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Neuro-Fuzzy Musculoskeletal Model-Driven

Assist-as-Needed Control via Impedance

Regulation for Rehabilitation Robots

Yu Cao, Member, IEEE, Shuhao Ma, Mengshi Zhang, Jindong Liu, Jian Huang, Senior Member, IEEE and

Zhi-Qiang Zhang, Senior Member, IEEE

AbstractÐIn rehabilitation applications, encouraging patients
to actively participate in training is essential for effective re-
covery. However, personalized control design in robot-assisted
therapy remains challenging due to variations in patients’ motor
capabilities. To address this issue, this paper proposes an assist-
as-needed (AAN) control framework that integrates a hybrid
fuzzy-transformer neural network (HFTN) with a fuzzy echo
state network (FESN)-based variable impedance controller to
ensure personalized support and active engagement. The HFTN
integrates fuzzy logic with transformer architectures in parallel
paths, combining interpretable modeling of uncertainty in sur-
face electromyography (sEMG) signals with efficient temporal
dependency analysis to enhance real-time joint torque estimation.
The variable impedance controller constructs the stiffness and
damping matrices of the robotic system through the FESN
and develops an adaptive update law for the FESN output
weights, effectively addressing instability issues in variable stiff-
ness control. Furthermore, driven by physiologically estimated
joint torques from the HFTN, the adaption of the FESN reservoir
states enables real-time modulation of stiffness and damping,
facilitating transitions between human-dominated and robot-
dominated modes. This realizes the AAN concept, ensuring
personalized and responsive assistance. Various experiments on
an upper limb rehabilitation robot were conducted to validate
the effectiveness of both the neuro-fuzzy musculoskeletal (MSK)
model and the AAN controller in delivering optimal assistance
while promoting active user participation.

Index TermsÐAssist-as-needed control, hybrid fuzzy-
transformer neural network, FESN-based impedance control,
impedance regulation.

I. INTRODUCTION

S
TROKE patients often require long-term rehabilitation due

to motor function impairment. Recently, the rehabilitation

field has witnessed remarkable advances in robotic therapy

This work was supported in part by the U.K. Research and Innovation
(UKRI) Horizon Europe Guarantee under Grant EP/Z001234/1 and Grant
EP/Y027930/1, in part by the Royal Society under Grant IEC/NSF/211360,
and in part by the National Natural Science Foundation of China under
Grant 62333007, and Grant U24A20280. (Yu Cao and Shuhao Ma contributed
equally to this work) (Corresponding authors: Jian Huang and Zhiqiang
Zhang)

Y. Cao, S. Ma and Z. Zhang are with the School of Electronic & Electrical
Engineering, University of Leeds, Leeds, UK (e-mail: y.cao1@leeds.ac.uk,
elsma@leeds.ac.uk, z.zhang3@leeds.ac.uk)

J. Huang and M. Zhang are with the Hubei Key Laboratory of Brain-
inspired Intelligent Systems, School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan, China (e-mail:
huang jan@mail.hust.edu.cn, dream poem@hust.edu.cn).

J. Liu is with ESTUN Medical Technology Ltd., Nanjing 211106, China
(e-mail: liujindong@estun.com).

[1], [2]. One particularly effective strategy is assist-as-needed

(AAN), where the robot offers support only when required [3].

This approach encourages the patient’s active participation,

ensuring they receive necessary assistance without becoming

overly dependent, thereby promoting motor recovery [4]. This

means that the key lies in two crucial aspects: accurately as-

sessing the patient’s motor abilities and designing appropriate

robotic control strategies based on this assessment.

For assessing human motor abilities, common methods in

AAN include position/velocity-based [5], [6], force-based [7],

position-force hybrid-based [8], [9], and surface electromyo-

graphy (sEMG)-based approaches [10], [11], [12]. Compared

with position/velocity- and force-based methods, the sEMG-

based method offers a significant advantage by directly mea-

suring muscle activation signals. This enables a more precise

assessment of motor function and allows for earlier and more

rapid detection of movement intention, which is particularly

beneficial in active rehabilitation training [13]. Nevertheless,

relying solely on sEMG is inadequate for accurate joint torque

estimation, since joint motor output is also significantly af-

fected by musculoskeletal structure and dynamics. Therefore,

integrating musculoskeletal modeling with sEMG analysis

holds promise for improving the accuracy of joint torque

estimation [14], [15], [16]. However, traditional MSK methods

are computationally complex and struggle with personalized

modeling, limiting their effectiveness in real-time applications.

Recently, with the advancement of artificial intelligence

technology, data-driven approaches have emerged as a viable

alternative for MSK modeling, including feed forward neural

network (FNN) [17], convolutional neural networks (CNN)

[18], recurrent neural networks (RNN) [19], generative adver-

sarial networks (GAN) [20], graph neural networks (GNN)

[21], etc. In the recent period, Transformer architectures have

garnered significant attention in MSK modeling owing to

their sophisticated self-attention mechanisms that efficiently

capture temporal dependencies and contextual relationships

[22], [23]. Their capability to model complex dynamics and

encode long-range dependencies in sequential data renders

them particularly advantageous for sEMG feature extraction

and representation learning [24], [25]. For instance, Lin et

al. [26] developed power- and time-efficient Transformer net-

works for sEMG-based hand kinematics estimation. Wang et

al. [27] developed a dual transformer network (DTN) that

simultaneously estimates multiple joint angles and moments
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from multi-channel sEMG signals in the lower limbs. While

these methods excel in MSK modeling through automated

feature learning and nonlinear mapping, their deterministic

architecture struggles with biological uncertainties like noisy

sEMG signals and movement variability [28]. This motivates

the integration of fuzzy logic principles with neural computa-

tion to systematically manage modeling uncertainties, enhance

system interpretability via rule-based inference mechanisms,

and ensure robustness against measurement noise [29], [30],

[31]. Building on this rationale, integrating fuzzy logic with

Transformer architectures appears promising for capturing

both interpretability and temporal dynamics; however, design-

ing an effective and cohesive fusion framework remains a

significant challenge that requires further exploration.

On the other hand, robotic motion control plays a cru-

cial role in implementing AAN. The key is to enable the

robot to seamlessly switch between human-dominated and

robot-dominated modes, ensuring assistance is provided only

when necessary [32]. This requires the robot to regulate its

stiffness between low and high levels based on the user’s

motor ability. Currently, AAN control strategies primarily

include position/velocity control based on weighted gains

[9], [11], reinforcement learning-based control [33], [34],

and variable impedance control [35]. The position/velocity

control is heavily dependent on weight adjustments, while

reinforcement learning requires large datasets and high compu-

tational complexity. In contrast, variable impedance control is

especially well-suited for implementing AAN strategies due to

its intuitive nature and flexibility for human-robot interaction

[36]. But the variation in stiffness may introduce energy into

the system, necessitating strict conditions to ensure stability

[37]. Neural network-based impedance control methods have

shown promise as effective approaches [38]. For instance,

Asl et al. [39] proposed a velocity field-based AAN control

method utilizing a radial basis function (RBF) neural network.

Similarly, Pezeshki et al. [40] incorporated an energy-based

performance index into a RBF neural network to realize an

AAN strategy. However, these methods primarily interpret

impedance variations from an experimental perspective, lack-

ing an explicit and intuitive formulation for the adaption of

robotic impedance. This limitation makes it difficult to clearly

distinguish between human-dominated and robot-dominated

modes. Given the need for both dynamic memory and inter-

pretable structure in adaptive impedance control, the fuzzy

echo state network (FESN) offers a promising framework that

combines temporal modeling with rule-based logic [41], [42].

Compared to traditional fuzzy logic or fixed mapping methods,

which often rely on static rules and lack temporal adaptation,

FESN can dynamically evolve stiffness and damping profiles

based on input history. This makes it particularly well-suited

for modeling time-varying impedance applications. However,

employing FESN to construct a variable impedance controller

that both ensures system stability and aligns with AAN strat-

egy remains a challenging problem.

To address the aforementioned issues, this paper presents

an AAN control framework that integrates a neuro-fuzzy

MSK model with a variable impedance controller for active

rehabilitation training, ensuring personalized assistance and

promoting active user participation. The key contributions of

this paper are: 1) We propose a novel data-driven hybrid

fuzzy-transformer network (HFTN) for estimating elbow joint

torque. This parallel neural architecture seamlessly integrates

fuzzy logic with transformer mechanisms, representing the first

application of such a hybrid framework in MSK modeling. 2)

The joint torques estimated by the HFTN are integrated into

the reservoir state adaptation of the FESN-based impedance

controller, enabling dynamic modulation of stiffness and

damping to achieve a seamless transition between human-

dominated and robot-dominated control modes. 3) A series

of experimental studies were conducted to validate the data-

driven neuro-fuzzy MSK model and the proposed AAN control

framework.

The rest of this paper is organized as follows: Section II

introduces the dynamics of the rehabilitation robot. Section III

presents a HFTN for MSK modeling. Section IV proposes the

FESN-based variable impedance control for the AAN strategy.

Section V covers experimental studies, and conclusions are

drawn in Section VI.

II. PROBLEM FORMULATION

A. Upper Limb Rehabilitation Robots

The dynamics of a rehabilitation robotic arm with n degrees

of freedom (DOF) under human-robot interaction can be

described as follows:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τe (1)

where q ∈ R
n is the vector of joint variables, M(q) ∈ R

n×n

is the inertial matrix, C(q, q̇) ∈ R
n×n is the centrifugal and

Coriolis matrix, g(q) ∈ R
n is the vector of gravitational

torque. τ ∈ R
n and τe = J(q)TFe ∈ R

n represent the

controlled joint torque and human-robot interaction torque

applied to the joints because of the external force Fe ∈ R
m

with the Jacobian J(q) ∈ R
m×n.

Property 1. The inertia matrix M(q) is symmetric and

positive definite, satisfying M(q) = M(q)T ≻ 0.

Property 2. The matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric

and fulfills the condition:

xT
0

(

Ṁ(q)− 2C(q, q̇)
)

x0 = 0, ∀x0 ∈ R
n, (2)

Property 3. For A ∈ R
m×n, B ∈ R

n×p, C ∈ R
p×m and

D ∈ R
m×n, tr(·) operator has the following properties:

1) tr(A) = tr(AT );
2) tr(A+D) = tr(A) + tr(D);
3) tr(ATD) = tr(DTA);
4) tr(ABC) = tr(BCA) = tr(CAB).

B. Preliminaries

The FESN consists of five layers. The input layer com-

prises nodes that represent the input variables, denoted as

z = [z1, ..., zNu
] ∈ R

Nu . The second and third layers corre-

spond to the fuzzy logic system (FLS), with the fuzzification

layer consisting of Nq neurons and the fuzzy rule layer

consisting of Nm neurons, respectively. In the fuzzification
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Fig. 1. The framework of HFTN.

layer, the jth membership function for the ith input is modeled

a Gaussian functions µk
ij(zi). The output of the fuzzy rule

layer is expressed:

Υk =

Nq
∏

j=1

µk
ij , k = 1, ..., Nm (3)

Let uΥ = [Υ1, ...,ΥNm
] ∈ R

Nm denote the input to the next

layer. Thus, the fourth layer is the dynamic reservoir with

internal states χ ∈ R
N governed by the following update law:

χ̇ = tanh(W iuΥ +Wχ+ b) (4)

where tanh(·) refers to the hyperbolic tangent function. W i ∈
R

N×Nm and W ∈ R
N×N represent the input and internal

connection weight matrices. b ∈ R
N is the bias. The output

of the FESN corresponding to the output layer is given by:

y = (W o)Tχ (5)

where y ∈ R
Ny is the FESN’s output. W o ∈ R

N×Ny is the

output weight matrix.

III. NEURO-FUZZY MSK MODEL

The neuro-fuzzy MSK model is implemented using the pro-

posed HFTN architecture, as illustrated in Fig. 1. The HFTN

processes input sEMG signals, Ψ = {Ψ1,Ψ2}, with sequence

length S obtained through sliding window segmentation. The

signals correspond to the biceps brachii (Ψ1) and triceps

brachii (Ψ2) muscles. Each signal is processed through distinct

yet complementary pathways to estimate elbow joint torques.

1) Fuzzy Path: The fuzzy path models uncertainty and

nonlinearity in sEMG signals through a structured feature

extraction approach. Each input dimension connects to a dedi-

cated fuzzy membership layer with M membership functions,

computing membership degrees that quantify the relationship

between input values and fuzzy concepts, defined as:

µi,j(Ψi) = exp

(

− (Ψi − ci,j)
2

σ2
i,j

)

, j ∈ {1, 2, . . . ,M} (6)

where ci,j is the center parameter (fuzzy degree) and σi,j is the

width parameter for the j-th membership function of the i-th

sEMG channel. The output of the fuzzy membership functions

for i-th channel is µi = [µi,1(Ψi), µi,2(Ψi), . . . , µi,M (Ψi)] ∈
R

B×S×M , where B denotes the batch size during the training

process. For all membership functions across both channels,

the concatenated output is: µ = [µ1 ∥ µ2] ∈ R
B×S×2M .

The fuzzy rule layer performs the ºANDº fuzzy logic

operation between corresponding membership functions [43]:

Rj = µ1,j(Ψ1)⊙ µ2,j(Ψ2), j ∈ {1, 2, . . . ,M} (7)

where ⊙ denotes element-wise multiplication. The complete

output of the fuzzy rule layer is represented as: R =
[R1,R2, . . . ,RM ] ∈ R

B×S×M .

To enhance the representation power of the fuzzy path, we

strategically incorporate a transformer encoder block after the

fuzzy rule layer. This transformer block focuses specifically

on temporal patterns within the uncertainty-aware fuzzy rule

space, enabling effective extraction of temporal relationships

between rule outputs across the sequence. For the transformer

encoder block, queries Qh, keys Kh, and values Vh are derived

through linear transformations, the self-attention mechanism

is used to model trend dependencies by computing attention

scores among every subspace for the target agent:

Ah = softmax

(Qh(Kh)
T

√
dk

)

Vh. (8)

where Ah denotes the output of each attention head h ∈
{1, 2, . . . , H}. H is the number of heads, and dk = M/H
is the dimension per head. The multi-head attention (MHA)

output is: MHA = Concat(A1,A2, . . . ,AH)WO, where WO

is a learnable parameter matrix. Following the standard trans-

former encoder architecture, we implement the first residual

connection with layer normalization:

Λ = LayerNorm(R+ Dropout(MHA)). (9)

Subsequently, Λ is processed through a fully connected (FC)

network and integrated with the second residual connection:

F out = LayerNorm(Λ+ Dropout(FC(Λ))). (10)

These dual residual connections effectively mitigate gradient

degradation during training. Finally, global average pooling
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(GAP) is performed on the transformer encoder output F out

to generate the final representation of the fuzzy path:

Ffuzzy =
1

S

S
∑

s=1

F out
:,s,: ∈ R

B×M . (11)

2) Transformer Path: A parallel transformer path directly

captures comprehensive sequential dependencies in sEMG

signals, extracting pure temporal features that complement the

fuzzy path’s uncertainty modeling capabilities.

The transformer path comprises several sequential compo-

nents: Initially, a linear projection layer transforms the input

sEMG signals Ψ into a higher-dimensional embedding space:

Fproj = Fproj(Ψ) ∈ R
B×S×Dproj , (12)

where Dproj is the embedding dimension of the linear pro-

jection layer and Fproj(·) represents the linear projection oper-

ation. Subsequently, a positional encoding layer incorporates

information about the absolute positions of tokens within the

sequence:

Fpos = Fproj +P ∈ R
B×S×Dproj , (13)

where P represents the positional encoding matrix that inte-

grates sequential position information into the feature repre-

sentations.

The core architecture of the transformer path consists of

l ∈ {1, 2, . . . , L} transformer encoder blocks implementing

MHA mechanisms with H ′ attention heads, each with di-

mension d′k = Dproj/H
′. These transformer encoder blocks

share the same architectural configuration as the one in the

fuzzy path (identical FC layer, layer normalization operations,

and residual connections). The l-th transformer encoder block

processes features as follows:

F(t,l) = FTransl(F
(t,l−1)) ∈ R

B×S×Dproj , (14)

where F(t,0) = Fpos. FTransl(·) denotes the operation of the

l-th transformer encoder block, and F(t,l) is the resulting

output. Following the transformer blocks, GAP is applied,

using identical parameters to those employed in the fuzzy logic

pathway. This operation yields the final output representation

of the transformer pathway Ftrans as:

Ftrans =
1

S

S
∑

s=1

F (t,L)
:,s,: ∈ R

B×Dproj . (15)

3) Fusion Part: The fusion part leverages the concept of

multi-modal fusion to effectively merge complementary rep-

resentations from both pathwaysÐinterpretable uncertainty-

aware features from the fuzzy path (Ffuzzy ∈ R
B×M ) and

complex temporal dependencies captured by the transformer

path (Ftrans ∈ R
B×Dproj ). This process begins with a

concatenation operation that combines the Ffuzzy and Ftrans

along the feature dimension, creating a unified representation

that captures holistic insights:

Fconcat = Concat(Ffuzzy,Ftrans) ∈ R
B×(M+Dproj). (16)

Then, Fconcat is transformed through a fusion layer (FC

layer followed by ReLU activation function) that projects the

combined features into a unified latent space:

Ffused = F fusion(Fconcat) ∈ R
B×Dfusion , (17)

where F fusion(·) represents the fusion operation and Dfusion

is the dimension of the fused representation space.

The fused representation is lastly processed through a

regression component comprising multiple non-linear trans-

formations to generate the final joint torque predictions:

τ̂n
h = F regression(Ffused), (18)

where τ̂n
h represents the predicted joint torques. Fregression(·)

denotes the regression network consisting of three FC layers,

each followed by ReLU activation functions except the final

output layer, mapping the fused features to the output space.

Given the high sampling rate and real-time constraints of

our application, this design offers a lightweight and efficient

solution for integrating the heterogeneous outputs of the fuzzy

and Transformer branches, effectively handling both feature

fusion and final regression.

4) Training Strategy: The proposed neural network is

trained by minimizing the mean squared error (MSE) between

the joint torque values τ̂n
h and the ground truth torque values

τn
h obtained from OpenSim inverse dynamics. The loss func-

tion is formulated as:

LMSE =
1

Ns

Ns
∑

n=1

(τ̂n
h − τn

h )
2, (19)

where Ns represents the total number of segmented windows.

IV. CONTROLLER DESIGN

This controller receives the estimated elbow human joint

torque from the neuro-fuzzy MSK model and employs FESN

to develop an AAN strategy, operating between human-

dominated and robot-dominated modes. Let the desired tra-

jectory qd ∈ R
n. The sliding manifold is defined as sx =

ė+λee ∈ R
n, where λe ∈ R

n×n is a positive definite diagonal

matrix, and the tracking error is given by e = q − qd ∈ R
n.

To achieve the goal, we first design a novel impedance

model with variable stiffness and damping, given by:

τe = M(q)ë+ (D(t) +C(q, q̇))ė (20)

+ (D(t)λe +C(q, q̇)λe +K(t)−M(q)λeλe)e

where D(t) ∈ R
n×n and K(t) ∈ R

n×n denote the time-

varying damping and stiffness, respectively. This removes

the requirement for τe sensing by introducing M(q) into

impedance model, thereby simplifying the implementation of

the controller design. Therefore, the control input command is

obtain by substituting (20) into (1), given by:

τ = M(q)q̈d +C(q, q̇)q̇d + g(q)−D(t)sx (21)

− (K(t) +C(q, q̇)λe −M(q)λeλe)e

Remark 1. The proposed impedance model (20) departs

structurally from the conventional formulation in two key

aspects. First, by embedding the robot’s inertia and Coriolis
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terms, it eliminates the need for direct human-robot interaction

force sensing, enabling sensor-free implementation. Second,

by introducing a composite error that couples position and

velocity, the model enforces passivity not only in the velocity

domainÐas in classical designsÐbut also in the position do-

main. The dual-channel passivity enhances the overall system

stability, facilitates the regulation of velocity and position

errors, and strengthens the robustness of human-robot interac-

tion. As a result, the proposed formulation extends the classical

impedance model into a more general and practical structure

suitable for sensor-limited applications.

A. FESN-based Impedance Generation

Given the complexity of human-robot interaction, we em-

ploy an FESN to generate time-varying stiffness K(t) and

damping D(t) in a dynamic, state-dependent manner, while

ensuring closed-loop stability through a Lyapunov-based out-

put weight adaptation law. The output layer is explicitly

designed to guarantee passive behaviors of the system, under

continuously varying stiffness. The structure of the proposed

FESN used for stiffness and damping generation is illustrated

in Fig. 2.

Fig. 2. The framework of the FESN for impedance regulation.

First, we define the FESN output as the robot’s stiffness and

damping with W o = [WK ,WD] ∈ R
N×2n2

, given by

[

KT
v ,D

T
v

]T
=

[

W T
K

W T
D

]

χ (22)

where Kv ∈ R
n2

and Dv ∈ R
n2

represent the vectorizing the

stiffness and damping matrices, denoted as: Kv = W T
Kχ =

vec(K(t)) and Dv = W T
Dχ = vec(D(t)) where vec(·) is

the column vectorization operator. WK ∈ R
N×n2

and WD ∈
R

N×n2

are the output weight matrices for the FESN.

We propose the adaptive rate of the FESN output layer W o

to counteract the effects of variable stiffness while ensuring

that W o remains ultimately uniformly bounded. The definition

of ẆK and ẆD are formulated as:

ẆK = ςKχσT
K − νKWK (23)

ẆD = ςDχσT
D − νDWD (24)

where σK = vec(sxe
T ) ∈ R

n2

and σD = vec(sxė
T ) ∈

R
n2

. ςK ∈ R
N×N , ςD ∈ R

N×N ,νK ∈ R
N×N ,νD ∈ R

N×N

represent diagonal, positive definite constant matrices.

Theorem 1. For the robotic system described by (1), with

the impedance model given by (20) and the FESN’s weight

adaptation outlined in (23), the system exhibit the passivity

of the dynamics between τe and sx, provided the following

condition holds:

D(t)−M(q)λe ≻ 0 (25)

Proof. A Lyapunov candidate is defined as:

V (e) =
1

2
sTxM(q)sx +

1

2
tr(W T

Kς−1
K WK) (26)

From Property 2, the derivative of V (e) is:

V̇ (e) = sTxM(q)ṡx +
1

2
sTx Ṁ(q)sx + tr(W T

Kς−1
K ẆK)

= sTx (M(q)ë+M(q)λeė) +
1

2
sTx Ṁ(q)sx (27)

+ tr(W T
KχσT

K −W T
Kς−1

K νKWK)

= sTx (τe − (D(t)−M(q)λe) sx)− sTxK(t)e

+ tr(Kvσ
T
K)− tr(W T

Kς−1
K νKWK)

According to Property 3, we have

tr(Kvσ
T
K) = σT

KKv = tr
(

(sxe
T )

T
K(t)

)

(28)

= tr(esTxK(t)) = tr(sTxK(t)e)

= sTxK(t)e

This implies that the energy generated by the variable stiffness

K(t) is offset by the FESN through the output layer adaptation

(23). Thus, it follows that

V̇ (e) = sTx τe − sTx (D(t)−M(q)λe) sx (29)

− tr(W T
Kς−1

K νKWK)

= −W + sTx τe

where W = sTx (D(t)−M(q)λe)sx+tr(W T
Kς−1

K νKWK) ≥
0. Thus, we have W + V̇ (e) = sTx τe, the time integral over

[0, t] yields

t
∫

0

sTx τedt =

t
∫

0

Wdt+ V (e(t))− V (e(0)) (30)

When ∥τe∥ is bounded by τ̄e (∥τe∥ < τ̄e), we can further

obtain:

V̇ (e) ≤ ∥τe∥ ∥sx∥ − λm(D(t)−M(q)λe)∥sx∥2 (31)

≤ −∥sx∥ (λm(D(t)−M(q)λe) ∥sx∥ − τ̄e)

where λm(·) denotes the minimum eigenvalue of the matrix.

Therefore, ∥sx∥ is ultimately uniformly bounded by:

∥sx∥ ≤ τ̄e
λm(D(t)−M(q)λe)

(32)

This completes the proof.
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Fig. 3. The framework of the AAN strategy.

B. Impedance Modulation for AAN

Beyond generating stiffness and damping, it is essential in

AAN rehabilitation to adapt the system’s behavior based on

the user’s physical effort. To this end, we analyze the variation

rates of stiffness K̇v and damping Ḋv by modulating the inter-

nal update rate of the FESN reservoir using the estimated joint

torque as an indicator of effort. When user effort is low, the

reservoir dynamics are more active, enabling greater stiffness

K(t) and damping D(t), corresponding to a robot-dominated

mode. Conversely, when effort is high, the reservoir activity is

suppressed to reduce robotic intervention, forming a human-

dominated mode. This effort-aware modulation aligns with

the core principles of AAN. The overall control framework

is illustrated in Fig. 3.

Substituting (23) and (24) into the derivative of (22) yields:

K̇v = Ẇ T
Kχ+W T

K χ̇ (33)

=
(

χT ςTKχ
)

σK − υKKv +W T
K χ̇

Ḋv = Ẇ T
Dχ+W T

D χ̇ (34)

=
(

χT ςTDχ
)

σD − υDDv +W T
D χ̇

From the above formulation, K̇v and Ḋv are governed

by three main components. 1) The term
(

χT ςTKχ
)

σK

and
(

χT ςTDχ
)

σD represent the gain components, where

χT ςTKχ ∈ R
+ and χT ςTDχ ∈ R

+ are the positive gain

factors. 2) The terms −υKKv and −υDDv account for the

decay components for the stiffness and damping. 3) W T
K χ̇

dictates the regulation pattern for the stiffness and damping. As

χT ςTKχ and χT ςTDχ directly influence the rate of variation of

the system’s stiffness and damping, a well-shaped χ̇ facilitates

smooth and adaptive impedance transitions, thereby ensuring

stability and effective human-robot interaction.

To enable the estimated human joint torque τh(Ψ) from

neuro-fuzzy MSK model to directly influence the robot

impedance, a joint torque capacity ratio (JTCR) is defined as:

γ(Ψ) =
1

1 + exp(−k0(τh(Ψ)− τm))
(35)

where τm denotes the maximum human joint torque, and

k0 is a slope parameter that controls the rate of transition.

Accordingly, 0 < γ(Ψ) < 1 is integrated into the dynamics

of χ̇ to regulate the robot’s impedance adaptation rate.

The dynamics for χ̇ in (4) is redesigned as:

χ̇ = −γ(Ψ)Wχ+ (1− γ(Ψ))
(

W iuγ + b
)

(36)

The design includes the following three key aspects:

1) 0 < γ(Ψ) < 1 primarily determines the rate of χ and

thereby influencing the evolution of K̇v and Ḋv . Specifically,

as γ(Ψ) → 0, the decay rate of χ decreases, allowing the term
(

W iuγ + b
)

to exert a greater influence. Consequently, ∥χ∥
increases, resulting in larger gain term coefficients χT ςTKχ and

χT ςTDχ, which enhance system stiffness and damping, and

lead to a robot-dominated mode. Conversely, as γ(Ψ) → 1, χ

decays rapidly, diminishing the effect of
(

W iuγ + b
)

. This

decreases the coefficient χT ςTKχ and χT ςTDχ, lowering sys-

tem stiffness and damping, and promoting a human-dominated

mode. The continuous γ(Ψ) ensures a smooth transition

between human-dominated and robot-dominated modes.

2) The internal weight matrix W of the reservoir must be

designed to be positive definite to ensure the boundedness of

χ, thereby enabling dynamic regulation of the impedance.
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3) Let z =
[

eT , ėT
]T

denote the input to the FESN in

(4). According to Theorem 1, ∥z∥ is ultimately uniformly

bounded. The term uΥ represents the fuzzified state of the

FESN, and ∥uΥ∥ is also bounded.

Lemma 1. Let χ evolve according to the dynamics in (36),

with γ(Ψ) defined by (35). If the input uγ is uniformly

bounded such that ∥uγ∥ ≤ ūγ , and the matrix W is positive

definite, then the state χ is ultimately bounded such that

∥χ(t)∥ ≤ χ̄, for χ̄ > 0. (37)

Proof. We define a Lyapunov candidate as:

V (χ) =
1

2
χTχ (38)

Its derivative yields:

V̇ (χ) =
1

2
χT χ̇ (39)

= χT (−γ(Ψ)Wχ+ (1− γ(Ψ)) (W iuγ + b))

= −γ(Ψ)χTWχ+ (1− γ(Ψ))χT (W iuγ + b)

≤ −γ(Ψ)λm(W )∥χ∥2

+ (1− γ(Ψ))
(∥

∥W i
∥

∥ ūγ + ∥b∥
)

∥χ∥
Therefore, ∥χ∥ is ultimately uniformly bounded by:

∥χ∥ ≤ χ̄ =
ūγ

∥

∥W i
∥

∥+ ∥b∥
ργλm(W )

, ργ =
γ(Ψ)

(1− γ(Ψ))
(40)

This completes the proof.

Lemma 2. If W o evolves according to the adaptive laws

given in (23) and (24), and χ is govern by the dynamics (36),

then W o remains uniformly bounded.

Proof. A new Lyapunov candidate is defined as:

V (W ) =
1

2
tr(W T

Kς−1
K WK) +

1

2
tr(W T

D ς−1
D WD) (41)

Its derivative is:

V̇ (W ) = tr(W T
Kς−1

K ẆK) + tr(W T
D ς−1

D ẆD) (42)

= tr(W T
KχσT

K) + tr(W T
DχσT

D)

− tr(W T
Kς−1

K υKWK)− tr(W T
D ς−1

D υDWD)

Additionally, ∥χ∥ is bounded by χ̄ and Theorem 1 establishes

that both ∥σK∥ and ∥σD∥ are bounded. Consequently, V̇ (W )
satisfies the following relationship:

V̇ (W ) ≤ ∥χ∥ ∥σK∥ ∥WK∥+ ∥χ∥ ∥σD∥ ∥WD∥ (43)

− λm(ς−1
K υ

K
)∥WK∥2 − λm(ς−1

D υD)∥WD∥2

≤ χ̄ΛoTΘ−ΘT

[

λm(ς−1
K υK) 0
0 λm(ς−1

D υD)

]

Θ

≤ χ̄ ∥Λo∥ ∥Θ∥ −min(λm(ς−1
K υK), λm(ς−1

D υD))∥Θ∥2

where λm(·) represents the smallest eigenvalue of the matrix.

Λo = [∥σK∥ , ∥σD∥]T ,Θ = [∥WK∥ , ∥WD∥]T . Therefore,

W o is uniformly bounded by:

∥W o∥ ≤ χ̄ ∥Λo∥
min(λm(ς−1

K υK), λm(ς−1
D υD))

(44)

This completes the proof.

Remark 2. The proposed method retains the essential ar-

chitectural features of a FESN: a recurrent reservoir with

internal state χ, an input-driven update mechanism, and a

readout layer that outputs stiffness and damping parameters

for variable impedance control. Although the output weights

are explicitly constructed rather than learned, and the reser-

voir dynamics are modulated based on user effort, the overall

architecture remains consistent with the canonical FESN for-

mulation. Moreover, the design of the reservoir dynamics (36)

ensures desirable memory properties: when γ(Ψ) approaches

1, the reservoir state exhibits exponential decay, and when

γ(Ψ) approaches 0, it becomes input-driven. This guarantees

fading memory and ensures that the reservoir state is uniquely

determined by recent input history, thereby preserving the echo

state property.

V. EXPERIMENTAL STUDIES

The experimental validation will be conducted in three

stages: 1) evaluation of the neuro-fuzzy MSK model, 2) assess-

ment of the FESN-based variable impedance controller, and 3)

integration of both components to validate the personalized

AAN strategy. The physical platform is shown in Fig. 4.

Three healthy subjects (S1: age 24, gender male, height, 185

cm, weight 77 kg; S2: age 26, gender male, height 174 cm,

weight 66 kg; S3: age 29, gender male, height 173 cm, weight

90.3 kg) participated in the experiment. The ethics approval

for experiments with healthy subjects was granted by the

Engineering and Physical Sciences Faculty Research Ethics

Committee of the University of Leeds (LTELEC-001).

Fig. 4. Rehabilitation robot platform.

A. Neuro-fuzzy MSK Model

The neuro-fuzzy MSK model is tested using sEMG data

from biceps and triceps brachii collected via Delsys Trigno™

system at 2148 Hz. Raw signals are preprocessed through

second-order Butterworth band-pass filtering (25±450 Hz) for

noise removal and fourth-order low-pass filtering (4 Hz) for

EMG-force correlation, then normalized using peak isometric

maximum voluntary contraction. Filtered sEMG data are pre-

pared for HFTN input using a sliding window with 20-point

segments and 2-point stride.
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Fig. 5. Comparative analysis of training loss dynamics for three neural
network architectures across subjects.

The coefficient of determination R2 and root mean square

error (RMSE) are employed as our primary evaluation metrics.

Specifically, the RMSE is defined as:

RMSE =

√

√

√

√

1

W

W
∑

w=1

(Yw − Ŷw)2 (45)

where W represents the total number of samples in the evalu-

ation dataset after applying the sliding window segmentation,

and Yw and Ŷw denote the actual values and predicted values

at wth sample, respectively. The R2 value is calculated using

the following formula:

R2 = 1−
∑W

w=1(Yw − Ŷw)
2

∑W
w=1(Yw − Y w)2

(46)

where Y w indicates the mean value of all the samples in the

evaluation dataset.

HFTN is trained using Adam optimizer with learning rate

5 × 10−4, batch size 16, and up to 200 epochs with early

stopping. The transformer components employ embedding

dimension Dproj = 32, H = H ′ = 2 attention heads, L = 1
transformer blocks, and FC dimension 32. Dropout rate 0.2

is applied to attention outputs and feed-forward networks.

The fuzzy path utilizes M = 8 membership functions per

input feature. These architectural hyperparameters were se-

lected based on empirical comparisons to balance predictive

accuracy and inference efficiency. Regarding the imbalance

between the fuzzy and transformer paths, although these two

branches differ in both dimensionality (32 vs. 8) and statistical

characteristics, we evaluated the impact of this imbalance by

introducing L2 normalization prior to feature fusion. This

adjustment effectively equalized the magnitude of the two

paths, eliminating the dominance of transformer features.

However, the performance improvement was marginal (R2

increase of 0.001; RMSE reduction of 0.002), indicating

that the original fusion layer already learned to balance the

contributions during training. This suggests that the model

is capable of implicitly adjusting the relative influence of

each pathway through backpropagation. Therefore, for the

sake of architectural simplicity and computational efficiency,

we retained the original unnormalized design in the final

implementation.

To thoroughly assess each architectural component’s con-

tribution, we conducted an ablation study across three sub-

jects evaluating: (a) Transformer-only, (b) Fuzzy-only, and (c)

HFTN architectures with consistent parameterization. Fig. 5

presents mean training loss trajectories over 200 epochs, with

shaded regions indicating cross-subject variability. The results

demonstrate that HFTN exhibits the fastest early convergence

(epochs 0-20) and maintains the lowest loss throughout train-

ing, ultimately converging to 0.01, compared to Transformer-

only (≈ 0.015) and Fuzzy-only (> 0.01). HFTN also

displays minimal cross-subject variance, indicating superior

generalization capabilities, while Fuzzy-only shows substantial

heterogeneity and Transformer-only exhibits moderate vari-

ance. These findings support HFTN’s superior performance

in error minimization, convergence speed, and cross-subject

consistency relative to single-paradigm approaches.

Fig. 6 demonstrates HFTN’s superior performance com-

pared to Fuzzy-only and Transformer-only architectures. In

(a), HFTN attains the highest average R2 (∼0.97), outper-

forming Transformer-only (∼0.96) and substantially exceeding

Fuzzy-only (∼0.84). In (b), HFTN maintains the lowest RMSE

values (0.01-0.03) compared to Transformer-only (0.01-0.04)

and Fuzzy-only (0.11-0.12). The minimal variance in HFTN’s

average RMSE error bars indicates superior stability and

generalization. By integrating fuzzy logic with neural net-

works, HFTN leverages complementary strengths, achieving

enhanced predictive accuracy, reduced error rates, and im-

proved cross-subject reliability.

TABLE I
COMPARISON OF MODEL INFERENCE TIME (MS)

Subjects

Models
Transformer-only Fuzzy-only HFTN

S1 0.73 ms 0.46 ms 1.05 ms
S2 0.67 ms 0.40 ms 1.03 ms
S3 0.75 ms 0.45 ms 1.02 ms

Average 0.72 ms 0.44 ms 1.03 ms

To quantify real-time performance, we measured inference

times on an NVIDIA RTX 3070ti GPU using 500 consecutive

operations per model-subject combination with GPU synchro-

nization between iterations. All models achieved inference

times below 1.5 ms across subjects (as shown in Table I), well

within the 2 ms control cycle required by the robotic system,

thereby confirming their suitability for real-time deployment

in this application. Also, the proposed HFTN architecture

explicitly prioritizes lightweight implementation to meet such

real-time constraints. Specifically, the Transformer branch is

designed to be compact, comprising only 1 encoder layers,

each with 2 attention heads. In parallel, the fuzzy branch

operates on a low-dimensional, hand-crafted feature vector,

further contributing to the model’s simplicity and efficiency.

While the HFTN exhibits a slightly longer inference time than

the fuzzy-only model, it still maintains a low latency of 1.03

ms-comfortably within the real-time requirement-and delivers

superior estimation accuracy.
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(a) Model Coefficient of Determination Comparison (R2) (b) Model Error Comparison (RMSE)

Fig. 6. Performance comparison of three neural network architectures across subjects.
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Fig. 7. Tracking performance with specific γ(Ψ) = {0.2, 0.4, 0.6, 0.8}.
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Fig. 8. Variable impedance controller-related parameters under different γ(Ψ).

B. Variable Impedance Controller

The variable impedance controller is implemented on a

cable-driven upper-limb rehabilitation robot Burt, developed

by ESTUN Medical Technology Co., Ltd. The evaluation

focuses on the 2-DOF closest to the end-effector, forming

a planar 2-DOF configuration. The robot enables direct joint

torque control via a network interface with a 0.002-second

sampling interval.

We note that the stiffness and damping values presented

in this work are defined at the motor side rather than the

joint side of the robot. Due to the presence of gear reduction

mechanisms, the actual impedance experienced at the joints is

significantly amplified. Let qm = [qm1, qm2]
T represent the

motor shaft angles, and q = [q1, q2]
T the joint angles. These

are related through a linear transformation governed by the

gear transmission matrix R, such that:

qm = Rq, R =

[

−15.19 0
0 −9.57002

]

(47)

Under this transformation, the motor-side torque τm and the

joint-side torque τ are related by the principle of virtual work:

τ = R⊤ τm (48)

This relationship indicates that the joint-side torque is ampli-

fied proportionally by the gear ratio, consistent with the inverse

transformation of angular displacement.

Accordingly, the joint-side stiffness K(t) and damping D(t)
are computed from the motor-side values Km and Dm via:

K(t) = R⊤KmR, D(t) = R⊤DmR (49)
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Fig. 9. Time evolution of human-robot interaction under varying human
behaviors, including active muscle activation and relaxation states.

This transformation demonstrates that relatively low

impedance values at the motor side translate into much

higher effective impedance at the joint level.

In this experiment, we set γ(Ψ) = {0.2, 0.4, 0.6, 0.8} to

evaluate the performance. The results are presented in Fig.

7 and Fig. 8, where the former illustrates the tracking perfor-

mance, and the latter depicts the controller-related parameters.

When γ(Ψ) = 0.2, the system achieves relatively high

tracking accuracy due to the high reservoir activity, stiffness,

and damping, reaching values of ∥χ∥F = 6.19, ∥Km∥F =
8.38(N · m/rad), and ∥Dm∥F = 16.11(N · m · s/rad). As

γ(Ψ) increases, the tracking accuracy deteriorates. This is

because a larger γ(Ψ) leads to a lower steady-state value

of ∥χ∥F , which in turn reduces stiffness and damping, as

described in (33) and (34). When γ(Ψ) increases to 0.8,

the value of ∥χ∥F becomes very small, approaching 0.39.

Consequently, the system exhibits significantly low impedance

(∥Km∥F = 1.92(N ·m/rad), ∥Dm∥F = 1.06(N ·m·s/rad)),
making it difficult to track the desired end-effector trajectory

xd. Additionally, the input torque further confirms that lower

Fig. 10. System behavior during interaction with three individual participants.

values of γ(Ψ) lead to larger input torques and stronger vibra-

tions, increasing sensitivity to tracking errors and, enhancing

control accuracy. Therefore, we can conclude that a smaller

γ(Ψ) increases the system’s impedance, enhancing tracking

accuracy and placing the robot in a robot-dominated mode.

Conversely, a larger γ(Ψ) reduces the robot’s control effort,

allowing the human to easily drive its movement, also resulting

in a human-dominated mode.

C. AAN Strategy

In this experiment, we integrate the sEMG acquisition

equipment with the rehabilitation robot via a network interface.

The calculated JTCR γ(Ψ) is transmitted to the robot control

board over a network interface at 1058 Hz. As elbow torque

rises during flexion and falls during extension, a sliding win-

dow is applied to the sEMG to keep robot stiffness low during

sustained user effort. Within each window, the maximum value

is extracted, as given by:

γ(Ψ) = max{γ(Ψ(t−∆t)), ..., γ(Ψ(t))} (50)

The experimental process is built as follows. Once the system

is activated, the human remains passive without exerting any

force for 15 seconds. Subsequently, the human begins to apply

force to guide the robot’s movement, simulating a patient with

partial motor function, for another 15 seconds. This is followed

by a 15-second period during which the human withdraws the

force, representing a scenario where the patient lacks sufficient

strength. The human then re-applies force for an additional 15

seconds, and finally, withdraws it again.

The experimental results are shown in Fig. 9. The human

joint torque indicator γ(Ψ) plays a decisive role in the

system’s behavior. When γ(Ψ) remains at a low level, which

indicates that the muscles are inactive and the human is not

exerting force (corresponding to 0-15s, 30-45s, and 62-75s),

the reservoir activity of the FESN, denoted by ∥χ∥F , gradually

increases. This leads to an increase in the output stiffness

∥Km∥F and damping ∥Dm∥F , making the system more

responsive to tracking errors. As a result, the control input

exhibits stronger vibrations, yielding higher tracking accuracy
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and characterizing the robot-dominated mode. In contrast,

when γ(Ψ) reaches a high level, indicating muscle activation

around the human elbow joint (corresponding to 15-30s and

45-62s), the reservoir activity of the FESN ∥χ∥F rapidly

decreases. This leads to a reduction in the output stiffness

∥Km∥F and damping ∥Dm∥F . In this state, the system

impedance becomes very low, enabling the human to easily

guide the robot’s motion. Consequently, the system trajectory

is less constrained by the desired trajectory and can vary

freely, representing the human-dominated mode. Moreover, the

transition between the human-dominated mode and the robot-

dominated mode is primarily driven by variations in γ(Ψ),
indicating a smooth and continuous shift rather than an abrupt

change. This gradual transition contributes to enhanced overall

system stability.

Fig. 10 a presents the motion performance metrics of three

subjects during both active and passive movement tasks. These

metrics include the average human joint effort Ψ̄, the robot’s

average stiffness K̄ and damping D̄, the average activity level

of the FESN reservoir χ̄, and the maximum tracking error

max(∥e∥). A consistent pattern is observed across subjects

that aligns well with the earlier theoretical analysis and

matches previous experimental results. Individual differences

in factors such as muscle strength and the level of active

participation lead to subject-specific variations in the robot’s

performance. Specifically, in the robot-dominated mode, S2

shows lower EMG activity compared to S1 and S3, which

results in higher χ̄ and increased K̄ and D̄. In the human-

dominated mode, S1 demonstrates the highest Ψ̄, correspond-

ing to the lowest K̄ and D̄ levels, suggesting that stronger

voluntary effort from the human participant effectively directs

the robot’s motion, resulting in the largest max(∥e∥).

VI. CONCLUSION

This paper presents a neuro-fuzzy MSK model-driven vari-

able impedance control framework to implement an AAN

strategy for personalized rehabilitation. First, a HFTN is pro-

posed, integrating fuzzy logic with transformer architectures

via parallel pathways to enable real-time estimation of human

joint torque. Next, a variable impedance controller based on

a FESN is developed, incorporating adaptive mechanisms

for both the output weight matrices and the internal reser-

voir states. This enables dynamic switching between human-

dominated and robot-dominated interaction modes, thereby

achieving the concept of AAN. Extensive experiments confirm

that the neuro-fuzzy MSK model and the proposed controller

work effectively, showing that the AAN strategy can adapt to

users’ motor abilities and engagement.
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