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Summary: Geospatial Knowledge Graphs (GeoKGs) organize geospatial data
and knowledge into graph structures, in which entities like places and events
serve as nodes and their relationships form the edges. They are complemented
with expressive metadata in the form of ontologies defining concepts (classes)
and their relationships (properties). This structure underpins the powerful
capabilities of GeoKGs in addressing challenges such as data integration,
retrieval, and knowledge formalization. This entry first introduces the
fundamentals of knowledge graphs, focusing on their implementation via
Semantic Web technologies. It then explores GeoKGs, covering their
advantages, relevant techniques, prominent examples, and a few key
application areas. The entry concludes with an outlook on emerging trends,
underscoring the convergence of machine learning and GeoKGs as a promising
avenue for Geospatial Artificial Intelligence (GeoAl).
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Definitions:

Knowledge graph (KG): KGs represent knowledge in one or multiple domains
in the form of entities (nodes) and the relationships between them (links). The
fundamental units of a KG are triples, structured as <head entity, relationship,
tail entity>.

Geospatial knowledge graph (GeoKG): Broadly, GeoKG can refer to any KG
that contains geospatial information (typically data pertaining to locations on
Earth). However, in a stricter sense, a GeoKG is understood as a geospatial-
centric knowledge base. In such a graph, entities and their relationships are
largely defined by their geospatial characteristics and connections.

Semantic Web technologies: This term refers to a set of methods, tools, and
standards for structing data (on the Web) with expressive metadata, so that
machines can understand and process the data. Specifically, the form of
metadata is generally in the form of ontologies.

Ontology: An ontology is a formal and explicit specification of a shared
conceptualization. In simpler terms, an ontology provides a formal model of a
domain, defining concepts (often called classes, like “city”) and the relationships
between these concepts (such as “adjacent to”).
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1. Background of knowledge graphs

Knowledge graphs (KGs) are an important instrument for data organization,
management, and integration. A key driver for the adoption of KGs in both
industry and academia is their powerful capability for data integration, which is
a challenge that remains ubiquitous and longstanding across various domains.
KGs are composed of entities and relationships. Entities can be concrete real-
world objects like people and places or more abstract concepts such as events
and organizations. Relationships are also typed and carry semantics. The
fundamental units of a KG are triples, in the form of <head entity, relationship,
tail entity>. A concrete example of a triple is <Eiffel Tower, within, Paris>. This
entry focuses on KGs realized with Semantic Web technologies, while in
principle the graph structure could be implemented in other ways and does not
prescribe a specific technology stack.

KGs are underpinned by a set of methods, tools, and standards set out from
the Semantic Web research (Hitzler, 2021). Ontologies can be understood as
the schema for KGs. Unlike schemas for relational databases, they are based
on formal logic. This makes ontologies explicit in defining knowledge, which
helps to reduce ambiguity and enables the automatic deduction of implicit
knowledge (Guarino et al., 2009). If we have both the triples <Eiffel Tower,
within, Paris>, and <Paris, capitalOf, France>, with an ontology and appropriate
formal rules, the implicit knowledge < Eiffel Tower, within, France> can be
deduced, even if this was not explicitly stated. Ontologies act as the primary
catalyst for data integration in KGs because they are designed to be shared
and reused (Hitzler, 2021). This allows multiple data sources to be integrated
through a common understanding of concepts and their relationships, e.g.,
ensuring that the concept “Building” carries the same meaning across different
datasets.

Triples in KGs are represented using the Resource Description Framework
(RDF)', a foundational data model and standard recommended by the World
Wide Web Consortium (W3C) for data interchange on the Web. Within the RDF
framework, a key mechanism for data integration is the use of Uniform
Resource Identifiers (URIs). Each resource in a KG, be it a concept or
relationship in its underlying ontology, or an entity (data instance) described
according to that ontology, is assigned a unique URI. This unique identification
allows KGs to be integrated when the same URIs are used to denote identical
resources across different graphs, thereby linking them. Conceptually, such
interlinked KGs form a larger, integrated KG (Hitzler, 2021).

The Semantic Web technology stack includes several other key standards and
techniques crucial for the construction and utilization of KGs. SPARQL? serves
as the standard query language for RDF-based KGs, acting as the primary
mechanism for data retrieval, which is analogous to SQL's role in relational

" https://www.w3.org/RDF/
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databases. SPARQL is widely implemented in RDF stores (also known as triple
stores), which are specialized database management systems designed to
store and manage RDF KGs. The implementation of ontologies that underpin
KGs relies on standardized languages like the Web Ontology Language (OWL)3
and RDF Schema (RDFS)* OWL and RDFS are widely supported by various
ontology reasoners to deduce implicit knowledge. Furthermore, the W3C
recommends the Shapes Constraint Language (SHACL)® for validating KG
structure and quality, and for enriching KGs through customized, rule-based
inferences.

2. Introduction to geospatial knowledge graphs

This entry adopts a narrow, geospatial-centric definition of Geospatial
Knowledge Graphs (GeoKGs), as it is challenging to find a KG entirely devoid
of geospatial information, given that most real-world entities and events are
inherently situated in space and time. To be considered a GeoKG in this narrow
definition, a KG should contain explicit geospatial references, such as
geographic coordinates, place names, or well-defined geometries. The primary
purpose of the graph is to model how entities relate to each other spatially (and
sometimes temporally).

The most important driver for constructing GeoKGs is the persistent need to
integrate geospatial data from diverse sources. Traditional methods for
geospatial data organization, representation, and access, such as individual
shapefiles or relational databases, often fall short in establishing meaningful
and semantically rich linkages between these disparate datasets. This leads to
isolated data silos where information lacks clear semantic connections and is
difficult to discover or reuse effectively (Janowicz et al., 2022). This
considerably hinders the utilization of geospatial data, as data integration is a
prerequisite for most geospatial analyses. For example, effective disaster
response in a wildfire event requires the integration of multi-source data, e.g.,
demographic information, real-time environmental data, and critical
infrastructure details (e.g., roads, hospitals), for effective situation assessment
and humanitarian relief (Zhu et al., 2021). In this context, GeoKGs provide a
powerful and flexible infrastructure (graph structure) for integrating geospatial
data from diverse sources and for connecting geospatial with non-geospatial
data (e.g., by linking to general-purpose KGs like DBpedia® and Wikidata?,
which are two representative KGs constructed from Wikipedia).

Besides data integration, the use of GeoKGs has also been motivated by other
factors. Akey driver is knowledge formalization, which involves making informal
or implicit geospatial knowledge (e.g., procedural knowledge for composing
geoprocessing workflows or for online map design) explicit, and

3 https://www.w3.org/OWL/
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understandable for both humans and machines in an unambiguous manner.
Moreover, GeoKGs are increasingly recognized for facilitating geospatial data
to adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable)
principles (Ma, 2022). In this regard, GeoKGs inherently support interoperability
by formal and shared ontologies and promote reusability through rich and
structured metadata. They also significantly improve the findability and
accessibility of geospatial data, e.g., using URIs and established links between
multiple (Geo)KGs.

3. Technical developments for GeoKG

The growing popularity of GeoKGs has driven technical advancements in their
construction and utilization. A prominent development is the OGC standard
GeoSPARQLS8, which extends SPARQL and provides a lightweight ontology for
representing and querying geospatial data within KGs. This ontology is
intentionally designed to be lightweight, fostering straightforward extension and
integration. Core to the GeoSPARQL vocabulary are the concepts of Feature
and Geometry, the former of which represents geospatial objects, while the
latter describes their geographic extents and shapes, typically encoded as a
Well-Known Text (WKT) literal. A Feature instance (e.g., a particular building)
then links to a Geometry instance (e.g., a polygon linked to WKT text) using the
hasGeometry property (relationship). Figure 1 depicts a subgraph of a GeoKG
representing that the Eiffel Tower is within Paris, reusing GeoSPARQL ontology.

Feature Geometry

isa

Pairs_geom

hasGeometry hasGeometry

Figure 1: A subgraph of a GeoKG structured with the GeoSPARQL ontology,
representing the statement “Eiffel Tower is located within Paris”. Italicized text
denotes data instances, while regular text indicates ontology elements.

As a query language, GeoSPARQL defines several functions to enable
querying based on spatial relationships within GeoKGs, using geometric
information. These include functions for evaluating topological relationships
(e.g., if a geometry contains, intersects, or overlaps another) and for non-

8 https://www.ogc.org/standards/geospargl/



topological computations such as calculating distances or creating buffers. A
GeoSPARAQL query illustrated in Listing 1 has the logic: "Find a café within a
commercial area that is closest to a particular park." GeoSPARQL has been
(partially) supported by several mainstream RDF stores, such as GraphDB?®,
RDF4J'°, and Stardog'' (Huang et al., 2019).

Q[prefix definitions]
SELECT ?cafe ?cafeGeom
WHERE {

?cafe a ex:Cafe ;

geo:hasGeometry ?cafeGeom .
?commercialArea a ex:CommercialArea ;
geo:hasGeometry ?commercialAreaGeom .
ex:ASpecificPark geo:hasGeometry ?parkGeom .

FILTER (geof:sfWithin (?cafeGeom, ?commercialAreaGeom))

ORDER BY geof:distance (?cafeGeom, ?parkGeom)

LIMIT 1

Listing 1: A GeoSPARQL query example.

The construction of GeoKGs, i.e., populating RDF triples from diverse sources
and interlinking data instances, is largely an ETL (Extract, Transform, Load)
process that can be implemented in various ways. In this regard, RDF mapping
languages are particularly useful for translating other data models to RDF, such
as R2RML"2 for relational databases and RML"3 for sources like CSV, JSON,
and XML. Furthermore, “virtual GeoKGs” can be constructed from relational
databases without materializing RDF triples. These virtual GeoKGs can then
be queried and utilized like materialized KGs, despite not being physically
serialized into RDF. This is accomplished by SPARQL-to-SQL translation in
real-time. This approach is beneficial, e.g., when integrating dynamic geospatial

9 https://www.ontotext.com/
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data such as traffic records. Ontop'* is a notable tool in this area, which
supports GeoSPARQL queries over virtual GeoKGs (Bereta et al., 2019).

On the consumption and utilization of GeoKGs, dedicated tools have been
developed for their visualization and analysis, primarily in a spatial context. In
this vein, a GeoEnrichment toolbox has been developed as a plug-in to enable
direct querying of GeoKGs within ArcGIS (Mai et al., 2022). Such tools compose
GeoSPARQL queries to access GeoKGs, with an interaction style similar to that
of standard ArcGIS analytical tools. This allows the retrieved information to be
used for visualization and further analysis within ArcGIS.

4. Prominent examples of GeoKG

Geospatial entities and their relationships are a natural integrator to consolidate
data in various themes and from different sources, as everything happens at
some geographic places during some period of time. Therefore, many GeoKGs
have been developed in the past decade, which can be used to integrate and
contextualize cross-domain datasets. GeoNames ' is an open gazetteer
including over 25 million unique place names, together with their auxiliary
information (e.g. place types, population, elevation, etc.), covering most
countries and regions all around the world. LinkedGeoData'® is a KG version of
OpenStreetMap. It consists of ~20 billion triples. Through the crosslink with
GeoNames, places are enriched with more precise geometry and additional
auxiliary information (e.g., opening hours). YAGO2 is a large-scale KG that
contains enriched geospatial and temporal information, in which information
from Wikipedia and GeoNames are combined to scope entities, facts, and
events in the KG (Hoffart et al., 2013). YAGO2 was further extended in the
YAGO2geo project with precise geometries from authoritative data sources in
multiple countries (Karalis et al., 2019).

Although these aforementioned GeoKGs are useful, they were typically
designed to utilize and integrate a limited set of data sources (e.g.
LinkedGeoData is mainly from OpenStreetMap). KnowWhereGraph, a large-
scale GeoKG integrating geospatial data from multiple sources, provides a new
paradigm for building and accessing GeoKG (Zhu et al., 2025). First, it
proposes a reusable ontology to facilitate the integration of geospatial data in
different formats (e.g. remotely sensed images and geospatial vector data)
using discrete global grids as the common locational unit (integrator). Second,
KnowWhereGraph builds a stack of accessible tools, including GeoEnrichment
plug-ins for ArcGIS and QGIS, customized disaster response platform, and a
knowledge explorer search engine, for access from different user groups. Third,
KnowWhereGraph links to general-purpose KGs like Wikidata, enriching itself
with their vast repositories of factual knowledge.

4 https://ontop-vkg.org/
5 https://www.geonames.org/
16 http://linkedgeodata.org/



5. Applications of GeoKG

In merit of the rich data linking and semantic information carried by GeoKGs,
they have been adopted in increasingly diverse applications. In this section, we
discuss two application areas as examples to manifest the usefulness of
GeoKGs, especially in terms of data integration and knowledge formalization.

GeoKGs, such as KnowWhereGraph, have been extensively used to help
decision-makers respond to natural disasters thanks to their ability to provide
situational awareness for any place on Earth. For instance, KnowWhereGraph
was used by Direct Relief, a humanitarian organization, to determine where to
send supplies in response to Hurricane Laura in 2020, a destructive Category
4 hurricane. In principle, it enabled decision-makers to quickly retrieve relevant
information, including demographic statistics, previous disasters, and health
facilities, for regions affected by the storm. This process, which often takes
hours or even days with traditional methods, can be accomplished in minutes
with this GeoKG. Furthermore, it helped identify experts with local knowledge
of the storm or the region by integrating both human and environmental
information.

GeoKGs can formalize geovisualization processes by capturing expert
knowledge on transforming raw geospatial data into graphics on maps. Huang
et al. (2019) designed a geovisualization KG covering key Web mapping
aspects like cartographic scale, data portrayal, and geometry source. This
facilitates the interpretation, sharing, and reuse of the knowledge about how
visualizations are produced, which is vital in scenarios like disaster response to
ensure mutual understanding across diverse sectors.

6. Emerging trends

Broadly, the term GeoKG encompasses both the graph-structured geospatial
knowledge base (the artifact) and the methods, techniques, and standards for
its realization and use. Learning this topic is challenging due to its
interdependent technological stack and its nature as a rapidly advancing area.

The most prominent emerging trend is the synergy of machine learning (ML)
and KGs in geospatial applications, offering transformative solutions to
longstanding challenges in GeoKG construction and use. For example, ML can
help: 1) extract geospatial entities (e.g., buildings, events) from diverse sources
like imagery and textual reports; 2) integrate KGs by aligning their core
components (concepts, relationships, instances); and 3) perform KG
completion by predicting missing links (e.g., uncovering a previously unknown
causal relationship between extreme weather and public health). Furthermore,
the convergence of foundation models (e.g., Large Language Models) with
GeoKGs opens new frontiers in GeoAl (Mai et al., 2024). This is a two-way
enhancement: GeoKGs ground foundation models with structured geospatial
knowledge for improved accuracy and interpretability, while these models
significantly aid GeoKG construction, completion, and application (Pan et al.,
2024).



Learning Objectives

e Describe basic elements of a knowledge graph.

e Explain the advantages of using knowledge graphs for geospatial data
over traditional relational databases.

e |dentify real-world applications that benefit from geospatial knowledge
graphs.

o Write basic SPARQL queries to access knowledge graphs, such as the
Wikidata Query Service.
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