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Lipschitz cutset for fractal graphs
and applications to the spread of infections*
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Abstract. We consider the fractal SierpiÂnski gasket or carpet graph in dimension d≥ 2, denoted by G. At time 0, we place a Poisson
point process of particles onto the graph and let them perform independent simple random walks, which in this setting exhibit sub-
diffusive behaviour. We generalise the concept of particle process dependent Lipschitz percolation to the (coarse graining of the)
space-time graph G×R, where the opened/closed state of space-time cells is measurable with respect to the particle process inside the
cell. We then provide an application of this generalised framework and prove the following: if particles can spread an infection when
they share a site of G, and if they recover independently at some rate γ > 0, then if γ is sufficiently small, the infection started with a
single infected particle survives indefinitely with positive probability.

Résumé. ???.

MSC2020 subject classifications: Primary 60K35; secondary 60G55
Keywords: particle system, fractal percolation, SierpiÂnski gasket, infection spread, sub-diffusive behaviour

1. Introduction

We consider the following setting: a collection of particles is placed on an infinite connected graph at time 0 in such a
way that it is in Poissonian equilibrium for simple random walk ± put simply, letting the particles perform simple random
walks does not change their distribution on the graph. Then, over time, each particle performs an independent continuous
time simple random walk on the graph. Assume that at time 0 a single additional infected particle is placed somewhere
on the graph and consider the infection dynamics to be as follows: whenever a particle shares a vertex with an infected
particle, it instantaneously becomes infected itself. Infected particles can also recover and become healthy/susceptible
again, which occurs independently for each infected particle at some exponentially distributed random time. Due to the
infection mechanism outlined above, a particle can only truly recover when it is the sole particle at a vertex; otherwise it
gets reinfected straight away by one of the other particles sharing its location.

This problem has been studied in various forms, and it can be traced back in the literature at least to Kesten and
Sidoravicius. In [18], the authors consider the graph to be the nearest neighbour square lattice Zd and treat the case where
infected particles never recover. They show that for large times and with high probability, the sites of Zd that have already
been visited by an infected particle contain a ball around the site where the infection started of radius proportional to the
time elapsed since the start of the infection. They also prove that these sites are themselves completely contained in a
bigger ball of radius that is also proportional to the same time, again with high probability. In [20] they refine this result
and prove a shape theorem for the infection. In a parallel paper [19], they study the case of infection with recovery on
Zd and prove the existence of a phase transition with respect to the recovery rate of the particles: for rates higher than
a critical threshold, the infection will almost surely go extinct (i.e. no infected particle remains after some finite time),
whereas for rates below this threshold, the infection will with positive probability survive indefinitely. It should be noted
that in [19], infections occur only when an infected particle jumps onto a site, meaning it is possible for healthy and
infected particles to share a site. Our main result, stated in Theorem 1.1 holds for both infection mechanisms ± the one
outlined at the beginning and the one from [19].

*AD and PG acknowledge support from DFG through the scientific network Stochastic Processes on Evolving Networks.
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More recently, Gracar and Stauffer [10, 11] have developed a general framework with which they were able to prove
that on the weighted graph (Zd, λ), with edges equipped with uniformly elliptic conductances λx,y , the infection still
spreads with positive speed. They also showed that in the case of infection with recovery, the infection not only survives
indefinitely with positive probability, but they also derived a lower bound for the furthermost location the infection has
reached divided by timeÐa question that was left unanswered previously. A further application of this framework can
be found in [1], where it is shown that in the case of infection with recovery, conditioned on the infection surviving, the
origin of Zd (i.e. where the infection is started) is visited by an infected particle at arbitrarily large times. The key benefit
of the framework used in these works is that it can be applied to different variations of the Poisson random walks and
infection models, and that the multi-scale analysis which is done in order to set up the framework does not need to be
redone from scratch when the type of event studied changes. Given a local, translation invariant and increasing event that
has high enough probability, the framework provides the existence of a connected surface in space-time where the event
holds. If the local event is chosen to be the successful propagation of the infection to its immediate surroundings in a
predetermined amount of time, then the connected surface yields a lower bound on how far the infection can spread over
time. This surface also acts as a cutset in space-time, separating the origin from infinity, so that any particle which visits
the origin has to intersect the surface at some later time which is a key property that allows the above argument to be
applicable. We also refer to [7, 9, 23] for a non-exhaustive list of further related models.

In this work, we adapt the framework to a new class of graphs, i.e. to sub-diffusive fractal lattice graphs, also known as
prefactals. In particular, we study the behaviour of a particle system on the SierpiÂnski gasket and on generalised SierpiÂnski
carpets. Intuitively, these are the graphs of the famous triangle and square based fractals, where instead of repeating the
construction recursively inwards, one instead expands outwards, by attaching copies of the current stage of the graph
recursively. A key difference between the standard Euclidean lattice (Zd as well as for example the triangle or hexagonal
lattice nearest neighbour graph) and the graphs we study is that random walks on the latter exhibit subdiffusive behaviour.
I.e., random walks move through the graph much more slowly than e.g. on the Euclidean lattice, and it takes on average
rdw amount of time to leave a ball of radius r, where dw > 2 is a constant that depends on the dimension of the graph, and
on which parts of the graph are missing. Compared to Euclidean lattices, where this average is of order r2 regardless of the
dimension of the lattice, this shows that on such fractal graphs random walks exhibit a quantitatively different behaviour.
Crucially, this slower movement of the particles makes it unclear whether the dynamics of the infection process remain
unchanged or whether the infection has a harder or easier time surviving over time. Our main result, stated in Theorem
1.1 provides an answer to this question: although the changed dynamics potentially affect the global propagation of the
infection, the mechanism by which the infection survives on Euclidean lattices still remains in place and the infection has
a positive probability of survival if the recovery rate is not too high.

In order to state the result more precisely, we quickly formalise some of the above concepts. Let G be either the
SierpiÂnski gasket graph or a generalised SierpiÂnski carpet graph defined precisely in Sections 2.1 and 8. (See also the
corresponding Figures 1 and 8.) In our first result we adapt the so-called Lipschitz surface framework from [10] to the
fractal graph case. Notably, although the framework retains its main characteristics, it requires substantial changes and
new ideas across the board due to the significantly changed geometry of the graph, starting with the analogue of the
Lipschitz surface for fractal graphs. While interesting from a purely mathematical point of view, it is also intriguing to
understand if and how the introduction of a prefractalÐwhich can be interpreted as containing obstacles on infinitely
many scalesÐleads to a different quantitative and qualitative behaviour when compared to the Euclidean setting. On Zd,
the framework gives rise to a discrete, Lipschitz connected surface in (a coarse-grained) space-time graph Zd+1. On the
fractal graphs we study, we cannot hope for such a strong connectivity property. However, as we define in Subsection
2.5 and prove in Section 3, the corresponding object still acts as a cutset on the coarse-graining of the space-time graph,
meaning that any path escaping toward infinity must intersect this cutset (cf. Definition 2.10). Furthermore, it is in some
sense minimal and still retains the Lipschitz connectivity property along the time dimension (cf. Corollary 3.5). This
object will be referred to as Lipschitz cutset. We prove in Theorem 2.13 that such a Lipschitz cutset exists a.s., and in
Theorem 2.15 that it surrounds the origin within a finite distance a.s. The Lipschitz cutset retains the flexibility of the
Lipschitz surface and we expect that it can be taken advantage of to derive further interesting consequences. We refer to
Section 10 for further details and present now one example.

For this purpose, consider the infection process with recovery as outlined above, where at the beginning there is an
independent Poisson distributed with intensity µ0 number of particles at each vertex of the graph, and γ is the rate at
which infected particles recover. We say that the infection survives if for every time there exists at least one infected
particle somewhere on the graph. Our first main result is the following.

Theorem 1.1. For any µ0 > 0, there exists γ0 > 0 such that for all γ ∈ (0, γ0), the infection with recovery on G survives

with positive probability.

This paper is structured as follows. In Section 2 we define the SierpiÂnski gasket graph and formalise the definitions and
basic properties outlined above. We can then also state the two main technical Theorems 2.13 and 2.15 which give the
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existence and key properties of the Lipschitz cutset. In Section 3 we construct the Lipschitz cutset and provide a sufficient
condition for its existence, as well as prove its key geometric properties. Section 4 covers a tool used in our multi-scale
analysis, a decoupling theorem that allows us under the right conditions to resample particles independently. In Section
5 we define the multi-scale tessellation of the space-time graph and its properties which lead to the proof of Theorem
2.13 in Section 6. We prove Theorem 2.15 in Section 7 with an extension of the multi-scale argument developed before.
Section 8 covers the adaptation of the results which are written with the SierpiÂnski gasket graph in mind to the case of
generalised SierpiÂnski carpet graphs. The paper concludes with Section 9, where Theorem 1.1 is proven by applications
of Theorems 2.13 and 2.15.

Throughout this work we will denote constant with c0, c1, . . . and C1,C2, . . . . Important constants that should be kept
track of will be denoted differently: this includes Cλ, Cmix, Cψ as well as the constants M1,M2,M3,M4,Θ from the
decoupling Theorem 4.7.

2. Settings and definitions

We start by defining the SierpiÂnski graph and the coarse-graining which we will use throughout the paper. We then
proceed to formally define the particle system we will be studying before stating the two main results of this paper.

2.1. The SierpiÂnski gasket graph

The SierpiÂnski gasket is a fractal which was introduced in [24]. Here we define the SierpiÂnski graph or SierpiÂnski prefrac-
tal based on the SierpiÂnski fractal with a recursive construction as presented in [5]. Consider any of the graphs obtained
from the d-dimensional unit side-length regular simplex in Rd, d ≥ 2, by placing one vertex in the origin. Fix such a
graph and denote it with △d. More precisely, △d := (V,E) where V are the d+ 1 vertices corresponding to the corners
of the simplex and E is the set of all undirected pairs of vertices which share an edge in the simplex. For d= 2, this is the
graph induced by the equilateral triangle with unit length sides, motivating the notation△d. In d= 3, the graph is induced
by the equilateral tetrahedron. We furthermore assume the graph to be weighted with conductances λ := (λx,y){x,y}∈E ,
which are positive symmetric and we assume the existence of a constant Cλ ∈ (0,∞) such that the conductances are
uniformly elliptic, i.e.

(2.1)
1

Cλ
≤ λx,y ≤Cλ.

Define now△d0 :=△d and iteratively the graph of scale n, for n≥ 1, as

(2.2) △dn :=
⋃

x∈2n−1△d
0

(
x+△dn−1

)
,

taking care of identifying overlapping vertices at the junctions; edges carry the same conductance as in △d0 , i.e. for any
n ≥ 1, z ∈ 2n−1△d0 and x, y ∈ △d0, the conductance on the edge (z + x, z + y) is λx,y . The d-dimensional SierpiÂnski
graph Gd is the graph obtained by taking the union of△dn over n ∈N0. We write x∼ y if there is an edge between x and
y, and let λx :=

∑
y∼x λx,y . We will denote by (Gd, (λx,y)x∼y) the weighted graph Gd with conductances (λx,y)x∼y .

We introduce the set

(2.3) Bd :=
{
ι ∈Gd : ι+△d0 is a subgraph of Gd

}
,

which intuitively contains those vertices in Gd which are the ªlower leftº corner of some translation of the simplex △d
in Gd. Note that this set is stable under multiplication with powers of 2 in the sense that for all m ∈N0 and ι ∈ Bd,

(2.4) ι2m +△dm is a subgraph of Gd.

We consider the natural graph distance d(·, ·) on Gd and define the distance between sets as the usual minimum of the
distances between vertices contained therein. For a finite set A we define the volume Vol(A) := |A| as the cardinality of
the set A. Define the ball of radius r ≥ 0 with center x ∈Gd as Br(x) := {y ∈Gd : d(x, y)≤ r}, and the volume of such
balls Volr(x) := Vol(Br(x)). Note that the conductances do neither affect d(·, ·) nor the volume.

It can be shown that for each d≥ 2, there exist constants cvol,CVol ∈ (0,∞) (depending on the dimension) such that
for all x ∈Gd and r ≥ 1

(Vol(dv)) cvol r
dv ≤Volr(x)≤CVol r

dv ,
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(a) d= 2 (b) d= 3

Fig 1: The first six stages of the SierpiÂnski Gasket.

and we call dv the volume dimension of the graph. We refer to the discussion below (E(dw)) for a brief list of the different
names of dv in the literature. It is well-known that in dimension two we have dv = log2(3). To show that (Vol(dv)) holds
in any dimension d, it is not hard to generalise the proof in [2] in order to obtain that dv = log2(d+ 1).

We now present a regular coarse grainingÐreferred to as tessellationÐof the space-time space Gd×R which we need
in order to state the theorems. This definition will be in line with the more complex tessellation presented in Subsection
5.1.

2.2. First level tessellation

Definition 2.1. For a given value ℓ ∈N0, we tessellate the graph Gd into tiles S1(ι) := ι2ℓ+△dℓ , for ι ∈ Bd, so that each
tile is indexed by ι and has side length equal to 2ℓ.

For a given value β > 0, we tessellate R (which will play the role of time) into intervals T1(τ) := [τβ, (τ + 1)β),
indexed by τ ∈ Z.

We then define a (space-time) cell indexed by (ι, τ) ∈ Bd ×Z to be the set

(2.5) R1(ι, τ) := S1(ι)× T1(τ).

We will consider time starting at 0 and so one would expect us to work with R+ instead of R. Our multi-scale
framework will however require us to consider ªearlierº cells relative to a given space-time cell when dealing with
larger scales. In particular, this includes cells that lie in the ªpastº relative to the start of the process at time 0. Due to
us considering only collections of particles that are in stationarity (we will formalise this soon) we can therefore work
naturally with negative times as well and define the necessary notation already at this stage. A careful reader might also
wonder about the choice of using the index 1 instead of ℓ; as we will see later, the above defined tiles, intervals and
cells will form the building blocks of our argument at scale 1, with tiles, intervals and cells of larger scales having a
corresponding index.

Remark 2.2. When referring to subsets of the spatial graph Gd in general, such as tiles, unions of tiles or balls on the
graph, we will refer to them as regions or subregions when the distinction between the kind of subset does not play a role.

Later on, we might refer to generic cells with shorter notation such as simply u or v when we do not need to specify
the indices of the cell. This will usually be in conjunction with some set of cells, where we will write u ∈A as a shorthand
for R1(ι, τ) ∈A (see for example (2.10) and the text immediately thereafter).

Definition 2.3. We say two cells R1(ι1, τ1) ̸= R1(ι2, τ2) are adjacent if either ι1 = ι2 and |τ1 − τ2| ≤ 1 or else if
d(S1(ι1), S1(ι2)) = 0 and τ1 = τ2.

Remark 2.4. We could alternatively define S1(ι) to be ªhalf-openº in the sense that only the ªcornerº corresponding
to ι is in S1(ι) while all other corners are not, making the tiles disjoint. This distinction makes no difference for the



Lipschitz cutset for fractal graphs and applications to the spread of infections 5

combinatorial arguments we will use; it could however be important for the lowest level events one could consider (cf.
Definition 2.9) in the application of our framework.

We will use this space-time tessellation in order to define a dependent percolation model where space-time cells will
be good or bad depending on whether a given event dependent on the particle behaviour occurs roughly in the region
defined by the corresponding S1(ι) during the time interval T1(τ). More precisely, the events we will consider will not
necessarily be localised entirely within S1(ι). Instead, they will involve larger regions which in particular may intersect
for different pairs (ι, τ) and (ι′, τ ′). To this end we introduce the following extension.

Definition 2.5. Let η ∈N. For ι ∈ Bd we define the super-tile

Sη1 (ι) :=
⋃

ι′∈Bd : d(ι,ι′)≤η

S1(ι
′),

and for τ ∈ Z the super-interval T η1 (τ) := [τβ1, (τ + η)β1), as well as the super-cell Rη1(ι, τ) as Sη1 (ι)× T η1 (τ).

2.3. Random walks on the SierpiÂnski graph

We will study Poisson random walks and for this purpose we start by analysing properties of the simple random walk
on SierpiÂnski gaskets. We call a stochastic process (Xt)t≥0 taking values in Gd and starting in x0 ∈ Gd a (continuous
time simple) random walk on Gd under the probability measure Px0

, if X0 = x0 holds Px0
-a.s., and while at x ∈ Gd,

it jumps to y ∼ x with rate λx,y/λx. The corresponding expectation is then denoted by Ex0 . We say that a function
f : Gd ×R→R is caloric if satisfies the discrete heat equation

∂

∂t
f(x, t) =

∑

y∼x

λx,y
λx

(f(y, t)− f(x, t))

and it is easy to verify that the heat kernel pt(x, y) := 1
λy
Px(Xt = y) seen as a function of y and t, with x fixed, satisfies

it.
It is well known that the heat kernels for a random walk on Zd satisfy Gaussian estimates. Instead, the SierpiÂnski

gasket falls into the class of nested fractals studied in [15, Corollary 4.13], which shows the validity of sharp upper and
lower bounds for the heat kernel: denoting by pn(x, y) := 1

λy
Px(Xn = y) the heat kernel for the discrete time random

walk, it holds that

pn(x, y)≍ n−
dv
dw exp

{
−
(d(x, y)dw

c1n

)1/(dw−1)}
(2.6)

for n > d(x, y), with dv as in (Vol(dv)) and the walk dimension dw will be motivated in (E(dw)) below. Here, ≍ indicates
that the ratios of the two sides are bounded from above and below by positive constants independent of x, y and n in
the regime n > d(x, y). This result was first shown on G2 in [17]. Using the fact that the continuous time random walk
Xt has jump rate 1, one can extend the proof of [21, Theorem 2.5.6] to obtain a continuous time version of (2.6): for all
x, y ∈Gd and t > 0 with d(x, y)< t it holds that

pt(x, y)≍ t−
dv
dw exp

{
−
(d(x, y)dw

c2t

)1/(dw−1)}
.(HKB(dv, dw))

We say that the parabolic Harnack inequality holds for the graph Gd if there exists a constant C1 > 0 such that for all
x ∈Gd, R≥ 1 and non-negative h : Gd ×R→R caloric in B2R(x)× (0,4Rdw) satisfies

(PH(dw)) sup
BR(z)×[Rdw ,2Rdw ]

h(x, t)≤C1 inf
BR(z)×[3Rdw ,4Rdw ]

h(x, t).

Next, we introduce the walk dimension, and for this purpose, for any subset B of the graph Gd we write HB :=
inf{t > 0: Xt ∈B}. We say that the graph has walk dimension dw , if

(E(dw)) Ex[HBr(x)c ]≍ rdw

for all x ∈Gd and r ≥ 1. In the literature, the volume dimension (Vol(dv)) and walk dimension (E(dw)) are often referred
to by different symbols: for example [2] uses df and dw respectively, [3] uses α and β, [17] dsdw

2 and dw , and [5] uses
df for the volume dimension.
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It is proven that the gasket in dimension d= 2 has walk dimension dw = log2(5) (see for example [2] or [14]).
Next, we note that Theorem 3.1 of [13] establishes the validity of the following implications:

(2.7) (Vol(dv)) + (HKB(dv, dw))⇐⇒ (PH(dw)) =⇒ (E(dw)).

Hence, having established the validity of (Vol(dv)) and (HKB(dv, dw)) on the SierpiÂnski gasket Gd, the validity of (E(dw))
and (PH(dw)) is obtained from (2.7) in this setting also.

In this context we also note that volume and walk dimensions are related: indeed, for any graph which satisfies
(Vol(dv)) and (E(dw)), we have

(2.8) 2≤ dw ≤ dv + 1;

see e.g. [3, Theorem 1] for a proof. We will also need the following folklore estimate on the confinement probability,
which is a direct consequence of the estimates on the exit probability Ψn(x,R) in [12, Proposition 7.1] on a graph with
arbitrary random walk dimension.

Lemma 2.6. Let (Xt) be a random walk on (G,λ) such that (E(dw)) holds. Then there exists c3 ∈ (0,∞) such that for

all ∆, r > 0 with ∆> c3r, the event

Conf(Br,∆) :=
{
Xt ∈Br(X0) for all t ∈ [0,∆]

}

satisfies

(Conf(dw)) inf
x0∈Gd

Px0

(
Conf(Br,∆)

)
≥ 1− c3e−c

−1
3

(
rdw
∆

) 1
dw−1

.

If Conf(Br,∆) holds we say that the random walk X is confined to Br =Br(X0) during [0,∆].

2.4. Poisson particle system

We are now going to define a particle configuration Π as a function in (N0)
Gd , where Π(x) is to be interpreted as the

number of particles at x ∈Gd. We denote by φx the coordinate evaluation of Π defined by φx(Π) = Π(x) and denote by
F the σ-algebra generated by the coordinate maps.

We define a particle system as a family of particle configurations (Πt)t∈R ∈ (Ω,F ′), with Ω := {f : (−∞,+∞)→
(N0)

Gd} and F ′ :=F⊗R the product σ-algebra of F over R as follows: we define (Πt) under a probability measure P a
Poisson point process of random walkers with intensity given by µ(x) := µ0λx for x ∈Gd and some µ0 > 0. It is easy
to verify that the particle system is stationary (in fact, even reversible) in the sense that at any time t ∈ R, the particles
remain distributed according to a Poisson point process with intensity µ. This system is often referred to as Poisson

random walks.

We say that an event E ∈ F ′ is increasing for the particle system (Πt)t∈R if the fact that E holds for (Πt)t∈R implies
that E holds for all particle systems (Π′

t)t∈R with Π′
s ≥Πs for all s≥ 0, where Π′

s ≥Πs indicates that Π′
s(x)≥Πs(x)

for all x ∈Gd.
We now define what it means for an event to be measurable with respect to a particle system. Although one could

define this for an arbitrary particle system, we will consider events that are measurable with respect to the more restric-
tive Poisson random walks particle system from above. In particular, this means that we will consider events that are
measurable with respect not only to the locations of the particles at different times, but also their movements over time.

Definition 2.7. Let A ⊆ Gd, t0 ∈ R and t1 > 0. For the particle system (Πt)t∈R as above we denote by Px,t0 :=

(px,t0,i)
Πt0 (x)
i=1 the family of particles (including their movements over time) that are located at x at time t0 and with

Px,t0,i(t) the position of particle px,t0,i at time t, we say that an event E is restricted to A and a time interval [t0, t0 + t1]
if it is measurable with respect to σ

{
Px,t0,i(t), i ∈ {1, . . . ,Π(x)}, x ∈A, t ∈ [t0, t0 + t1]

}
.

Definition 2.8. Let r > 0, and t0, t1 as in the previous definition, we say that a particle is confined inside Br during
[t0, t0 + t1] if during the time interval [t0, t0 + t1] it stays inside the ball Br(x), where x is the location of the particle at
time t0.

Recall that the probability of being confined has been estimated in (Conf(dw)). We define now the probability associ-
ated to an event E.
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Definition 2.9. For µ(x) = µ0λx, an increasing event E restricted to A⊆Gd and [0, t], we define, recalling the notation
Br from Lemma 2.6,

νE(µ,A,Br, t) :=

P
(
E
∣∣ the particles in A at time 0 with initial density µ are confined inside Br during [0, t]

)
.

2.5. Main results

We now provide the final definitions necessary to state the main theorems. For each (ι, τ) ∈ Bd × Z we will denote
by E(ι, τ) an arbitrary increasing event restricted to the super-cell Rη1(ι, τ). We will call the cell R1(ι, τ) bad if the
event E(ι, τ) does not hold, and good otherwise. We next introduce a base of the space-time graph Gd × R. Recalling
the definition of the gasket via △dn in (2.2), we consider the (d− 1)-dimensional subgraph △d−1

n containing the origin
defined in the same way, and taking the union of△d−1

n across n ∈N we obtain the (d− 1)-dimensional SierpiÂnski gasket
Gd−1, which by construction is a subgraph of Gd. Intuitively, this corresponds to the Euclidean space identification of
the square lattice Z2 with the subgraph Z2 × {0} of Z3 and the origin of Z2 with the origin in Z3. Just like in the square
lattice case, the choice of which subgraph of Gd to identify with Gd−1 is not unique and can be chosen arbitrarily among
the admissible ones.

We now define the base of the space-time tessellation as

(2.9) L0 :=Gd−1 ×Z

seen as a subgraph of Gd ×Z as explained above, and the base of cells

(2.10) L1 :=
⋃

(ι,τ)∈L0∩(Bd×Z)

{R1(ι, τ)}.

We will often consider the distance

d(R1(ι, τ),L0) := min
x∈R1(ι,τ), y∈L0

d(x, y)

between a cell R1(ι, τ) ⊆ Gd × Z and the base L0, which we will refer to as the height of the cell; it may help to
visualise the base L0 to lie ªhorizontallyº as a subgraph of Gd ×Z. We can now finally define our last central object, the
Lipschitz cutset. We recall the definition of adjacent cells from Definition 2.3, and from now on we call any sequence
{R1(ιj , τj)}j∈N inside Gd ×Z of adjacent cells a path.

Definition 2.10. A Lipschitz cutset F is a set of cells in Gd × Z such that the following property is fulfilled: any path
starting in any cell v ∈ L1, and such that d(R1(ιj , τj),L0)→∞ as j→∞, intersects F .

Definition 2.10 is stable under taking unions, and in particular the entire graph Gd × R seen as a union of all cells
satisfies the definition. To prevent such undesired examples, we introduce the following condition.

Definition 2.11. We say that a Lipschitz cutset F is minimal if, for each F ′ ⊂ F we have that F ′ is not a Lipschitz cutset.

Remark 2.12. The minimal Lipschitz cutset we will end up constructing is the analogue for fractal graphs of the ªLipschitz
surfaceº in the lattice settings of Zd, see [6, 8, 10]. There, a Lipschitz surface is ∗-connected, or equivalently, for any point
(b,0) in the base of Zd one finds the corresponding height h= F (b) of the Lipschitz surface, which satisfies a Lipschitz
condition of type |F (b2)−F (b1)| ≤ 1 whenever ∥b2− b1∥1 ≤ 1. For the geometry of the fractal, we cannot hope for such
strong connectivity properties. Seeing the fractal graph as a subset of the triangular lattice, we could start by defining the
height h as one of the dimensions of the lattice and the base b as the remaing d− 1 dimensions spanning L0 together
with the time dimension; in this case however, not every cell (b, h) (written in this base-height notation) in the triangular
lattice would belong to the fractal graph Gd, since it may lie in one of the ªholesº of the fractal graph. In particular we
cannot require for any b1, b2 ∈ L0 such that ∥b2 − b1∥1 ≤ 1, that the corresponding h1 and h2 satisfy |h2 − h1| ≤ 1, as
either could be ill defined. However, the key property which remains true is that an appropriately1 constructed minimal
Lipschitz cutset F separates the origin (0,0) ∈ Gd × R from infinity in the sense of Definition 2.10 in the fashion of a
cutset and it retains some mild Lipschitz continuity properties, so we opted to use the name Lipschitz cutset instead.

We can now state our first technical result, and for this purpose, recall the constant c3 from Lemma 2.6.

1See Proposition 3.4 and Corollary 3.5.
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Theorem 2.13. Let Gd be the d−dimensional SierpiÂnski gasket with conductances satisfying (2.1). Let ℓ ∈ N and let

β ∈N be large enough. Furthermore, let η ∈N, ε ∈ (0,1) and ζ ∈ (0,∞) such that

ζ ≥ 1

ℓ

((
c3 log

(
8c3
3ε

))dw−1
ηβ

) 1
dw
,

and tessellate Gd ×R into space-time cells as described above. Let E :=E(ι, τ) be an increasing event restricted to the

super cell Rη1(ι, τ) whose associated probability νE
(
(1− ε)µ,Sη1 (ι, τ),Bζℓ, ηβ

)
(cf. Definition 2.9) has a uniform lower

bound across all (ι, τ) ∈ Bd ×Z denoted by

νE
(
(1− ε)µ,Sη1 ,Bζℓ, ηβ

)
.

Then there exists α0 ∈ (0,∞) such that if

ψ1(ε,µ0, ℓ, η) := min
{ε2µ02

dvℓ

Cλ
,− log

(
1− νE

(
(1− ε)λ,Sη1 ,Bζℓ, ηβ

))}
≥ α0,

there exists almost surely a minimal Lipschitz cutset F with the property that E(ι, τ) occurs for all (ι, τ) such that

R1(ι, τ) ∈ F .

Remark 2.14. Before proceeding, we quickly outline how the conditions of Theorem 2.13 (and also the following Theo-
rem 2.15) can be established. One usually fixes the ratio 2ℓ/β to be an arbitrary, but large constant. Once 2ℓ/β is fixed,
we fix ε ∈ (0,1) according to how much of the initial Poisson point process intensity we require in order to make the
event E still serve our goal. More precisely, we want that E still lets us draw desired conclusions under the intensity
(1− ε)µ which is slightly smaller than the actual intensity of the particles. This slack is needed to restrict our attention to
the particles that are ªbehaving wellº. When dealing with events that become increasingly probable at larger scales, ε can
usually be chosen arbitrarily, but it is good to think of it as small. Next, the value η determines the size of the super-tiles,
which controls how much overlap we need and allow between the cells of the tessellation (this is usually done in order to
enable information to propagate from cell to cell). The lower bound on ζ is to guarantee that, as particles move in Sη1 for
time β, with high probability they do not travel away from their starting position further than ζℓ, which gives us better
control of dependencies between neighbouring cells of the tessellation.

With 2ℓ/β, ε and ζ fixed, there exists a constant α0 > 0 for which the statement of the theorem holds. This constant
is defined purely implicitly and ensures various expressions in the proof remain sufficiently small throughout the calcu-

lations. We now want to satisfy the condition that ψ1(ε,µ0, ℓ, η)≥ α0. This first means that ε
2µ02

dvℓ

Cλ
≥ α0. This can be

satisfied by either making ℓ large enough (thus making the tessellation very coarse) or by assuming that the intensity of
the particles is large enough by making µ0 large. Next, we need to satisfy νE

(
(1− ε)λ,Sη1 ,Bζℓ, ηβ

)
≥ 1− exp{−α0}.

Usually, the event E is a local event that becomes more likely as ℓ is made larger, so setting ℓ large satisfies this condition
as well.

We can prove a further property of the Lipschitz cutset, which gives us control on the distance of F from any cell
R1(ι, τ) ∈ L1, without loss of generality and in particular from R1(0,0), the cell containing the origin: for a fixed radius
r we investigate if the Lipschitz cutset F at distance r surrounds the origin. More precisely, for a Lipschitz cutset F and
r > 0, we say that the event S(F, r) holds if any path {vj}nj=1 of adjacent cells from R1(0,0) with d

(
vn,R1(0,0)

)
> r

intersects F . Note that this event is considerably more restrictive than the one in Definition 2.10: if S(F, r) holds, it
implies in particular that the Lipschitz cutset does not only have finite distance from L0, but essentially ªsurroundsº the
cell R1(0,0) and prevents paths from obtaining arbitrary lengths while keeping their distance to L0 small.

Theorem 2.15. Under the conditions of Theorem 2.13, let F be the Lipschitz cutset from Theorem 2.13 on which, in

particular, the event E holds. Then for each cs ∈ (0, dv
dv+1 − 1

2 ) there exists c4 > 0 such that for r0 large enough we have

P
(
S(F, r0)

c
)
≤

∑

r≥r0

rdv+1 exp
{
− c4rcs

}
.

The theorem in particular entails that the Lipschitz cutset surrounds R1(0,0) at an almost surely finite distance.

Strategy of the proofs. The existence of the Lipschitz cutset of good cells constructed in Theorem 2.13 is essentially
equivalent to all paths starting in L1 of bad cells having only finite lengths. However, simply estimating the number and
the probability of bad paths does not work; even in the simplest case where η = 0 (i.e. the super-cells would be just the
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cells themselves and therefore non-intersecting), two events E(ι, τ) and E(ι′, τ ′) can be heavily correlated whenever
τ ̸= τ ′ and especially if the two tiles corresponding to ι′ and ι are close to each other. As an example, knowing that
there were no particles present in the tile ι during the time interval τ increases the probability that all spatially close
tiles will have fewer than expected particles for some time to come. On the other hand, as long as the occurrence of
E(ι, τ) depends principally on the particle system behaving ªtypicallyº, it becomes more probable that the event will
occur if the cells are all made bigger. Just blowing everything up is not enough however, since this would not resolve
the correlation and combinatorial issues, so we adopt a multi-scale argument. For each scale we estimate the probability
of a cell of that scale to be ªmulti-scale badº, knowing that at a larger scale the particles were behaving typically up
until shortly before; this property is defined precisely in (5.29). For a given time horizon we choose a maximal scale
κ, the largest scale that we will consider, and show that the probability to be ªmulti-scale goodº is exponentially close
to 1 at this large scale κ and consequentially, as long as there are only sub-exponentially many cells of scale κ within
the space-time region we consider, we have that at this largest scale, all cells are ªmulti-scale goodº with arbitrarily
large probability. By partitioning space-time into cells of ever smaller scale until reaching scale one, this gives rise to a
dependent space-time fractal percolation problem on which we want to count the number of paths of bad cells. Using the
fractal percolation nature of the setup and the alluded property that large cells are much less likely to be bad than even
all of their ªdescendantº cells being bad at once, we consider paths of bad cells across multiple scales. This makes the
combinatorial arguments more involved, but provides much better bounds on the probabilities of individual paths existing.
We also consider only the most important (i.e. largest in their part of the path) cells of a path and use a decoupling result
to decouple the remaining space-time cells of a path. Then, using a clever union bound for the probability of finding a
path of cells of various scales yields the result.

3. Constructing the Lipschitz cutset

Recall the definitions of adjacent cells from Definition 2.3, of L0 and L1 from (2.9), (2.10), and of bad cells at the very
start of Subsection 2.5, where we considered a cell R1(ι, τ) bad if a certain increasing event E(ι, τ) does not occur. To
construct the Lipschitz cutset we will make use of the concept of d-paths of cells, hills and mountains which we now
define.

Definition 3.1 (d-path). A d-path in Gd ×R is a (possibly finite) sequence {uk}k∈N of adjacent cells starting with a bad
cell u0 ∈ L1 such that for each k ∈N one of the following holds:

• uk+1 is bad and d(L0, uk+1)≥ d(L0, uk) (increasing move);
• d(L0, uk+1)< d(L0, uk) (diagonal move).

A d-path is defined in a way that it can increase or maintain the distance to the base L0 only by moving to a bad cell
in the next step, and otherwise can go ªdownº towards L0 with the so-called diagonal move, independently of the state of
the cell it is moving to.

Remark 3.2. We kept the name diagonal move as in the lattice setting of [10] for consistency and in order to distinguish
a connection in the path that can only go toward L0 regardless of the state of the cell. Furthermore, in the carpet setting
it will revert to a ∗−neighbours connection (cf. Definition 8.3), thus rendering the term diagonal more meaningful.

To describe the set of cells which can be reached via d-paths we introduce hills and mountains.

Definition 3.3 (Hill and Mountain). For any two cells u, v ⊆ Gd × R, we write u→ v if u is a bad cell and there is a
d-path from u to v. For a cell u ∈ L1 define the hill Hu and mountain Mu around u ∈ L1 as

Hu :=
⋃

v : u→v

{v} and Mu :=
⋃

v∈L1 : u∈Hv

Hv,

with the convention that if u is good, then the hill Hu is defined to be the empty set.

For a set of cells S, i.e. of the form S =
⋃
i∈I{R1(ιi, τi)} for some index set I , define for u ∈ S the sets

radu(S) := sup{d(u, v) : v ∈ S}

and

∂extS :=
⋃

u∈Sc :∃v∈S
v adjacent to u

{u},

where Sc is the set of all cells not belonging to S. We then obtain the following result.
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Proposition 3.4. If for all u ∈ L1 we have

(3.1)
∑

r≥1

rdv+1P(radu(Hu)> r)<∞,

then the set

F := ∂ext

( ⋃

u∈L1

Mu

)
∪ L1 \ (∪u∈L1

Mu)

is P-a.s. within a finite distance from L0 (which is in fact equivalent to F being non-empty), is a Lipschitz cutset and all

cells u⊆ F are good.

Proof. If L1 \ (∪u∈L1 Mu) ̸= ∅, then it is trivially within finite distance from L0 and the cells contained in it are good
since they would otherwise be contained in some hills and therefore not in L1 \ (∪u∈L1

Mu).
Next, we prove that cells in ∂ext(

⋃
u∈L1

Mu) are good. Suppose by contradiction that for some u ∈ L1, a cell v ∈
∂extMu is bad. By definition of ∂extMu there exists a cell v′ ∈Mu adjacent to v, and v′ can be reached by some d-path
since it lies in the mountain Mu. If d(L0, v)≥ d(L0, v

′), since v is bad, the d-path reaching v′ can be extended to v with
an increasing move. Otherwise, if d(L0, v)< d(L0, v

′), v can be reached by a diagonal move from v′ (independently of
the state of v), and in both cases therefore v /∈ ∂extMu .

To prove that ∂ext(
⋃
u∈L1

Mu) is within a finite distance from L0, it is sufficient to show that for any cell u ∈ L1

we have radu(Mu)<∞, since, by construction of mountains with the diagonal moves, if the radius of a mountain was
infinite, then it would be infinite for all mountains. We can therefore upper bound

P(radu(Mu)> r)≤
∑

v∈L1

P
(
u ∈Hv, radv(Hv)> r− d(u, v)

)

=
∑

v∈L1 :
d(u,v)≤r/2

P
(
u ∈Hv, radv(Hv)> r− d(u, v)

)
+

∑

v∈L1 :
d(u,v)≥r/2

P(u ∈Hv).

We can upper bound the previous by

Vol(Br/2(u)∩L0)P(radv(Hv)> r/2) +
∑

s≥r/2

Vol(∂(Bs(u)∩L0))P(radv(Hv)> s).

Since by (Vol(dv)) the volume of a ball in Gd ×R can be upper bounded by CVol r
d+1, by the assumption in the propo-

sition both summands tend to 0 as r increases.
It remains to show that F is a Lipschitz cutset, i.e. it intersects any path {uj}j∈N of cells starting from L1 with

d(uj ,L0)→∞. Note that L1 \ (∪u∈L1 Mu) and a fortiori F intersects any path that starts in a cell contained in L1 \
(∪u∈L1 Mu), so it remains to argue the case of paths that start in L1 ∩ (∪u∈L1 Mu). The claim is a consequence of the
definition of external boundary. Since F is a.s. within finite distance from L0, a path starting in a cell in L1 and distance
from L0 going to infinity contains a cell uj which is the first cell outside ∪u∈L1

Mu . In particular, for some v ∈ L1,
uj−1 ∈Mv , uj /∈ ∪u∈L1

Mu, and uj ∼ uj−1 so uj ∈ ∂ext(
⋃
u∈L1

Mu), i.e. the path intersects the Lipschitz cutset F.

Before turning to the multi-scale arguments, we prove a further property of the Lipschitz cutset. We already highlighted
in Remark 2.12 that on a fractal graph we cannot hope for a general Lipschitz condition. However, a Lipschitz connectivity
property holds in the ªtime dimensionº in the following sense.

Corollary 3.5. Suppose that (3.1) is satisfied and let F be as in Proposition 3.4. Consider

F o :=
⋂

F ′⊆F :
F ′ is a Lipschitz cutset

F ′.

Then F o is a minimal Lipschitz cutset and for all R1(ι, τ) ∈ F o, there exist ι−1, ι+1 ∈ Bd such that S1(ι−1) and S1(ι+1)
are individually either adjacent or equal to S1(ι), and such that

R1(ι−1, τ − 1),R1(ι+1, τ + 1) ∈ F o
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(a) An illustration of possible mountains (in yellow) with bad
cells highlighted with a darker tone. In dark blue the cells be-
longing to the Lipschitz cutset F .

(b) The resulting minimal Lipschitz cutset F o as obtained in
Corollary 3.5. The removed cells are left blank as, even though
they are good, we are ignoring this information.

Fig 2: Constructing the minimal Lipschitz cutset: a slab in G2 × {0}.

Fig 3: A possible evolution of the minimal Lipschitz cutset F o over 5 sequential time steps. Black tiles represent the cells
of the minimal Lipschitz cutset at the current time index τ , the light blue tiles represent the cells of the minimal Lipschitz
cutset at the previous time index τ − 1. The two are connected with dashed lines to help visualise the relationship.

An example of cells of F which were removed in the transition from F to F o is depicted in Figure 2. The Lipschitz
continuity in the time dimension is illustrated in Figure 3.

Proof. F o is a Lipschitz cutset as a consequence of the definition of F as we now argue. Let π := {ui}i∈N be any path
of cells with u1 ∈ L1 such that d(ui,L0)→∞ as i→∞. We construct a path π′ with the help of π as follows. Let πF
be the sequence of (not necessarily unique) cells of the path π that lie in F , ordered according to their appearance in π.
We claim that this sequence is a.s. finite. Assume the converse. We can associate each cell u of πF to a mountain Mv for
which u ∈ ∂ext(Mv) (when this choice is not unique, we can take for example the mountain for which d(u, v) is smallest).
Due to our assumption on π, and by extension πF , this implies the a.s. existence of a sequence of mountains (Mvi)i∈N

with radvi(Mvi)→∞ as i→∞. Together with translation invariance this however contradicts (3.1) and so πF is by
necessity a.s. finite. Let u now be the last cell of πF . Define now π′ to be the part of π from the last visit of u (including
u) onward. By the definition of F as external boundary of a union of mountains, we can extend π′ before u by some
arbitrary (finite) path of cells from L1 to u which does not intersect F : for example we can use a d-path that ends in a
cell neighbouring u. Since any Lipschitz cutset F ′ ⊂ F needs to intersect any such path and in particular π′ and F ′ ⊆ F
we have u ∈ F ′, and thus u ∈ F o. Since π was an arbitrary path starting in L1 with d(πi,L0)→∞ as i→∞, we obtain
that F o is a Lipschitz cutset.

The minimality is straightforward due to the definition of F o and it remains to show the temporal Lipschitz connectivity
claim.

For this purpose, let R1(ι, τ) ∈ F o be arbitrary, and we show the claim only for ι+1 and τ + 1, the other case being
identical. Suppose that such ι+1 does not exists. We show now that it would be possible to construct a sequence {uj}j of
adjacent cells which includes some of the cells in

R1(ι, τ) :=
{
R1(ῑ, τ̄) : τ̄ ∈ {τ, τ + 1}, ῑ= ι or such that S1(ι) adjacent to S1(ῑ)

}
\ {R1(ι, τ)},
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starts from L1, with d(uj ,L0)→∞ and does not intersect F o. Note that by our supposition, none of the cells in R1(ι, τ)
are in F o.

We construct the sequence of adjacent cells {uj}j so that it starts from L1 and reaches R1(ι, τ) without intersecting
F o; note that this is possible due to the assumption of minimality of F o. Similarly, the sequence {uj}j can be extended
fromR1(ι, τ) without intersecting F o and with d(uj ,L0)→∞. Since all of the cells inR1(ι, τ) are adjacent, the resulting
sequence {uj}j contradicts the definition of Lipschitz cutset, and proves the claim.

The next three sections are devoted to the multi-scale argument which will establish the assumption (3.1).

4. Decoupling Theorem

We begin by proving that when (PH(dw)) holds, random walks started from vertices close to each other have similar
probability distributions at sufficiently large times. More precisely, we have the following fluctuation bound for caloric
functions. Recall the definition of the weighted graph (Gd, (λx,y)x∼y) from Subsection 2.1.

Proposition 4.1. Let x0 ∈ Gd be arbitrary and suppose that (PH(dw)) holds with constant C1 > 1. Let Θ :=
log2(C1/(C1 − 1))> 1 and define for x, y ∈Gd

ρ(x0, x, y) := d(x0, x)∨ d(x0, y).

Write Q(x0,R) :=B2R(x0)× (0,4Rdw).
Then there exists a constantC2 > 0 such that the following holds: Let r0 ≥ 2 and suppose that u is caloric inQ(x0, r0).

Then, for any x1, x2 ∈Br0/2(x0) and any t1, t2 for which rdw0 − ρ(x0, x1, x2)dw ≤ t1, t2 ≤ rdw0 , we have that

|u(x1, t1)− u(x2, t2)| ≤C2 (ρ(x0, x1, x2)/r0)
Θ

sup
(t,x)∈Q+(x0,r0)

|u(x, t)|,

where Q+(x0, r0) :=Br0(x0)× [3rdw0 ,4rdw0 ].

The above inequality when applied to the heat kernel u(x, t) := pt(y,x) tells us that the fluctuations in x and t of the
probability that a particle starting in y is at x after time t can be precisely controlled and have an upper bound that is
polynomial in x. We will use this bound below when comparing various heat kernel values with a representative one.

Proof. In addition to Q and Q+, we define Q−(x0, r0) :=Br0(x0)× [rdw0 ,2rdw0 ]. Next, define rk := 2−kr0 and set

Q(k) := 4(rdw0 − rdwk ) +Q(x0, rk),

Q+(k) := 4(rdw0 − rdwk ) +Q+(x0, rk), and

Q−(k) := 4(rdw0 − rdwk ) +Q−(x0, rk),

where the summation is to be seen as a shift of the time interval of Q (resp. Q+ and Q−). A quick calculation using
that dw ≥ 2 then yields that Q(k) ⊂ Q+(k − 1). Take now k ≥ 1 small enough so that rk ≥ 2. We can without loss of
generality consider the shifted set Q(k) with the functions −u+supQ(k) u and u− infQ(k) u. Indeed, note that under the

change of time variable t̂ := t+ 4(rdw0 − rdwk ), the function û(x, t) := u(x, t̂) remains caloric. Since (PH(dw)) holds for
any non-negative caloric function on Q(x0, rk), it therefore holds for−û+supQ(k) u and û− infQ(k) u, and in particular
also for−u+supQ(k) u and u− infQ(k) u onQ(k). Applying (PH(dw)) to these two functions then yields the inequalities

− inf
Q−(k)

u+ sup
Q(k)

u≤C1(− sup
Q+(k)

u+ sup
Q(k)

u)

and

sup
Q−(k)

u− inf
Q(k)

u≤C1( inf
Q+(k)

u− inf
Q(k)

u),

respectively. Adding the two together and using that supQ−(k) u− infQ−(k) u≥ 0 then leads to

sup
Q(k)

u− inf
Q(k)

u≤C1(sup
Q(k)

u− inf
Q(k)

u)−C1( sup
Q+(k)

u− inf
Q+(k)

u).
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If we define now the oscillation of u inside A as Osc(u,A) := supA u− infA u and set δ :=C−1
1 ∈ (0,∞), we get

Osc(u,Q+(k))≤ (1− δ)Osc(u,Q(k)).

Take now the largest m such that rm ≥ ρ(x0, x1, x2). Applying the above oscillation inequality on Q(1)⊃Q(2)⊃ · · · ⊃
Q(m), we get since (x1, t1), (x2, t2) ∈Q(m) that

|u(x1, t1)− u(x2, t2)| ≤Osc(u,Q(m))≤ (1− δ)m−1Osc(u,Q(1)).

Using that (1− δ)m = 2−mΘ ≤ (2ρ(x0, x1, x2)/r0)
Θ we get the claim.

Next, we state a result of Popov and Teixeira [22], which will let us couple the locations of our particle system after
they have moved with an independent Poisson point process on G.

Proposition 4.2 (Soft local times). Let J be an at most countable index set and let (Zj)j∈J be a collection of points

distributed independently on Gd according to a family of probabilities gj : Gd → R, j ≤ J . Define for all y ∈ Gd the

soft local time function HJ(y) =
∑J
j=1 ξjgj(y), where the ξj are i.i.d. exponential random variables of mean 1. Let ψ

be a Poisson point process on Gd with intensity measure ρ :Gd→ R and define the event E := {ψ ⊆ (Zj)j≤J} , i.e. the

particles belonging to ψ are a subset of (Zj)j≤J . Then there exists a coupling Q of (Zj)j≤J and ψ, such that

Q (E)≥Q
(
HJ(y)≥ ρ(y), ∀y ∈Gd

)
.

Proof. The coupling is introduced in [22, Section 4] and proven in [22, Corollary 4.4]. A reformulation of the construction
for particles on a graph can be found in [16, Appendix A], and our claim corresponds to [16, Corollary A.3].

Before stating the next result, it is useful to recall from Remark 2.2 what we refer to as regions and sub-regions.
Intuitively, one should think of a (sub-)region as either a large tile, or a ªball-likeº union of tiles in Gd.

Proposition 4.3. Consider uniformly elliptic conductances λx,y satisfying (2.1) for some Cλ > 0. For each M1 > 0 there

exist constants M2,M3,M4 ∈ (0,∞), and Θ as in Proposition 4.1 such that the following holds.

Fix large enough ℓ > 0 and ε̄ > 0. Consider a region SK of diameterK≫ ℓ tessellated into sub-regions Sℓi of diameter

at most ℓ such that at time 0 there is a collection of particles (i.e., random walkers) where each sub-region Sℓi contains at

least δ
∑
y∈Sli

λy >M1 particles for some δ > 0. Let ∆,K ′ > 0 with

∆≥∆0 :=M2ℓ
dw ε̄−

4
Θ

K −K ′ ≥M3(∆)
1
dw ,

(4.1)

and for j ∈ J , denote by Yj the location of the j−th particle at time ∆, where J is the index set of all particles that are

inside the sub-region SK′ ⊂ SK of diameter K ′ at time ∆, where SK′ has Hausdorff distance at least K−K′

2 from the

complement of SK .

Then, if K is large enough for (4.1) to be satisfied, there exists a coupling Q of a Poisson point process Ξ with intensity

measure δ(1− ε̄)λy, y ∈ SK′ , and (Yj)j∈J , such that

Q
(
Ξ⊆ (Yj)j∈J

)
≥ 1−

∑

y∈SK′

e−M4δλy ε̄
2
∆

dv
dw .

Remark 4.4. In the above proposition, we require both ℓ and K to be large. More precisely, K should be sufficiently
larger than ℓ so that K −K ′ (which is at least of order ℓ) remains small in comparison to K .

Proof. Using Proposition 4.2, we can deduce that there exists a coupling Q of an independent Poisson point process Ψ
on G with intensity measure ζ(y) = δ(1− ε̄)λy and the locations of the particles Yj after they have moved for time ∆,
which are distributed according to the density functions f∆(xj , y) := p∆(xj , y)λy , where xj is position of Yj at time 0,
such that the particles belonging to Ψ are a subset of (Yj)j∈J with probability at least

Q
(
HJ(y)≥ δλy(1− ε̄), ∀y ∈ SK′

)
,

where HJ(y) =
∑
j∈J ξjf∆(xj , y), the (ξj)j∈J are i.i.d. exponential random variables with parameter 1, and J is the

index set of particles inside SK′ at time ∆.
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We first observe that for any Γ> 0, the probability of the complement is upper bounded via

Q
(
∃y ∈ SK′ : HJ(y)< δλy(1− ε̄)

)
≤

∑

y∈SK′

Q
(
HJ(y)< δλy(1− ε̄)

)

≤
∑

y∈SK′

eΓλyδ(1−ε̄)EQ[exp{−ΓHJ(y)}],

due to the exponential Chebychev inequality.
Let now

(4.2) R :=M3∆
1/dw ε̄

−
dw−1
dw ,

where M3 will be chosen large enough later on. Next, let J ′ be any subset of J such that exactly ⌈∑y∈Sℓi
δλy⌉ many

particles Yj , j ∈ J ′, were inside Sℓi at time 0 for every sub-region Sℓi of SK . For y ∈G, define also J ′(y)⊆ J ′ to be the
set of all indices j ∈ J ′ for which d(xj , y)≤R and define HJ ′

(y) as HJ(y), but with the sum in the definition restricted
to the indices j ∈ J ′(y), i.e. HJ ′

(y) =
∑
j∈J ′(y) ξjf∆(xj , y). By definition, HJ(y)≥HJ′

(y) and therefore

EQ

[
exp{−ΓHJ(y)}

]
≤ EQ

[
exp{−ΓHJ ′

(y)}
]
.

Since the ξj in the definition of H are independent exponential random variables of parameter 1, we can calculate further

EQ

[
exp{−ΓHJ ′

(y)}
]
=

∏

j∈J′(y)

EQ

[
exp{−Γξjf∆(xj , y)}

]

=
∏

j∈J ′(y)

(1 + Γf∆(xj , y))
−1.

Furthermore, choosing M2 large enough, due to (HKB(dv, dw)) we have for all x with d(x, y) ≤ R that p∆(x, y) ≤
c5∆

−dv/dw for some constant c5. In particular, this holds for all y ∈ SK′ and all x ∈⋃
Sℓi , where the union runs across

all Sℓi for which there exists j ∈ J ′(y) such that xj ∈ Sℓi . Setting now Γ := 1
4c5Cλ

ε̄∆dv/dw gives

(4.3) sup
x∈BR(y)

Γf∆(x, y) = sup
x∈BR(y)

Γλyp∆(x, y)≤ c5CλΓ∆−dv/dw < ε̄/4.

For this value of Γ and using that for |z| ≤ 1
2 , Taylor expansion yields that log(1 + z)≥ z − z2, it further holds that

∏

j∈J ′(y)

(1 + Γf∆(xj , y))
−1 ≤

∏

j∈J ′(y)

exp
{
− Γf∆(xj , y)(1− Γf∆(xj , y))

}

≤ exp
{
−
(
1− sup

x∈BR(y)

Γf∆(x, y)
) ∑

j∈J′(y)

Γf∆(xj , y)
}

(4.3)
≤ exp

{
− Γ(1− ε̄/4)

∑

j∈J ′(y)

f∆(xj , y)
}
.

We claim now (and prove below) that

(4.4)
∑

j∈J ′(y)

f∆(xj , y)≥ δλy(1− ε̄/2),

which then gives us that

Q
(
∃y ∈ SK′ : HJ(y)< δλy(1− ε̄)

)
≤ exp

{
γλyδ(1− ε̄)− γ(1− ε̄/4)δλy(1− ε̄/2)

}

≤ exp{−γδλy ε̄/4}.

Plugging in the definition of γ then yields the claim. We therefore proceed to prove (4.4).
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Recall that a particle Yj has its initial location at time 0 equal to xj . For each Sℓi and each particle Yj whose location
at time 0 was xj ∈ Sℓi , let x′j ∈ Sℓi be such that f∆(x′j , y) = maxw∈Sℓi

f∆(w,y). Note that for two particles Yi, Yj that

were located inside Sℓi , x′i = x′j . This however does not hold for two particles if they did not lie in the same subregion at
time 0. Next, we can bound

∑

j∈J ′(y)

f∆(xj , y)≥
∑

j∈J ′(y)

(
f∆(x′j , y)− |f∆(x′j , y)− f∆(xj , y)|

)
.

We will look at the first summand: for each Sℓi , it holds by our choice of x′j that

∑

j∈J ′(y)

xj∈S
ℓ
i

f∆(x′j , y) = max
w∈Sℓi

f∆(w,y)
∑

j∈J ′(y)

xj∈S
ℓ
i

1

which by definition of J ′ can be lower bounded by

max
w∈Sℓi

f∆(w,y)
⌈ ∑

z∈Sℓi

δλz

⌉
≥

∑

z∈Sℓi

δλzf∆(z, y).

Set R(y) to be the set of all sites z of SK for which d(z, y)≤R. Note that R is always strictly positive since it (cf. (4.2))
is proportional to l and M3 is assumed to be large. Furthermore, note that if z ∈R(y) then for all particles Yj with their
respective x′j = z and j ∈ J ′ we have that j ∈ J ′(y). It also holds that λzf∆(z, y) = λyf∆(y, z), which combined with
the preceding calculation yields for each Sℓi that

∑

j∈J ′(y)

f∆(x′j , y)≥
∑

z∈R(y)

δλzf∆(z, y) = δλy
∑

z∈R(y)

f∆(y, z)≥ δλyP(Conf(R,∆)).

By Lemma 2.6 we have that there exists a constant c3 so as to lower bound the previous expression by

δλy
(
1− c3e−c

−1
3

(
Rdw
∆

) 1
dw−1 )

≥ δλy(1− ε̄/4),

where the last inequality holds by setting R (cf. (4.2)) through M3 large enough with respect to c3.
It remains to find an upper bound for the second summand

∑
j∈J ′(y) |f∆(x′j , y)− f∆(xj , y)|. Let I be the set of all i

for which Sℓi contains a location xj from the set (xj)j∈J ′(y). Then

∑

j∈J ′(y)

|f∆(x′j , y)− f∆(xj , y)|=
∑

i∈I

∑

j∈J ′(y)

xj∈S
ℓ
i

|f∆(x′j , y)− f∆(xj , y)|

= λy
∑

i∈I

∑

j∈J ′(y)

xj∈S
ℓ
i

|p∆(x′j , y)− p∆(xj , y)|.
(4.5)

Since for any y ∈ Gd, the heat kernel Gd × R ∋ (x, t) 7→ pt(x, y) is caloric and the parabolic Harnack inequality is
fulfilled on Gd, Proposition 4.1 with rdw0 =∆ applies. This allows us to use the upper bound

|p∆(x′j , y)− p∆(xj , y)| ≤
C2ℓ

Θ

∆Θ/dw
sup

(t,x)∈Q+(x′

j ,∆
1/dw )

|pt(x, y)|.
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We can also take advantage of the upper heat kernel bound (HKB(dv, dw)), uniformly in x′j , on the supremum term and
upper bound it by C3∆

−dv/dw . Combined, (4.5) is smaller than

λy
∑

i∈I

∑

j∈J ′(y)

xj∈S
ℓ
i

C2ℓ
Θ

∆Θ/dw
C3∆

−dv/dw ≤ λy
∑

i∈I

∑

x∈Sℓi

C2δλxl
Θ

∆Θ/dw
C3∆

−dv/dw

= δλyC2C3

∑

i∈I

∑

x∈Sℓi

λxl
Θ
∆

−(dv+Θ)/dw

(Vol(dv))
≤ δλyC2C3CVolCλR

dv lΘ∆−(dv+Θ)/dw

≤ δλy ε̄/4,

(4.6)

where the last inequality follows from (4.2) as well as (4.1), and by setting M3 sufficiently large with respect to the
constants C2,C3,CVol, and Cλ. This proves (4.4) and concludes the proof.

The statement of Proposition 4.3 does not depend on particles located outside of the region SK at time 0. However,
since the particles can move in an unrestricted way, repeated applications of the theorem across multiple regions of time
and space (cf. Sections 2.2 and 3) still exhibit long range correlations that we would like to avoid. To that end, we will
prove a version of Proposition 4.3 also for particle systems conditioned on having the particle movement confined (cf.
Lemma 2.6). The main difficulty is that by conditioning the particles in this way, their transition probabilities do not
necessarily satisfy (HKB(dv, dw)) and by extension (PH(dw)) any longer. It turns out, however, that these probabilities
are still quantitatively the same under some mild modifications of the assumptions, which we prove in the following
lemma.

Lemma 4.5. Let λ satisfy (2.1). Then there exist constants c6 and c7 so that the following holds. Consider a region Sℓ
with ℓ > 0. Let ∆> c6ℓ

dw and ρ≥ c7(∆ logdw−1
2 (∆))1/dw . Denote by Y a random walk on Gd conditioned on being

confined to Bρ/2 during the time interval [0,∆]. Let x, y ∈ Sℓ with x being the starting point of the random walk, and

define

q(x, y) := Px
(
Y∆ = y |Yt is confined to Bρ/2 during [0,∆]

)
.

Then there exists a constant C > 2 such that for x, y, z ∈ Sl we have

∣∣∣∣
q(x, y)

λy
− q(z, y)

λy

∣∣∣∣≤CℓΘ∆−(dv+Θ)/dw .

Remark 4.6. It is important to note that the above bound is of the same form as the bound we used in (4.6) for the
unconditioned random walk. Consequently, we will use this lemma to prove a conditioned version of Proposition 4.3
without having to directly use (PH(dw)), which as mentioned above might not necessarily hold in this case.

Proof of Lemma 4.5. Define the probability

px(ρ) := Px
(
Yt ∈Bρ/2(x) for all t ∈ [0,∆]

)
,

that a random walk started at x is confined to Bρ/2 during [0,∆]. Using Lemma 2.6, we have that

1− pE(ρ)≤ c3e−c
−1
3 (ρdw/∆)

1
dw−1

.(4.7)

Next, writing h(x, y) := Px(Y∆ = y |Y exits Bρ/2(x) during [0,∆]) and f∆(x, y) = Px(Y∆ = y), we can write

f∆(x, y) = q(x, y)pE(ρ) + h(x, y)(1− pE(ρ)).

From this, we immediately obtain the bound

q(x, y)≤ f∆(x, y)
1

pE(ρ)
.
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We can then further upper bound
∣∣∣∣
q(x, y)

λy
− q(z, y)

λy

∣∣∣∣= 1{q(x,y)>q(z,y)}

(
q(x, y)

λy
− q(z, y)

λy

)

+ 1{q(x,y)≤q(z,y)}

(
q(z, y)

λy
− q(x, y)

λy

)

≤ 1{q(x,y)>q(z,y)}

(
f∆(x, y)

λypE(ρ)
− f∆(z, y)

λypE(ρ)
+
h(z, y)(1− pE(ρ))

pE(ρ)λy

)

+ 1{q(x,y)≤q(z,y)}

(
f∆(z, y)

λypE(ρ)
− f∆(x, y)

λypE(ρ)
+
h(x, y)(1− pE(ρ))

pE(ρ)λy

)

≤ |p∆(y,x)− p∆(y, z)|
pE(ρ)

+
max{h(x, y), h(z, y)}(1− pE(ρ))

pE(ρ)λy
.

(4.8)

Next, observe that we can write h(x, y) as Ex[f∆−τ (w,y) | τ <∆] with τ being the first time Y exits Bρ/2(x) and
w := Yτ the random vertex at the boundary of B(x,ρ/2) where Y is at time τ . Since the weights λx,y satisfy (2.1) we can

bound f∆−τ (w,y)
λy

from above by some positive constant C4. This is because either ∆− τ is larger than d(w,y), which

allows us to use (HKB(dv, dw)), or ∆− τ is smaller than d(w,y), so that f∆(w,y) is bounded above by the probability
that a random walk jumps at least d(w,y) steps in time ∆− τ , which is small enough since d(w,y) is large. Therefore
we have that max{h(x,y),h(z,y)}(1−pE(ρ))

pE(ρ)λy
is at most C5. This together with the bound on 1− pE(ρ) yields

max{h(x, y), h(z, y)}(1− pE(ρ))
pE(ρ)λy

≤ C5 · c3
pE(ρ)

exp{−c−1
3 (ρdw/∆)

1
dw−1 }

≤ C5 · c3
pE(ρ)

exp
{
− c−1

3 (c
1

dw−1

7 log2(∆))
}
.

We now return to (4.8). By setting c7 (and by extension ρ) large enough and using the upper bound for 1 − pE(ρ)
from (4.7), we can bound pE(ρ) from below by 1/2. Applying Proposition 4.1 to the term |p∆(y,x) − p∆(y, z)|,
using (HKB(dv, dw)) to bound the resulting supremum term, and finally setting c7 even larger if necessary for

exp{−c−1
3 (c

1
dw−1

7 log2(∆))} to be smaller than ∆
−dv/dw concludes the proof.

We now state the version of Proposition 4.3 for particles that are confined. Note that the statement remains essentially
unchanged, other than having a stronger condition on K −K ′ than before. This is also the statement of the result that we
will rely on to conduct our multi-scale analysis (cf. Lemma 6.1).

Theorem 4.7. Consider elliptic conductances λx,y satisfying (2.1) for some Cλ > 0. For Θ as in Proposition 4.1 and

each M1 > 0 there exist M2,M3,M4 such that the following holds.

Fix large enough ℓ > 0 and ε̄ > 0. Consider a region SK of diameter K ≫ ℓ tessellated into sub-regions Sℓi of

diameter at most ℓ such that at time 0 there is a collection of particles, where each sub-region Sℓi contains at least

δ
∑
y∈Sℓi

λy >M1 particles for some δ > 0. Let ∆ and K ′ > 0 be such that

∆≥∆0 :=M2ℓ
dw ε̄−

4
Θ

K −K ′ ≥M3(∆(log2∆)dw−1)
1
dw ,

and for j ∈ J , denote by Yj the location of the j−th particle at time ∆ conditioned on being confined to a ball B(K−K′)

during [0,∆], where J is the index set of all particles that are inside the sub-region SK′ ⊂ SK of diameter K ′ at time

∆, where SK′ has Hausdorff distance at least K−K′

2 from the complement of SK .

Then, ifK is large enough to satisfy (4.1), there exists a coupling Q of a Poisson point process Ξ with intensity measure

δ(1− ε̄)λy for y ∈ SK′ and the family (Yj)j∈J such that

Q
(
Ξ⊆ (Yj)j

)
≥ 1−

∑

y∈SK′

e−M4δλy ε̄
2
∆

dv
dw .
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Remark 4.8. Similar to Proposition 4.3, we require both ℓ and K to be large. Here, K has to be sufficiently larger than ℓ
so that K −K ′ (which is grows polylogarithmically faster than ℓ) remains small in comparison to K .

Proof. Using Lemma 4.5 and the upper bound on g(x, y) from its proof when setting Γ, the proof proceeds the same as
in Proposition 4.3. The independence from the graph outside of S(2K−K′) follows from the fact that we consider only
particles which are confined to B(K−K′) (recall that confinement is defined with respect to the starting position of a
particle) and ended in S′

K , so they never left S(2K−K′) during [0,∆].

5. Multi-scale setup

In this section we define the multi-scale set-up for the construction. For some (large) κ ∈ N, we will define for each
1≤ k ≤ κ cells at scale k: in the fractal graph, spatial tiles will be denoted by Sk(ι) and indexed by some ι ∈ Bd; the time
line R will be subdivided into intervals Tk(τ) and indexed by τ ∈ Z. The space-time cells Rk(ι, τ) will simply be the
Cartesian product Sk(ι)× Tk(τ). We will also need to introduce, for each scale k, extensions of the cells which do not
need to be of the same scale. Those cells will be necessary to work with the dependencies between adjacent cells. scale
one will correspond to and agree with the first tessellation introduced in Definition 2.1. The value κ instead is the largest
scale that we will consider. The reader might want to think of κ to be fixed for the moment. It will be determined later in
the proof of Proposition 6.5: if the largest area that we take into consideration is roughly Bt(0)× [−t, t], then we will set
κ=O(

√
log(t)).

5.1. Multi-scale tessellation

Space tessellation. We start by defining the space tessellation on the graph Gd. After the full definition of all relevant
tiles and intervals and a statement of useful properties, we refer to the end of this paragraph for a short motivation and
intuition regarding the roles of the different tiles introduced here.

For ε ∈ (0,1) and ℓ,m,a be positive (large) integers which we will fix later. Set ℓ0 := ℓ−m and let

ℓk := a(k− 1)2 +m(k− 1) + ℓ.(5.1)

Define the space tiles at scale k ∈N indexed by ι ∈ Bd (cf. (2.3)) as the subgraphs of Gd with vertex sets

Sk(ι) := ι2ℓk +△dℓk ,

and induced edges, which are well-defined in view of (2.4). We say that two cells Sk(ι1) ̸= Sk(ι2) are adjacent if
d(Sk(ι1), Sk(ι2)) = 0. It is easy to verify that

Sk(ι) has side length of 2ℓk , and that(5.2)

Sk+1(ι) is the union of exactly 2dv(ℓk+1−ℓk) = (d+ 1)2ak−a+m tiles of scale k.(5.3)

Next, we introduce a hierarchy of the space tiles. We define for k, j ≥ 0 the function π(j)
k by

(5.4) π
(j)
k (ι) = ι′ ⇔ Sk(ι)⊆ Sk+j(ι′),

and we say that Sk′(ι′) is an ancestor of Sk(ι) (or equivalently that Sk(ι) is a descendant of Sk′(ι′)) if π(k′−k)
k (ι) = ι′.

Note the map is well-defined by the uniqueness of the choice of ι′ on the right-hand side of (5.4), and that any cell is also
a descendant and an ancestor of itself.

Recall now the constant Θ from Proposition 4.1. We define for k ≥ 0 and b(k) := ak2+
8

Θdwm2m the base, the area of

influence, and for k ≥ 1 the extension, the support and the extended support as

Sbase
k (ι) :=

⋃

ι′ : d(Sk(ι′),Sk(ι))≤b(k)

Sk(ι
′),(5.5)

Sinf
k (ι) :=

⋃

ι′ : d(Sk(ι′),Sk(ι))≤2b(k)

Sk(ι
′),(5.6)

Sext
k (ι) :=

⋃

ι′ : π
(1)
k−1(ι

′)=ι

Sbase
k−1 (ι

′),(5.7)
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Ssup
k (ι) :=

⋃

ι′ : d(Sk+1(ι′),Sk+1(π
(1)
k (ι)))≤m

Sk+1(ι
′),

SEsup
k (ι) :=

⋃

ι′ : d(Sk+1(ι′),Sk+1(π
(1)
k (ι)))≤3m+1

Sk+1(ι
′).(5.8)

The choice of b(k) will be made clear later in (6.3). Recalling the value η from Definition 2.5, we also assume that
b(1) ≥ η, which holds if we choose a large enough. See Figure 4 for an illustration of how the different tile extensions
relate to each other.

Fig 4: Illustration of Sbase
1 (ι) and Sext

2 (π
(1)
1 (ι)). The thin line triangles represent the many tiles S1 of scale one, the thick

black line triangles are tiles S2 of scale 2. The black triangle represents the specific tile S1(ι), while the dark blue region

is Sbase
1 (ι) and the light red is Sext

2 (π
(1)
1 (ι)). Sinf

1 (ι) is not represented in order to keep the image legible.

We now state some properties of the above defined sets and the relations of the different tiles. It is easy to check that
for all (k, ι) ∈N0 ×Bd it holds Sk(ι)⊆ Sbase

k (ι)⊆ Sinf
k (ι) and

(5.9) Sbase
k (ι)⊆ Sext

k+1(π
(1)
k (ι)).

Since b(k) is increasing in k, it also holds that

Sext
k (ι)⊆ Sbase

k (ι).

Further simple properties of space tiles can easily be inferred: we will use later that

Sbase
k (ι) contains at most CVol b(k)

dv tiles of scale k; and

Sext
k (ι) contains at most CVol(b(k− 1) + 2ℓk)dv tiles of scale k− 1,

which both follow from (Vol(dv)).
We now look at the properties of the larger scales. Comparing the exponential growth of Sk in (5.3) with the polynomial

growth of b(k) in (5.6), one sees that for a,m large enough, for all k and ι, it holds that

(5.10) Sinf
k (ι)⊆ Ssup

k (ι).
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Remark 5.1. The assumption b(k)≥ η implies that Sbase
1 (ι), and a fortiori Sext

1 (ι), contains the super-tile Sη1 (ι) defined
in Definition 2.5.

We now quickly motivate the introduction of the different tiles. The tiles Sk(ι) constitute the basic tiles at each scale.
The introduction of the multi-scale argument suggests that we will introduce a notion of goodness for every scale k: this
is related to Sbase

k (ι) and Sext
k+1(π

(1)
1 (ι)), as well as to the events Dbase and Dext which we are going to define in (5.22)

and (5.21).
Furthermore, Sinf , which is defined as Sbase but with a slightly larger border, will help us to keep tiles apart: if for

two tiles the areas of influence do not intersect, we will call these tiles well-separated and we will be able to treat the tiles
as essentially independent. Finally, we introduced Ssup and SEsup so that tiles whose (extended) supports intersect each
other, even if otherwise well-separated, are still close enough to be part of a very general kind of path, the ScD-path (see
Definition 5.6).

Temporal tessellation. We now turn to the temporal tessellation of R. The tessellation itself is easier than the previous
one introduced for space, and it corresponds to the one in [10]. Define for k ≥ 2

βk := Cmix(
k2

ε )
4
Θ

(
2ℓk−1

)dw(5.11)

where Cmix is a constant larger than 84/ΘM2, Θ and M2 are constants from Theorem 4.7 and ε is from the beginning

of Subsection 5.1. Set as well β := β1 := Cmix
2dw(ℓ−m)

ε4/Θ
, assuming m large enough so that Cmix ≥ 84/ΘM2 still holds.

On first reading, one should not be distracted by the constant Cmix or the fine-tuning power k8/Θ in βk and instead
focus on the leading term 2ℓk−1 which is raised to the power dw . As discussed before, the term dw represent the power
scaling between time and space from the perspective of the random walkers. That is a major difference from the lattice
Zd where the ªwalk dimensionº dw equals 2 for every dimension d of the lattice. Note in particular that ratios between
two consecutive time-scales satisfy

(5.12)
βk+1

βk
= (k+1

k )8/Θ
(
22ak−3a+m

)dw
.

Define the time intervals at scale k ∈N as the intervals

Tk(τ) = [τβk, (τ + 1)βk), τ ∈ Z,

and we say that two intervals Tk(τ1) ̸= Tk(τ2) with τ1, τ2 ∈ Z are adjacent if |τ1− τ2| ≤ 1. We now introduce a hierarchy
over time, which is more complex than the spatial one. While for space, a parent contains its descendants, since ªtime
flows forwardº, parents with respect to time will still have larger intervals than their children, but will lie to the left (i.e.
ªbeforeº): see Figure 5. Formally, let γ(0)k (τ) = τ, and for j ≥ 1 define

γ
(j)
k (τ) := τ ′ if γ

(j−1)
k (τ)βk+j−1 ∈ Tk+j(τ ′ + 1),

see Figure 5 for visualisation. In analogy with the terminology introduced in the spatial setting, we say that Tk′(τ ′) is

an ancestor of Tk(τ) or equivalently that Tk(τ) is a descendant of Tk′(τ ′) if γ(k
′−k)

k (τ) = τ ′ and it still holds that any
time interval is also a descendant and an ancestor of itself. Note that due to the ªtime driftº it does not contain its own
descendants of any scale as subintervals.

Fig 5: Temporal tessellation and its hierarchy structure. Image adapted from [10].
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As we did for space, we define for each scale k larger intervals that we will need:

T inf
1 (τ) := [γ

(1)
1 (τ)β2, (τ + η ∧ 2)β1],

T inf
k (τ) := [γ

(1)
1 (τ)β2, (τ + 2)βk],(5.13)

T sup
k (τ) :=

8⋃

i=0

Tk+1(γ
(1)
k (τ)− 3 + i),(5.14)

TEsup
k (τ) :=

26⋃

i=0

Tk+1(γ
(1)
k (τ)− 12 + i).(5.15)

We now claim and prove that the time analogue of (5.10) still holds.

Lemma 5.2. Let Tk′(τ
′) be a descendant of Tk(τ), and let Tk′(τ

′′) be adjacent to Tk′(τ
′). Then for a,m large enough

T inf
k′ (τ ′′)⊆ T sup

k (τ).

Proof. Recall that T inf
k′ (τ ′′)⊆ [γ

(1)
k′ (τ

′′)βk′+1, (τ
′′+2∧η)βk′ ], the definition of T sup

k (τ)= ((γ
(1)
k (τ)−3)βk+1, (γ

(1)
k (τ)+

5)βk+1)), in (5.14), and |τ ′′ − τ ′| ≤ 1 by adjacency.

It is easy to verify the inequality (γ
(1)
k (τ)− 3)βk+1 ≤ γ(1)k′ (τ

′ − 1)βk′+1, so we concentrate on the right delimiters of

the intervals. To prove the other inequality, note that for any interval Tk′(τ ′), we have τ ′βk′ ≤ γ(1)k′ (τ
′)βk′+1+2βk′+1 so

iterating this k− k′ times we obtain

τ ′βk′ ≤ γ(k−k
′)

k′ (τ ′)βk + 2

k−k′∑

j=1

βk′+j .

We can bound using that k′ ≥ 1

k−k′∑

j=1

βk′+j ≤
k∑

j=2

βj =Cmix

k∑

j=2

(j2
ε

)4/Θ

2dwℓj−1 =Cmix ε
−4/Θ

k∑

j=2

j8/Θ2dw(a(j−2)2+m(j−2)+ℓ)

which by induction is smaller than

Cmix ε
−4/Θ2k8/Θ2dw(a(k−1)2+m(k−1)+ℓ) = 2βk.

Hence, we have

(τ ′′ + 2∨ η)βk′ ≤ (τ ′ + 1+ 2∨ η)βk′

≤ γ(k−k
′)

k′ (τ ′)βk + 2

k∑

j=1

βk′+j + (1+ 2∨ η)βk′

≤ τβk + 4βk + (1+ 2∨ η)βk′ ,

and since 4βk + (1+ 2∨ η)βk′ ≤ (5 + 2∨ η)βk ≤ βk+1 for a,m large enough, this is further smaller than

τβk + βk+1 ≤ (γ
(1)
k (τ) + 5)βk+1,

proving the lemma.

Space-time tessellation. We can now define the space-time tessellation at different scales via the Cartesian products

Rk(ι, τ) := Sk(ι)× Tk(τ),
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Rinf
k (ι, τ) := Sinf

k (ι)× T inf
k (τ),

Rsup
k (ι, τ) := Ssup

k (ι)× T sup
k (τ),

REsup
k (ι, τ) := SEsup

k (ι)× TEsup
k (τ).

We say two cells Rk(ι1, τ1) and Rk(ι2, τ2) of same scale are adjacent if either d(Sk(ι1), Sk(ι2)) = 0 and τ1 = τ2, or else
if ι1 = ι2 and |τ1 − τ2| ≤ 1. We extend the mappings π and γ to a hierarchy of space-time cells. We say that Rk(ι, τ) is
an ancestor of Rk′(ι′, τ ′) if Sk(ι) is an ancestor of Sk′(ι′) and Tk(τ) is an ancestor of Tk′(τ ′).

We observe, combining (5.10) and Lemma 5.2, for any cell Rk(ι, τ) and any cell Rk′(ι′′, τ ′′) which is adjacent to a
descendant of Rk(ι, τ) of scale k′, it holds that

(5.16) Rinf
k′ (ι

′′, τ ′′)⊆Rsup
k (ι, τ).

In particular, for any two cells Rk(ι, τ) and Rk′(ι′, τ ′),

(5.17) Rinf
k (ι, τ)∩Rinf

k′ (ι
′, τ ′) ̸= ∅ ⇒ Rsup

k (ι, τ)∩Rsup
k′ (ι′, τ ′) ̸= ∅,

which means that if the areas of influence of two cells intersect then also the supports intersect.
Note that we defined the extended supports (5.8) and (5.15) in such a way that it holds for two cells Rk1(ι1, τ1) and

Rk2(ι2, τ2) with k1 ≤ k2 that

(5.18) Rsup
k1

(ι1, τ1)∩Rsup
k2

(ι2, τ2) ̸= ∅ ⇒ REsup
k2

(ι2, τ2)⊇Rsup
k1

(ι1, τ1),

which means that if the supports of two cells intersect, then the bigger extended support contains the smaller support.

5.2. Fractal percolation

We now introduce several events to define new notions of goodness for each scale k.Having multi-scale levels of goodness
is the link to the theory of fractal percolation. We will provide details about the analogy and an intuitive explanation of
the following definitions at the end of the subsection.

For ε > 0 as in the assumptions of Theorem 2.13, we define the sequence

(5.19) d1 := ε, dk+1 := dk −
ε

2k2
, k ≥ 1.

Recalling the definition of Sbase and Sext in (5.5) and (5.7), as well as the particle system under consideration (see
Section 2.4), define the following indicator random variables:

Dk(ι, τ) = 1
if all tiles Sk−1(ι

′)⊆ Sk(ι) contain at least
(
1− dk

)
µ0

∑
y∈Sk−1(ι′)

λy
particles at time τβk,

(5.20)

Dext
k (ι, τ) = 1

if all tiles Sk−1(ι
′)⊆ Sext

k (ι) contain at least
(
1− dk

)
µ0

∑
y∈Sk−1(ι′)

λy
particles at time τβk
that are confined during [τβk, (τ + 2)βk] inside Bb(k−1)2ℓk−1 ,

(5.21)

Dbase
k (ι, τ) = 1

if all tiles Sk(ι′)⊆ Sbase
k (ι) contain at least

(
1− dk+1

)
µ0

∑
y∈Sk(ι′)

λy

particles at time γ(1)k (τ)βk+1

that are confined during [γ
(1)
k (τ)βk+1, τβk] inside Bb(k)2ℓk .

(5.22)

Since Sk ⊆ Sext
k , trivially Dext

k (ι, τ) = 1 implies Dk(ι, τ) = 1. Noting that Sbase
k (ι) ⊆ Sext

k+1(π
(1)
k (ι)) as mentioned in

(5.9), and that [γ(1)k (τ)βk+1, τβk]⊂ [γ
(1)
k (τ)βk+1, (γ

(1)
k (τ) + 2)βk+1] we have by definition

(5.23) Dext
k+1

(
π
(1)
k (ι), γ

(1)
k (τ)

)
= 1 ⇒ Dbase

k (ι, τ) = 1 ∀(k, ι, τ) ∈N×Bd ×Z,

and the goal of Lemma 6.1 below will be to show that with exponentially large probability, {Dbase
k (ι, τ) = 1} implies

{Dext
k (ι, τ) = 1}. To this end, we define

A1(ι, τ) := max{1E(ι,τ),1−Dbase
1 (ι, τ)},(5.24)
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Ak(ι, τ) := max{Dext
k (ι, τ),1−Dbase

k (ι, τ)},(5.25)

Aκ(ι, τ) :=Dext
κ (ι, τ),(5.26)

and

(5.27) A(ι, τ) :=

κ∏

k=1

Ak(π
(k−1)
1 (ι), γ

(k−1)
1 (τ)).

The first-time reader should think that Ak(ι, τ) = 0 intuitively indicates that ªin the chain of space-time cells that are
ancestors of R1(ι, τ), the particles misbehaved at scale kº: more precisely, Ak(ι, τ) = 0 if, even despite the favorable
event Dbase

k (ι, τ) = 1, according to which the particle were in a good state inherited from higher scales, it resulted
in Dext

k (ι, τ) = 0. As already mentioned above (5.24), we will prove that the previous situation happens with small
probability in Lemma 6.1.

We can now define the notions of goodness that we will consider. Recall that we defined at the very start of subsection
2.5 that

(5.28) a cell R1(ι, τ) is bad if 1E(ι,τ) = 0.

We consider now a stronger notion of bad cells for any scale 1≤ k ≤ κ :

(5.29) a cell Rk(ι, τ) is multi-scale bad if Ak(ι, τ) = 0.

Note that for scale one this definition is stricter then the definition of being bad: as a simple consequence of (5.24), a
multi-scale bad cell is also bad. Finally, we say for scale-one cells that

(5.30) a cell R1(ι, τ) has bad ancestry if A(ι, τ) = 0,

or equivalently that the cell has a multi-scale bad ancestor.
In particular, a bad cell of scale one has bad ancestry, as we prove in the following lemma.

Lemma 5.3. For a cell R1(ι, τ) it holds 1E(ι,τ) ≥A(ι, τ). Equivalently, a scale-one cell which is bad, in particular has

bad ancestry.

Proof. Suppose that A(ι, τ) = 1. By (5.27), it therefore holds for all 1≤ k ≤ κ, that

Ak
(
π
(k−1)
1 (ι), γ

(k−1)
1 (τ)

)
= 1.

In particularDext
κ

(
π
(κ−1)
1 (ι), γ

(κ−1)
1 (τ)

)
= 1, so applying the property in (5.23) we obtainDbase

κ−1

(
π
(κ−2)
1 (ι), γ

(κ−2)
1 (τ)

)
=

1. Since Aκ−1

(
π
(κ−2)
1 (ι), γ

(κ−2)
1 (τ)

)
= 1 and it is defined as a maximum, the first argument needs to be a 1, and we

obtain Dext
κ−1

(
π
(κ−2)
1 (ι), γ

(κ−2)
1 (τ)

)
= 1.

Repeating this argument for all scales down to scale one, we need the first argument in the maximum of A1(ι, τ) to be
1, i.e. it must hold that 1E(ι,τ) = 1.

Intuition. We conclude this subsection by explaining the analogy of our setup to fractal percolation, whose framework
has inspired this proof. For simplicity, we will explain the arguments on Rd instead of the SierpiÂnski gasket.

Fix some value r ∈ N. Consider the unit hyper-cube and subdivide it into rd cubes of side length 1
r . Then, for some

value p ∈ [0,1], declare them open independently with probability p and closed otherwise. Then, subdivide again each of
the open cubes into rd cubes of side length 1

r2 , and each of the second-level cubes is open with probability p and closed
otherwise. Note that each level-1 cube that was closed is not further subdivided and so it is entirely closed. One can then
repeat the above procedure with further subdivisions, see Figure 6. This recursive construction introduces correlations into
the system that would not be present in standard Bernoulli percolation: if we take two cubes of some arbitrary size, the
probability that both of them are open simultaneously is strongly affected by how far back in the subdividing procedure
their most recent open common ªancestorº was.

The similarity with our case is straightforward. To obtain A(ι, τ) = 1 we need a cell and all its ancestors to be multi-
scale good, similarly to the fractal percolation where the cubes must be open at every level-k in order to be open at the
last and smallest level. In view of Lemma 5.3, a cell with A(ι, τ) = 1 is then good, in the sense below Definition 2.9. It
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Fig 6: An example of fractal percolation in R2. Image from [10].

may seem now that directly performing a single-level percolation at scale k = 1 might be easier, but unlike the fractal per-
colation described above, cells in our setting have further dependencies beyond the ones introduced by the subdivisions.
In particular, note that knowing a cell of some scale k is bad reveals information not only about its descendant cells, but
also any other cells that are spatially and temporally close enough to be affected by the behaviour of the particles from the
cell in question. The other difference is that the percolation parameter p will not be kept constant: in our case the proba-
bility to be a multi-scale good cell P(Ak(ι, τ) = 1) is higher at larger scales, as we will prove in Lemma 6.1. The proof
there involves the events Dext

k and Dbase
k defined above in (5.21) and (5.22), and in particular the strategy is as follows:

assuming the favorable event Dext
k (ι, τ) = 1, using the decoupling Theorem 4.7, if we restrict to a slightly smaller cell

(so from Sext
k (ι) to Sbase

k (ι)) and ªwait a bitº, we are able to resample the particles according an independent Poisson
point process with only a slightly smaller intensity. This resampling allows us to essentially treat the configuration of the
particles in the space-time cell in question as independent of the configuration elsewhere, thus roughly recovering the
fractal percolation setup outlined above and taking care of both types of correlations mentioned at once.

5.3. Paths of cells

We next define the two notions of ªpaths of cellsº that we will consider. As we will see momentarily, both notions are
strongly related to d-paths from Definition 3.1.

Recall that, in line with Definition 2.3, two cells Rk(ι1, τ1) ̸= Rk(ι2, τ2) of same scale are called adjacent if
either d(Sk(ι1), Sk(ι2)) = 0 and τ1 = τ2, or ι1 = ι2 and |τ1 − τ2| ≤ 1. We now extend this to cells of different
scales. Two cells Rk1(ι1, τ1), and Rk2(ι2, τ2) with scales k1 > k2 are called adjacent if Rk1(ι1, τ1), is adjacent to
Rk1

(
πk1−k2k2

(ι2), γ
k1−k2
k2

(τ2)
)
. Note that in particular, a cell is not adjacent to any of its ancestors.

Before proceeding, recall the definition of the base of the space-time tessellation L0 given in (2.9). We say for two
scale-one cells R1(ι, τ) and R1(ι

′, τ ′) that R1(ι, τ) is diagonally connected to R1(ι
′, τ ′) if there exists a sequence of

adjacent cells {R1(ι1, τ1), . . . ,R1(ιn, τn)} of scale one such that R1(ι, τ) = R1(ι1, τ1), for all j ∈ {1, . . . , n − 1} we
have d(R1(ιj+1, τj+1),L0)< d(R1(ιj , τj),L0), and R1(ιn, τn) is either equal or adjacent to R1(ι

′, τ ′). Accordingly, the
cells R1(ιj , τj), j ∈ {1, . . . , n− 1} (and R1(ιn, τn) if it differs from R1(ι

′, τ ′)) will be referred to as diagonal steps.

Remark 5.4. Note that in the sequence of adjacent cells constituting the diagonal steps, the temporal coordinate is not
changing in the sense that τ = τj for all j ∈ {1, . . . , n− 1}. This agrees with the definition of d-paths (see Definitions 3.1
and 2.3) where diagonal moves also preclude temporal changes.

For two cells Rk1(ι1, τ1) and Rk2(ι2, τ2) of not necessarily different scales we say that Rk1(ι1, τ1) is diagonally

connected to Rk2(ι2, τ2) if there exist two cells R1(ι̃1, τ̃1) and R1(ι̃2, τ̃2) of scale one, descendants of Rk1(ι1, τ1) and
Rk2(ι2, τ2), respectively , so that R1(ι̃1, τ̃1) is diagonally connected to R1(ι̃2, τ̃2).

Definition 5.5. We define a D-path as a sequence of cells of arbitrary scales, where each cell is either adjacent or diago-
nally connected to the next cell in the sequence.

The reader will note the analogy to the definition of d-path in Definition 3.1. Fix a cell v =R1(ιv, τv) ∈ L1 and define
for any (large) t > 0 the set

(5.31) Ω1(v→ t)

of all D-paths of cells of scale one for which the first cell of the path is v and the last cell is the only cell not contained in
Bt(S1(ιv))× [−t+ τv, τv + t], where Bt(S1(ιv)) := ∪x∈S1(ιv)Bt(x).

The next notion of paths involves instead cells of multiple scales.
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Definition 5.6. We define as ScD-path (support connected with diagonal paths) a sequence of cells of possibly different
scales {Rk1(ι1, τ1), . . . ,Rkz (ιz, τz)} for some z ∈N, with the following properties:

• each pair of cells is well-separated, meaning that their areas of influence do not intersect; i.e. for any pair Rk̃(ι̃, τ̃),
Rk̂(ι̂, τ̂) we have

Rinf
k̃

(ι̃, τ̃)∩Rinf
k̂

(ι̂, τ̂) = ∅,
• two consecutive cells Rkj (ιj , τj) and Rkj+1

(ιj+1, τj+1) are either

support adjacent : REsup
kj

(ιj , τj)∩REsup
kj+1

(ιj+1, τj+1) ̸= ∅

or

support connected with diagonals :

there exist two scale-one cells, respectively
subsets of the extended supports of Rkj (ιj , τj) and
Rkj+1

(ιj+1, τj+1), so that the first cell is
diagonally connected to the second.

For v ∈ L1 and t > 0, we define

(5.32) Ωsup
κ (v→ t)

as the set of all ScD-paths of cells of scale at most κ so that the extended support of the first cell of the path contains
v and the last cell is the only cell whose extended support is not contained in Bt(S1(ιv))× [−t+ τv, τv + t] with ιv, τv
as before.

Define the bad cluster around v ∈ L1 as

(5.33) Kv :=
{
R1(ι̃, τ̃) : there exists a D-path of bad cells from v to R1(ι̃, τ̃)

}
.

We can relate D-paths and ScD-paths via the following technical lemma.

Lemma 5.7. For any t > 0 and v ∈ L1, it holds that

P
(
∃P ∈Ω1(v→ t) of cells with bad ancestry

)

≤ P
(
∃P ∈Ωsup

κ (v→ t) of multi-scale bad cells
)
.

Remark 5.8. Note that for a path P ∈ Ω1(v→ t) of cells with bad ancestry, the property of having a bad ancestor is
required only for the cells of P and not for the cells constituting the diagonal steps in the diagonal connections of P . This
is in line with Definition 3.1, where diagonal moves of d-paths do not impose any requirements on the state of the cells.
The same is of course true also for P ∈Ωsup

κ (v→ t), where being multi-scale bad is not required for the cells constituting
diagonal connections.

Proof of Lemma 5.7. We split the proof into two steps. Defining Ωκ(v → t) as the set of D-paths of cells of scale
at most κ, where the first cell is an ancestor of v and the last cell is the only cell whose support is not contained in
Bt(S1(ιv))× [−t+ τv, τv + t], we prove in the two steps that

P
(
∃P ∈Ω1(v→ t) of cells with bad ancestry

)

≤ P
(
∃P ∈Ωκ(v→ t) of multi-scale bad cells

)

≤ P
(
∃P ∈Ωsup

κ (v→ t) of multi-scale bad cells
)
.

Step 1. Consider a D-path P =
(
R1(ιj , τj)

)z
j=1
∈ Ω1(v→ t) of cells with bad ancestry. By definition, for each cell

of P it holds that A(ιj , τj) = 0, so there exists kj such that Akj (π
k′j−1

1 (ιj), γ
k′j−1

1 (τj)) = 0, so that Rk̃j (ι̃j , τ̃j) :=

Rkj
(
π
k′j−1

1 (ιj), γ
k′j−1

1 (τj)
)

is a multi-scale bad cell. From the sequence P ′ := {Rk̃j (ι̃j , τ̃j)}
z
j=1 construct a subsequence

P ′′ := {Rk′′j (ι′′j , τ ′′j )}z
′′

j=1 taking in the same order of the cells from P ′ but removing all cells indexed by ĵ which are the

descendant of some other cell in the path P ′ with index j0, with j0 < ĵ. Furthermore, if there is a cell Rk̃j (ι̃j , τ̃j) before

the last one whose support is not contained in Bt(S1(ιv))× [−t+ τv, τv + t], we remove from P ′′ all following cells.
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We claim that P ′′ ∈Ωκ(v→ t), which will conclude step 1. This path starts with an ancestor of v and by construction
the last cell’s support is not contained in Bt(S1(ιv))× [−t+ τv, τv + t]. Note that every cell in P has exactly 1 ancestor
in P ′′. Consider now two cells R1(ιj , τj) and R1(ιj+1, τj+1) with different ancestors in P ′′. If R1(ιj , τj) is diagonally
connected to R1(ιj+1, τj+1), then the ancestor of R1(ιj , τj) is either diagonally connected or adjacent to the ancestor of
R1(ιj+1, τj+1); if R1(ιj , τj) and R1(ιj+1, τj+1) are adjacent, then their ancestors are adjacent, since two non-adjacent
cells cannot have two adjacent descendants. Finally, every cell of P ′′ is multi-scale bad by how P ′′ was constructed.

(a) A possible D-path with adjacent and diagonally connected cells.

(b) A D-path of multi-scale bad cells (in red with a thicker bor-
der) in comparison with the D-path (in blue) of the previous im-
age. Note that many cells of scale one correspond to the same
cell in this image.

(c) The corresponding ScD-path (in black), where some cells
were discarded as they were not well-separated. We highlight
(respectively in blue, red and green) the extended supports and
(in black) the diagonal of 2 cells which are support connected

with diagonal.

Fig 7: From D-paths to ScD-paths. Note that this example is on G without the time component in order to make the
visualisation easier. In practice, the procedure is conducted on cells of G×Z.

Step 2. We now prove the second inequality, that is, starting from P ′′ we can obtain a path P̂ of multi-scale bad cells
which are well-separated and in which every sequential pair of cells is either support adjacent or the first cell of the pair
is support connected with diagonals to the second.

First define a sequence L of cells from P ′′, but where the cells are ordered in the following way: we first order cells
by scale, where cells of bigger scale come first, and within cells of the same scale we maintain the original order of P ′′.
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We construct P̂ and create a relation between P ′′ and P̂ in the following way. Following the order of L, and in particular
starting with scale κ, we perform the following operations. Assuming the first cell of scale k in the list L is Rk(ι̂, τ̂) we

• add Rk(ι̂, τ̂) to P̂ ;
• remove Rk(ι̂, τ̂) from L;

• associate Rk(ι̂, τ̂) in P ′′ with itself in P̂ ;
• remove from L all cells Rk̃(ι̃, τ̃) which are not well-separated from Rk(ι̂, τ̂) and associate them all with Rk(ι̂, τ̂)

in P̂ .

Repeating this procedure until L is empty, we obtain a sequence of cells P̂ , and all cells in P ′′ are associated to some
cell in P̂ . Before proceeding, we reorder P̂ according to the ordering in P ′′, thus making P̂ a path (which we will verify
below). In particular, a cell v in P̂ appears before a different cell u of P̂ if according to the ordering of P ′′, there exists a
cell of P ′′ associated to v that appears before any cell of P ′′ associated to u. Since the multi-scale bad property follows
trivially from P ′′, we are only left to show that

(5.34) P̂ ∈Ωsup
κ (v→ t).

First, let Rk̂1(ι̂1, τ̂1) ∈ P̂ be the cell which Rk′′1 (ι
′′
1 , τ

′′
1 ) ∈ P ′′ is associated to. In the non-trivial case, Rk̂1(ι̂1, τ̂1) is not

associated to itself, so Rk̂1(ι̂1, τ̂1) and Rk′′1 (ι
′′
1 , τ

′′
1 ) are not well-separated and therefore their areas of influence intersect.

By (5.17) their supports intersect as well. By (5.18), REsup

k̂1
(ι̂1, τ̂1)⊇Rsup

k′′1
(ι′′1 , τ

′′
1 ), and since Rk′′1 (ι

′′
1 , τ

′′
1 ) contains v by

definition of P ′′, we obtain that REsup

k̂1
(ι̂1, τ̂1) contains v as desired.

Secondly, we can argue in the same way to show that the extended support of the cell which Rk′′
z′′
(ι′′z′′ , τ

′′
z′′) is associ-

ated to is not contained in the space-time ball Bt(S1(ιv))× [−t+ τv, τv + t].
Finally, we need to show that sequential pairs of cells of P̂ are either support adjacent or the first cell of the pair

is support connected with diagonals to the second. Consider Rk̂j (ι̂j , τ̂j) ∈ P̂ , and let Rkj′′ ,(ιj′′ , τj′′) be the first cell

of P ′′ (in the original ordering of P ′′) which is associated to Rk̂j (ι̂j , τ̂j). Next, take Rkj′′−1
(ιj′′−1, τj′′−1) ∈ P ′′ and

let Rk̂j−1
(ι̂j−1, τ̂j−1) ∈ P̂ be the cell which it is associated to. We claim that Rk̂j ,(ι̂j , τ̂j) and Rk̂j−1

(ι̂j−1, τ̂j−1) are

either support adjacent or Rk̂j−1
is support connected with diagonals to Rk̂j ,(ι̂j , τ̂j) based on whether Rkj′′ (ιj′′ , τj′′) and

Rkj′′−1
(ιj′′−1, τj′′−1) ∈ P ′′ are adjacent or whetherRkj′′−1

(ιj′′−1, τj′′−1) is connected with diagonals toRkj′′ (ιj′′ , τj′′).
If Rkj′′−1

(ιj′′−1, τj′′−1) and Rkj′′ (ιj′′ , τj′′) are adjacent, we can suppose without loss of generality that kj′′−1 ≤ kj′′ ,
and by definition there exists a cell Rkj′′ (ι̃j′′−1, τ̃j′′−1), which is an ancestor of Rkj′′−1

(ιj′′−1, τj′′−1) and adjacent to
Rkj′′ (ιj′′ , τj′′). Hence applying (5.16) twice we obtain that

Rinf
kj′′

(ιj′′ , τj′′)⊆Rsup
kj′′

(ι̃j′′−1, τ̃j′′−1)

and

Rinf
kj′′−1

(ιj′′−1, τj′′−1)⊆Rsup
kj′′

(ι̃j′′−1, τ̃j′′−1).

(5.35)

Since Rkj′′ (ιj′′ , τj′′) is associated to Rk̂j (ι̂j , τ̂j), they are not well-separated and thus their areas of influence intersect.

Therefore (5.35) implies that Rsup
kj′′

(ι̃j′′−1, τ̃j′′−1) intersects Rinf
k̂j

(ι̂j , τ̂j) and by (5.16) intersects Rsup

k̂j
(ι̂j , τ̂j); since k̂ ≥

kj′′ , applying (5.18), we have REsup

k̂j
(ι̂j , τ̂j) ⊇ Rsup

kj′′
(ι̃j′′−1, τ̃j′′−1)⊇ Rinf

kj′′−1
(ιj′′−1, τj′′−1) where the last inclusion is

due to (5.35). Since the cells Rkj′′−1
(ιj′′−1, τj′′−1) and Rk̂j−1

(ι̂j−1, τ̂j−1) are not well-separated, repeating the same

argument below (5.34) we have REsup

k̂j−1
(ι̂j−1, τ̂j−1) ⊇ Rsup

kj′′−1
(ιj′′−1, τj′′−1) ⊇ Rinf

kj′′−1
(ιj′′−1, τj′′−1), where the last

inclusion follows from (5.16). This shows that the two extended supports intersect.
If instead Rkj′′−1

(ιj′′−1, τj′′−1) is connected with diagonals to Rkj′′ (ιj′′ , τj′′), then by definition they contain re-
spectively two cells R1(ι̃j′′−1, τ̃j′′−1) and R1(ι̃j′′ , τ̃j′′) such that R1(ι̃j′′−1, τ̃j′′−1) is connected with diagonals to
R1(ι̃j′′ , τ̃j′′). Additionally, since Rkj′′ (ιj′′ , τj′′) is associated to Rk̂j (ι̂j , τ̂j), they are not well-separated and by the argu-

ment below (5.34) we haveR1(ι̃j′′ , τ̃j′′)⊆Rsup
kj′′

(ιj′′ , τj′′)⊆REsup

k̂j
(ι̂j , τ̂j).With the same argument,R1(ι̃j′′−1, τ̃j′′−1)⊆

REsup

k̂j−1
(ι̂j−1, τ̂j−1). This shows that Rk̂j−1

(ι̂j−1, τ̂j−1) is support connected with diagonals to Rk̂j (ι̂j , τ̂j), which con-

cludes the proof.
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6. Multi-scale analysis

We will now use the multi-scale set-up introduced above in order to bound the probability of having paths of multi-scale
bad cells. Recall that ζ ∈ (0,∞) as defined in Theorem 2.13 plays the role of imposing the confinement width of the
particle movement at the scale-one tessellation. We now define what will essentially be the ªweightº of a cell as

(6.1)
ψ1(ε,µ0, ℓ) := min

{ε2µ02
dvℓ

Cλ
,− log

(
1− νE

(
(1− ε)λ,Sη1 ,Bζℓ, ηβ

))}
,

ψk(ε,µ0, ℓ) :=
ε2µ02

dvℓk−1

k4
, k ≥ 2,

which we will use as a reference for both the probability of a cell of scale k to be bad, and for the number of ScD-paths
which contain a cell of scale k.

6.1. Probability of a multi-scale bad ScD-path

We want to estimate the probability for a cell to be multi-scale bad. While close cells are heavily dependent on each other,
we still want to obtain a bound conditioning on cells which are ªnot too closeº, in a spatial or temporal sense. Recall the
definitions of Sinf

k and T inf
k in (5.6) and (5.13). We define Fk(ι, τ) to be the σ-algebra generated by all the Ak′(ι′, τ ′) for

which either:

(a) T inf
k′ (τ ′) ∩ [γ

(1)
k (τ)βk+1,∞) = ∅, or

(b) τ ′βk′ ≤ τβk and Sinf
k (ι)∩ Sinf

k′ (ι
′) = ∅.

Intuitively, this is information about the behaviour of particles in space-time cells that are either far enough in the past so
that we can ignore them due to the starting assumptions guaranteed by {Dbase

k (ι, τ) = 1}, or which are happening roughly
simultaneously with the time interval indexed by τ or later (i.e. during a time interval occurs after the time interval τ ,
regardless of scale), but far enough away not to be able to influence the occurrence of the event {Ak(ι, τ) = 0} due to the
confinement of the random walks under consideration. Recall that the intensity of the Poisson point process is µx = µ0λx.

Lemma 6.1. Let ℓ, β, ε, ζ, η be as in Theorem 2.13 with

(6.2) ζ ≥ 1

ℓ

((
c3 log

(
8c3
3ε

))dw−1
ηβ

) 1
dw
.

If a and m in (5.1) are large enough, then there exist Cψ ∈ (0,∞) and α0 = α0(ε,β/2
ℓ, µ0)> 0 such that if ψ1 > α0,

then for all k = 1, . . . , κ, all cells Rk(ι, τ) and any F ∈ Fk(ι, τ) with P(F )> 0 we have

P(Ak(ι, τ) = 0
∣∣ F )≤ e−Cψψk .

Furthermore, we have for scale κ that

P(Aκ(ι, τ) = 0)≤ e−Cψψκ .

Proof. We start by proving the result for 2≤ k ≤ κ− 1. Let F ∈ Fk(ι, τ) with P(F )> 0. Since

P(Ak(ι, τ) = 0
∣∣ F ) = P(Dext

k (ι, τ) = 0,Dbase
k (ι, τ) = 1

∣∣ F ),

if {Dbase
k (ι, τ) = 1} ∩ F = ∅, such probability is 0 and the lemma trivially holds, so we can assume {Dbase

k (ι, τ) =
1} ∩ F ̸= ∅ and obtain

P(Ak(ι, τ) = 0
∣∣ F )≤ P(Dext

k (ι, τ) = 0
∣∣ F,Dbase

k (ι, τ) = 1).

Recall that the event Dbase
k (ι, τ) = 1 (see (5.22)) ensures that there are enough particles in Sbase

k (ι) confined in

Bb(k)2ℓk during [γ
(1)
k (τ)βk+1, τβk]. By definition, F does not reveal further information about those particles because

either

• by (a), (τ ′+2)βk′ ≤ γ(1)k (τ)βk+1 and so the time interval relevant to Ak′(ι′, τ ′) does not intersect the time interval
occurring in the definition of Ak(ι, τ), or
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• by (b), Sinf
k′ (ι

′) ∩ Sinf
k (ι) = ∅, so the particles in Sbase

k′ (ι′) confined in Bb(k)2ℓk cannot leave Sinf
k′ (ι

′) and thus
cannot enter Sinf

k (ι) before τ ′βk′ .

Conditioned on the event Dbase
k (ι, τ) = 1 (defined in (5.22)), we apply Theorem 4.7 to Sbase

k (ι, τ), with the choices

K := side length of Sbase
k (ι) = 2b(k)2ℓk + 2ℓk ,

K ′ such that K −K ′ = b(k)2ℓk ,

l := 2ℓk ,

δ := (1− dk+1)µ0,

∆ := length
(
[γ

(1)
k (τ)βk+1, τβk]

)
= τβk − γ(1)k (τ)βk+1 ∈ [βk+1,2βk+1], and

ε̄ :=
ε

8k2
.

We check now that the conditions of Theorem 4.7 are satisfied, starting with checking thatK−K ′ ≥M3

(
∆(log2∆)dw−1

) 1
dw .

Since K −K ′ = b(k)2ℓk and ∆≤ 2βk+1 we need to verify that

b(k)2ℓk ≥M3

(βk+1

2 (log2
βk+1

2 )dw−1
) 1
dw ,

which by definition of βk in (5.11) is implied by b(k)2ℓk ≥ C62
ℓkℓkk

8
Θdw for some constant C6. Comparing it to the

definition of ℓk in (5.1) it holds if we set

(6.3) b(k) := ak2+
8

Θdwm2m,

and assume a andm are large enough. To check that ∆≥M2l
dw ε̄−4/Θ, we use that ∆≥ βk+1 =Cmix

( (k+1)2

ε

)4/Θ(
2ℓk

)dw
by definition of βk+1 in (5.11), and the inequality holds as Cmix ≥M28

4/Θ. We finally note that

K ′ =K − b(k)2ℓk = b(k)2ℓk + 2ℓk ≥
(
2b(k− 1)

)
2ℓk−1 + 2ℓk ,

which is the side length of Sext
k (ι).

We can therefore apply Theorem 4.7 in order to obtain a coupling between the particle system at time τβk inside
Sext
k (ι) and a Poisson point process Ξ with intensity

(
1− dk+1

)
µ0(1− ε)λy where the inclusion of Theorem 4.7 holds

with probability at least

1−
∑

y∈Sext
k (ι)

e−M4(1−dk)µ0λy ε̄
2
∆
dv/dw

.

Using that ∆ ≥ βk+1 > Cmix 2
dwℓk and the definition of βk from (5.11), the quantity in the previous display is bigger

than

(6.4)

1−
∑

y∈Sext
k (ι)

e−C7(1−dk)µ0λy ε̄
22dvℓk

≥ 1−
(
2b(k− 1)2ℓk−1 + 2ℓk

)dv
e−C8(1−dk)µ0C

−1
λ

ε2

k4
2dvℓk

≥ 1− 2dv(1+ℓk)e−C9(1−ε)µ0C
−1
λ

ε2

k4
2dvℓk

≥ 1− 1

2
e−Cψ ψk .

The last step holds for k = 2 since ψ1(ε,µ0, ℓ) and therefore also ψ2(ε,µ0, ℓ) is large enough by assumption; the inequal-
ity for k > 2 follows from it by setting a,m large enough.

To obtain Dext
k (κ, ι) = 1 we need to check the confinement requirement. To this end, define a Poisson point process

Ξ′ made of the particles of Ξ at their positions at time (τ +2)βk that are confined during the time [τβk, (τ +2)βk] inside
Bb(k−1)2ℓk−1 . Using the definition of confinement from Lemma 2.6, this happens for each particle independently with
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probability P(Conf(Bb(k−1)2ℓk−1 ,2βk)). By the thinning property of Poisson processes, Ξ′ is therefore a Poisson point
process with intensity measure

P
(
Conf(Bb(k−1)2ℓk−1 ,2βk)

)
(1− dk+1)µ0(1− ε̄)λy

which we can estimate using (Conf(dw)) as being bigger than

(
1− c3e−c

−1
3

(
(b(k−1)2

ℓk−1 )dw

2βk

) 1
dw−1 )

(1− dk+1)µ0(1− ε
8k2 )λy

(5.11)
=

(
1− c3e−c

−1
3

(
b(k−1)dw

2Cmix
( ε
k2

)4/Θ
) 1
dw−1

)
(1− dk+1)µ0(1− ε

8k2 )λy

(6.3)
=

(
1− c3e

−C10

((a(k−1)
2+ 8

Θdw m2m
)dw

ε4/Θ

k8/Θ Cmix

) 1
dw−1 )

(1− dk+1)µ0(1− ε
8k2 )λy.

Next, taking advantage of Cmix =
β

2dwℓ
ε4/Θ2mdw which can be obtained by setting β1 = β in (5.11), the right-hand side

of the previous display is bigger than

(
1− c3e−C11

(
2dwℓ

β adw (k−1)2dwm
) 1
dw−1

)
(1− dk+1)µ0(1− ε

8k2 )λy.

Setting m large enough with respect to ε, ℓ and β, this again is then larger than

(1− ε
8k2 )(1− dk+1)µ0(1− ε

8k2 )λy ≥ (1− ε
4k2 )(1− dk+1)µ0λy.

Conditioning on the success of the above coupling, we obtain using a union bound that the probability that all Sk−1(i
′)

contained in Sext
k (ι) have at least (1− dk)µ0

∑
y∈Sk−1(i′)

λy particles which are confined during [τβk, (τ +2)βk] inside
Bb(k−1)2ℓk−1 , is at least

(6.5) 1−
∑

Sk−1(i′)⊆Sext
k (ι)

Q
(
Ξ′(Sk−1(i

′))≤ (1− dk)µ0

∑
y∈Sk−1(i′)

λy
)
.

Using the Chernoff bound (B.1) with χ given by

1−
(1− dk)µ0

∑
y∈Sk−1(i′)

λy

(1− ε
4k2 )(1− dk+1)µ0

∑
y∈Sk−1(i′)

λy

=
(1− ε

4k2 )(1− dk+1)− (1− dk)

(1− ε
4k2 )(1− dk+1)

≥ (1− ε
4k2 )(1− dk+1)− (1− dk)≥ (dk − dk+1)−

ε

4k2
=

ε

4k2
,

we obtain the following lower bound for (6.5):

(6.6)

1−
∑

Sk−1(i′)⊆Sext
k (ι)

exp
{
− 1

2
( ε
4k2 )

2(1− ε
4k2 )(1− dk+1)µ0

∑
y∈Sk−1(i′)

λy

}

(5.2)
≥ 1−

∑

Sk−1(i′)⊆Sext
k (ι)

exp
{
− ε2

32k4
(1− ε

4 )(1− d2)µ0Cλ
−1(2ℓk−1)dv

}

≥ 1−CVol

(
b(k− 1) + 2ℓk−ℓk−1

)dv
exp

{
− ε2

32k4
(1− ε

4 )(1− ε
2 )µ0Cλ

−12dvℓk−1

}

≥ 1− 1

2
e−Cψψk ,

where the last inequality follows from the same argument as after (6.4) since ψ1 is assumed large enough.
Combining (6.4) and (6.6) proves the claim for 1< k < κ.
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For k = κ the argument is easier, as there is no need to use the decoupling theorem and one can simply use (6.6), and
prove both the conditional and unconditional statements.

For k = 1, we recall that the event A1(ι, τ) was defined differently (cf. (5.24)) We use again the decoupling Theorem
to obtain a coupling with a Poisson point process Ξ which succeeds with probability (6.4) with the choice k = 1. To obtain
1E(ι,τ) = 1, we recall that the event E(ι, τ) is measurable with respect to the σ-algebra of particles inside Sη1 (ι), which
is contained in Sbase

1 (ι) by Remark 5.1, and the particles are confined in Bζℓ1 during [τβ1, (τ + η)β1]. Using Lemma 2.6
we obtain

P
(
Conf(Bζℓ1 , ηβ1)

)
≥ 1− c3 exp

{
− c−1

3

(
(ζℓ1)

dw/(ηβ1)
) 1
dw−1

} (6.2)
≥ 1− 3ε

8 .

Hence, the Poisson point process Ξ′ of particles satisfying Conf(Bζℓ1 , ηβ1) has intensity at least

P
(
Conf(Bb(k−1)2ℓk−1 ,2βk)

)
(1− d2)µ0(1− ε̄)λy ≥ (1− 3ε

8 )(1− ε
2 )µ0(1− ε

8 )λy ≥ (1− ε)µ0λy,

and since E(ι, τ) is increasing, we have

P(1E(i,τ) = 1
∣∣ F,Dbase

1 (ι, τ) = 1)≤ 1− νE
(
(1− ε)λ,Sη1 ,Bζℓ, ηβ1

)
≤ e−α0 ,

which concludes the proof.

Now that we have a bound on the probability that a single cell Rk(ι, τ) is multi-scale bad, we can obtain an upper
bound on the probability that all multi-scale cells in a given ScD-path are multi-scale bad. Recall the definition of the
weights ψk in (6.1) and the value α0 defined in Lemma 6.1.

Corollary 6.2. Let ζ as in (6.2), ψ1 >α0 and consider an ScD-path {Rk1(ι1, τ1), . . . ,Rkz (ιz, τz)}. Then

P
( z⋂

j=1

{Akj (ιj , τj) = 0}
)
≤ e−Cψ

∑z
j=1 ψkj .

where Cψ is the constant from Lemma 6.1.

Proof. We first need to order the cells in a temporal order. To this end, consider any order ≺ of the indices of the cells
1, . . . , z such that if j1 ≺ j2 then τj1βkj1 ≤ τj2βkj2 . The corollary will be a simple consequence of Lemma 6.1 once we
prove that for every 1≤ j̄ ≤ z, the cells Rkj (ιj , τj) with j ≺ j̄ are Fkj̄ (ιj̄ , τj̄)-measurable.

We therefore consider two cells Rkj1 (ιj1 , τj1) and Rkj1 (ιj2 , τj2) with j1 ≺ j2, so that τj1βkj1 ≤ τj2βkj2 . By definition
of an ScD-path cells are well-separated, so Rinf

kj1
(ιj1 , τj1)∩Rinf

kj2
(ij2 , τj2) = ∅, meaning that:

• either T inf
kj1

(τj1)∩ T inf
kj2

(τj2) = ∅ and thus (a) is satisfied;

• or Sinf
kj1

(ιj1)∩ Sinf
kj2

(ιj2) = ∅ and thus (b) is satisfied.

Here, (a) and (b) are as they appear at the beginning of this subsection. Hence, using the standard chain conditioning and
applying Lemma 6.1 z-many times we obtain that

P
( z⋂

j=1

{
Akj (ιj , τj) = 0

})
≤

z∏

j=1

P
(
Akj (ιj , τj) = 0

∣∣∣
⋂

j̄≺j

{
Akj̄ (ιj̄ , τj̄) = 0}

)
≤ e−Cψ

∑z
j=1 ψkj ,

which is the desired claim.

6.2. Number of ScD-paths

In the previous section we established the probability for a given path of z cells of scales k1, . . . , kz to be made of multi-
scale bad cells. We want now to count the number of such paths. Recall the definition of ScD-path in Definition 5.6, and
of Ωsup

κ (v→ t) in (5.32). We will now give an upper bound for the number of paths in Ωsup
κ (v→ t), given a fixed number

of cells and their scales. As we will see, κ and t are going to be linked with each other; for the moment, we work with
given scales and so we omit stating either κ or t in our first bound below.
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Lemma 6.3. For a fixed length z ∈ N, fixed scales k1, . . . , kz and v ∈ L1, the number of ScD-paths of cells with scales

k1, . . . , kz, where the extended support of the first cell contains v, is at most

exp
{Cψ

2

z∑

j=1

ψkj

}
,

where Cψ is the same constant as in Lemma 6.1.

Proof. Recall that two consecutive cells Rk1(ι1, τ1) and Rk2(ι2, τ2) in a ScD-path are either support adjacent or
Rk1(ι1, τ1) is support connected with diagonals to Rk2(ι2, τ2). We will prove the result in three steps: first, we will
bound the number of ScD-paths where each cell is support adjacent to the next one, i.e. we do not allow diagonal connec-
tions. In the second step, we will show the result for the case in which the beginning and end of the (scale-one) diagonal
steps are fixed relative to each other; in the third step we will obtain the bound where this last restriction is removed.

Step 1. We define the maximum number of scale k′ cells which are support adjacent to a cell of scale k

(6.7) Φk,k′ := max
(ι,τ)

∣∣{Rk′(ι′, τ ′) : Rk(ι, τ) is support adjacent to Rk′(ι
′, τ ′)}

∣∣

and the number of cells of scale k whose extended support (defined in (5.8) and (5.15)) contains v as

(6.8) χk :=
∣∣{Rk(ι, τ) : REsup

k (i, τ)⊇ v}
∣∣.

Hence, clearly the number of support adjacent only D-paths in Ωsup
κ (v → t) of cells with scales k1, . . . , kz is upper

bounded by

χk1

z∏

j=2

Φkj−1,kj .

We start by deriving a bound for χk . Since the extended support of a cell of scale k contains at most 27CVol(3m+1)dv

cells of scale k + 1, there exist at most 27CVol(3m+ 1)dv different extended supports of a cell of scale k that contain
the distinct cell of scale k + 1 containing v, and thus v itself. By (5.3) and (5.12) each cell of scale k + 1 contains
βk+1

βk
2dv(ℓk+1−ℓk) ≤ 28+dw(2ak−3a+m)+dv(2ak−a+m) cells of scale k, which is therefore also the number of scale k cells

that share the same extended support. We therefore have

(6.9) χk ≤ 27CVol(3m+ 1)dv28+dw(2ak−3a+m)+dv(2ak−a+m) ≤ exp
{Cψ
16
ψk

}
,

where the last inequality holds trivially for m,a and α0 large enough.
We now bound Φk,k′ . A cell of scale k′ can only be support adjacent to a cellRk(ι1, τ1) if it is insideBr(p)×A, where

p ∈ Sk(ι1), r := (3m+2)2ℓk+1 +(3m+2)2ℓk′+1 and A an interval centered around Tk(τ1) of width 28(βk+1 + βk′+1).
Consequently, Φk,k′ can be bounded by the number of scale k′ cells inside this Cartesian product. If k ≥ k′ then the terms
2ℓk′+1 and βk′+1 are negligible (or of the same size) in comparison to 2ℓk+1 and βk+1, and the spatial region contains at
most CVol(2(3m+2))dv cells of scale k+1, and by (5.3), each one of those contains exactly 2dv(ℓk+1−ℓk′ ) cells of scale
k′, so

if k ≥ k′, then Φk,k′ ≤
(
CVol(2(3m+ 2))dv2dv(ℓk+1−ℓk′ )

)(
56
βk+1

βk′

)
.

If instead k < k′ we have similarly

if k < k′, then Φk,k′ ≤
(
CVol(2(3m+ 2))dv2dv(ℓk′+1−ℓk′ )

)(
56
βk′+1

βk′

)
.

Combining the two and using (5.12) we have that

Φk,k′ ≤C122
dv(6m+4)2dv(a(k∨k

′)2+m(k∨k′))2dw2a(k∨k′)+dwm

and for a,m,α0 large it holds trivially that this is further smaller than

exp
{Cψ
16
ψ(k∨k′)

}
.
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Hence we obtain with (6.9)

χk1

z∏

j=2

Φkj−1,kj ≤
z∏

j=1

(
e
Cψ
16 ψkj

)2

≤ e
Cψ
8

∑z
j=1 ψkj .

Step 2. In this step, we consider Rk1(ι1, τ1) to be support connected with diagonals to Rk2(ι2, τ2), which, as defined in
Definition 5.6, means that there exist two cells R1(ι̃1, τ̃1) and R1(ι̃2, τ̃2) contained in their respective extended supports
such that R1(ι̃1, τ̃1) is diagonally connected to R1(ι̃2, τ̃2). We denote by (ι̃1− ι̃2, τ̃1− τ̃2) the relative position of the cell
R1(ι̃1, τ̃1) with respect toR1(ι̃2, τ̃2) and write (0,0) for the relative position of the cellsRk1(ι1, τ1) andRk2(ι2, τ2) when
they are adjacent. In this step we consider the relative positions to be fixed, and we will show a bound for the number of
different possible relative positions in the next step. In analogy with step 1, we define

(6.10) Φ∗
k1,k2 := max

(ι1,τ1)

∣∣∣∣∣

{
Rk2(ι2, τ2) :

Rk1(ι1, τ1) is support adjacent or support connected
with diagonals to Rk2(ι2, τ2) with fixed relative
position of R1(ι̃1, τ̃1) with respect to R1(ι̃2, τ̃2)

}∣∣∣∣∣.

The case when the relative position is (0,0) was treated in the previous step, so in that case we have

Φ∗
k1,k2 ≤ e

Cψ
16 ψk1∨k2 .

In the case of diagonally connected cells, since the relative position is fixed, the possible combinations are determined
by the product of all the possible positions of the cell R1(ι̃1, τ̃1) inside the extended support of the cell Rk1(ι1, τ1) and
the number of cells of scale one contained in the extended support of Rk2(ι2, τ2). Using the bound from the previous step
we have

Φ∗
k1,k2 ≤ e

Cψ
16 ψk1 e

Cψ
16 ψk2 .

Combining the two equations yields

Φ∗
k1,k2 ≤ e

Cψ
16 ψk1 e

Cψ
16 ψk2 + e

Cψ
16 ψk1∨k2 .

Hence the number of ScD-path where the z cells have fixed relative position is bounded by

(6.11) χk1

z∏

j=2

Φ∗
kj−1,kj ≤ exp

{Cψ
4

z∑

j=1

ψkj

}

Step 3. In the final step, we bound the number of combinations of different relative positions in a ScD-path. For two given
cells of scales kj and kj+1 where the first is support connected with diagonals to the second, let R1(ι1, τ1) and R1(ι2, τ2)
be the corresponding two scale-one cells for which R1(ι1, τ1) is diagonally connected to R1(ι2, τ2) with relative position
(ι1− ι2, τ1−τ2). Let h be the (absolute) difference between the distances ofR1(ι1, τ1) andR1(ι2, τ2) from L0, which we
refer to as ªdifference in heightº; see the discussion below (2.10). Define A(h) to be the number of cells that R1(ι1, τ1)
can be diagonally connected to, where the ªdifference in heightº is h. More precisely, define

A(h) := max
(ι1,τ1)

∣∣∣∣
{
R1(ι2, τ2) :

R1(ι1, τ1) is diagonally connected to R1(ι2, τ2)
with

∣∣d (L0,R1(ι1, τ1))− d (L0,R1(ι2, τ2))
∣∣= h

}∣∣∣∣.

As defined, A(h) is also an upper bound on the number of different relative positions (ι1 − ι2, τ1 − τ2) which result in a
height difference of h.

We next note that, by definition of the diagonal steps, we can bound A(h) by the number of cells of scale one at
distance h from a given cell of scale one. Recalling (Vol(dv)), we can therefore use the very generous bound

(6.12) A(h)<CVol h
dv+1,

where the +1 term comes from having to also consider the time dimension.
Recall from Subsection 5.3 that when a scale-one cell is diagonally connected to another scale-one cell, the height of

the second cell can be at most that of the first cell. We can thus obtain easily an upper bound on the number of diagonal
steps and equivalently on the total height difference. Define Hk as the side length of SEsup

k divided by the side length of
S1, that is

(6.13) Hk := (3m+ 1)2ak
2+mk.
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Then, using that a diagonal step by definition leads to a decrease of the distance to L0, the maximum number of
diagonal steps in an ScD-path of cells of scales k1, . . . , kz is at most the combined distance from L0 that the cells of
scales k1, . . . , kz can contribute to an ScD-path, i.e.

H =

z∑

i=1

Hki .

Hence, the number of different configurations of the diagonal steps, and in particular different relative positions, is at
most

H∑

l=0

∑

h2,...hz
h2+···+hz=l

A(h2 + 1)A(h3 + 1) . . .A(hz + 1),

where hi represent the (absolute) height difference between the i-th and (i − 1)-th cell; the +1 accounts for the fact
that the final scale-one cell of a diagonal connection might be adjacent and not equal to the next cell of the path, as per
definition of being diagonally connected. Using the method of Lagrange multipliers, this is smaller than

H∑

l=0

∑

h2,...hz
h2+···+hz=l

(
A
( l

z − 1
+ 1

))z−1

.

Using (6.12) and that the total number of combinations of z − 1 values hi ≥ 0 which sum to l is
(
l+z−2
z−2

)
, this is smaller

still than

H∑

l=0

(
l+ z − 2

z − 2

)
CVol

(
l

z−1 + 1
)(z−1)(dv+1)

≤
H∑

l=0

(
l+ z − 1

z − 1

)
CVol

(
l

z−1 + 1
)(z−1)(dv+1)

and using repeatedly Pascal’s rule we can further bound this by
(
z +H

z

)
CVol

(
H
z−1 + 1

)(z−1)(dv+1)

≤ (z +H)z

z!
C13

(
H
z−1 + 1

)(z−1)(dv+1)
.

Since H
z is big by the assumption that ψ1 is large enough, we finally get that this is smaller than

(z +H)z

(z/3)z
C13

(
3H
z

)(z−1)(dv+1)

≤ (3 + 3H/z)zC13

(
3H
z

)z(d+1)

≤
(
C14

H
z

)2z(d+1)

for some constant C14 > 0 depending only on d; we used in the first inequality that dv ≤ d, which is a simple consequence
of the fact that the graph can be embedded into the d-dimensional triangular lattice which has volume growth dimension
d. To obtain that (C14H/z)

2z(d+1) ≤ exp(
Cψ
8

∑z
j=1ψkj ) and thus to conclude Step 3 and the proof, we can equivalently

show that

(6.14) (d+ 1)(log(C14H/z)≤
1

z

Cψ
8

z∑

j=1

ψkj .

Comparing Hk from (6.13) and ψk from (6.1) and setting m and α0 (and thus ℓ) large enough we can obtain Hk ≤
Cψ

8(d+1)C14
ψk for all k, and therefore (6.14) holds.
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In the previous two lemmas, we showed the relationship between ScD-paths and the sum of the weights ψk. We show
now that if we consider an ScD-path in Ωsup

κ (v→ t) (defined in (5.32)) of cells of scales k1, . . . , kz for some t > 0, then
the sum of the weights ψk is at least of order tcs .

Lemma 6.4. Suppose that the largest scale κ we consider satisfies κ=O
(√

log(t)
)
. Then, if ψ1 is large enough, there

exist t0 and C15 > 0 such that for any t > t0, v ∈ L1 and any path
{
Rkj (ιj , τj)

}z
j=1
∈Ωsup

k (v→ t)

z∑

j=1

ψkj ≥C15t
cs ,

where the positive constant cs is as defined in Theorem 2.15.

Proof. Let diamk denote the diameter of the extended support of a cell of scale k.
The key observation to prove the lemma is that

(6.15)
z∑

j=1

diamkj ≥
t

2
,

since by definition of Ωsup
κ (v→ t) in (5.32) the path exits from Bt(S1(ιv)) × [−t + τv, τv + t] and with an argument

similar to the one surrounding (6.13), the distance that can be covered by diagonal steps is at most the sum of the side
lengths of the cells. Therefore, we only need to compare diamk with ψk.

For the geometry of the fractal, the diameter of the tile is equal to the side length; hence, for 1≤ k ≤ κ, we note that

diamk ≤ (6m+ 3)2ℓk+1 + 27βk+1

≤ (6m+ 3)2ak+a+m2ℓk + (Cmix 2
ℓk)dw

≤C162
2m 2ak2dwℓk

≤C162
2m+ak2(dv+1)ℓk ,

where in the last step we made use of (2.8). For k ≥ 2,

ψk =
ε2µ02

dvℓk−1

k4
=

ε2µ02
dvℓk

k42dv(ak−a+m)

=
ε2µ0

k42dv(ak−a+m)

1
(
C1622m+ak

) dv
dv+1

(
C162

2m+ak2(dv+1)ℓk
) dv
dv+1

≥ ε2µ0

C17k42dv(ak+2m)

(
diamk

) dv
dv+1 .

For k = 1 we can fix a constant c8 > 0 depending on ε,µ0, a,m, ℓ and νE , but crucially not on t, such that ψ1 ≥
c8(diam1)

dv/(dv+1).
Since we assumed that κ=O(

√
log(t)), we have that there exists c9 such that k ≤ c9

√
log(t) for all k ≤ κ and thus

summing over all cells of the path, (6.15) gives

z∑

j=1

ψj ≥C18
ε2µ0

log2(t)2dva
√

log(t)
t
dv
dv+1

which for t large is larger than C15t
cs .

6.3. Size of bad clusters

Let t > 0 be large, v ∈ L1 and define

S
t
k(v) :=

{
Sk(ι

′) : ι′ ∈ Bd, Sk(ι
′)∩Bt(S1(ιv)) ̸= ∅

}
,
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T
t
k(v) :=

{
Tκ(τ

′) : τ ′ ∈ Z, ∃τ̄ ∈ Z : γ
(k−1)
1 (τ̄) = τ ′, T1(τ̄)∩ [τ, τ + t] ̸= ∅

}

and

R
t
k(v) :=

{
S × T : S ∈ Stk(v), T ∈T

t
k(v)

}
,

where ιv, τv and Bt(S1(ιv)) are as defined previously below (5.31). Recall also the definition of the bad cluster Kv from
(5.33).

Proposition 6.5. Let ζ as in (6.2), α0 as in Lemma 6.1 and t0 as in Lemma 6.4. Then there exists a constant C19

independent of t such that for any v ∈ L1 we have

(6.16) P
(
Kv ⊈R

t
1(v)

)
≤ e−C19t

cs
,

for all t > t0.

Proof. Using Lemma 5.3 implies

P
(
Kv ⊈R

t
1(v)

)
≤ P

(
∃P ∈Ω1(v→ t) of bad cells

)

≤ P
(
∃P ∈Ω1(v→ t) of cells with bad ancestry

)
,

and by Lemma 5.7 this is smaller than

P
(
∃P ∈Ωsup

κ (v→ t) of multi-scale bad cells
)
,

for any arbitrary choice of κ; we will fix it momentarily.
Define now the event Hκ to be the event that Aκ(ι, τ) holds for all cells in R

t
κ(v), i.e.

Hκ :=
⋂

Rκ(ι,τ)∈Rt
κ(v)

{Aκ(ι, τ) = 1}

Recalling how the event Aκ(ι, τ) is defined in (5.26) for the largest scale κ, using a union bound and Lemma 6.1 we
obtain directly that

P
(
Hκ(v)

)
≥ 1−

∣∣Rt
κ(v)

∣∣e−Cψψκ .

We choose now κ to be the smallest integer such that ψκ ≥ t. Using the definition of ψk in (6.1) one can see that
κ=O(

√
log(t)); note that this choice satisfies the assumption of Lemma 6.4. Since the cardinality of Rt

κ(v) satisfies

∣∣Rt
κ(v)

∣∣≤C20

( t

2ℓk

)dv( t

βk

)
,

we can use this to find some constant c10 such that

P
(
Hκ(v)

)
≥ 1− ec10t.

We now continue the previous chain of inequalities

(6.17)

P(∃P ∈Ωsup
κ (v→ t) of multi-scale bad cells)

≤ P(∃P ∈Ωsup
κ (v→ t) of multi-scale bad cells∩Hκ(v)) + P

(
Hκ(v)

c
)

≤ P(∃P ∈Ωsup
κ−1(v→ t) of multi-scale bad cells) + e−c10t.

Since cs <
dv
dv+1 − 1

2 < 1, the term e−c10t is of a smaller order than the claimed bound of e−C19t
cs

and we can ignore it
going forward.

We now want to bound the remaining probability. If we fix the length of the path z ∈ N and the scales k1, . . . , kz we
can use Corollary 6.2 and Lemma 6.3 to obtain

P
(
∃P ∈Ωsup

κ−1(v→ t) of z multi-scale bad cells of scales k1, . . . , kz
)

≤ e−Cψ
∑z
j=1 ψkj e

Cψ
2

∑z
j=1 ψkj = e−

Cψ
2

∑z
j=1 ψkj ≤ e−

Cψ
2 C15t

cs
,
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where the last step follows from Lemma 6.4 since κ and therefore also κ− 1 =O(
√
log(t)).

It only remains to estimate the number of different possible lengths and weights of a path. We rewrite the weight of a
path as the sum of the weights of cells of different scales, namely

∑z
j=1ψkj =

∑κ−1
k=1 hkψk , where hk is the number of

cells of scale k. Hence, for fixed h1, . . . , hκ−1, the number of possible ways to order the cells is

(6.18)
(h1 + · · ·+ hκ−1)!

h1!h2! . . . hκ−1!
=

(
h1 + · · ·+ hκ−1

h1

)(
h2 + · · ·+ hκ−1

h2

)
. . .

(
hκ−1

hκ−1

)
.

By the bounds provided by Lemma 6.4, there exists k ∈ {1, . . . , κ− 1} such that hk ≥ C15t
cs

(κ−1)ψk
. Define now

H :=
{
(h1, . . . , , hκ−1) ∈ (N0)

κ−1 : ∃l ∈ {1, . . . , κ− 1} hl ≥ C15t
cs

(κ−1)ψl

}
.

We can then write

P(∃P ∈Ωsup
κ−1(v→ t) of multi-scale bad cells)

≤
∑

H

P
(
∃P ∈Ωsup

κ−1(v→ t) :
such that for each k = 1, . . . κ− 1, P is made
of hk multi-scale bad cells of scale k

)

≤
∑

H

e−
Cψ
2

∑κ−1
k=1 hkψk

(h1 + · · ·+ hκ−1)!

h1!h2! . . . hκ−1!
.

Applying (B.2) κ− 1 times to the right-hand side of (6.18) we can bound this further by

∑

H

e−
∑κ−1
k=1 hk(

Cψ
2 ψk−k),

and using that α0, a,m are large enough twice, this is finally smaller than

∑

H

e−
Cψ
3

∑κ−1
k=1 hkψk ≤ e−C19t

cs
,

which concludes the proof.

6.4. Proof of Theorem 2.13

Proof. By Proposition 3.4 we need to show for all v ∈ L1 that
∑

r≥1

rdv+1P (radv(Hv)> r)<∞.

Recalling the definition of Rt
k(v) above Proposition 6.5 and letting v =R1(ιv, τv), we note that Rt

1(v) contains only
cells R1(ι

′, τ ′) with d(S1(ιv), S1(ι
′))≤ t

2ℓ
and |τv − τ ′| ≤ t

β . Hence, if r,T satisfy

T
( 1

2ℓ
+

1

C212dwℓ

)
≤ r

for some constant C21, it holds that

R
T
1 (v)⊆

{
R1(ι

′, τ ′) : (ι′, τ ′) ∈ Bd ×Z, d
(
R1(ι

′, τ ′), v
)
≤ r

}
.

Define therefore T (r) := ( 1
2ℓ

+ 1
C212dwℓ

)−1r, and let t0 be as in Lemma 6.4 and r0 such that T (r0)> t0. Then

∑

r≥r0

rdv+1P (radv(Hv)> r)≤
∑

r≥r0

rdv+1P
(
Hv ⊈R

T (r)
1 (v)

)

≤
∑

r≥r0

rdv+1P
(
Kv ⊈R

T (r)
1 (v)

)

(6.16)
≤

∑

r≥r0

rdv+1 exp
{
−C19T (r)

cs
}
.
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Since this series converges, the Lipschitz cutset exists almost surely as stated in Proposition 3.4.

7. Proof of Theorem 2.15

The main tool for the proof of Theorem 2.15 are D

D

-paths, which we define next. They are in essence a symmetric version
of D-paths, in the sense that diagonal connections can go ªbackwardsº; equivalently, being connected by a D

D

-path is a
symmetric relationship unlike before.

7.1. D

D

-paths

For the Reader’s convenience we recall here from Subsection 5.3 some definitions that we will build on next. We
say for two scale-one cells R1(ι, τ) and R1(ι

′, τ ′) that R1(ι, τ) is diagonally connected to R1(ι
′, τ ′) if there exists

a sequence of scale-one cells {R1(ι1, τ1), . . . ,R1(ιn, τn)} such that R1(ι, τ) = R1(ι1, τ1), for all j ∈ {1, . . . , n − 1},
d(R1(ιj+1, τj+1),L0)< d(R1(ιj , τj),L0) and R1(ιn, τn) is either equal or adjacent to R1(ι

′, τ ′). In addition, we define
here two cells to be diagonally linked if the first case occurs, i.e. if R1(ιn, τn) =R1(ι

′, τ ′).
We say that two scale-one cells R1(ι, τ) and R1(ι

′, τ ′) are single diagonally connected if R1(ι, τ) is diagonally
connected to R1(ι

′, τ ′) or if R1(ι
′, τ ′) is diagonally connected to R1(ι, τ). We say that two scale-one cells R1(ι, τ) and

R1(ι
′, τ ′) are double diagonally connected if there exists R1(ι̃, τ̃) such that R1(ι, τ) is diagonally connected to R1(ι̃, τ̃),

R1(ι
′, τ ′) is diagonally connected to R1(ι̃, τ̃), and either R1(ι, τ) or R1(ι

′, τ ′) is diagonally linked to R1(ι̃, τ̃). Note that
being single diagonally connected or double diagonally connected is a symmetric relationship.

As done in Subsection 5.3, we extend these new definitions to cells of arbitrary scaleRk1(ι1, τ1) andRk2(ι2, τ2) by re-
quiring that they respectively contain two scale-one cells which satisfy the corresponding definition of the connectedness
above. In analogy to Definition 5.5 we introduce a new type of paths.

Definition 7.1. We define a D

D

-path as a sequence {Rkj (ιj , τj)}nj=1 of cells where for each j ∈ {2, . . . , n}, the cells
Rkj−1

(ιj−1, τj−1) and Rkj (ιj , τj) are either adjacent, single diagonally connected or double-diagonally connected.

Similarly to (5.31), for some t > 0 and v ∈ L1, we define

(7.1) Ω
D

1(v→ t)

to be the set of all D

D

-paths of cells of scale one for which the first cell of the path is v or v is single diagonally connected
to the first cell, and the last cell is the only cell not contained in the space-time ball Bt(S1(ιv))× [−t+ τv, τv + t]. We
stress that, contrary to Ω1(v→ t), v must not necessarily be part of the D

D

-path; it can be that v is only single diagonally
connected to the path and not an actual cell of the D

D

-path.
We define now ScD

D

-paths, the support connected version of D

D

-paths. Recall the definition of well-separated cells
and support adjacent cells from Definition 5.6. We say that two cells Rk1(ι1, τ1) and Rk2(ι2, τ2) are support connected

with single diagonal if there exist two scale-one cells respectively contained in the extended supports of Rk1(ι1, τ1)
and Rk2(ι2, τ2) which are single diagonally connected. Similarly, we say that two cells Rk1(ι1, τ1) and Rk2(ι2, τ2) are
support connected with double diagonal if there exist two scale-one cells respectively contained in the extended supports
of Rk1(ι1, τ1) and Rk2(ι2, τ2) which are double diagonally connected.

Definition 7.2. We define as ScD

D

-path (support connected D

D

-path) a sequence of well-separated cells {Rkj (ιj , τj)}zj=1

for some z ∈N where for all j = 2, . . . , z the cells Rkj−1(ιj−1, τj−1) and Rkj (ιj , τj) are either support adjacent, support
connected with single diagonal or support connected with double-diagonals.

For t > 0 and v ∈ L1, we define

Ω

Dsup
κ (v→ t)

the set of all ScD

D

-paths of cells of scale at most κ so that the extended support of the first cell of the path contains v or
v is single diagonally connected to a scale-one cell that is contained in the extended support of the first cell, and the last
cell is the only cell whose extended support is not contained in the space-time ball Bt(S1(ιv))× [−t+ τv, τv + t]. Again,
we highlight the difference with Ωsup

κ (v→ t), where instead v must be contained in the extended support, whereas here
it can be only single diagonally connected to it.

Finally we define the analogue of the bad cluster Kv from (5.33):

(7.2) K∗
v := {R1(ι

′, τ ′) : there exists a D

D

-path of bad cells from v to R1(ι
′, τ ′)}

Repeating the arguments of Lemma 5.7, we can easily obtain its analogue for D

D

-paths.
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Lemma 7.3. It holds that

P
(
∃P ∈Ω

D

1(v→ t) of cells with bad ancestry
)

≤ P
(
∃P ∈Ω Dsup

κ (v→ t) of multi-scale bad cells
)
.

7.2. Multi-scale analysis of D

D

-paths

We want to show that the Lipschitz cutset intersects the base L0 within distance r from the origin with high probability.
If the opposite was true, then we would be able to find a nearest-neighbour path in L1 \ F which leaves a ball of radius
r. We will show that this implies the existence of a D

D

-path from the origin that exits such a ball and we will use similar
arguments to before to prove such D

D

-paths are improbable.
We follow the structure of Section 6 and write in detail only the parts where the proofs for D

D

-paths differ from
the ones for D-paths. Lemma 6.1 and Corollary 6.2 still hold and and can be applied unchanged. We need to show the
analogue of Lemma 6.3.

Lemma 7.4. For a fixed length z ∈ N, fixed scales k1, . . . , kz and v ∈ L1, the number of ScD

D

-paths of cells of scale

k1, . . . , kz where the first cells either contains v or is v is single diagonally connected to a scale-one cell contained in the

extended support of the first cell, is at most

exp
{Cψ

2

z∑

j=1

ψkj

}
,

where Cψ is the same constant as in Lemma 6.1.

Proof. We follow the proof of Lemma 6.3. For Step 1, we need to make a small change. Compare the definitions of
Ωsup
κ (v → t) and Ω

Dsup
κ (v → t): in the latter we also allow v to be single diagonally connected to a scale-one cell

contained in the extended support of the first cell in the D

D

-path. To account for this, note that we can fix the relative
position of v and the scale-one cell in the extended support of the first cell in the D

D

-path, and we are only left to control
the number of the possible relative position which is done in Step 3.

Step 2 remains unchanged, and we can turn to Step 3.

Consider two consecutive cells in the D

D

-path which are single diagonally connected. We can define similarly to
before

A(h) := max
(ι1,τ1)

∣∣∣∣
{
R1(ι2, τ2) :

R1(ι1, τ1) is single diagonally connected to R1(ι2, τ2)
with

∣∣d(L0,R1(ι1, τ1))− d(L0,R1(ι2, τ2))
∣∣= h

}∣∣∣∣.

For two cells R1(ι1, τ1) and R1(ι2, τ2) in the D

D

-path which are double diagonally connected, let R1(ι̃, τ̃) be the cell
of the double diagonal that R1(ι1, τ1) or R1(ι2, τ2) is diagonally linked to. Letting h1 be the height difference between
R1(ι1, τ1) and R1(ι̃, τ̃) and h2 the height difference between R1(ι2, τ2) and R1(ι̃, τ̃), we can upper bound the number of
different relative positions between R1(ι1, τ1) and R1(ι2, τ2) for which the respective height differences to R1(ι̃, τ̃) are
h1 and h2 by A(h1 + 1)A(h2 + 1).

Let Hk be as in (6.13); similarly to what was done for D-paths, we can bound the total number of diagonal steps in a
D

D

-path with the maximal attainable distance from L0, within the path, i.e. by

H = 2

z∑

i=1

Hki ,

where we added the factor 2 to account for the diagonal step to the previous and the following cell. For simplicity, when
two cells are double diagonally connected we consider also the cell R1(ι̃, τ̃), to which both cells are diagonally connected
as part of the path. So, letting hi, i= 1, . . . ,2z − 1 be the height difference between two diagonally connected cells, the
number of diagonal steps is at most

H∑

l=0

∑

h1,...h2z−1

h1+···+h2z−1=l

A(h1 + 1)A(h2 + 1) . . .A(h2z−1 + 1).

We can then repeat the remaining calculations as in Lemma 6.3, substituting z with 2z and obtain the same result.
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We also have the analogue of Lemma 6.4:

Lemma 7.5. Suppose that the largest scale κ satisfies κ =O(
√
log(t)). Then if ψ1 is large enough, there exist t0 and

C15 > 0 such that for any t > t0 and any v ∈ L1 and any ScD

D

-path {Rkj (ιj , τj)}zj=1 ∈Ω

Dsup
k (v→ t)

z∑

j=1

ψkj ≥C15t
cs .

Proof. The proof is unchanged from the one of Lemma 6.4 except that in (6.15) we have to substitute t/2 with t/3 since
we now consider 2 diagonals for each cell instead of only one. The rest remains identical.

Recall now the definition of K∗
v in (7.2). The analogue of Proposition 6.5 is then argued in the same way.

Proposition 7.6. Let ζ as in (6.2), α0 as in Lemma 6.1 and t0 as in Lemma 6.4. Then there exists a constant C19

independent of t such that for any v ∈ L1

P(K∗
v ⊈R

t
1(v))≤ e−C19t

cs
,

for all t > t0, with cs as in Theorem 2.15.

Recall the concept of hills from Definition 3.3. In the following, we will say that two hills Hv1 and Hv2 are adjacent if
there exist v′j ∈Hvj , j = 1,2 that are adjacent, and call them intersecting if there exists ṽ ∈Hv1 ∩Hv2 .
Lemma 7.7. Let F be the Lipschitz cutset from Theorem 2.13. Let π = {uj}nj=0 with uj ∈ L1 \ F be a sequence of

sequentially pairwise adjacent cells.

Then there exists a sequence of hills H := {Hvj}kj=0, k ≤ n, such that every uj is contained in some hill Hj′ and two

consecutive hills of the sequence are either adjacent or intersecting.

Furthermore there exists a D

D

-path which starts in u0 and ends in un.

Proof. We start with the first claim. For each uj ∈ π, we have by assumption that uj /∈ F , so there exists a hill Hvj ∋ uj .
Furthermore, for all j = 1, . . . , n, uj−1 and uj are adjacent and so the respective hills Hvj−1

and Hvj are either adjacent
or they intersect. The sequence of hills {Hvj}nj=0 may contain repetitions of the same hills, so by removing all but the
first appearance of those which appears multiple times, we end up with a sequence of k ≤ n different elements.

We prove now the existence of the D

D

-path. Consider the sequence of hills {Hvj}kj=0 from the previous step, and
denote with←−v j ∈Hvj for j = 1, . . . , n the cell (chosen in some arbitrary manner, for example lexicographically) that is
either contained in or adjacent to a cell contained in Hvj−1 . By definition of a hill, there exist a d-path from v0 to u0 and
a d-path from v0 to either←−v 1 or to a cell adjacent to it. Similarly, there exist a d-path from vj to←−v j and a d-path from
vj to←−v j+1 (or a cell adjacent to it). Repeating this, we obtain a sequence of cells

u0, v0,
←−v 1, v1,

←−v 2, . . . , vk, un

where for each pair of consecutive cells there exists a d-path from the first to the second or from the second to the first.
Note that, just like D-paths, d-paths are also D

D

-paths. Secondly, if a certain sequence is a D

D

-path, then the reverse
sequence is also a D

D

-path, as a simple consequence of the fact that being adjacent, single diagonally connected or double
diagonally connected is a symmetric relation. Thirdly, if there exist a D

D

-path from a cell u1 to u2 and one from u2 to
u3 we can concatenate them and obtain a D

D

-path from u1 to u3.
We can thus construct a D

D

-path for the sequence u0, v0,
←−v 1, v1,

←−v 2, . . . , vk, un, concluding the lemma.

We can now prove Theorem 2.15.

Proof of Theorem 2.15. By Theorem 2.13, a Lipschitz cutset F exists a.s., so we need to show that it surrounds the
origin at some distance r. Suppose the converse.

This means that there exists a sequence of cells {uj}nj=0 with uj :=R1(ιj , τj) ∈ L1 \ F and such that u0 =R1(0,0)
and d(un, u0)> r. Applying Lemma 7.7 we obtain the existence of a D

D

-path from R1(0,0) to un.
By Proposition 7.6, for t > t0, the probability that such a path exists is smaller than

P(K∗
(0,0) ⊈R

t
1(0,0))≤ e−C19t

cs
.

Setting again t= ( 1
2ℓ
+ 1
C212dwℓ

)−1r as in the proof in Subsection 6.4 concludes the proof for r0 := ( 1
2ℓ
+ 1
C212dwℓ

)t0.
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8. Generalised Sierpi Ânski carpets

In this section we show how to adapt the previous arguments for the SierpiÂnski gasket to a further class of fractal graphs,
the SierpiÂnski carpets. We start by introducing the graph and then stating the results. As we will see, other than changes
to constants and parameters, the work done for the gasket can be applied mostly without further changes necessary, so we
will only highlight selected statements to show how they work in the carpet case.

(a) d= 2 (b) d= 3

Fig 8: Examples of generalised SierpiÂnski Carpet.

8.1. Setup and statement

We consider the class of fractal graphs of [4]. We state the definition for completeness and refer to [4] for more details.
Let d≥ 2, lF ≥ 3, and 1≤mF ≤ (lF )

d. Next, let F0 := [0,1]d and for n ∈ Z Sn be the collection of closed cubes of
side (lF )

n and corner vertices in the lattice (lF )
nZd. For A⊆Rd let Sn(A) := {S ∈ Sn : S ⊆A}. For S ∈ Sn, let ΨS be

the orientation preserving affine map which maps F0 onto S.
Let F1 be the union of mF distinct cubes of S−1(F0) satisfying the following conditions:

(H1) Symmetry: F1 is preserved by all the isometries of F0.
(H2) Connectedness: the interior Int(F1) is connected, and contains a path connecting the hyperplanes {x1 = 0} and

{x1 = 1}.
(H3) Non-diagonality: For any cube B in F0 which is the union of 2d distinct elements of S−1, if Int(F1 ∩B) is non-

empty, it is connected.
(H4) Borders included: F1 contains the segment {x : 0≤ x1 ≤ 1, x2 = · · ·= xd = 0}.

Given Fn, Fn+1 is obtained by removing the same pattern from each of the squares in S−n(Fn), so that Fn+1 is the
union of (mF )

n squares in S−n(F0); formally

Fn+1 :=
⋃

S∈S−n(Fn)

ΨS(F1)

and F :=
⋂∞
n=0Fn is called a generalised SierpiÂnski carpet. The Hausdorff dimension of F is dv :=

log(mF )
log(lF ) (see [4] and

references therein). We now define the pre-fractal graph.
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For any cube S−n, call the lower-left corner the vertex x with xi ≤ yi for each i= 1, . . . , d and y ∈ S−n. Let □n be
the collection of lower-left corners of the cubes in (lF )

nFn, and

V :=

∞⋃

n=0

□n,

see Figure 9.
We define the generalised SierpiÂnski carpet graph SCd := SCd(lF ,mF ) as the graph with vertex set V and edges

E := {{x, y} ∈ V × V : ∥x− y∥1 = 1}.

Fig 9: □1, □2 and □3 with d= 2, lF = 3, mF = 8 and corresponding edges. Note that the first 2 pictures are scaled up
by a factor of 32 and 31 respectively.

Similarly to SierpiÂnski gaskets, one can easily prove the volume estimate

(8.1) cvol r
dv ≤Volr(x)≤CVol r

dv ,

with dv :=
log(mF )
log(lF ) . Theorem 1.5 in [4] shows that upper and lower bounds for the heat kernels (HKB(dv, dw)) hold for

some value dw (which to the best of our knowledge is not known explicitly). Similarly to gaskets, applying [13, Theorem
3.1] gives that the mean exit time satisfies

(8.2) Ex[HBr(x)c ]≍ rdw ,

and that the parabolic Harnack inequality (PH(dw)) with parameter dw holds. Furthermore Lemma 2.6 also holds due to
the above.

Now that the graph has been defined, we can define the tessellation of the carpets, in order to formulate the analogues
of Theorems 2.13 and 2.15. We define the tiles Sk(ι) as

Sk(ι) := ι(lF )
ℓk +□ℓk ,

ι ∈ SCd which is the union of ldv(ℓk−ℓk−1)
F -many (k− 1) tiles.

Define just like before βk to be

βk := Cmix(
k2

ε )
4
Θ

(
l
ℓk−1

F

)dw

with the walk dimension dw from (8.2) and we define the time interval Tk(τ), τ ∈ Z, as before. Similarly, we define
space-time cells as the cross product of spatial tiles with the time intervals.

Like in the gasket case, we define L0 and L1 as in (2.9) and (2.10) to be the ªhyperplaneº subgraph and its correspond-
ing collection of cells. Note that in order to define L0, one needs to consider a subgraph SCd−1(lF ,mF ) with the same
lF but an appropriately changed mF . As an example, in the case of the 3 dimensional SierpiÂnski carpet from Figure 8,
mF must be changed from 20 in d= 3 to mF = 8 in d= 2.

We define two scale-one cellsR1(ι1, τ1) andR1(ι2, τ2) to be adjacent if d(ι1, ι2)+ |τ1−τ2|= 1.With this adaptation,
we can define the Lipschitz cutset F as in Definition 2.10, and state the main theorem.
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Remark 8.1. The change in how adjacency is defined is due to the ªdisjointº nature of how the pre-fractal is constructed
(recall that with the gasket, the corners of the triangles were shared). With this new definition of adjacency, we recover
the same behaviour in the sense that two cells are adjacent if either they are spatially the same and only one time interval
away from each other, or if they share the time interval and are spatially nearest neighbours, i.e. have L1 distance equal
to 1.

Theorem 8.2. Let d≥ 2, lF ≥ 3, 1≤mF ≤ (lF )
d and SCd(lF ,mF ) be a d−dimensional generalised SierpiÂnski carpet.

Let ℓ ∈N and let β ∈N be large enough. Furthermore, let η ∈N, ε ∈ (0,1) and ζ ∈ (0,∞) such that

ζ ≥ 1

ℓ

((
1
c−1
3

log
(
8c3
3ε

))dw−1
ηβ

) 1
dw
.

Tessellate Gd × R into space-time cells as described above, and let E(ι, τ) be an increasing event restricted to the

super cell Rη1(ι, τ) whose associated probability νE
(
(1− ε)µ,Sη1 (ι, τ),Bζℓ, ηβ

)
has a uniform lower bound across all

(ι, τ) ∈ SCd ×Z denoted with

νE
(
(1− ε)µ,Sη1 ,Bζℓ, ηβ

)
.

Then there exists α0 > 0 such that if

ψ1(ε,µ0, ℓ) := min
{ε2µ02

dvℓ

Cλ
,− log

(
1− νE

(
(1− ε)λ,Sη1 ,Bζℓ, ηβ

))}
≥ α0

there exists almost surely a Lipschitz cutset F where the event E(ι, τ) holds for all (ι, τ) ∈ F .

Furthermore there exists c4 > 0 such that for r0 large enough

P
(
S(F, r0)

c
)
≤

∑

r≥r0

rdv+1e−c4r
cs
,

for cs ∈
(
0, dv
dv+1 − 1

2

)
and S(F, r0) was defined above Theorem 2.15.

The application of Theorem 8.2 is similar to how Theorem 2.13 is applied, including the order in which the various
quantities are fixed. As such, we remind the reader of Remark 2.14 where details about this can be found.

8.2. Proof of Theorem 8.2

To adapt the proof, only a single notable change beyond the changes in the preceding definitions is necessary. Similar to
those, this change is essentially substituting the base 2 that appeared in the gasket case with lF , as we have seen in the
definitions of Sk(ι) and βk . From here onward we will repeatedly:

(Subst) Substitute every base 2 exponential with a base lF exponential.

Recall the definition of adjacent scale-one cells above Remark 8.1. We generalise this to cells of arbitrary scale: two
cells Rk(ι1, τ1) and Rk(ι2, τ2) of the same scale are called adjacent if d(ι1, ι2) + |τ1 − τ2| ≤ 1, where d(·, ·) is as
before the graph distance. Seeing SCd × Z as a subgraph of Zd+1, we define two cells Rk(ι1, τ1) and Rk(ι2, τ2) to be
∗-neighbours if ∥(ι1, τ1)− (ι2, τ2)∥∞ ≤ 1. We next define d-paths for carpets.

Definition 8.3 (d-path). A d-path in Gd ×R is a sequence {uk}nk=0 of ∗−neighbouring cells in SCd ×R from a bad cell
u0 ∈ L1 such that for each uk and uk+1 one of the following holds:

• increasing move: uk+1 is bad and d(L0, uk+1)≥ d(L0, uk)
• diagonal move: d(L0, uk+1)< d(L0, uk)

We say for two scale-one cells R1(ι, τ) and R1(ι
′, τ ′) that R1(ι, τ) is diagonally connected to R1(ι

′, τ ′) if there
exists a sequence of ∗-neighbour scale-one cells {R1(ι1, τ1), . . . ,R1(ιn, τn)} such that R1(ι, τ) = R1(ι1, τ1), for all
j ∈ {1, . . . , n− 1}, d(R1(ιj+1, τj+1),L0)< d(R1(ιj , τj),L0) and R1(ιn, τn) is either equal or adjacent to R1(ι

′, τ ′).
Lemma 5.7 then still applies using the change (Subst). Similarly, the definition of ψk is subject to (Subst). In this way,

Lemma 6.1 can be proven in the same way by again applying the decoupling Theorem 4.7 with the choices

K := side length of Sbase
k (ι) = 2b(k)lℓkF + lℓkF ,

K ′ such that K −K ′ = b(k)lℓkF ,
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l := lℓkF ,

δ := (1− dk+1)µ0,

∆ := length([γ(1)k (τ)βk+1, τβk]) = τβk − γ(1)k (τ)βk+1, and

ε̄ :=
ε

8k2
.

Lemmas 6.3 and 6.4, Proposition 6.5, and the proof of Theorem 2.13 go through by applying (Subst), and therefore
the first half of Theorem 8.2 is shown.

Similarly, Section 7 can be proven in the same way after using (Subst) and in particular we obtain the bound

P
(
S(F, r0)

c
)
≤

∑

r≥r0

rdv+1e−c4r
cs
.

9. Survival of the infection

We now give an application of the Lipschitz cutset framework to show that for an infection with recovery on a particle
system as defined in Subsection 2.4, the infection survives indefinitely with positive probability, if the recovery rate is
small enough.

Consider either the SierpiÂnski gasket Gd or a generalised SierpiÂnski carpet SCd(lF ,mF ) and the particle system
defined in Subsection 2.4 given by a Poisson point process with intensity µ(x) := µ0λx. Assume furthermore that at time
0, there is an infected particle at the origin of the graph2. We next describe the dynamics of the infection.

Any particle of the process gets instantaneously infected when it shares a site with an infected particle. For a second
parameter γ > 0, suppose that an infected particle recovers independently at rate γ, but can get infected again afterwards.
In particular, we allow for a particle to get immediately reinfected if it recovers while sharing a site with an infected parti-
cle, i.e. recovery is impossible when a particle shares a site with a different particle. However, our application works also
in the case where infections can only occur when particles change sites, i.e. when a healthy particle jumps to a site with
an infected particle or vice versa. To model recovery, consider a collection of Poisson point processes (Rx,nγ )x∈Gd,n∈N on
R+ with intensity γ, which we refer to as the recovery marks. As in [1], we view the process Rx,nγ as the recovery marks
of the random walk (Xx,n

t )t≥0, where Xx,n
t is the location at time t of n-th particle started from x at time 0. A particle

(Xx
t )t recovers at time s if it is alone, i.e. Πs(Xx

s ) = 1, and s ∈Rx,nγ .
We say that the infection survives if for every t > 0 there exists at least one infected particle at time t somewhere on

the graph. We denote with Pγµ the distribution of the process with intensity µ and recovery rate γ.

Proposition 9.1. For any µ0 > 0 there exists γ0 > 0 such that for all 0 < γ < γ0 the infection survives with positive

probability.

Note that Theorem 1.1 is a special case of the above Proposition, and as such it remains for us to prove the latter. We
will follow the approach introduced in [11] and refined in [1]. To prove the result we will define a suitable event E(ι, τ)
and apply Theorem 2.13. We will then be able to infer from the definition of E(ι, τ) and the connectivity properties of the
Lipschitz cutset that the infection survives indefinitely almost surely once the infection has entered the Lipschitz cutset,
therefore surviving indefinitely as long as the infection does not recover before this. The event E(ι, τ) will then consist of
two phases: in the first phase we will use (some) of the already infected particles to infect a sufficiently large number of
the particles in the cell R1(ι, τ). In the second phase, we will use these newly infected particles to propagate the infection
to the surrounding cells.

Fix the value ℓ ∈N and consider a value β, depending on ℓ, so that the ratio 2dwℓ

β is fixed. We define T := 2ℓ(dw−1/3)

to play the role of time buffer between the two phases.
Define the following condition: we say that a cell R1(ι, τ) is acceptable if

(A1) for every x ∈ S1(ι, τ) with Πτβ(x)> 0 there exists a path denoted with πx, which starts at x, and does not exit the
super-tile S3

1(ι) and has no recovery marks up to time τβ + T .
(A2) for each S1(ι

′)⊆ S3
1(ι) and each x ∈ S1(ι) with Πτβ(x)> 0, there exists a particle which stays inside the super-tile

S3
1(ι) and does not have any recovery marks up to time (τ + 1)β, is inside S1(ι

′) at time (τ + 1)β and intersects3

the path πx during the time interval [τβ, τβ + T ].

2The choice of the site where the infection starts is arbitrary as all of the bounds we use are uniform across the graph. Note however that the local
geometry of the origin is in fact different from that of any other site in the graph.

3We say that a particle intersects a path if the path and the particle path intersect in space-time, i.e. have the same position at the same time at least
once.
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We now claim

(9.1) Pγµ
(
R1(ι, τ) satisfies (A1), (A2)

)
≥ 1− exp

{
C22µ0e

−γβ2
ℓ/3
dw−1

}
,

the proof of which we relegate to Appendix A since it is an easy adaptation of the work done in [1, 11].

Remark 9.2. One might be tempted to think that using the event

E(ι, τ) := {R1(ι, τ) is acceptable}

and Theorem 2.13 would yield our claim. This would be true if the infection were to enter the Lipschitz cutset from the
time dimension4. Then by definition of acceptable, the infection enters from the time dimension in all cells in R3

1(ι, τ)
appearing in (A2), including the one in the Lipschitz cutset due to Corollary 3.5, and thus survives indefinitely. The next
definition takes care of the case in which the infection does not enter from the time dimension when it first enters the
Lipschitz cutset.

For each cell R1(ι, τ) and each x ∈ S1(ι) fix an independent realisation of a random walk path (πxs )s∈[0,τβ] with
πx0 = x. We say that a cell R1(ι, τ) is decent if

(D3) for every x ∈ S1(ι) the path πxs has no recovery marks and for every jump time t of (πxs )s∈[0,τβ] there exists a tile
S1(ι

′)⊆ S1
1(ι) such that

(D3a) if t < (τ + 1)β − T there exists a particle which has no recovery marks and stays inside R1
1(ι, τ), is at time

(τ + 1)β inside S1(ι
′) and intersects the path (πxs−t)s∈[t,t+T ] during the time interval [t, t+ T ];

(D3a) if (τ + 1)β − T ≤ t≤ (τ + 1)β it holds πx(τ+1)β−t ∈ S1(ι
′).

We refer again to Appendix A for the proof of

(9.2) Pγµ(R1(ι, τ) is decent)≥ 1− exp{−C23β} − exp{−C24γβ} − exp
{
C25µ0e

−γβ2
ℓ/3
dw−1

}
,

as the arguments remain very similar to [1].

Remark 9.3. We note that unlike done in [1], where the authors introduce a single random walk path π0 for each space-
time cell, which they then translate to x as needed, our graphs lack translation invariance and we must therefore consider
different paths for each x. This however has no bearing on the rest of the argument.

Proof of Theorem 9.1. We introduce an alternative construction of the process using the additional paths (πxs )s. We fix
the tessellation and observe a cell R1(ι, τ). If at time τβ there are infected particles inside S1(ι), we do not use the paths
(πxs ), x ∈ S1(ι). If instead there are no infected particles in S1(ι) at τβ, we observe the process on adjacent tiles and
consider the first infected particle which enters the tile S1(ι) at some site y during T1(τ), if it exists, and let this particle
follow the path πys until (τ + 1)β or until it the same rule applies for some adjacent cell, whichever happens first. Then,
as simple concatenations of random walks, with this new construction the process maintains the same distribution as the
original process.

We can now define the event

E(ι, τ) := {all cells R1(ι
′, τ ′) adjacent to R1(ι, τ) are acceptable and decent}.

Then the event E(ι, τ) is increasing, restricted to the super-cell R4
1(ι, τ) and using the volume estimates (Vol(dv)) for ℓ

large enough and γ small enough we can find α0 > 0 such that Pγµ(E(ι, τ))≥ 1− e−α0 .
Then Theorem 2.13 provides the existence of a Lipschitz cutset F o such that the event E(ι, τ) holds for all (ι, τ) ∈ F o

and Theorem 2.15 entails that it surrounds the origin at some finite distance r almost surely, hence an initially infected
particle starting at the origin has a positive probability of entering a cell in F o before recovery.

Suppose that this infected particle enters the Lipschitz cutset from the time dimension: then it suffices to consider (A1)
and (A2) to obtain that the infection spreads to all cells in R1

1(ι, τ). Since by Corollary 3.5 for every cell R1(ι, τ) in F o

there exists a cell R1(ι
′, τ +1)⊆ F o with d(S1(ι), S1(ι

′)) = 0, by definition of acceptable cells once the infection enters

4The infection enters a cell R1(ι, τ) from the time dimension if there is an infected particle in S1(ι) at time τβ. We say that the infection enters
the cell R1(ι, τ) from the spatial dimension, if there are no infected particles inside S1(ι) at time τβ and there is an infected particle which enters
S1(ι) at some time t ∈ (τβ, (τ + 1)β).
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the Lipschitz cutset it spreads to neighbouring cells inside F o. Since this observation can then be inductively repeated,
the infection now survives almost surely by spreading along cells of F o.

Suppose instead that the infected particle enters a decent cell R1(ι, τ) from the spatial dimension. Since the cell is
decent, the infection spreads to at least one cell R1(ι

′, τ ′) ⊆ R1
1(ι, τ) which is acceptable by the definition of E(ι, τ).

Note that this cell might not necessarily be part of F o. However, since it is acceptable it spreads the infection to all cells
R1(ι

′′, τ ′′) ⊆ R3
1(ι

′, τ ′). By Corollary 3.5 and since η = 3 there exists in particular at least cell R1(ι
′′, τ ′′) ⊆ R3

1(ι
′, τ ′)

that is inside F o. By definition of acceptable cells, the infection enters this cell from the time dimension, and the infection
survives indefinitely by the previous argument.

Since every cell of F o is acceptable and decent by construction and the Lipschitz cutset surrounds the origin at almost
surely finite distance, this yields the claim.

10. Further work

As outlined in the introduction, this work’s main contribution is adapting the Lipschitz surface framework of [10] from
Euclidean lattices to the sub-diffusive SierpiÂnski fractal graphs. As such, the application from Section 9 represents only
the first of many possible problems that can be studied with the help of the Lipschitz cutset framework we have developed.

Further results about the survival of the infection. In [1] the authors use the Lipschitz surface framework on Zd to
prove that the infection survives locally with probability 1, conditionally on the infection surviving in the first place. They
also show that if the particle intensity µ is high enough, then the infection has a positive probability of surviving for all
recovery rates γ > 0. We conjecture that the same holds also for fractal graphs. The result does not follow directly by
just replacing the Lipschitz surface framework in [1] with the Lipschitz cutset framework due to the weaker connectivity
properties of the cutset. We do however believe that Theorem 2.15 (resp. Theorem 8.2) provides sufficient structure to
still be able to deduce similar statements for fractal graphs.

Linear speed of the infection. Similarly to the above, one cannot immediately recover positive speed of the infection
from the Lipschitz cutset, as was done in the case of the Lipschitz surface on Zd in [11]. While the Lipschitz cutset retains
the Lipschitz property in the temporal direction (see Corollary 3.5), the Lipschitz property along the spatial axes of the
cutset can only be inferred when the cutset intersects with L1. We conjecture that this property can due to Theorem 2.15
(resp. Theorem 8.2) be recovered sufficiently often so that positive speed of the infection should also hold for SierpiÂnski
gaskets and carpets.

Shape theorem for the spread of infection. After proving positive speed of an infection on Zd in [18], Kesten and
Sidoravicius used their result to derive a shape theorem for the spread of an infection in their seminal paper [20]. Baring
that our conjecture above holds, a natural followup would be to try and prove a corresponding result for sub-diffusive
graphs such as the fractal graphs in this paper.

Appendix A: Probability of acceptable and decent cells

In this appendix we prove equations (9.1) and (9.2) adapting the proofs of [1, 11]. Recall that the ratio 2dwℓ

β is fixed and

that T := 2ℓ(dw−
1
3 ).

Acceptable. We start by showing (9.1).

Lemma A.1 ([11, Lemma 2]). Assume that the particles in S1(ι) are a Poisson point process of intensity c11µ0λx for

some c11 > 0. For x ∈ S1(ι), let πx a path of an (infected) particle which starts in x and stays inside S3
1(ι) during

[τβ, τβ + T ]. Then, for ℓ large enough, the number of particles in S3
1(ι) at time τβ which intersect πxby time τβ + T is

a Poisson random variable with mean at least C26µ02
ℓ(

1/3
dw−1 ).

Proof. The proof is a simple adaptation of [11, Lemma 2], using (HKB(dv, dw)) and splitting time into sub-intervals of

length W := 2
ℓ(dw−

1
3−

1/3
dw−1 ).

Lemma A.2 ([11, Lemma 3]). Given a set of N ∈ N particles in S3
1(ι) at time τβ + T and a tile S1(ι

′) ⊆ S3
1(ι), the

probability that at least one of the N particles is in S1(ι
′) at time (τ +1)β is at least 1− exp{−Ncp} for some constant

cp > 0 and ℓ large enough.
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Proof. One can define a suitable binomial variable B with parameters N and p ∈ (0,1), the latter being the minimal
probability for a particle to be in S1(ι

′) after moving for β− T amount of time, so that the probability in the statement is
at least P(B ≥ 1)≥ 1− exp{−Np}. The estimate p > cp then follows from applying (HKB(dv, dw)) in the time interval
[T, (τ + 1)β].

With the help of Lemma 2.6, we can combine the previous two statements with the help of Chernoff’s bound into the
following result.

Lemma A.3 ([11, Lemma 4]). Assume that the particles inside S3
1(ι) at time τβ are a Poisson process of intensity

c11µ0λx and let πx be the path from Lemma A.1. The probability that at time (τ + 1)β there is at least one particle in

every tile S1(ι
′)⊆ S3

1(ι) which intersected πx during [τβ, τβ + T ] is at least 1− exp{−C27µ02
ℓ/3
dw−1 }.

Lemma A.3 with the use of a simple union bound across all paths πx for x ∈ S3
1(ι) and (Conf(dw)) for (A1) yields

P0
µ(R1(ι, τ) satisfies (A1), (A2))≥ 1−

∑

x∈S3
1(ι)

(
c3 exp

{
− c−1

3 2
ℓ/3
dw−1

}
+ exp

{
C27µ02

ℓ/3
dw−1

})

≥ 1− exp
{
−C28µ02

ℓ/3
dw−1

}
.

Applying a further thinning on all of the particles appearing in the previous arguments (as done in detail in [1, Lemma
3.1]), preventing them from recovering during the time interval [τβ, (τ + 1)β], one obtains the analogous result with
recovery (9.1).

Decent. We now bound the probability of a cell to be decent and show (9.2). The probability that a path has no recovery
marks during an interval of length β is e−γβ and it holds for any random walk that

(A.1) P
(
Conf(BR,∆)

)
≥ 1−C29R

dv exp
{
−C30

R2

∆

}
,

(see for example [12, (4.1)]).
We now evaluate the probability of (D3b) for fixed x, t. We observe the time interval [t, (τ + 1)β]: if the length

(τ +1)β− t is bigger then 2ℓ we can apply Lemma 2.6; if instead (τ +1)β− t < 2ℓ then we can apply (A.1) with R= 2ℓ

and ∆≤ 2ℓ, which yields a lower bound of 1− exp{−C312
ℓ}. All together

P
(
the pair πx, t satisfy (D3b)

)
≥ 1− c3 exp{−c−1

3 2
ℓ/3
dw−1 } − exp{−C312

ℓ}.

For (D3a), we adapt a strategy similar to acceptable cells. Lemma A.1 still applies. Lemma A.2 still holds as before
if (τ + 1)β − t− T > 2ℓ, if instead (τ + 1)β − t− T < 2ℓ, we need to use (A.1) instead of (HKB(dv, dw)) in the proof
of Lemma A.2. Then Lemma A.3 applies with appropriately modified exponential bounds. Hence, for fixed x and t the

probability of (D3a) under P0
µ is at least exp{C32µ02

ℓ/3
dw−1 }.

Note now that the probability that a path has no recovery marks during an interval of length β is e−γβ . The probability
that a path jumps more than 3β times during a time interval of length β is bounded by e−β by a simple Poisson bound.
Combined, we obtain

P0
µ(R1(ι, τ) is decent)≥ 1−

∑

x∈S1(ι)

(
e−γβ + e−β + 3β exp

{
−C32µ02

ℓ/3
dw−1

}

+ 3βc3 exp{−c−1
3 2

ℓ/3
dw−1 }+ 3β exp{−C312

ℓ}
)
.

With the thinning property of Poisson point processes we can adapt the calculation for the recovery marks as in [1],
and (Vol(dv)) then yields (9.2) for ℓ large enough since the ratio ℓdw

β is fixed.
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Appendix B: Standard Results

Lemma B.1 (Chernoff Bound). Let P be a Poisson random variable with parameter λ. Then, for χ ∈ (0,1)

(B.1) P(P < (1− χ)λ)< e−λ
χ2

2 .

A proof of the following result is in [10, Lemma A.2]

Lemma B.2. Let x, y ∈N. Then, for any a, b > 1

(B.2)

(
x+ y

y

)
e−ax−by ≤ e−(a−1)x−(b−1)y.
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