this study, however, we 

found strong support for the model consistent with violation of WST for 4/18 participants. 

These findings are novel in two respects. First, the new Bayesian analysis converges with our 

previously reported frequentist analysis (Ranyard et al., 2020) and shows the extent of 

support for dimension-based models predicting violations of WST. Second, the graphical, 

frequentist and Bayesian analyses all show the extent of support for dimension-based models 

consistent with violations of TI. 

In addition to testing how well a model fits the data, testing predictions of a model is 

important for its evaluation. Tversky (1969) was well aware of this, and his two-stage 

experiment was designed to test predictions of WST violation from a pretest. Montgomery 
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(1977) adopted the same approach. We extended this by testing predictions of WST violation 

in two other replications not specifically designed to do so. For the target data of Regenwetter 

et al. (2011) and of Cavagnaro and Davis-Stober (2014), we predicted violations of WST 

from other choices made by the same participants in other data sets. Across the four studies 

we found that these predictions by a well-fitting dimension-based model, either SAD or SDT, 

were confirmed for about two-thirds of participants according to both frequentist and 

Bayesian analyses. In contrast, the proportion was much lower, about 15%, for participants 

not so predicted in the two studies where the data was available. Although the prediction was 

not particularly successful in the Regenwetter et al. data set, it was highly successful in the 

other three studies. In particular, violation of WST in Cavagnaro and Davis-Stober’s no time 

pressure condition was predicted as successfully from choices from the same lottery set in a 

time pressure condition as was Tversky’s prediction from his pretest. Overall, the above-

described analyses confirm that the SAD model accounts well for adherence to, and 

violations of, both WST and TI in Tversky’s lottery task. 

In accounting for violations of transitivity, our comparison of the performance of a 

stochastic lexicographic semiorder and a stochastic additive difference model, is arguably an 

important novel contribution to the literature. Davis-Stober and his colleagues have 

previously shown that alternative stochastic lexicographic semiorder models are a good fit 

and better than transitive alternatives for several participants across the experiments reviewed 

here (e.g., Brown et al., 2015). Our analysis of the SDT model confirms this. It should be 

noted that the model has relatively loose requirements, i.e., choice probabilities constant in 

the range .5 to 1.0 below the threshold, constant in the range 0.0 to .5 above the threshold (or 

vice versa), and with the threshold anywhere in the standard objective dimension difference 

range of Tversky’s lottery paradigm from 1 to 4. This gives the model the best chance of a 

threshold model fitting the data and, as we have shown, it does so in many cases. In addition, 
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however, we compared its performance to the compensatory SAD model using AIC tests and 

Bayes factor analysis. These two analyses converge. In particular, with respect to observed 

violations of WST, the SDT model was the best fit and had strong Bayesian support in 

comparison with the SAD model for only two participants, whereas the SAD model was the 

best fit, and had strong Bayesian support compared to SDT, for about 20% of all participants. 

 As we explained in the introduction, whether a compensatory or a heuristic 

dimension-based strategy is adopted in Tversky’s lottery paradigm has implications for 

prospect theory. While a lexicographic semiorder account of intransitive preferences is 

consistent with prospect theory, a compensatory, dimension-based account is not. Our key 

finding in this regard is that the stochastic lexicographic semiorder model is the best-fitting 

model for only a small number of participants, while for a large majority of participants, the 

evidence is consistent with a compensatory, dimension-based evaluation of decision 

alternatives. This is in contrast to the within-alternative evaluation inherent in both original 

and cumulative prospect theory. Unfortunately, although the process data of both 

Montgomery (1977) and Kalenscher et al. (2010) provide evidence of dimension-based 

processing, they do not discriminate between noncompensatory and compensatory accounts. 

An exception to this is that Montgomery identified one participant who expressed 

compensatory evaluation and comparison of within-dimension differences. Notwithstanding 

this exception, our analysis of the choice data found strong evidence in favor of the 

compensatory additive difference account for almost all the intransitive participants. In the 

light of this, previous interpretations of the choice data in Tversky’s lottery task, including 

Tversky’s own, should be reconsidered. 

 Several open questions and avenues for future research remain. First, although 

dimension-based models were a good fit to over 80 percent of individual choice data, this still 

leaves over 15% of individuals unaccounted for. Some deviations from the SAD model 
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consist of variations in choice proportion within a given objective dimension difference, 

which is not permitted under the model. The extent to which such variation can be accounted 

for by alternative dimension-based models, including ones incorporating error parameters, 

could be explored. In addition, a more flexible theoretical framework which allows both 

within-alternative integration and within-dimension comparison of information may be 

fruitful. A second avenue for future research could apply a combination of process-tracing 

techniques (Schulte-Mecklenbeck, Kuhberger & Ranyard, 2010). This would contribute more 

nuanced evidence of the decision processes underlying individual intransitive preferences, 

particularly whether compensatory or noncompensatory. Thirdly, the issue of changes in 

decision processes over time should be addressed (Birnbaum, 2022). For example, it is 

plausible that some participants apply a compensatory decision strategy initially, but drift 

towards a noncompensatory heuristic as time goes by.  Finally, although our findings are 

limited to a specific simplification of an additive difference model and a specific lottery 

choice task, they have general implications which need to be investigated further. We do not 

claim that the SAD model will generalize beyond the specific lottery task for which it was 

designed. However, Tversky’s (1969) additive difference model from which it was derived is 

a general model, and other variants could be tested in a wider range of tasks where systematic 

intransitivity has been observed (e.g. Butler & Pogrebna, 2018).   

 Progress on these theoretical and empirical issues could help us to go beyond our 

current view, which is as follows. The available decision process and choice data provide 

convergent evidence that dimension-based decision models account for intransitive 

preferences in Tversky’s lottery task. Furthermore, our classical frequentist and Bayesian 

analyses of choice data converge to strongly support a compensatory, additive difference 

account in most instances of intransitive preference, rather than a noncompensatory, 

dimension difference threshold account. 
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Figure captions 

Figure 1  

The algebraic SAD model: overall subjective difference functions which predict adherence to, 

and violation of, transitivity: functions a and c predict intransitive cycles for some triples, 

whereas functions c and d predict adherence to transitivity 

 

Figure 2 

Areas of the SAD model parameter space predicting violation of WST and TI in the ranges -5 

< a1 < 5, and 0 < a0 < 5 for different lottery triples of Tversky’s lottery set 

 

Figure 3 

Areas of the SAD model parameter space predicting violation of WST and TI in the ranges -5 

< a1 < 5, and 0 < a0 < 5 in at least one triple 

 

Figure 4 

The algebraic DT model: overall subjective difference functions which predict adherence to, 

and violation of, transitivity: functions a and c predict intransitive cycles for some triples 

(SLS models), whereas functions b and d predict adherence to transitivity  

 

Figure 5 

The SAD model MLEs in the ranges -5 < a1 < 5, and 0 < a0 < 5 of participants across five 

data sets, showing, for each triple of Tversky’s lottery set, whether the MLEs adhere to, or 

violate, WST or TI, and whether the observed choice proportions do so 
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1. Tversky (1969): agreement between SAD model predictions and observed adherence 

to, and violation of, WST 

Table S1 reinforces how well the SAD model accounts for adherence to, and violation 

of, WST in Tversky’s participants one to six. It shows that there is very good agreement 

between predicted and empirical adherence to, and violations of, WST. Specifically, across 

these participants, there is agreement in 28 out of 30 combinations of triples and ranges of  -

a0/a1. The deviating cases were empirically obtained WST violations for triples ade, bcd, 

which were predicted to be transitive. 
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Table S1 

Tversky (1969), participants 1-6: number of participants with triples of choice 

proportions in line with predicted adherence to, or violation of, WST for three ranges 

of the  -a0/a1, function of the parameters of the SAD model (those not in line with 

predictions indicated by bold italic numbers). 

Lottery Triple 1= < t, -a0/a1 < 2 2= < t, -a0/a1 < 3 3 =< t, -a0/a1 < 4 

abc 1 0 0 

abd 0 2 0 

abe 0 0 1 

acd 0 2 0 

ace 0 3 1 

ade 0 2 1 

bcd 1 1 0 

bce 0 4 0 

bde 0 3 0 

cde 1 0 0 

Number of 

participants  

1 4 1 
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2. Bayes factor prior and posterior distributions 

The posterior distributions for all parameters corresponded well with the best fitting 

parameters obtained from the MLE procedure, as shown in Table S2. 

Table S2 

 Prior distributions used for calculating the BFs in Table 5a. Method correlation and mean 

difference columns show the correlation, and mean difference, between the mode of the 

posterior distribution for each parameter and the best fitting MLE parameter, across all 

participants for the SDT and SAD parameters  

 

Model Prior Transformation Method 

Correlation 

Method Mean 

Difference 

SDT 𝑡~𝐶𝑎𝑡(13 , 13 , 13) N/A   

    𝑠𝑐1~𝐵𝑒𝑡𝑎(1,1) 𝑐1 = 10 ∙ 𝑠𝑐1 − 5 0.997 -0.033 

    𝑠𝑐2~𝐵𝑒𝑡𝑎(1,1) 𝑐2 = 10 ∙ 𝑠𝑐2 − 5 0.988  0.086 

     

SAD 𝑠𝑎0~𝐵𝑒𝑡𝑎(1,1) 𝑎0 = 10 ∙ 𝑠𝑎0 − 5 0.961 -0.146 

    𝑠𝑎1~𝐵𝑒𝑡𝑎(1,1) 𝑎1 = 10 ∙ 𝑠𝑎1 − 5 0.990  0.049 

     

CCP 𝑝~𝐵𝑒𝑡𝑎(1,1) N/A   

     

M0 

 

𝑝𝑖~𝐵𝑒𝑡𝑎(1,1) N/A   

 

3. Robustness to prior specification 

To check how robust our BF conclusions were to our choice of uninformative prior, 

we conducted 3 additional comparisons. In comparison 2, the SDT model was re-

parameterized, so that a Beta(1,1) prior could be placed directly on the two probability 

parameters, similar to the specification of CCP and M0. All other models retained their 

original specification. In comparison 3, the CCP model was re-parameterized as an intercept-

only version of the SAD model, with the same uniform prior placed on the a0 parameter. All 

other models retained their original specification. Practically, this re-specification places less 
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prior weight on probabilities close to 0.5. In comparison 4, we removed the parameter range 

constraints in the SAD, SDT and intercept-CCP models, by placing a Normal(0, 2.5) prior on 

the a0, a1, c1 and c2 parameters. While this places more weight on values around 0, it keeps 

>95 percent of the prior mass between -5 and 5, while allowing for more extreme parameter 

values. Table S3 shows the number of participants, across all datasets, best fit by each model 

under each of these 4 comparisons, i.e. including the original. Participants are grouped 

together across studies based on whether they were predicted to: 1) violate transitivity (P); 2) 

not violate transitivity (Not P); or 3) no predictions could be made in their study (K). While 

there are some differences, the broad results are consistent across comparisons. 
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Table S3 

 Number of participants classified as best fit by SAD, SDT, CCP or M0, for each of our 

Bayesian comparisons. Prior specification and/or parameterization of the models differed 

slightly across comparisons (see text)  

 

P/Not Comparison SAD SDT CCP Sat 

K 

 

1- Original  16 3 6 5 

2- Probability SDT 14 7 6 3 

3- intercept-only CCP 16 3 6 5 

4- Normal(0, 2.5) prior 16 3 6 5 

Not P 

 

1- Original  8 3 18 2 

2- Probability SDT 5 6 18 2 

3- intercept-only CCP 8 3 18 2 

4- Normal(0, 2.5) prior 9 2 18 2 

P 

 

1- Original  20 5 2 2 

2- Probability SDT 15 10 2 2 

3- intercept-only CCP 20 5 2 2 

4- Normal(0, 2.5) prior 20 5 2 2 
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4. LR test and BF analysis of the four replications 

Montgomery (1977) 

Table S4 presents the frequentist analysis comparing the goodness of fit of the SAD 

and SDT models for Montgomery’s (1977) five participants who were predicted to violate 

WST.  The columns to the left present the MLE parameter values and goodness of fit 

statistics for the SDT model. The signs of c1 and c2 are opposite for all five participants, 

consistent with violation of WST. The asterisks indicate that the SDT model was not a good 

fit for three participants, since the LR test comparing it to M0 was significant (p < .05). The 

next columns show the equivalent statistics for the SAD model, which LR tests show was a 

good fit, consistent with violations of WST and TI, in four of the five cases. The penultimate 

columns show goodness of fit statistics for the CCP and M0 models. For participant 5, M0 

consistent with violation of both WST and TI, was the best fitting model.  The Category 

column shows the best-fitting model(s). ‘SAD and SDT’ is recorded in two cases because 

AIC tests did not identify one as being significantly better than the other. The final two 

columns show whether the model parameter MLEs were consistent with adherence to, or 

violation of WST and TI. For all five participants the best fitting model is consistent with 

violation of both. 

Table S5 presents the main findings of the BF analysis of the same data, which shows 

strong BF evidence supporting dimension-based models consistent with violations of WST 

and TI for four participants. Specifically, strong evidence in favor of the SAD model over M0 

in all four cases, with strong evidence also in favor of the SDT model over M0 in three of 

them. The BFs comparing the two models show strong support for SAD over SDT in three 

cases (BF > 3) and weak support in the other (2 > BF > 1). For the remaining participant 

there is strong evidence in favor of M0 consistent with violation of both WST and TI. The 

table also shows strong BF evidence against the three transitive models, CCP, WST and TI, 
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in all five cases. In summary, the BF analysis closely corresponds to the classical frequentist 

analysis, and in addition clarifies that for all five participants models consistent with violation 

of WST and TI are strongly supported in comparison with transitive models that require 

adherence to one or both of these conditions.
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Table S4 

 

Reanalysis of Montgomery (1977), r = 10: MLE parameter estimates and goodness of fit (-2lnLL) of the SDT/SLS model (left columns), the SAD 

model (middle columns), CCP and M0, (right, number of parameters in parentheses) 

 

  

Part. t c1 c2 SDT(3)  a0 a1 SAD (2) CCP (1) M0(10) Category WST TI 

1 2.5 1.53 -0.69 26.30  3.16 -1.13 25.08  44.09 21.25 SAD and SDT No No 

2 2.5 0.83 -1.95 37.82 *  3.40 -1.69 28.08  61.69 18.55 SAD  No No 

3 1.5 2.71 -1.10 31.20 *  4.83 -2.46 23.12  72.96 14.50 SAD  No No 

4 1.5 2.71 -1.95 21.17  5.00 -2.96 19.75  80.14 13.21 SAD and SDT No No 

5 3.5 0.17 -1.95 43.93 *  1.27 -0.64 42.04*  49.50 21.62 M0  No No 

Notes: Part. is participant number; t, c1 and c2 are the parameters, and SDT(3) is the goodness of fit (-2lnLL), of the SDT model (3 parameters); 

a1 and a2 are the parameters, and SAD(2) is the goodness of fit (-2lnLL), of the SAD model (2 parameters); * significant departure from 

M0, p < .05, according to likelihood ratio tests (7  df. for the SLS and 8 df for the SAD model);  CCP and M0 columns show the goodness 

of fit (-2lnLL) of those models; statistics in bold indicate the model(s) with a good and the best fit; the Category column shows the best-

fitting model(s), if both SAD and SDT are a good fit but the AIC test is inconclusive, this is indicated by ‘SAD and SDT’; The WST and 
TI columns show whether the best fitting model is consistent with adherence to (Yes) or violation of (No)  that condition. 
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Table S5 

Reanalysis of Montgomery (1977): Bayes Factors for comparisons of models  SAD, SDT, CCP, WST and TI with M0  

Participant M0 SAD SDT CCP WST TI Category WST TI 

1 1 62.65 22.56 0.12 0.02 0.01 SAD No No 

2 1 18.02 0.14 1.94×10-5 0.13 0.03 SAD No  No 

3 1 172.46 3.08 6.95×10-8 0.02 0.00 SAD No No 

4 1 730.31 613.57 1.92×10-9 0.01 0.00 SAD (Weak) No  No 

5 1 0.01 0.01 0.01 0.10 0.07 M0 No No 

Notes: Part. is participant number; the Category column shows the model with strongest support compared to M0 (BF > 3), if more than one 

model has strong support compared to M0, and the BFs do not show one having strong support over the other, the model with the 

strongest support is listed as having moderate (BF > 2) or weak (BF > 0) support; The WST and TI columns show whether the best fitting 

model is consistent with adherence to (Yes) or violation of (No)  that condition.  
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Regenwetter et al. (2011) 

 Table S6 presents the analysis of goodness of fit of the SAD and SDT models for 

Regenwetter et al.’s (2011) Cash I lottery set, which directly replicates Tversky’s (1969). The 

participants highlighted in gray (n = 6) are those predicted to violate WST because in set 

Cash II they switched from majority choice for the better S when dimension difference was 

smallest, to the better P in the three pairs where it was largest. It can be seen that the 

prediction of violation of WST was only partially successful. In two of the six cases, as 

predicted, the SAD model was a good and the best fit, with 1 < -ao/a1 < 4, consistent with 

violations of WST as described in Table 3. In one of these two cases, the SDT model 

predicting violation of WST was also a good fit, and the AIC test was inconclusive between 

these two models. However, for the other four participants models consistent with adherence 

to WST were a good, and the best fit; the SAD model in two cases, CCP in one, and M0 in the 

other. 

The non-highlighted cases (n = 12) were not predicted to violate WST on this 

criterion, and the table shows that models consistent with adherence to WST were supported 

in most cases. Mean cps (and other criteria) showed that in five cases the better S, and in one 

case the better P, was chosen almost all the time, which was predictable from the Cash II 

responses. The other six cases in this subset were subjected to probabilistic analysis. Of these, 

models consistent with adherence to WST were a good and the best fit for three participants; 

the CCP model in one case, the SAD model in another, and M0 in the third. However, models 

consistent with violations of WST were a good and the best fit for three participants in this 

subgroup; in one case the SAD model, in another the SAD and SDT models, with the AIC 

test being inconclusive between them, and in the third case M0.  

Turning to the TI condition, models consistent with adherence to this condition were a 

good and the best fit for 16/18 participants, seven being the SAD model, eight the CCP 
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model, and one M0. For the remaining two participants the best fitting model was M0 

consistent with violation of TI. 

Table S7 presents the main findings of the BF analysis of the same data. These were 

in close agreement with those of the frequentist analysis. That is, the prediction of violation 

of WST was partially successful, with strong evidence supporting the SAD or SDT model 

predicting violation of WST over M0 for 2/6 participants. Also, for the cases not predicted to 

violate WST, only in 2/12 cases was there strong evidence supporting the models consistent 

with violation of WST. For both of these participants the SAD model had strong support, 

with strong evidence also supporting the SDT model in one of these. With respect to the TI 

condition, there was strong BF evidence for the models consistent with adherence to TI for 16 

participants, eight being SAD and eight being CCP. Conversely, there was evidence 

supporting models consistent with violation of TI for two participants. 

Overall, then, the two analyses were consistent with each other with respect to support 

for models consistent with violation of WST. For 4/18 participants the SAD model consistent 

with violations of WST was a good and the best fit on the frequentist LR analysis, and there 

was also strong BF support for this model over M0. With respect to TI, there were only 2/18 

participants for whom a model consistent with violation of this was the best model on the LR 

analysis, M0 in both cases. The BF analysis was similar; for one participant there was strong 

support for the SAD and SDT models consistent with violation of TI, and for another there 

was strong BF support for M0 consistent with violation of TI.
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Table S6 

Reanalysis of Regenwetter et al. (2011) Cash I, r = 20: MLE parameter estimates and goodness of fit (-2lnLL) of the SDT model (left columns),  

the SAD model (middle columns), CCP and M0, (right, number of parameters in parentheses) 

 

Part. t c1 c2 SDT(3) a0 a1 SAD (2) CCP (1) M0 (10) Category WST TI 

1 1.5 0.10 -1.44 44.77 1.05 -0.98 39.11 69.03 30.82 SAD (and SDT) No Yes 

2 1.5 1.24 1.73 43.00* 1.10 0.21 43.54* 44.80 26.76 M0 Yes Yes 

3          CCP Yes Yes 

4 2.5 0.26 -2.20 87.03 * 2.12 -1.30 74.7* 129.00 26.85 M0 No No 

5          CCP Yes Yes 

6 1.5 0.05 -2.40 42.84 * 1.90 -1.84 34.27 90.25 24.51 SAD  No Yes 

7 3.5 -2.20 -2.94 26.37 -1.90 -0.18 26.44 26.98 24.06 CCP Yes Yes 

8          CCP Yes Yes 

9 3.5 -0.57 -0.41 46.77 -0.51 -0.02 46.87 46.89 33.18 CCP Yes Yes 

10          CCP Yes Yes 

11          CCP Yes Yes 

12 1.5 0.51 -1.10 49.12 * 1.40 -0.96 44.23 77.51 31.28 SAD No Yes 

13 2.5 0.00 -1.49 45.29 0.32 -0.47 46.32 55.39 32.54 SAD Yes Yes 

14          CCP Yes Yes 

15 1.5 0.00 -1.49 46.44* 0.13 -0.65 35.57 48.28 30.58 SAD  Yes Yes 

16 2.5 -3.30 -1.39 34.87* -4.38 0.85 36.23* 48.01 15.35 M0  Yes No 
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Notes: see Table S4 for explanation of columns; Gray highlight denotes cases predicted to violate WST from Cash II choice proportions; 

cases with mean choice proportion > .9 or < .1 classified without further analysis. 

  

17 1.5 0.97 0.00 45.73 1.35 -0.48 45.03 56.01 33.01 SAD and SDT No Yes 

18 2.5 -.59 -2.20 42.08 0.29 -0.52 37.90 48.45 32.42 SAD Yes Yes 
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Table S7 

Reanalysis of Regenwetter et al. (2011), Cash I: Bayes Factors for comparisons of models  SAD, SDT, CCP, WST and TI with M0  

Participant M0 SAD SDT CCP WST TI Category WST TI 

1 1 113.66 5.69 0.00 3.65 12.73 SAD No Yes 

2 1 13.25 28.97 212.10 8.43 13.36 CCP Yes Yes 

3       CCP Yes Yes 

4 1 2.19×-6 3.35×10-9 1.40×10-16 0.03 0.12 M0 No No 

5       CCP Yes Yes 

6 1 2418.09 13.18 3.22×10-8 1.72 5.77 SAD No Yes 

7 1 119322.4 302768.5 1195029 8.52 8.75 CCP Yes Yes 

8       CCP Yes Yes 

9 1 1.52 3.95 93.79 3.10 9.38 CCP Yes Yes 

10       CCP Yes Yes 

11       CCP Yes Yes 

12 1 7.726 0.43 2.12×10-5 0.71 4.17 SAD (Weak) No Yes 

13 1 2.26 9.92 1.33 2.91 12.96 TI (weak) Yes Yes 
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14       CCP Yes Yes 

15 1 661.90 463.02 42.02 6.89 18.76 SAD (Weak) Yes Yes 

16 1 749.08 1603.98 30.88 7.88 0.00 SDT (Weak) Yes No 

17 1 3.85 2.3 1.00 0.09 1.06 SAD (Weak) No Yes 

18 1 163.29 90.44 41.82 5.28 19.15 SAD (Weak) Yes Yes 

Notes: see Table S5 for explanation of columns; Gray highlight denotes cases predicted to violate WST from Cash II choice proportions; 

cases with mean choice proportion > .9 or < .1 classified without further analysis. 



88 

 

88 

 

Cavagnaro and Davis-Stober (2014) 

 In comparison to the above, a similar analysis for Cavagnaro and Davis-Stober’s 

(2014) data set found violation of WST to be rather predictable. In Table S8, the highlighted 

cases (n = 10) are those predicted to violate WST by choices in the parallel time pressure 

condition, using the criteria described earlier. The table shows that for most of these (9/10) a 

model consistent with violations of WST was a good and the best fit, in seven cases the SAD 

model and in two M0. The SDT model was also a good fit in six of these cases. The AIC tests 

comparing the fit of the SAD and SDT models supported the SAD model in three cases but 

did not differentiate between them in the other three. In the remaining case, the SAD model 

consistent with adherence to WST was a good and the best fit. 

In the subset not predicted to violate WST (n = 19), this was confirmed in most cases. 

For seven participants the better S, and in one case the better P, was chosen on nearly all 

occasions, a transitive pattern that was predictable from choices in the time pressure 

condition. The remaining 12 cases were subjected to probabilistic analysis. Of these, seven 

participants were best fitted by models consistent with adherence to WST, either the SAD 

model (three cases), the CCP model (three cases) or M0. (one case). However, for five 

participants, models consistent with violations of WST were a good, and the best fit, relative 

to M0. For two participants both the SAD and SDT were well-fitting models, with AIC tests 

finding stronger support for the SAD model in one case, and for three participants M0 was the 

best fitting model.  

Table S9 presents the results of the BF analysis of the same data, which correspond 

closely to the above-described LR and AIC test analysis. For seven of the ten participants 

predicted to violate WST, there is strong BF evidence supporting the SAD and SDT models 

making that prediction, relative to M0. For six of these, BFs strongly supported the SAD over 

the SDT model. Thus, the BFs differentiated between these two models in more cases than 
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did the AIC tests following the LR tests. In addition, there were minor differences between 

the two analyses for the 19 participants not predicted to violate WST. Whereas in the 

classical frequentist analysis there were only two participants for whom a dimensional model 

consistent with violations of WST was a good and the best fit, there was strong BF evidence 

in support of such models for three participants. 

Looking at the sample overall, a dimensional model consistent with violations of 

WST (either SAD, SDT or both) was a good and the best fit for 31.0% of participants on the 

classical statistical analysis, with strong BF evidence in favor of such models for 37.9%. In 

addition, M0 consistent with violation of WST was the best fitting model for 17.2% of 

participants and had strong BF support for 6.9%.      

Turning to the TI condition, again there were minor differences between the LR and 

BF analyses. In the former, the SAD or SDT model consistent with violation of TI were a 

good, and the best fit, for 6/29 (20.7%) of participants, and had strong BF support for 11/29 

(37.9%). In addition, M0 consistent with violation of TI was the best fitting model for 4/29 

(13.8%) of participants and had strong BF support in 2/29 (6.9%) of cases.  
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Table S8 

Reanalysis of Cavagnaro & Davis-Stober (2014) Set 1, no time pressure (r = 12): MLE parameter estimates and goodness of fit (-2lnLL) of the 

SDT model (left columns), the SAD model (middle columns), CCP and M0, (right, number of parameters in parentheses) 

 

Part. t c1 c2 SDT(3) a0 a1 SAD (2) CCP (1) M0 (10) Category WST TI 

1 3.5 -0.91 -5.00 33.21 0.17 -0.67 32.61  40.68 24.38 SDT Yes Yes 

2 1.5 1.47 -0.51 35.2 2.42 -1.1 30.46  58.77 26.72 SAD No No 

3 1.5 1.21 -1.95 50.97 * 3.54 -2.36 43.42*  104.81 16.73 M0 No No 

4 1.5 0.00 -3.00 19.53 4.99 -5.00 13.01  66.08 13.308 SAD Yes Yes 

5          CCP Yes Yes 

6          CCP  Yes Yes 

7 1.5 0.00 -3.00 30.2 * 0.93 -1.80 30.03*  48.56 13.84 M0  No Yes 

8 1.5 0.60 -3.00 20.53 3.93 -3.41 24.19  84.32 14.85 SAD and SDT No No 

9 1.5 1.34 -0.22 49.03 * 2.08 -0.86 45.24*  63.99 25.88 M0 No No 

10 2.5 -1.16 -0.69 38.16 -1.26 0.16 38.92  39.30 25.57 CCP Yes Yes 

11          CCP  Yes Yes 

12 2.5 0.64 -1.25 39.81 2.19 -1.06 33.24  59.46 26.65 SAD No No 

13 2.5 -1.61 -5.00 22.09 0.38 -1.55 19.25  32.37 15.88 SAD Yes Yes 
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 14 2.5 0.05 -2.08 33.26 1.30 -0.93 33.73  52.42 25.59 SAD and SDT  No Yes 

15 1.5 0.51 -2.40 42.2 * 2.89 -2.34 34.32*  84.00 16.74 M0 No No 

16 3.5 0.61 -1.10 35.95 1.61 -0.57 34.04  43.04 27.97 SAD and STD  No Yes 

17          CCP  Yes Yes 

18 1.5 1.77 -2.83 29.26 * 5.00 -3.46 24.16  117.26 13.05 SAD No No 

19 1.5 0.42 -2.60 28.89 2.57 -2.19 26.91  71.19 18.86 SAD No No 

20 1.5 -1.61 -2.83 31.70 * -0.71 -0.88 30.17*  35.57 13.13 M0 Yes Yes 

21          CCP Yes Yes 

22          CCP Yes Yes 

23          CCP Yes Yes 

24          CCP Yes Yes 

25 1.5 0.69 -0.89 38.13 1.42 -0.86 37.20  54.82 27.00 SAD and SDT  No Yes 

26 1.5 1.77 -0.69 36.32 2.99 -1.43 29.39  70.31 25.22 SAD  No No 

27 1.5 0.00 -3.00 24.09 1.96 -2.46 17.75  46.68 16.44 SAD Yes Yes 

28 3.5 -0.49 -1.61 32.08 -0.22 -0.19 33.54  34.46 28.40 CCP Yes Yes 

29 1.5 1.21 -3.00 34.21* 4.36 -3.25 36.88*  110.31 13.16 M0  No No 

Notes: see Table S4 for explanation of columns; Gray highlight denotes cases predicted to violate WST from the time pressure condition; cases 

with cp > .9 or < .1 classified without further analysis 
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Table S9 

Reanalysis of Cavagnaro & Davis-Stober (2014) Set 1, no time pressure (r = 12): Bayes Factors (BFs) for SAD, SDT, CCP, WST and TI with 

M0  

Part. SDT SAD CCP WST TI Category WST TI 

1 50.05 40.21 20.17 5.8 15.91 SDT (weak) Yes Yes 

2 6.62 105.35 0.00 0.03 0.20 SAD No No 

3 0.00 0.34 2.64 ×10-13 0.07 0.00 M0 No No 

4 373888 1906215 5.58×10×-5 4.90 6.32 SAD Yes Yes 

5      CCP Yes Yes 

6      CCP Yes Yes 

7 8730.15 451.93 0.31 7.11 6.02 SDT Yes Yes 

8 71034.61 8540.66 6.76×-9 1.07 0.23 SDT No No 

9 0.01 0.06 0.00 0.24 0.32 M0 No No 

10 3.50 1.31 41.05 3.25 1.00 CCP Yes Yes 

11      CCP Yes Yes 

12 0.77 25.64 0.00 0.41 0.68 SAD No No 

13 15411.74 102979.4 936.97 8.40 17.56 SAD Yes Yes 

14 21.61 20.23 0.06 1.34 4.02 SDT (weak) No No 



93 

 

93 

 

15 0.26 37.69 8.24×10-9 1.33 1.45 SAD No Yes 

16 9.36 13.58 6.94 0.50 2.25 SAD (weak) No Yes 

17      CCP Yes Yes 

18 279.00 2524.83 5.25×10-16 0.01 0.00 SAD No No 

19 216.62 1480.27 4.91×10-6 1.69 1.72 SAD No No 

20 227.79 344.42 178.06 8.12 7.59 SAD (weak) Yes Yes 

21      CCP Yes Yes 

22      CCP Yes Yes 

23      CCP Yes Yes 

24      CCP Yes Yes 

25 1.52 3.26 0.02 0.25 1.11 SAD (weak) No Yes 

26 4.70 218.70 8.41×10-6 0.01 0.02 SAD No No 

27 22865 250085.1 0.86 7.45 16.20 SAD Yes Yes 

28 67.90 17.12 496.83 2.52 12.46 CCP Yes Yes 

29 22.75 10.52 1.66×10-14 0.09 0.00 SDT (weak) No No 

Notes: see Table S5 for explanation of columns; Gray highlight denotes cases predicted to violate WST from the time pressure condition; cases 

with cp > .9 or < .1 classified without further analysis
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Kalenscher et al. (2010) 

Table S10 presents the comparison of goodness of fit of the SAD and SDT models for 

Kalenscher et al.’s (2010) participants (N = 30). Two participants chose the better S, and two 

chose the better P, almost all the time. These four were categorized as transitive (CCP model) 

without subsequent probabilistic analysis. For the remaining 26 participants, the table shows 

that the SDT model was a good fit in only six cases. For four of these, the signs of c1 and c2 

were opposite, indicating SLS cases, i.e. the best-fitting model was consistent with violations 

of WST. The SAD model, on the other hand, was a good, and the best fit in 12 cases, with 

three being consistent with adherence to WST, and nine consistent with violations. Overall, 

then, a dimension-based model consistent with violations of WST was a good, and the best fit 

in 11 cases. AIC tests found that there was strong support for the SAD over the SDT model in 

8 of these, with strong support for the SDT over the SAD model in two. In the remaining case 

both models were a good fit and the AIC test was inconclusive. The unconstrained model, 

M0, was the best fit in 11 cases, and overall, transitive models were a good and the best fit in 

the remaining eight cases, three being the SAD model and five CCP. With respect to the TI 

condition, a dimensional model consistent with violation of the TI condition was a good and 

the best fit for 6/30 participants, lower than the 11/30 where this was the case with respect to 

WST. 

Table S11 presents the results of the BF analysis for the same data. The findings are 

broadly consistent with the LR analysis, though with some differences, mainly because there 

was strong BF evidence in favor of M0 for only eight participants, whereas on the LR 

analysis it was the best fitting model in 11/30 cases. Correspondingly, there was strong 

evidence in favor of both dimensional models consistent with violations of transitivity for a 

few more participants, 13/30 (43.3%) with respect to WST, and 6/30 (20.0%) with respect to 

TI, which is a little more support for these models than in the corresponding LR analysis.  
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Table S10 

Reanalysis of Kalenscher et al. (2010), r = 20: MLE parameter estimates and goodness of fit (-2lnLL) of the SDT model (left columns), the SAD 

model (middle columns), CCP and M0, (right, number of parameters in parentheses) 

Part. t c1 c2  SDT(3) a0 a1 SAD (2) CCP (1) M0 (10) Category WST TI 

1 1.5 1.47 -1.24  51.58 * 2.93 -1.66 44.43* 122.39 27.22 M0 No No 

2 1.5 2.90 -0.10  66.11 * 4.87 -1.89 37.63* 132.12 20.84 M0 No No 

3           CCP Yes Yes 

4 1.5 2.07 -2.51  36.89 * 5.00 -3.28 32.17 185.89 19.19 SAD No No 

5 2.5 0.99 0.00  48.68 * 1.77 -0.54 45.48 58.21 31.98 SAD No Yes 

6 1.5 0.73 -2.64  46.39 * 3.26 -2.56 40.86* 134.35 21.27 M0 No No 

7 2.5 1.73 -0.77  56.67 * 4.42 -1.64 31.98 111.03 25.41 SAD No No 

8 1.5 -0.85 -.10  49.13 * -0.67 0.20 57.17* 59.21 33.18 M0 No No 

9 3.5 1.73 -2.20  32.23 3.30 -0.97 51.57* 80.32 27.25 SDT No No 

10 2.5 1.06 -2.02  55.49 * 3.43 -1.61 47.27* 127.48 26.773 M0 No No 

11           CCP Yes Yes 

12 3.5 1.49 -2.94  44.37 * 3.87 -1.26 43.00* 94.14 25.94 M0 No No 

13 2.5 2.46 -0.34  47.01 * 4.80 -1.54 39.82* 104.14 22.49 M0 No No 

14 1.5 1.03 -0.34  55.84 * 1.46 -0.64 57.79* 76.37 31.70 M0 No No 
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15           CCP Yes Yes 

16 2.5 0.17 -0.48  47.16 0.42 -0.22 49.04 51.47 33.81 SAD and SDT No Yes 

17 1.5 1.03 -0.55  45.28 1.20 -0.57 57.58* 72.54 32.45 SDT No Yes 

18 2.5 -1.39 -2.64  32.62 -0.54 -0.62 30.86 38.99 27.25 SAD Yes Yes 

19 1.5 1.31 0.00  48.16 * 1.80 -0.62 45.78 62.63 31.72 SAD No Yes 

20 2.5 2.56 -0.41  56.73 * 5.00 -1.65 32.61 119.64 18.84 SAD No No 

21 1.5 0.46 0.00  50.62 * 0.18 0.08 48.57 48.90 33.64 CCP Yes Yes 

22 1.5 0.56 -1.29  42.73 1.58 -1.11 38.80 79.10 31.34 SAD No Yes 

23 2.5 0.00 -1.87  51.56* 0.20 -0.57 41.57 52.95 31.36 SAD Yes Yes 

24 3.5 0.45 -1.39  57.68 * 1.21 -0.46 60.50* 70.42 32.28 M0 Yes Yes 

25 1.5 0.97 -0.89  56.22 * 2.19 -1.22 41.54 93.52 29.47 SAD No No 

26 3.5 1.22 0.00  56.16* 1.53 -0.21 58.52* 60.20 28.00 M0 Yes No 

27           CCP Yes Yes 

28 1.5 0.15 -2.51  43.84 * 2.14 -2.00 36.53 98.67 23.82 SAD No Yes 

29 1.5 0.00 -2.20  39.52 0.63 -1.12 32.78 58.79 26.84 SAD Yes Yes 

30 3.5 1.49 -0.20  50.67* 1.79 -0.26 60.09* 62.40 26.84 M0 No No 

 

Notes: See Table S4 notes for explanation of column contents. 
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Table S11 

Reanalysis of Kalenscher et al. (2010), r = 20: ): ): Bayes Factors (BFs) for SAD, SDT, CCP and WST  with M0  

Part.  SDT SAD CCP WST TI Category WST TI 

1  0.14 10.15 3.94×10-15 0.02 0.00 SAD No No 

2  0.00 199.04 2.83×10-17 0.00 0.00 SAD No No 

3       CCP Yes Yes 

4  428.81 2895.91 6.25×10-29 0.00 0.00 SAD No No 

5  0.82 3.37 0.32 0.91 2.27 SAD (Weak) No Yes 

6  2.63 111.58 9.15×10-18 0.16 0.02 SAD No No 

7  0.013 4364.91 1.05×10-12 0.00 0.00 SAD No No 

8  0.35 0.01 0.20 0.10 2.14 TI (Moderate) No Yes 

9  5650.57 0.23 4.46×10-6 0.00 0.00 SDT No No 

10  0.025 2.30 3.04×10-16 0.00 0.00 SAD (moderate) No No 

11       CCP Yes Yes 

12  15.56 18.24 4.70×10-9 0.00 0.00 SAD (weak) No No 

13  1.83 66.55 3.01×10-11 0.00 0.00 SAD No No 

14  0.01 0.01 3.84×10-5 0.34 1.64 TI (Weak) No Yes 

15       CCP Yes Yes 



99 

 

 

 

16  1.29 0.49 9.85 0.52 8.66 CCP (Weak) Yes Yes 

17  2.50 0.01 0.00 0.32 1.29 SDT (Moderate) No Yes 

18  5768.23 10008.54 3711.1 8.48 18.67 SAD (Weak) Yes Yes 

19  0.78 2.89 0.036 0.45 1.21 SAD (Weak) No Yes 

20  0.015 947.85 1.29×10-14 1.45 0.00 SAD No No 

21  8.08 0.62 34.78 1.56 8.95 CCP Yes Yes 

22  9.64 128.66 9.61×10-6 0.39 5.79 SAD No Yes 

23  30.37 28.17 4.24 6.84 19.83 SDT (weak) Yes Yes 

24  0.01 0.00 0.00 1.82 6.41 TI Yes Yes 

25  0.01 32.72 7.24×10-9 0.48 1.31 SAD No No 

26  0.03 0.01 0.11 5.29 0.63 WST Yes No 

27       CCP Yes Yes 

28  8.38 828.04 4.85×10-10 3.95 1.89 SAD No Yes 

29  503.56 3858.61 0.21 7.96 19.40 SAD Yes Yes 

30  0.31 0.00 0.03 2.68 0.02 WST (Moderate) No No 

 

Notes: See Table S5 notes for explanation of column contents.
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5. Goodness of fit of WST: five data sets 

As discussed in the Introduction section, goodness-of-fit tests of WST with more recent 

inequality-constrained methods are on the published record only for the data of Regenwetter 

et al. (2010, 2011) In Tables S12-16 we report the frequentist p-values for goodness of fit for 

five data sets, along with Bayes factors relative to the unconstrained model, and Bayesian p-

values. These were computed by the methods of Zwilling et al. (2019) with the QTest 2.1 

software, default sampling (Gibbs size 5000, burnsize 1000, Chi-square weights simulation 

sample size 1000, Random seed 1; in parentheses, random seed 838608). 

 

Table S12  

Goodness-of-fit and Bayes factors for WST, Tversky (1969) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:  

(1) verbal description of the frequentist p: very unlikely, p < .05; unlikely, .15 > p > 

.05; likely/very likely, p >.15; definitely, p = 1 (that the data could be from the 

WST model).  

Participant Freq. p WST: BF 

1 .0054 

(.0055) 

Very unlikely .0013 

(.0013) 

2 .1021 

(.0973) 

Unlikely 

 

.0317 

(.0317) 

3 .0172 

(.0164) 

Very unlikely .0154 

(.0154) 

4 .1536 

(.1622) 

Unlikely 

 

.2599 

(.2599) 

5 .0903 

(.0936) 

Unlikely 

 

.0465 

(.0465) 

6 .0197 

(.0200) 

Very unlikely .0198 

(.0198) 

7 .4698 

(.4704) 

Very likely 

 

1.9765 

(1.9765) 

8 1.000 

(1.000) 

Definitely 

 

6.6653 

(6.6653) 
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Table S13  

Goodness-of-fit and Bayes factors for WST, Montgomery (1977) 

 

  

Participant Freq. p WST: BF 

1 .0484 Very unlikely .0163 

2 .3361 Likely .1343 

3 .0314 Very unlikely .0247 

4 .0231 Very unlikely .0055 

5 .3863 Likely .1052 
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Table S14 

Goodness-of-fit and Bayes factors for WST, Regenwetter et al. (2011), Cash I 

 

  Participant Freq. p WST BF 

1 1 Definitely 3.6474 

2 1 Definitely 8.4313 

3 1 Definitely 8.5333 

4 .0069 Very unlikely 0.0282 

5 1 Definitely 8.5323 

6 .6097 Likely 1.7215 

7 1 Definitely 8.5248 

8 1 Definitely 8.5333 

9 1 Definitely 3.1025 

10 1 Definitely 8.5322 

11 1 Definitely 8.5333 

12 .5551 Likely 0.7099 

13 .6017 Likely 2.9069 

14 1 Definitely 8.5333 

15 1 Definitely 6.8948 

16 1 Definitely 7.8777 

17 .2562 Likely 0.0855 

18 1 Definitely 5.2864 
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Table S15  

Goodness-of-fit and Bayes factors for WST, Cavagnaro and Davis-Stober (2014), Set 1, no 

time pressure  

 

Participant Freq. p WST BF 

1 1 Definitely 5.7885 

2 .0401 Very 

unlikely 

0.0281 

3 .0548 Unlikely 0.0708 

4 1 Definitely 4.8984 

5    

6    

7 1 Definitely 7.1114 

8 .6596 Likely 1.0766 

9 .0305 Very 

unlikely 

0.2378 

10 1 Definitely 3.2516 

11    

12 .2039 Likely 0.4135 

13 1 Definitely 8.3992 

14 .6661 Likely 1.3431 

15 .5106 Likely 1.3003 

16 .4586 Likely 0.5016 

17    

18 .0745 Unlikely 0.0143 

19 .6785 Likely 1.6967 

20 .1693 Likely 8.1225 

21    

22    

23    
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24    

25 .1478 Unlikely 0.2471 

26 .0547 Very 

unlikely 

0.0143 

27 1 Definitely 7.4541 

28 1 Definitely 2.5228 

29 .0676 Unlikely 0.0854 
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Table S16 

Goodness-of-fit and Bayes factors for WST, Kalenscher et al. (2010) 

 

Participant Freq. p WST: BF 

1 0.0185 Very unlikely 0.0196 

2 0.0001 Very unlikely 0.0000 

3 1.0000 Certainly 8.5241 

4 0.0007 Very unlikely 0.0001 

5 0.3956 Likely 0.9141 

6 0.2994 Likely 0.1603 

7 0.0000 Very unlikely 0.0000 

8 0.1575 Likely 0.1041 

9 0.0000 Very unlikely 0.0009 

10 0.0027 Very unlikely 0.0022 

11 1.0000 Certainly 8.5295 

12 0.0000 Very unlikely 0.0001 

13 0.0002 Very unlikely 0.0005 

14 0.5985 Likely 0.3410 

15 1.0000 Certainly 8.5270 

16 0.4958 Likely 0.5229 

17 0.2996 Likely 0.3210 

18 1.0000 Certainly 8.4840 

19 0.3956 Likely 0.4488 

20 0.6606 Likely 1.4513 

21 1.0000 Certainly 1.5626 

22 0.1467 Unlikely 0.3903 

23 1.0000 Certainly 6.8456 

24 1.0000 Certainly 1.8234 

25 0.2781 Likely 0.4765 
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26 1.0000 Certainly 5.2870 

27 1.0000 Certainly 8.5322 

28 1.0000 Certainly 3.9544 

29 1.0000 Certainly 7.9644 

30 0.2904 Likely 2.6807 
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5. Descriptive and preliminary inferential statistics 

 In reviewing these data sets we found it instructive to begin with an exploratory 

descriptive analysis of each individual set of ten binary choice proportions. We are not alone 

in this approach; Tukey (1980), for example, advocates the exploration and description of 

data alongside, or in advance of, advanced, model-based statistical analysis. The descriptive 

measures we find most useful here are the means and 95% confidence intervals for the ten 

choice proportions (cps) of the set, and the unstandardized regression coefficient measuring 

the linear relationship between dimension difference and choice proportion. In addition, we 

note the cps outside the confidence interval, the probability level of the regression coefficient, 

and the number of violations of WST and TI. The exploratory analysis identifies cases with 

minimal choice variability that could be classified on the basis of a simple decision model 

with a very low error rate; where mean cp is very low or very high, with many cps zero or 

one, cases are classified as ‘take the best S’ or ‘take the best P’. In these cases, probabilistic 

model fitting is neither necessary nor appropriate. 

 Table S17 presents the exploratory analysis of Tversky’s (1969) eight participants 

who undertook the second stage of his lottery study. Mean cp ranged from .43 to .72, 

indicating that probabilistic modelling is appropriate in all cases. There is a significant linear 

relationship between dimension difference and cp in seven cases, with only participant eight 

being a positive relationship. The first six participants exhibit between three and seven 

violations of TI and WST. Descriptively, then, the choices of the first six participants are in 

line with expectations from a dimensional model predicting intransitive preferences. Note 

that this is not merely a subjective impression, it is based on these objective descriptive 

measures.  

The exploratory analyses of three of the other data sets are presented in tables S18, 

S119 and S20. Some of the main observations from these analyses are as follows. 



108 

 

 

 

Montgomery’s (1977) five participants (Table S13), and four of Regenwetter et al.’s (2011) 

18 participants (Table S14), were in line with expectations from a dimensional model 

predicting intransitive preferences. Most of the latter’s other cases were consistent with a 

CCP model (e.g., no more than two outlier cps, and cps not sensitive to change in dimension 

differences), with six choosing either the higher P or the higher S nearly all the time. 

Cavagnaro and Davis-Stober’s (2014) 29 participants (Table S15) fell into three groups: (a) 

in line with expectations from a dimensional model predicting intransitive preferences (12); 

(b) in line with expectations from a dimensional model describing transitive preferences (6); 

or (c) choice of either the higher P or the higher S nearly all the time (6 participants), or 

otherwise consistent with a CCP model (5). Since a substantial minority of participants 

exhibited choices consistent with a dimensional model describing violations of WST, we 

were motivated to move to the next stage of analysis, evaluation of the goodness of fit of the 

SAD model. 
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Table S17 

Reanalysis of Tversky (1969): descriptive and preliminary inferential statistics 

 

Part. mean 

cp 

CI N 

out. 

B p N WST N TI 

 1 .62 .40-.80 3 -0.21 .001 5 6 

2 .53 .35-.75 5 -0.13 .015 3 1 

.3 .69 .50-.85 4 -0.20 .001 4 7 

4 .43 .25-.65 5 -0.23 .001 2 2 

5 .60 .40-.80 2 -0.10 .029 4 1 

6 .72 .55-.90 2 -0.19 .001 3 5 

7 .59 .40-.80 0 0.02 .596 1 0 

8 .70 .50-.85 1 0.10 .005 0 0 

 

 

 

Notes: 

(1) Part., participant number 

(2) Mean cp, mean choice proportion of the row lottery chosen over the column lottery. 

(3) CI, confidence interval, the lower and upper bound of choice proportion for 95% CI for 

the mean cp. 

(4) N outliers, number of choice frequencies outside the CI for the mean cp. 

(5) B is the slope of the regression equation, B unit change in cp for 1 unit change in level of 

difference (if B = .08, for every change difference of 1, choice proportion changes by 7.5%) 

(6) p is the probability of observed B under H0: B = 0. 

(7) N WST, number of triads out of 10 violating WST. 

(8) N TI, number of triads out of ten violating TI. 
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Table S18 

Reanalysis of Montgomery (1977), r = 10: descriptive and preliminary inferential statistics 

 

Part. mean 

cp 

CI N 

out. 

B p N WST N TI 

 1 .68 .40 - .90 3 -.22 .001 3 7 

2 .20 .30 - .80 5 -.30 .001 2 6 

.3 .52 .30 - .80 6 -.36 .001 3 8 

4 .45 .20 - .70 7 -.37 .001 3 7 

5 .48 .20 - .70 3 -.16 .078 2 3 

 

 

 

Notes: see Table S1 

 

  



111 

 

 

 

Table S19 

Reanalysis of Regenwetter et al. (2011), r = 20: descriptive and preliminary inferential 

statistics 

 

Part. mean 

cp 

CI N 

out. 

B p N WST N TI 

 1 .32 .15-.50 5   -.17 .006 0 0 

2 .82 .65-.95 2     .01 .291 0 0 

.3 .01 .00-.05 0    -.01 .141 0 0 

4 .42 .20-.60 8   -.24 .017 2 4 

5 .04 .00-.10 0    -.02 .273 0 0 

6 .26 .10-.40 5    -.11 .002 1 1 

7 .10 .00-.20 0    -.02 .217 0 0 

8 .02 .00-.10 1    -.02 .207 0 0 

9 .37 .20-.60 2    -.01 .912 0 0 

10 .07 .00-.15 0    -.04 .077 0 0 

11 .03 .00-.10 1     -.03 .142 0 0 

12 .40 .20-.60 4    -.19 .002 2 2 

13 .36 .15-.55 0    -.10 .052 1 0 

14 .99 .95-1.00 0    .01 .141 0 0 
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15 .25 .10-.40 2   -.10 .003 0 0 

16 .09 .00-.20 2     .07 .066 0 4 

17 .59 .40-.80 1  -.11 .018 2 3 

18 .34 .15-.55 1   -.10 .004 0 0 

 

Notes: see Table S1; Gray: predicted to violate WST 
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Table S20 

Reanalysis of Cavagnaro and Davis-Stober(2014)): descriptive and preliminary inferential 

statistics 

 

Part. mean 

cp 

CI N 

out. 

B p N WST N TI 

 1 .26 .08-.50 1 -.11 .013 0 0 

2 .55 .33-.83 2 -.33 .001 2 5 

.3 .38 .17-.67 8 -.30 .004 2 4 

4 .20 .00-.50 3 -.20 .003 0 0 

5 .07 .00-.17 1 -.07 .057 0 0 

6 .08 .00-.17 0 -.01 .185 0 0 

7 .14 .00-.33 2 -.12 .030 0 1 

8 .31 .08-.58 8 -.25 .002 3 3 

9 .58 .33-.83 3 -.19 .024 3 3 

10 .27 .08-.50 0   .03 .549 0 2 

11 .03 .00-.08 1 -.00 .154 0 0 

12 .52 .25-.75 3 -.23 .001 2 4 

13 .12 .00-.25 0 -.09 .001 0 0 

14 .39 .17-.67 1 -.18 .002 2 1 
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15 .30 .08-.58 5 -.25 .009 1 2 

16 .63 .42-.83 0 -.10 .008 2 0 

17 .05 .00-.17 1 -.05 .128 0 0 

18 .37 .17-.58 9 -.34 .001 3 5 

19 .28 .08-.50 5 -.23 .001 2 2 

20 .10 .00-.25 1 -.06 .118 0 0 

21 .02 .00-.08 0 -.02 .402 0 0 

22 .05 .00-.17 1 -.05 .056 0 0 

23 .01 .00-.08 0 -.01 .402 0 0 

24 1.0 .00-.00 0  .00 n/a 0 0 

25 .44 .17-.67 3 -.18 .004 3 3 

26 .54 .25-.75 6 -.28 .001 0 7 

27 .17 .00-.33 2 -.14 .001 0 0 

28 .36 .17-.58 0 -.04 .250 0 0 

29 .31 .08-.50 6 -.28 .004 2 4 

 

Notes: see Table S1; Gray: predicted to violate WST 

 

 


