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Abstract

We consider inhomogeneous spatial random graphs on the real line. Each vertex
carries an i.i.d. weight and edges are drawn such that short edges and edges to vertices
with large weights occur with higher probability. This allows the study of models
with long-range effects and heavy-tailed degree distributions. We introduce a new
coefficient δeff which quantifies the influence of heavy-tailed degrees on long-range
connections. We show that δeff < 2 is sufficient for the existence of a supercritical
percolation phase in the model and that δeff > 2 always implies the absence of
percolation. In particular, our results complement those in Gracar et al. (Adv. Appl.
Prob., 2021), where sufficient conditions were given for the soft Boolean model and
the age-dependent random connection model for both the existence and the absence
of a subcritical percolation phase. Our results further provide a criterion for the
existence or non-existence of a giant component in large finite graphs.
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1 Introduction and overview of the results

Background and motivation

We study a large class of spatially inhomogeneous Bernoulli-type percolation models
collectively known as the weight-dependent random connection model that was first
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Finiteness of percolation threshold

described in [19] and further analysed in [20, 18]. The model is an extension of classical
spatial percolation models in the same sense as the non-spatial inhomogeneous random
graph model introduced by Bollobás et al. in [4] generalises the Erdős-Rényi random
graph. Very broadly speaking, the framework we work in is as follows: Consider a family
of graphs (Gβ : β ≥ 0) on a countably infinite vertex set embedded into Rd. Here, β is
some intensity parameter that controls connectivity in the sense that increasing β results
in more connections on average and β = 0 corresponds to a graph without any edges.
Common assumptions in this context are

(A) given the vertex set, edges occur independently of one another whenever they do
not share a common vertex;

(B) the vertex set and the connection probabilities are translation invariant1;

(C) spatially close vertices are more likely to be connected by an edge than far apart
vertices.

Note that assumption (A) covers i.i.d. Bernoulli site percolation as well as i.i.d. bond
percolation on lattices. Typically, the vertex set in the models we have in mind is either
given by Zd or by a homogeneous Poisson process on Rd, the case we focus on in this
section. However, let us mention that our results hold for a large class of renewal
processes, see Definition 2.1 and Remark 2.2. The classical subject of percolation
theory is the following emergence phenomenon: Is there a critical intensity parameter
βc ∈ (0,∞) such that the graph Gβ contains an infinite connected component, or infinite
cluster, for β > βc and no infinite cluster for β < βc? Assumptions (A) and (B) generally
entail that the existence of an infinite cluster is a 0-1 event. Moreover, if an infinite
cluster exists, it is almost surely unique under very mild assumptions on the distribution
of Gβ [6, 30, 7].

This article is almost exclusively devoted to dimension d = 1 and Gβ with finite mean
degree. In the one-dimensional case, both in classical long-range Bernoulli percolation
models and in Poisson-Boolean percolation (which are both special instances of the
weight-dependent random connection model) we have that βc = 0 if and only if Gβ has
infinite mean degree [40, 37]. This is not the case for the weight-dependent random
connection model in general and in recent years several papers have identified parameter
regimes for which βc = 0 whilst Gβ has finite mean degree for various instances of the
model with heavy-tailed degree distributions, e.g. [47, 9, 11, 20].

In this work we address the complementary question whether βc <∞. The topological
restrictions of the line make it rather hard to generate infinite clusters and many
‘natural’ models admit no percolation phase. In nearest-neighbour percolation on Z,
either all edges/vertices are present or the graph contains only finite components [22].
Similarly, in the one dimensional Gilbert graph [15], all components are finite as well [37].
Generally, if each vertex can only have neighbours within bounded distance and if there
is a modicum of independence in the connection probabilities then there will be no
percolation. Moreover, the absence of a percolation phase extends to some models
with unbounded interaction range, such as the Poisson-Boolean model with integrable
radius distribution, even though the degree distribution of Gβ might be heavy-tailed in
some instances, see [23, 37, 16, 31]. Conversely, if d ≥ 2 then Gβ tends to contain an
infinite component for large β in many cases, which is essentially a consequence of the
existence of a supercritical percolation phase in nearest-neighbour Bernoulli percolation
on Z2 [22, 37].

1Since we cover both lattice models and models based on ergodic point processes we do not specify precisely
the group of shifts involved, this will always be clear from the context.
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Finiteness of percolation threshold

The picture for long-range Bernoulli bond percolation on Z is different. Here, any
pair of vertices x and y is connected independently with probability proportional to

1 ∧ β|x− y|−δ for some δ > 0,

we denote this model by LRP(δ). The case δ ≤ 1 yields graphs that have infinite expected
degree and shall not interest us here. If, however, δ ∈ (1, 2) then we have 0 < βc <∞ and
if δ > 2, then no infinite cluster exists for any β > 0 [45, 40, 13]. Our results suggest that
the behaviour of LRP(δ) in these two regimes is paradigmatic for those instances of the
weight-dependent random connection model that show genuine long-range interactions.
The third regime, which for classical long-range percolation on Z coincides with the
boundary case δ = 2 is more delicate. In fact, it is known that βc <∞ in LRP(2) and that
there even exists an infinite cluster at the critical point β = βc [1, 13], which is rather
atypical. We refer to this particular model as scale-invariant long-range percolation.

Our arguments rely on a renormalisation scheme, developed in Section 3, which
is tailored to graphs with positively correlated edges and with vertex locations given
by a renewal process. A similar approach was used by Duminil-Copin et al. in [13] to
study LRP(2) on Z. The positive correlations between edges are built into our model
by way of adding weights to the vertices. Dealing with the arising correlations is one
of the key mathematical contributions of this paper. There are two major issues that
have to be overcome: First, we have to control the effect of the vertex weights on the
number of connections of far apart sets of vertices, cf. Lemma 3.1. Secondly, we have
to deal with the existence of well-connected clusters when going through the scales of
the renormalisation. The information of existence of such clusters provides information
about the connectivity in the model and thus influences the distributions of the vertex
weights and edge probabilities, a problem which always arises when employing multi-
scale arguments to inhomogeneous percolation models. In Lemma 3.3, we show how
to decorrelate the corresponding probabilities involved, using the FKG-inequality on
suitably chosen sub-σ-fields. Our method formalises the intuition that a vertex in a large
cluster should not have fewer neighbours than a ‘typical’ vertex and was used in [39] to
obtain a finite size criterion for percolation in inhomogeneous long-range percolation
models.

We apply our main result to a large variety of model instances from the literature, cf.
Proposition 1.3. Combined with results of [20, 11], this allows us to establish an almost
complete phase diagram summarising the existence of percolation thresholds in several
model instances of interest, see Figure 1 and Theorem 1.4. Finally, our main result yields
information about the occurrence of giant components in finite version of our model,
cf. Corollary 1.6.

Throughout the paper we use the following notation for non-negative functions: we
write f = o(g) as x → ∞ if limx→∞ f(x)/g(x) = 0, and f � g if f/g is asymptotically
bounded from zero and infinity. The number of elements in a finite set A is denoted as
]A. We further indicate by a− and by a+ directional limits towards a ∈ R.

1.1 Discussion of results

Our model has two principal components:

• the kernel, a symmetric function g : (0, 1)2 → (0,∞) which is non-decreasing in
both arguments and satisfies∫ 1

0

∫ 1

0

1

g(s, t)
dsdt <∞;

• the profile, a non-increasing and integrable function ρ : (0,∞) → [0, 1].
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For given β > 0, we now generate Gβ in two steps. First, we sample vertices. In
this introductory section, the vertex locations are always distributed according to a unit
intensity Poisson process η on R, we discuss more general choices later on in Section 2.1.
Each vertex location x ∈ η is endowed with an independent Uniform(0, 1) vertex mark tx.
The pairs x = (x, tx) form the vertices of Gβ and we use the notation X for the collection
of all vertices. Secondly, given X , we connect any two vertices x,y ∈ X independently
by an edge with probability

ρ
(

1
β g(tx, ty) |x− y|

)
,

and we denote the presence of an edge between x and y by x ∼ y. Due to our monotonic-
ity assumptions on ρ and g, short edges and connections to vertices with small marks
are more probable than long edges and edges between vertices of high mark. One can
think of the marks as inverse vertex weights, which give the weight-dependent random
connection model its name. The integrability assumptions on ρ and g assure that Gβ

has finite mean degree. The parameter β > 0 directly affects the edge probability but
can also be interpreted as controlling the density of Poisson points, since it rescales
distances. In fact, our approach enables us to work with more general vertex locations
than a Poisson process and we give a detailed construction of the model in Section 2.
By construction, the kernel g determines the degree distribution of the model up to a
multiplicative constant, whereas the profile specifies the geometric restrictions of the
model [19, 17].

In the literature, two types of profile functions have attracted the most attention:
profile functions with bounded support, e.g. the indicator ρ = 1[0,1], and profile functions
with polynomial decay of index δ > 1, i.e., if there exist constants 0 < c < C such that

c(1 ∧ r−δ) ≤ ρ(r) ≤ C(1 ∧ r−δ), ∀r > 0. (1.1)

Alternatively, one could also assume ρ to be regularly varying with index −δ. An ap-
plication of standard Potter bounds [2] shows that there is no qualitative change in
the behaviour of existence of infinite clusters compared to the choice (1.1) in any of
the concrete examples discussed in this paper. The decay index δ measures how strict
the geometric restrictions of the model are. Decreasing values of δ lead to more and
more long edges. On the contrary, the larger the value of δ, the stricter the geometric
restrictions are, the extreme case being a profile ρ of bounded support. We therefore
refer to models constructed with a profile of bounded support as hard models and to
models with a polynomial decay of index δ ∈ (1,∞) as soft models. Profiles of unbounded
support but with lighter tails than polynomial are included in our approach but show no
qualitatively different behaviour in the existence of infinite components compared to the
bounded support case, cf. [18, 38]. This article is primarily devoted to soft models with
heavy-tailed degree distributions but our main results hold for any choices of ρ and g
satisfying the monotonicity and integrability conditions stated above.

By tuning ρ and g one obtains (versions of) many previously studied percolation
models such as the previously mentioned Poisson-Boolean model, the random connection
model [37], scale-free percolation [9, 11] and the age-dependent random connection
model [17]. A further closely related model class of similar generality is that of geometric
inhomogeneous random graphs [5, 28, 32]. A more comprehensive discussion of related
models is given in [19].

Existence of percolation threshold via effective decay exponents

We now formulate our main result which relates finiteness of βc to certain decay expo-
nents that characterise the overall long-range connectivity.
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Finiteness of percolation threshold

Theorem 1.1 (Finiteness vs. infiniteness of the percolation threshold). Consider the
weight-dependent random connection model (Gβ : β > 0) as given above.

(a) The percolation threshold βc is finite, whenever

− lim
µ↓0

lim inf
n→∞

log
(∫ 1

nµ−1

∫ 1

nµ−1 ρ(g(s, t)n)dsdt
)

log n
< 2.

(b) The percolation threshold βc is infinite, whenever

− lim
µ↑0

lim sup
n→∞

log
(∫ 1

nµ−1

∫ 1

nµ−1 ρ(g(s, t)n)dsdt
)

log n
> 2.

We address the details of the proof of Theorem 1.1 in Section 2.2. In fact, we prove
the results under more general assumptions, see Propositions 2.3 and 2.4. First, we
discuss some consequences and special instances of the result.

Remark 1.2.

(i) For many concrete choices of kernels and profiles discussed in the literature, the
integrals appearing in the theorem are continuous in µ and, moreover, both limits
coincide. If this is the case, we define

δeff := − lim
n→∞

log
(∫ 1

1/n

∫ 1

1/n
ρ(g(s, t)n)dsdt

)
log n

(1.2)

and call δeff the effective decay exponent associated with ρ and g. Theorem 1.1
then simplifies to the two implications βc <∞ if δeff < 2, and βc = ∞ if δeff > 2. In
particular, continuous kernels and profiles of the form (1.1) lead to a well-defined
δeff. For profile functions of the form (1.1), we further always have δ ≥ δeff, i.e., the
inclusion of weights helps to create long-range connections and for strict inequality
it is necessary that g vanishes sufficiently fast at (0, 0).

(ii) The order (in n) of the integrals appearing in the theorem is independent of β for ρ
satisfying (1.1), except for the case when g(s, s) � s as s ↓ 0 and ρ = 1[0,1] (or any
other ρ of bounded support). In this situation we have for sufficiently large β

1∫
n−1

ds

1∫
n−1

dt 1[0,1]
(
β−1g(s, t)n

)
�

βn−1∫
n−1

ds

βn−1∫
n−1

dt 1 = (β − 1)2n−2

and hence δeff = 2, thus this case is not covered by our results.

(iii) The monotonicity conditions on ρ and g can be relaxed by straightforward dom-
ination arguments: for the existence of a supercritical phase, it suffices that
ρ ≥ ρ0, g ≤ g0 with ρ0 and g0 satisfy the assumptions of Theorem 1.1, and analogous
but reverse bounds are sufficient for the absence of a supercritical phase.

(iv) Instead of working with a unit intensity Poisson process and varying β, one could
also vary the Poisson intensity λ > 0 and work with a fixed β. The same proofs
apply mutatis mutandis and we obtain λc <∞ if δeff < 2 and λc = ∞ if δeff > 2. The
same applies also to the refined results below in Propositions 2.3 and 2.4, in which
the roles of β and λ can be exchanged in a similar manner.
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Finiteness of percolation threshold

Let us give an intuitive explanation of the occurrence of δeff. As n grows large, the
minimum of n independent uniform random variables is roughly 1/n and consequently the
double integral appearing in (1.2) is essentially the probability of two randomly picked
vertices from vertex sets of size n at distance roughly n being connected by an edge.
Ignoring additional correlations between edges arising from the introduction of vertex
marks, the number of edges between the two vertex sets of size n is roughly given by
a binomial with n2 trials and connection probability n−δeff . If δeff < 2 the probability of
having an edge between the two sets increases with n whereas for δeff > 2 this probability
decreases. The effective decay exponent δeff hence measures the occurrence of long
edges in a way comparable to classical long-range percolation models, seen from a
coarse-grained perspective. The truncation of the integral bounds in (1.2) is crucial to
control the correlations arising from the vertex marks which is a necessity to identify
the phase transition for the existence of a supercritical phase correctly. Indeed, at first
glance, one might only want to calculate the decay exponent of the marginal distributions
of single edges which is the rate at which the annealed probability of two typical vertices
at distance n being connected decays. That exponent is

δmarg := − lim
n→∞

log
∫ 1

0
ds

∫ 1

0
dt ρ

(
g(s, t)n

)
log n

. (1.3)

In analogy with homogeneous long-range percolation one might now assume that the
graph contains an infinite cluster if δmarg < 2 and does not contain an infinite cluster if
δmarg > 2. However, this does not take the aforementioned correlations into account and
hence does not capture the behaviour accurately. By construction, we have δmarg ≤ δeff
and hence the correlations between edges make it harder to build an infinite component
than in the independent case. Below we give an example in which we have strict
inequality, showing that δmarg is indeed insufficient, see (1.5). It is an interesting
observation that this is contrary to the physics literature mantra that positive correlations
should help facilitate percolation, see e.g. [44] for some simulations of a correlated long-
range percolation model in two dimensions, [34] for finite range models on trees, or [12]
for a proof for percolation induced by the Gaussian free field level sets on supercritical
Galton-Watson trees. However, it is important to note that in the latter models the
dependency structure is rather different from our model and also how the underlying
geometry enters the construction differs considerably from our approach.

The special case δeff = 2

The case δeff = 2 is a generalisation of LRP(2) and the ‘1/|x−y|2-model’ of long-range
percolation [1]; we call this case pseudo-scale-invariant based on the notion of scale-
invariant long-range percolation. Indeed, if g ≡ 1 and ρ(z) = 1 ∧ z−δ, then δeff = δ and
for δ = 2 we obtain a variant of LRP(2).

We do not attempt to cover the pseudo-scale-invariant case with the methods pre-
sented here, as it is clear that the existence of a percolation phase in this regime cannot
be decided by looking at decay exponents alone: it is well known that the 1/|x−y|2-model
percolates for sufficiently large β [1, 13] while on the other hand, a straightforward first
moment argument, cf. [45], yields that for any g bounded away from 0 the integrability
condition ∫ ∞

0

∫ ∞

0

ρ(|x− y|) dxdy <∞

alone is sufficient to imply βc = ∞. Hence choosing, say, ρ(z) = 1 ∧ (z−2 log(1 + z)−2)

yields (Gβ : β > 0) with βc = ∞, whilst δeff = δ = 2.
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Finiteness of percolation threshold

Table 1: Various choices for γ, α and δ and the models they represent. Here, to shorten
notation, δ = ∞ represents profile functions of bounded support. We do not distinguish
whether the models were originally constructed on the lattice or a Poisson process.

Parameters δeff > 2 if Names and references

γ = 0, α = 0, δ = ∞ always random geometric graph [41, 42],
Gilbert graph [15]

γ = 0, α = 0, δ <∞ δ > 2 random connection model [36, 43],
long-range percolation [45]

γ > 0, α = 0, δ = ∞ γ < 1 Boolean model [23, 16],
scale-free Gilbert graph [25]

γ > 0, α = 0, δ <∞ δ > 2, γ < δ−1
δ soft Boolean model [18]

γ = 0, α > 1, δ = ∞ never ultra-small scale-free geometric network [47]

γ > 0, α = γ, δ ≤ ∞ δ > 2, γ < 1/2 scale-free percolation [9, 11],
geometric inhomogeneous random graphs [5]

γ > 0, α = 1− γ, δ ≤ ∞ never age-dependent random connection model [17]

In the examples discussed below, the δeff = 2 regime usually corresponds to a
boundary case, but there is at least one interesting example of a non-trivial kernel which
yields models in the pseudo-scale-invariant regime for a large parameter range. This
kernel corresponds to the age-dependent random connection model of [17]. It is an
interesting open problem to identify the precise regime in which βc < ∞ also for this
kernel, but unfortunately there seems to be no easy way to adapt the method used in the
present paper to cover model instances of interest in the pseudo-scale-invariant regime,
even though the general approach does work for the scale-invariant homogeneous model
LRP(2), see [13].

Analysis of concrete models from the literature

We introduce a new kernel that represents many of the established models for the right
parameter choices and call it the interpolation kernel. It is defined for γ ∈ [0, 1) and
α ∈ [0, 2− γ) and given by

gγ,α(s, t) := (s ∧ t)γ(s ∨ t)α. (1.4)

In Table 1, we give various choices for γ and α and the models they represent, depending
on the geometric restrictions. With a similar calculation as in [17] one can show that
models constructed with the interpolation kernel have heavy-tailed degree distribution
with power-law exponent τ = 1 + (1/γ ∧ 1/(α+γ−1)+).

Let us calculate δeff for this kernel. Since gγ,α ≤ 1, we only consider profile functions
as in (1.1) with δ > 2. For δ ≤ 2, we have βc < ∞ by a simple coupling argument with
homogenous continuum long-range percolation.

Proposition 1.3. For the interpolation kernel gγ,α, with γ ∈ [0, 1) and α ∈ [0, 2− γ), and
a profile function ρ fulfilling (1.1) for some δ > 2, we have

δeff =


δ, γ < 1

δ and α < 2
δ − γ,

δ(1− γ) + 1, γ > 1
δ and α < 1

δ ,

δ(1− γ − α) + 2, α, γ > 1
δ or γ < 1

δ and α > 2
δ − γ.
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In Particular,

(a) If γ < 1− 1/δ and

(i) if α < 1− γ, then δeff > 2,

(ii) if α = 1− γ, then δeff = 2,

(iii) if α > 1− γ, then δeff < 2.

(b) If γ = 1− 1/δ and α ≤ 1− γ, then δeff = 2.

(c) If γ > 1− 1/δ, then δeff < 2.

Proof. Pick a profile function of type (1.1), note the symmetry of the kernel (1.4), and
thus consider the integral

n−δ
1∫

n−1

ds
1∫
s

dt s−γδt−αδ, if γ + α ≤ 1,

n−1/(α+γ)∫
n−1

ds n−1/αs−γ/α + n−δ
1∫

n−1

ds
1∫
s

dt s−γδt−αδ, if γ + α > 1.

Straightforward integration then yields the desired result by identifying the leading
order terms in the different parameter regimes given in the proposition.

It is straightforward to extend the model to higher dimensions d ≥ 2: the vertex
locations η are now given by a unit intensity Poisson process onRd, and given the vertices
and their i.i.d. marks, we connect any pair (x, tx) and (y, ty) of vertices independently
with probability

ρ
(
β−1gγ,α(tx, ty)|x− y|d

)
.

In [20] by Gracar et al., [11] by Deprez and Wüthrich and [47] by Yukich, the question
of the existence of subcritical percolation phases for certain special cases of our model
is addressed. A perusal of their arguments shows, that they can easily be extended to
the whole parameter regime of the interpolation kernel. Hence, we can give a rather
comprehensive answer to the question when the interplay between geometric restrictions
and additional edges coming from the marks lead to a non-trivial phase transition, see
Figure 1b.

Theorem 1.4. Let (Gβ : β > 0) be the weight-dependent random connection model
constructed with a profile function ρ fulfilling (1.1) for some δ > 1 and the interpolation
kernel gγ,α for γ ∈ [0, 1) and α ∈ [0, 2− γ).

(a) For α ≤ 1− γ, we have:

(i) If γ > δ
δ+1 , then βc = 0.

(ii) If γ < δ
δ+1 and

• either d ≥ 2, or d = 1 and δ < 2, or d = 1 and γ > 1 − 1/δ, or d = 1 and
α = 1− γ and γ ≥ 1/2, then βc ∈ (0,∞);

• d = 1 and α < 1− γ and δ > 2 and γ < 1− 1/δ, then βc = ∞.

(b) For α > 1− γ, we have βc = 0.

Proof. The proof of part (a)(i) is done in [20], (a)(ii) is a combination of [20], known
results about the existence of supercritical percolation phases in d ≥ 2 [37] and in long-
range percolation in d = 1 when δ ∈ (1, 2) [40], our main Theorem 1.1, and Corollary 1.5
below. Part (b) can be easily proven by generalising the proof for α = γ > 1/2 of [11] to
all α > 1− γ.
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(a) The three different values of δeff for the in-
terpolation kernel subject to Proposition 1.3
for a profile function with δ > 2. Shaded
in gray the δeff > 2 phase of the model; the
blue dotted line marks the pseudo-invariant
regime δeff = 2.
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(b) The regions where βc is infinite, finite
and positive, or zero, subject to Theorem 1.4.
The regions of Part (a) are shaded, where or-
ange (NW) marks Item (i), grey (NE) marks
Item (ii). The d = 1 specifics only occur for
δ > 2.

Figure 1: Phase diagrams for the interpolation kernel depending on the values of γ and
α. Dotted or dashed lines represent no change of behaviour.

By combining Proposition 1.3 and Theorem 1.4, we can see that the robust regime
βc = 0 for the interpolation kernel model is always contained in the regime where
δeff < 2. Moreover, while the present manuscript underwent peer review, it was shown
in [29] that robustness implies δeff ≤ 2 in any dimension for a large class of translation
invariant inhomogeneous percolation models that includes the weight-dependent random
connection model. We believe that there are in fact no robust locally finite instances of
the weight-dependent random connection model in the pseudo-scale-invariant regime
δeff = 2, but currently have no proof of this conjecture.

To conclude this section, we further discuss two models of particular interest that
can be represented by the interpolation kernel. Our focus is, again, on dimension d = 1

and profile functions satisfying (1.1) for δ > 2.
Soft Boolean model: This model is a long-range variant of the classical (‘hard’) Poisson-
Boolean model. It corresponds to the kernel gγ,0(s, t) = (s∧t)γ for some γ ∈ (0, 1) and can

be interpreted as follows. Each vertex x is assigned an independent radius t−γ/d
x . Given

all vertices, each potential edge {x, y} is assigned an independent heavy-tailed random
variable R(x, y) with P{R(x, y) > r} = r−dδ (for r > 1) and any given pair of vertices x, y
is connected if the vertex with the smaller assigned radius, say x, is contained in the ball
of radius β1/dR(x, y)t

−γ/d
y centred in y. That is

x ∼ y ⇔ |x− y| ≤ β1/dR(x, y)
(
t−γ/d
x ∨ t−γ/d

y

)
,

see Figure 2. A variant closer to the classical Poisson-Boolean model is given by the
sum kernel gsum(s, t) = (s−γ/d + t−γ/d)−d where an edge is drawn if the ball with

radius β1/dR(x, y)t
−γ/d
x centred in x and the ball with radius β1/dR(x, y)t

−γ/d
y centred

in y intersect, cf. [18] for a more detailed discussion. As gsum ≤ gγ,0 ≤ 2dgsum both
kernels show qualitatively the same behaviour in the question of existence of a non
trivial percolation phase transition. It follows from Theorem 1.4 that, for δ > 2, the
one-dimensional soft Boolean model provides three open parameter regimes: one where
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x

y

z

x

y

z

R(x, z)t
−γ/2
x

x

y

z

R(y, z)t
−γ/2
z

Figure 2: Example for connection mechanism of the soft Boolean model in two dimen-
sions. The solid lines represent the edges of the graph.

the graph always contains an infinite component, an intermediate regime where an
infinite component exists for large values of β, and one where no infinite component
can exist. Allowing γ = 0, this model also includes the homogeneous random connection
model.

Let us further calculate the decay exponent of the marginal distribution of single
edges as mentioned in the explanation around (1.3). If we choose ρ(x) � 1 ∧ x−δ for
δ > 2 and some 1/2 < γ < 1− 1/δ, we calculate∫ 1

0

ds

∫ 1

0

dt
(
1 ∧ (s ∧ t)−γδn−δ

)
� n

− 1
γ + n−δ

∫ 1

n−1/γ

ds s−γδ � n
− 1

γ . (1.5)

Since γ > 1/2, we have δmarg < 2 and we have βc <∞ for the independent edges model
where each radius is resampled independently for any potential edge, but as γ < 1− 1/δ,
we have δeff > 2 by Proposition 1.3 and hence βc = ∞ by Theorem 1.1 for the actual
model where each radius is sampled just once.
Age-dependent random connection model: This model was introduced in [17] as the
weak local limit of an age-based spatial preferential attachment model and corresponds
to the choice γ ∈ (0, 1) and α = 1 − γ. Here, the vertex marks play the role of vertex
birth times and small marks correspond to early birth times and hence to old and thus
influential vertices. By Theorem 1.4 we have βc = 0 if γ > δ/(δ+1) and βc ∈ (0,∞) if
γ ∈

(
δ−1
δ , δ

δ+1

)
. However, we have δeff = 2 for the whole parameter regime 0 < γ ≤ 1− 1/δ.

This illustrates a scale-invariance property that is built into the model and is a result
of the dynamics within the model coming from the role of vertex marks being birth
times. Since our main theorem does not capture the pseudo-scale-invariant regime, we
can only deduce results by comparing the age-dependent random connection model to
models where the finiteness or infiniteness of βc is known. To this end, we consider the
scale-free percolation model, introduced by Deijfen et al. [9] also known later as infinite
geometric inhomogeneous random graph [5], which coincides with the choice of γ = α

in the interpolation kernel. Here, it is known that βc = 0 if γ > 1/2 and βc = ∞ if γ < 1/2.
Now note that scale-free percolation and the age-dependent random connection model
coincide for γ = 1/2. In [33, 5, 28] it is shown that the ‘KPKVB-model’, a hyperbolic
random graph model, has one-dimensional scale-free percolation as weak local limit
(after a suitable change from hyperbolic to weighted Euclidean coordinates). Results
from Bode et al. [3] for the KPKVB-model then show that there exists an infinite cluster
in the infinite geometric inhomogeneous random graph for ρ(r) = 1[0,1](r), whenever
γ = 1/2 and β is sufficiently large. By monotonicity in γ of gγ,1−γ , it follows that the same
holds true for the age-dependent random connection model for any γ ≥ 1/2 and any ρ
that is bounded away from 0 in a neighbourhood of 0. It remains an interesting open
problem to show whether there can be percolation for γ < 1/2 in this setting.

The discussion of this paragraph is summarised in the following corollary.

Corollary 1.5. Let (Gβ : β ≥ 0) be the weight dependent random connection model in
dimension d = 1, constructed with the interpolation kernel gγ,α and any non-trivial profile
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function ρ satisfying the upper bound in (1.1) for some δ ∈ (2,∞). If either γ = α = 1/2,
or 1/2 < γ < δ/(δ+1) and α = 1− γ, we have βc ∈ (0,∞).

Giant components in finite versions of the model

Another application of our results is the existence of a component of linear size in finite
versions of our model, also known as the giant component. If a giant exists, one is
interested in whether it is unique and how many vertices belong to it. The paper [28]
elaborates how weight-dependent random connection-type models arise as weak local
limits of models on finite domains. There, growing sequences of graphs (G

(n)
β : n ∈ N)

are constructed, where G
(n)
β consists of n vertices which are independently placed into

the unit interval (−1/2, 1/2). Translated to our parametrisation each vertex carries an
independent uniform mark and, given locations and marks, each pair (x, t), (y, s) of ver-
tices is connected independently with probability ρ(β−1g(s, t)n|x− y|). The scaling factor
n ensures that the graph remains sparse and the n vertices can hence be considered
as being embedded into (−n/2, n/2). Recall that θ(β) denotes the percolation probability
in Gβ, it is formally defined below in (2.4). Our proofs yield the following corollary
regarding finite versions of the weight-dependent random connection model.

Corollary 1.6. Let (G (n)
β : n ∈ N) be the above sequence of finite graphs on intervals with

weak local limit Gβ given by an instance of the weight-dependent random connection
model with kernel g and profile ρ. If ρ and g satisfy the assumptions of Theorem 1.1(a),
then (G

(n)
β : n ∈ N) contains a connected component that grows linearly in n for large

enough β. Conversely, if ρ and g satisfy the assumptions of Theorem 1.1(b), then there is
no giant component in the above sense for any β > 0.

It is well-known (see for example [27]) that a graph sequence cannot have a giant
component if its weak local limit does not percolate, hence it remains to prove the
statement in the δeff < 2 case, which is done at the end of Section 3.

Organisation of the remainder of the paper

In Section 2, we start with a precise mathematical construction of the model and intro-
duce more general vertex sets. We then state in Section 2.2 two propositions: a sufficient
condition for the existence of a supercritical phase, Proposition 2.3, and a sufficient
condition for the non-existence of such a phase, Proposition 2.4. Combined, these imply
Theorem 1.1. We prove Proposition 2.3 in Section 3 and Proposition 2.4 in Section 4. Let
us remark that we give the proof of Proposition 2.3 before the proof of Proposition 2.4 as
it contains the main new contributions of the paper; both mathematically and from the
point of view of specific model instances, particularly through Lemma 3.1 and Lemma 3.3.
However, the proof of absence of percolation is conceptionally easier and the reader may
want to start with Section 4 if they want to familiarise themselves with the model first.

2 General set up and proof of Theorem 1.1

We now introduce our model in a rigorous way and define the properties we require of
the underlying point process for our results to hold. We then formulate Propositions 2.3
and 2.4, which imply Theorem 1.1.

2.1 Formal construction of the model

Let η be a standard renewal process on R with intensity λ ∈ (0,∞). In the following,
as the intensity plays no particular role beyond being positive and finite, we omit it from
our notation. We write η0 for the Palm version of η containing a point at 0 ∈ R, see e.g.
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[8] for background on Palm distributions. That is, η0 = {Xj : j ∈ Z such that Xk < X`

for k < `} with X0 = 0 and the differences Xj −Xj−1 are independent and identically
distributed. In the literature these differences are often referred to as innovations or
holding times; we call them differences as this aligns best with the interpretation of
distances between vertices. We think of the vertex in location 0 as the ‘root vertex’
of its cluster. The weight-dependent random connection model is constructed as a
deterministic functional Gβ,ρ,g of the points of η0, and two independent i.i.d. sequences
of edge and vertex marks as follows. Let T = {Tj : j ∈ Z} be a family of i.i.d. random
variables distributed uniformly on (0, 1) independent of η0 and define the marked point
process

X0 := {Xj = (Xj , Tj) ∈ η0 × T , j ∈ Z}.

Hence, X0 is a point process on R× (0, 1) with intensity measure λ⊗Uniform(0, 1) and a
distinguished, ‘typical’ point located at the origin. Let further U = {Ui,j : i < j ∈ Z} be
a second family of i.i.d. Uniform(0, 1) random variables, independent of X0, that we call
edge marks. We use X0 and U to define a point process

ξ0 :=
{(

{Xi,Xj}, Ui,j

)
∈ X

[2]
0 × U : i < j ∈ Z

}
, (2.1)

where X
[2]
0 denotes the set of all subsets of size two of X0. We call ξ0 an independent

vertex-edge-marking of η0 in accordance with [24]. Observe that X0 as well as η0 can be
recovered from ξ0. From here on onwards, we assume that we work on a probability space
on which the vertex-edge-marking ξ0 is defined and denote the underlying probability
measure by P and the corresponding expectation by E.

Now fix β > 0, a profile function ρ and a kernel function g. Then Gβ,ρ,g(ξ0) is the
graph with vertex set X0 and edge set{

{Xi,Xj} : Ui,j ≤ ρ
(
1
β g(Ti, Tj) |Xi −Xj |

)
, i < j

}
.

To keep the notation concise, we write Gβ = Gβ,ρ,g(ξ0). Note that this graph has the same
law as the previous one if η is a Poisson process, justifying the slight abuse of notation.
Due to our a priori ordering of the vertices by their locations, one may think of X0 as a
marked lattice by considering the vertex indices instead of their actual locations on the
real line. Our proofs therefore apply immediately to Z-based versions of the model as
well. Indeed, the lattice can formally be viewed as a renewal process with all inter-point
distances equal to one (or i.i.d. geometrically distributed in case of a Bernoulli-site
percolated lattice). However, note that even though we define the model using a specific
ordering of η0, the distribution of Gβ is independent of the chosen order.

Our central requirement on the renewal process η is the following regularity condi-
tion:

Definition 2.1 (Evenly spaced renewal process). Let η be a standard renewal process on
R and denote by P0 the law of its Palm version η0. We say that η (and also η0) is evenly
spaced, if for any a > 2λ the large-deviation bound

P0{|X−n −Xn−1| > an} = o(n−2), (2.2)

as n→ ∞, holds. Similarly, we call a realisation of η0 = ω = {xi : i ∈ Z}, for which

|x−n − xn−1| < an, (2.3)

is satisfied for some a, n-properly spaced.
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Remark 2.2. (i) Property (2.2) essentially says that distances between vertices (i.e.,
the differences of consecutive locations) are not too large and do not fluctuate too
much on large scales. This then guarantees that vertex locations are sufficiently
dense uniformly over all scales, which is required to prove the existence of a
supercritical phase.

(ii) All renewal processes with light-tailed differences, including the Poisson process,
are evenly spaced. In case of heavy-tailed differences of the subexponential class,
the existence of their third moment is equivalent to the evenly spaced property [10].

(iii) Theorem 1.1 holds true for the weight-dependent random connection model based
on any evenly spaced renewal process, any deterministic point set satisfying the
corresponding deterministic spacing conditions, and any stationary simple point
process that is appropriately stochastically dominated by an evenly spaced renewal
process. An example of the latter could, for instance, be a Cox process, where
the random intensity measure first generates a random closed set and then places
the Poisson points with two different intensities for regions within said set and its
complement; see e.g. [31].

2.2 Strengthening Theorem 1.1

We begin by formalising the notion of percolation. For two vertices Xi,Xj ∈ X0,
we denote by {Xi ∼ Xj in Gβ} the event that Xi and Xj are connected by an edge in
Gβ. When the graph Gβ is fixed, we simply write {Xi ∼ Xj}. We define {0 ↔ ∞ in Gβ}
as the event that the root X0 is the starting point of an infinite self-avoiding path
(X0,Xi1 ,Xi2 , . . . ) in Gβ , i.e., Xij 6= Xik for all j 6= k and Xij ∼ Xij+1

for all j ≥ 0. We set

θ(β) = P{0 ↔ ∞ in Gβ}, β > 0. (2.4)

If θ(β) > 0, then Gβ percolates almost surely by ergodicity. Conversely, if Gβ contains an
infinite component, X0 is connected to it with positive probability and, hence, θ(β) > 0.
We therefore call θ(β) the percolation probability and define the percolation threshold
βc as

βc := inf{β > 0: θ(β) > 0}.

We now state two propositions which combined prove a strengthened version of
Theorem 1.1. We start with a sufficient condition for the existence of an infinite cluster.

Proposition 2.3 (Existence of supercritical phase). Let η be an evenly spaced renewal
process in the sense of Definition 2.1. Let ξ0 be an independent vertex-edge-marking of
η, ρ be a profile function and g be a kernel function. Let Kn := (n!)3Kn, n ∈ N for some
K ∈ N. Assume that there exists µ ∈ (0, 1/2) such that

sup
n≥2

n3K exp
(
−K2

n−1

1∫
2Kµ−1

n−1

ds

1∫
2Kµ−1

n−1

dt ρ
(
g(s, t)Kn

))
= o(1), as K → ∞. (A1)

Then, for (Gβ,ρ,g(ξ0) : β > 0), we have βc <∞.

The proof of Proposition 2.3 is given in Section 3 and follows a strategy similar to that
of the proof of [13, Theorem 1(i)]. Condition (A1) can be seen as a generalised version of
[13, Equation (8)] and precisely quantifies the order of the probability that certain long
edges are absent in the graph that we need for our proof to work. The analogous result
for the non-existence of an infinite component is given next.
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Proposition 2.4 (Absence of supercritical phase). Let η be a standard renewal process
on R with corresponding vertex-edge-marking ξ0 and let g be a kernel function. Assume
further, that ρ is a profile function with ρ(0+) < 1 and that there exists µ ∈ (0, 1/2) such
that ∑

n∈N
22n

∫ 1

2−(1+µ)n

ds

∫ 1

2−(1+µ)n

dt ρ(g(s, t)2n) <∞. (A2)

Then for (Gβ,ρ,g(ξ0) : β > 0), we have βc = ∞.

Remark 2.5. The proof of Proposition 2.4, in fact, works for graphs constructed on
any stationary and ergodic simple point process. While we stick here to the renewal
process to keep notation light, we comment on that matter below the proof in Section 4
in Remark 4.2.

The assumption ρ(0+) < 1 in Proposition 2.4 is a technical requirement needed in the
proof of Proposition 2.4 below and can essentially be viewed as a continuum version of
the analogous requirement in long-range percolation on Z that not all nearest-neighbour-
edges be present. If η is the Poisson point process the additional condition ρ(0+) < 1

can be dropped.

Corollary 2.6. Let η be a standard Poisson point process. Let ξ0 be an independent
vertex-edge-marking based on η, g be a kernel and ρ be a profile function such that
assumption (A2) of Proposition 2.4 is fulfilled. Then for (Gβ,ρ,g(ξ0) : β > 0), we have
βc = ∞.

We are now able to prove the main Theorem 1.1 using the previous propositions.

Proof of Theorem 1.1. Let us define

δ+eff(µ) := − lim inf
n→∞

log
(∫ 1

nµ−1

∫ 1

nµ−1 ρ(g(s, t)n)dsdt
)

log n

and assume δ+eff(0+) < 2. Observe that 2Kµ−1
n−1 = 2Kµ−1

n (n3K)1−µ ≤ K
µ+µ(K)−1
n for

some small µ(K) ↓ 0 as K → ∞. Choosing K large and µ small enough such that
δ+eff(µ+ µ(K)) < 2, we have

K2
n−1

1∫
2Kµ−1

n−1

ds

1∫
2Kµ−1

n−1

dt ρ
(
g(s, t)Kn

)
≥ cK

2−δ+eff(µ+µ(K))
n−1 ,

uniformly in n for some constant c > 0. Hence Assumption (A1) is satisfied and Theo-
rem 1.1(a) is a consequence of Proposition 2.3. Similarly, define

δ−eff(µ) := − lim sup
n→∞

log
(∫ 1

n−µ−1

∫ 1

n−µ−1 ρ(g(s, t)n)dsdt
)

log n

and assume δ−eff(0+) > 2. Then, for small enough µ and large enough n, we have for
some constant C > 0

22n
∫ 1

2−(1+µ)n

ds

∫ 1

2−(1+µ)n

dt ρ(g(s, t)2n) ≤ C2n(2−δ−eff(µ)).

Hence, Assumption A2 is satisfied and the proof of Theorem 1.1 is concluded by applying
Corollary 2.6.
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3 Proof of Proposition 2.3

We now proceed to prove the existence of an infinite component under the assump-
tions of Proposition 2.3. Our strategy is based on the approach developed in [13,
Theorem 1(i)] to establish the existence of supercritical percolation regime in classical
long-range percolation LRP(δ) in the scale-invariant regime δ = 2. The proof involves a
multi-scale argument working roughly as follows: at stage n, the lattice is covered by
half-way overlapping blocks of Kn lattice points. The overlap has the effect that if two
adjacent blocks contain a rather dense connected component each, the two components
necessarily intersect due to the pigeon hole principle. Since enough blocks at stage
n have such components, a larger block of size Kn+1 containing several Kn-blocks
must also contain a component of positive (but ever so slightly smaller) density. If the
loss of density at each stage can be kept sufficiently small, the desired result follows
by iterating this construction and taking the limit n → ∞. However, renormalisation
requires initialisation with local clusters of a given (large) density, hence one cannot
hope to obtain quantitative bounds for βc using this technique.

In our model, we face the challenge of the additional randomness of the marks.
We demonstrate below that a modified version of the above strategy works under the
assumptions of Proposition 2.3, i.e., in particular if δeff < 2. Although we are able to
control the influence of the marks by a carefully tailored argument, the error probabilities
arising at each stage become too large if one moves into the pseudo-scale-invariant
regime, hence the approach breaks down if δeff = 2.

For N ∈ N and i ∈ Z let

Bi
N := {XN(i−1), . . . ,XNi, . . . ,XN(i+1)−1}

and BN := B0
N = {X−N , . . . ,XN−1}. Each set Bi

N consists of precisely 2N consecutive
vertices. If η is the lattice, then Xj = j for each j ∈ Z and Bi

N is simply the lattice
interval [N(i − 1), N(i + 1)) ∩ Z, matching the notation of [13]. In the general setting,
the sets Bi

N are blocks of vertices that all contain the same number of vertices but with
random distances between consecutive vertices. Note that two consecutive blocks Bi

N

and Bi−1
N overlap on half of their vertices. The blocks at stage n are then given by the

blocks Bi
Kn

for i ∈ Z. Note that all stage n blocks have the same marginal distribution by
point stationarity [46]. However, two neighbouring blocks are not independent due to
the overlapping property. Conversely, if two blocks do not intersect, e.g. the blocks Bi

Kn

and Bi+2
Kn

, then they, and specifically the subgraphs induced by them, are independent
as a result of the renewal property of η and the independence of the marks.

3.1 Connecting vertex sets that are far apart

To make sure that the strategy outlined at the beginning of this section works and
that a Kn+1-block at stage n+ 1 contains a ‘large’ connected component (we will specify
this shortly), it is necessary that two stage n blocks at a given distance are connected
with a sufficiently high probability to overcome potentially bad regions.

Recall that Kn = (n!)3Kn for some K ∈ N. For ϑ∗ ∈ (0, 1) and n ≥ 2, we write
vn := vn(ϑ

∗) = ϑ∗Kn−1 and define the ‘leftmost’ and ‘rightmost’ parts of BKn
as

V n
` (ϑ∗) := {X−Kn , . . . ,X−Kn+bvnc−1} and

V n
r (ϑ∗) := {XKn−bvnc, . . . ,XKn−1}.

Note that Kn−1 � Kn and so V n
` (ϑ∗) (resp. V n

r (ϑ∗)) is only a relatively small number
of vertices at the very left (resp. right) end of the block BKn

. Before calculating the
probability of the two sets V n

` (ϑ∗) and V n
r (ϑ∗) being connected, we need to understand

the behaviour of the vertex marks inside each set.
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For µ ∈ (0, 1/2), we denote for all i = 1, . . . , bv1−µ
n c by

Nn
` (i) :=

∑
S : (X,S)∈V n

` (ϑ∗)

1{
S≤ i

bv1−µ
n c

}
the empirical mark counts in V n

` (ϑ∗). We say further that V n
` (ϑ∗) has µ-regular vertex

marks if

Nn
` (i) ≥

vni

2bv1−µ
n c

for all i = 1, . . . , bv1−µ
n c. A simple calculation yields that

ENn
` (i) =

vni

bv1−µ
n c

.

Hence, by the Chernoff bound for Uniform(0, 1) random variables, we have

P
{
Nn

` (i) < E[N
n
` (i)]/2

}
≤ exp

(
−c i vµn

)
for some constant c > 0, independent of all model parameters. Therefore,

P{V n
` (ϑ∗) is µ-regular} ≥ 1−K1−µ

n−1 exp(−cvµn), (3.1)

and the same holds verbatim for V n
r (ϑ∗).

Consequently, both sets are µ-regular with a stretched exponential error bound
already in the first stage for a sufficient large K. We therefore focus on the case when
both sets have µ-regular vertex marks when calculating the probability of both sets being
connected, which we do in the following lemma that also illuminates the necessity of
Assumption (A1). We take into account here that, by the evenly spaced property, the two
sets are typically at distance roughly Kn. More precisely, we restrict ourselves in the
following to Kn-properly spaced configurations, see (2.3). As the current stage n, or Kn

respectively, is mostly clear from context, we simply refer to the property as properly
spaced. We further fix throughout some a > 2λ for which Definition 2.1 applies.

We denote by {V n
` (ϑ∗) ∼ V n

r (ϑ∗)} the event that the two sets are at graph distance
one of each other, i.e., that there existX ∈ V n

` (ϑ∗) andY ∈ V n
r (ϑ∗) such that X ∼ Y. We

write {V n
` (ϑ∗) 6∼ V n

r (ϑ∗)} for the event that there is no such edge. Furthermore, we say
that two vertices (Xi, Ti) and (Xj , Tj) are Kn-strongly connected if their corresponding
edge mark satisfies

Ui,j ≤ 1− exp
(
− ρ(β−1g(Ti, Tj)aKn)

)
, (3.2)

We denote this event by {Xi

Kn


 Xj} and also extend the notation to sets of vertices in
the same fashion as ‘∼’. Since 1 − e−x < x, two Kn-properly spaced vertices that are
Kn-strongly connected are always connected by an edge in Gβ. Again, if the scale n is
clear from the context we simply write {Xi
Xj} and say that the vertices are strongly
connected.

Lemma 3.1. Let ϑ∗ ∈ (0, 1) and recall vn = ϑ∗Kn−1. We have for all µ ∈ (0, 1/2) and
n ∈ N,

P
(
V n
` (ϑ∗) 6∼ V n

r (ϑ∗)
∣∣ {V n

` (ϑ∗) and V n
r (ϑ∗) are µ-regular}, {|X−Kn

−X−Kn−1| ≤ aKn}
)

≤ P
(
V n
` (ϑ∗)

Kn

6
 V n
r (ϑ∗)

∣∣∣ {V n
` (ϑ∗) and V n

r (ϑ∗) are µ-regular}
)

≤ exp
(
− v2n

4

∫ 1

2vµ−1
n

ds

∫ 1

2vµ−1
n

dt ρ
(
β−1g(s, t)aKn

))
.
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Finiteness of percolation threshold

Proof. To lighten notation, we write V` = V n
` (ϑ∗), and Vr = V n

r (ϑ∗), and denote

E := E(n) = {V` is µ-regular} ∩ {Vr is µ-regular}.

Denote by F` and Fr the empirical distribution function of the vertex marks corresponding
to V` and Vr respectively. Writing h := bv1−µ

n c, we have on the event E for t ∈ [0, 1] by the
definition of µ-regularity

vF`(t) =

−Kn+bvnc−1∑
i=−Kn

1{Ti≤t} ≥ Nn
` (bthc) ≥

vnbthc
2h

≥ vn
2
(t− 1/h)

≥ vn
2
(t− 2vµ−1

n ).

(3.3)

Let now

G(t) =


0, t < 2vµ−1

n ,
1
2 (t− 2vµ−1

n ), 2vµ−1
n ≤ t ≤ 1,

1
2 − vµ−1

n , t > 1,

which defines a measure supported on [2vµ−1
n , 1] with dG(t) = dt/2. Using (3.3), we thus

obtain on the event of µ-regularity for any bounded function ρ : [0, 1] → [0,∞) that

−Kn+bvnc−1∑
i=−Kn

ρ(Ti) =

∫ 1

0

ρ(t) dF`(t) ≥
∫ 1

2vµ−1
n

1
2ρ(t) dt. (3.4)

The same applies verbatim to Fr.
Next, we write Pη0 for the probability measure P given the vertex locations η0 which,

by construction, is a product measure with Uniform(0, 1) marginals. Recall that P0

denotes the law of η0. We then have

P
(
V n
` (ϑ∗) 6∼ V n

r (ϑ∗)
∣∣∣ E ∩ {|X−Kn −X−Kn−1| ≤ aKn}

)
=

∫
1{ω properly spaced}P

η0=ω
(
V n
` (ϑ∗) 6∼ V n

r (ϑ∗)
∣∣ E)P0(dω)

P0(η0 properly spaced)
.

We focus on the inner probability in the numerator’s integral. By construction, under
Pη0=ω, two vertices (xi, Ti) ∈ V` and (xj , Tj) ∈ Vr are connected, whenever they are
strongly connected, i.e. their corresponding edge mark satisfies (3.2), since ω is properly
spaced. Thus, the first inequality of the lemma follows immediately. In particular, there
always exists an edge connecting V` and Vr if

Σ :=
∑

(xi,Ti)∈V`,
(xj ,Tj)∈Vr

1{
Ui,j≤1−exp(−ρ(β−1g(Ti,Tj)aKn)

} > 0.

Since the edge marks are independent of the vertex marks and locations, we have

Eη0=ω(1{Σ=0}1E) ≤ Eη0=ω

[
1E

∏
(x,T )∈V`

(y,S)∈Vr

exp
(
− ρ(β−1g(T, S)aKn)

)]

= Eη0=ω

[
exp

(
−

∑
(x,T )∈V`

(y,S)∈Vr

ρ
(
β−1g(T, S)aKn

))
1E

]

≤ Eη0=ω

[
exp

(
− v2n

4

∫ 1

2vµ−1
n

dt

∫ 1

2vµ−1
n

ds ρ
(
β−1g(t, s)aKn

) )
1E

]

= Pη0=ω(E) exp
(
− v2n

4

∫ 1

2vµ−1
n

dt

∫ 1

2vµ−1
n

ds ρ
(
β−1g(t, s)aKn

) )
,
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where we used (3.4) twice in the second to last step. The proof is concluded by the
observation that the established bound is uniform in all properly spaced configurations
ω.

3.2 Renormalisation scheme

For N ∈ N, i ∈ Z, we denote by Cβ(Bi
N ) the largest connected component of the

subgraph of Gβ on the vertices of Bi
N . For ϑ ∈ (0, 1), we say a block Bi

N is ϑ-good, if it
contains a connected component of size at least 2ϑN ; otherwise we call it ϑ-bad. We
denote by

pβ(N,ϑ) := P
{
]Cβ(BN ) < 2Nϑ

}
= P{BN is ϑ-bad}

the probability that the block BN is ϑ-bad. We will show that the probability of BKn

being ϑ-bad can be bounded by the probability that the smaller block BKn−1
is bad with

a slightly larger value of ϑ.
As a first step, we show that the subgraph of Gβ induced by BKn+1

typically contains
a connected component of volume proportion at least ϑ − ε, whenever BKn

is ϑ-good
with sufficiently large probability. This is an adaptation of [13, Lemma 2] to our setting.
Here, we have to deal with the positive correlations between clusters to make use of
Lemma 3.1, cf. (3.7), and Lemma 3.3. Afterwards, we show that for sufficiently large
initial scales K, the subgraph induced by BK1

contains a large cluster whenever β is
large enough. Combining both results yields Proposition 2.3.

Recall that we haveKn = (n!)3Kn. Define the sequence (Cn)n∈N by setting Cn = n3K.
Then K = K1 = C1 and Kn = CnKn−1 for n ≥ 2.

Lemma 3.2. Let ϑ∗ ∈ (3/4, 1) and ϑ ∈ (ϑ∗, 1). Under the assumptions of Proposition 2.3
there existsM > 0 such that for all K ≥M and n ≥ 2, we have ϑ− 2/Cn ≥ ϑ∗, and

pβ(Kn, ϑ− 2/Cn) ≤ 1
100pβ(Kn−1, ϑ) + 2C2

npβ(Kn−1, ϑ)
2.

Proof. Let ϑ′ := ϑ − 2/Cn. Consider the blocks Bi
Kn−1

for |i| ∈ {0, . . . , Cn − 1}, which
together form BKn , and their largest connected components Cβ(Bi

Kn−1
). Since ϑ > 3/4,

the cluster Cβ(Bi
Kn−1

) is unique if Bi
Kn−1

is ϑ-good. Furthermore, due to the overlapping
property of neighbouring blocks, the largest components of two adjacent ϑ-good blocks
have to intersect in at least one vertex. Hence, if all the blocks Bi

Kn−1
are ϑ-good, then

BKn
is ϑ-good as well.

Define now for every |i| ∈ {0, . . . , Cn − 1} the event

Ei := Ei(n, β) =
{
]Cβ(B

i
Kn−1

) < 2ϑKn−1

}
∩

[
Cn−1⋂
|j|=0

j 6∈{i−1,i,i+1}

{
]Cβ(B

j
Kn−1

) ≥ 2ϑKn−1

}]
.

That is, the block Bi
Kn−1

is ϑ-bad but all blocks Bj
Kn−1

which it does not intersect are
ϑ-good. If we write

Fi := Fi(n, β) := Ei ∩ {BKn
is ϑ′-bad},

then BKn being ϑ′-bad implies that either Fi occurs for some i or at least two disjoint
stage (n − 1) blocks are ϑ-bad, since otherwise BKn

would be ϑ- and therefore also
ϑ′-good. Consequently,

pβ(Kn, ϑ
′) = pβ(CnKn−1, ϑ

′) ≤
Cn−1∑
|i|=0

P(Fi) +

(
Cn

2

)
pβ(Kn−1, ϑ)

2

≤ pβ(Kn−1, ϑ)

Cn−1∑
|i|=0

P(BCnKn−1 is ϑ
′-bad | Ei) + 2C2

npβ(Kn−1, ϑ)
2,
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Figure 3: The overlapping blocks of scale n− 1 that together form the scale n block. The
cluster C−

i (resp. C+
i ) on the left in blue (resp. on the right in red). The dark block is the

bad block and in light gray are the non overlapping halves of the two neighbouring blocks.
The dotted line indicates the existence of an edge connecting C−

i and C+
i avoiding the

bad region.

using in the first inequality the independence of subgraphs on disjoint blocks. To finish
the proof it therefore remains to bound the sum of the conditional probabilities by 1/100.
To this end, define

C `
i := C `

i (n, β) =

i−2⋃
j=1−Cn

Cβ(B
j
Kn−1

) and C r
i := C r

i (n, β) =

Cn−1⋃
j=i+2

Cβ(B
j
Kn−1

), (3.5)

the union of all largest clusters to the left and to the right, respectively, of the bad block
Bi

Kn−1
. Conditioned on Ei, both sets C `

i and C r
i are connected sets. Furthermore, if

i ∈ {Cn − 2, Cn − 1}, then

]C `
i ≥ 2(Cn − 2)ϑKn−1 ≥ 2ϑ′CnKn−1

and hence BKn
is ϑ′-good. The same holds true for C r

i if i ∈ {1−Cn, 2−Cn}. Therefore,
the bad block and any neighbouring block cannot be the left- or the right-most one in
BKn

. This then guarantees that C `
i ,C

r
i 6= ∅. Further, if C `

i and C r
i are connected directly

by an edge, we have

]C `
i + ]C r

i ≥ ϑKn−1(Cn + i− 2) + ϑKn−1(Cn − i− 2) = 2ϑKn−1(Cn − 2) ≥ 2ϑ′CnKn−1,

and BKn
is again ϑ′-good, see Figure 3; thus,

P(BKn is ϑ′-bad | Ei) ≤ P(C `
i 6∼ C r

i | Ei).

To control the probability on the right-hand side, we make now use of the evenly
spaced property. Recall that on a properly spaced configuration a strong connection in
the sense of (3.2) is harder to achieve than a normal connection, which yields

P(C `
i 6∼ C r

i | Ei) ≤
∫

{ω properly
spaced }

Pη0=ω(C `
i 6
 C r

i | Eω
i )P0(dω) + o(K−2

n ),
(3.6)

by Definition 2.1, where Eω
i denotes the event that Ei occurs on the properly spaced

configuration η0 = ω; note that this has positive probability. Again, we have written
Pη0=ω for the conditional probability given the locations η0 = ω. Let us next define

Ai := Ai(n, β) =

[
Cn−1⋂
|j|=0

j 6∈{i−1,i,i+1}

{
]Cβ(B

j
Kn−1

) ≥ 2ϑKn−1

}]
,
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so that Ei = {]Cβ(Bi
Kn−1

) < 2ϑKn−1

}
∩ Ai and denote Aω

i for the event that Ai occurs
on the location configuration η0 = ω. As strong connections only depend on the involved
vertex and edge marks but not on the precise differences of the locations, we obtain for
any properly spaced configuration η0 = ω

Pη0=ω(C `
i 6
 C r

i | Eω
i ) = P

η0=ω(C `
i 6
 C r

i | Aω
i ),

as C `
i and C r

i do not intersect the bad block Bi
Kn−1

or its adjacent blocks. On Aω
i , the

clusters C `
i and C r

i are the unique largest clusters on the left or on the right side of the
bad block respectively, which provides positive information on the connectivity of the
involved vertices. It thus seems plausible that

Pη0=ω(C `
i 6
 C r

i | Aω
i ) ≤ Pη0=ω(V n

` (ϑ∗) 6
 V n
r (ϑ∗)), (3.7)

for which Lemma 3.3 below provides rigorous justification. Let us for the moment
assume that (3.7) holds true. We then infer by combing this with (3.6), the help of
Lemma 3.1, and µ-regularity (3.1)

Cn−1∑
|i|=0

P(BCnKn−1
is ϑ′-bad | Ei)

≤ 2n3C1

[
exp

(
− Cv2

∫
[vµ−1,1−vµ−1]2

d(t, s) ρ
(
β−1g(s, t)aKn

))
+K1−µ

n−1 exp(−cK
µ
n−1) + o(K−2

n )
]

≤ 1

100
.

by Assumption (A1) for sufficiently large K = C1, as desired.

It remains to justify (3.7) to formally conclude the proof of Lemma 3.2.

Lemma 3.3. For all β > 0, n ≥ 2, |i| ∈ {0, . . . , Cn − 1} and Kn-properly spaced location
configuration η0 = ω we have

Pη0=ω(C `
i 6
 C r

i | Aω
i (n, β)) ≤ Pη0=ω(V n

` (ϑ∗) 6
 V n
r (ϑ∗)).

Proof. Recall that bvnc = ]V n
` (ϑ∗) = ]V n

r (ϑ∗). To keep the notation readable, we omit
writing the integer part function in the following and treat vn as a natural number. The
idea is to bound the probability on the left by first uniformly choosing subsets of size
vn among the vertices of C `

i and C r
i and only check whether these subsets are strongly

connected or not and then compare this with the case when vn vertices are chosen
uniformly among all vertices on the left and right of the box Bi

Kn−1
. To do so rigorously,

we first have to extend our probability space. Let

Li := Li(n) = {`1, . . . , `vn} ⊂ {−CnKn−1, . . . ,Kn−1(i− 1)− 1}

be indices chosen among all indices of the vertices on the left side of the block Bi
Kn−1

uniformly without replacement, independently of everything else, and ordered from
smallest absolute value to largest. Similarly, let

Ri := Ri(n) = {r1, . . . , rvn} ⊂ {Kn−1(i+ 1), . . . , CnKn−1 − 1}

be another independent set of indices chosen uniformly among the indices of the vertices
on the right side. We call each index in Li and Ri tagged. Note that the sets of indices
we are sampling from are deterministic. Furthermore, we can define a joint probability
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measure P
η0=ω

for (ξ0, (Li,Ri)), given η = ω with marginal distribution Pη0=ω, when
integrated with respect to the tags Li and Ri.

Recall the definitions of C `
i and C r

i as the union of the largest clusters in the blocks
left and right of Bi

Kn−1
, cf. (3.5). To make this definition unique, we define from here

on onwards, Cβ(B
j
Kn−1

) to be the largest cluster in Bj
Kn−1

that contains the vertex with

smallest mark if the largest cluster is not unique. Then, C `
i and C r

i are always uniquely
determined (almost surely) but on Aω

i nothing has changed. We further denote by

I`
i := I`

i (n, β) = {j ∈ Z : Xj ∈ C `
i } and Ir

i := Ir
i (n, β) = {j ∈ Z : Xj ∈ C r

i },

the set of indices belonging to C `
i and C r

i respectively; we consider both sets to be
ordered from smallest absolute value to largest. Let us further introduce another
configuration dependent tagging. Let Li := Li(n) be a set of vn-many indices chosen
uniformly without replacement from I`

i , ordered from smallest absolute value to largest,
and Ri := Ri(n) the same but chosen among the indices in Ir

i , independently of Li. If
]I`

i < vn (resp. ]Ir
i < vn), we simply set Li = ∅ (resp. Ri = ∅). Let us denote the joint

distribution, given η0 = ω, of ξ0 and (Li,Ri) by P̃η0=ω. Observe that on Aω
i , both I`

i and
Ir
i always contain at least vn-many elements. Now, by the independence of (Li,Ri) from
the vertex and edge marks and by the fact that uniformly sampling from a finite set S
conditioned to be contained in an independently generated subset S′ ⊂ S has the same
distribution as uniformly sampling from S′, we have

P̃η0=ω
(
(ξ0, (Li,Ri)) ∈ ·

∣∣Aω
i

)
= P

η0=ω(
(ξ0, (Li,Ri)) ∈ ·

∣∣Aω
i , {Li ⊂ I`

i }, {Ri ⊂ I+
i }

)
.

(3.8)

This then implies

P̃η0=ω(C `
i 6
 C r

i | Aω
i ) ≤ P̃η0=ω

( ⋂
`∈Li, r∈Ri

{X` 6
 Xr}
∣∣∣Aω

i

)
= P

η0=ω
( ⋂

`∈Li, r∈Ri

{X` 6
 Xr}
∣∣∣Aω

i , {Li ⊂ I`
i }, {Ri ⊂ Ir

i }
)

=

P
η0=ω

( ⋂
`∈Li, r∈Ri

{X` 6
 Xr},Aω
i , {Li ⊂ I`

i }, {Ri ⊂ Ir
i }

)
P

η0=ω
(Aω

i , {Li ⊂ I`
i }, {Ri ⊂ Ir

i })
.

(3.9)

The probability in the last line’s numerator can be written using the independence of
(Li,Ri) from the graph as

P
η0=ω

( ⋂
`∈Li, r∈Ri

{X` 6
 Xr},Aω
i , {Li ⊂ I`

i }, {Ri ⊂ Ir
i }

)
=

∑
L,R

Pη0=ω
( ⋂

`∈L, r∈R

{X` 6
 Xr},Aω
i , {L ⊂ I`

i }, {R ⊂ Ir
i }

)
P{Li = L,Ri = R},

(3.10)

where the summation runs over all subsets of size vn of the sets, from which Li and Ri

are drawn, and we have written P for the law of (Li,Ri). Now, Pη0=ω is by construction
a product measure with Uniform(0, 1) marginals (the vertex and edge marks). Moreover,
the event

⋂
`,r{X` 6
 Xr} is clearly decreasing whenever involved vertex and/or edge

marks are decreased (and potentially new edges are added to the graph). On the contrary,
the event Aω

i ∩ {L ⊂ I`
i } ∩ {R ⊂ Ir

i } is increasing whenever vertex and/or edge marks
are decreased as additional edges only increase the size of the largest cluster. Hence,
good boxes always remain good when an edge is added. Also, since, on Aω

i , the largest
clusters on the left and right are uniquely determined and contain at least a ϑ > 3/4
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proportion of the vertices, an additional edge can only make the sets I`
i , Ir

i larger and
whenever {L ⊂ I`

i } ∩ {R ⊂ Ir
i } occurs without the newly added edge, it also occurs after

the edge has been added. Hence, we can apply the FKG-inequality [14] and infer

Pη0=ω
( ⋂

`∈L, r∈R

{X` 6
 Xr},Aω
i , {L ⊂ I`

i }, {R ⊂ Ir
i }

)
≤ Pη0=ω

( ⋂
`∈L, r∈R

{X` 6
 Xr}
)
Pη0=ω

(
Aω

i , {L ⊂ I`
i }, {R ⊂ Ir

i }
)

= Pη0=ω
(−Kn+v−1⋂

`=−Kn

Kn−1⋂
r=Kn−v

{X` 6
 Xr}
)
Pη0=ω

(
Aω

i , {L ⊂ I`
i }, {R ⊂ Ir

i }
)
,

where the last equality follows from the fact that under Pη0=ω all vertex and edge marks
are i.i.d. and the event of two vertices being strongly connected is independent of the
precise spatial location, cf. (3.2). Plugging this back into (3.10), we infer

P
η0=ω

( ⋂
`∈Li, r∈Ri

{X` 6
 Xr},Aω
i , {Li ⊂ I`

i }, {Ri ⊂ Ir
i }

)

≤ Pη0=ω
(−Kn+v−1⋂

`=−Kn

Kn−1⋂
r=Kn−v

{X` 6
 Xr}
)

×
∑
L,R

Pη0=ω
(
Aω

i , {L ⊂ I`
i }, {R ⊂ Ir

i }
)
P{Li = L,Ri = R}

= Pη0=ω
(−Kn+v−1⋂

`=−Kn

Kn−1⋂
r=Kn−v

{X` 6
 Xr}
)
P

η0=ω(Aω
i , {Li ⊂ I`

i }, {Ri ⊂ Ir
i }

)
.

Combined with (3.9), this finally yields

Pη0=ω(C `
i 6
 C r

i | Aω
i ) ≤ Pη0=ω{V n

` (ϑ∗) 6
 V n
r (ϑ∗)},

as desired.

We close the section with the following lemma which establishes the probability
bounds necessary to initialise the renormalisation scheme.

Lemma 3.4. Let η be an evenly spaced renewal process. Then, for every kernel g, every
profile function ρ and every ϑ ∈ (0, 1), there exist constantsM > 0, and B > 0 such that
for all K = C1 > M and β > B C1, we have

pβ(ϑ,C1) ≤ 1
400C

−2
1 .

Proof. Denote by ERλ
n an Erdős–Rényi-graph on n vertices with edge probability λ/n;

denote its law by Pλ
n. If λ > 1, then ERλ

n is supercritical, i.e., for all ε1 > 0, there exists
c > 0 and N(ε1, λ) > 0 such that

Pλ
n

{
]C (ERλ

n > cn
}
≥ 1− ε1, n ≥ N(ε1, λ), (3.11)

where C (ERλ
n) denotes the largest connected component of the graph ERλ

n [26]. We aim
to compare this behaviour with the behaviour of the finite graph induced by the finite
block BC1

by making use of the evenly spaced property. By Definition 2.1, we have for
large enough C1,

pβ(ϑ,C1) ≤ P
(
BC1

is ϑ-bad
∣∣ |X−C1

−XC1−1| ≤ aC1

)
+ o(C−2

1 ).
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In the remaining proof we hence work conditionally on the event |X−C1
−XC1−1| ≤ aC1

and denote again by Pη0=ω the probability measure, given a properly spaced point
configuration ω, cf. (2.3). We assume without loss of generality that ρ(1) > 0. We
further assume that g is bounded and remark on the unbounded case below. Now, fix
β > a||g||∞C1. Then, for all (xi, Ti), (xj , Tj) ∈ BC1

, we have

Pη0=ω
{
(xi, Ti) ∼ (xj , Tj)

}
≥ ρ(1)

and we focus on the subgraph on BC1
where only the edges with marks smaller than

ρ(1) are present, which is now independent of vertex marks and locations. For a fixed
λ > 1, we set c accordingly to above, fix ε2 < ϑ/c and choose C1 large enough such that

2ε2C1ρ(1) ≥ λ and b2ε2C1c ≥ N(ε1, λ).

Denote by H the subgraph on the vertices {X0, . . . ,Xb2ε2C1c} ⊂ BC1
. By (3.11), we have

Pη0=ω
{
]Cβ(H ) > c · 2ε2C1

}
≥ Pλ

2ε2C1

{
]C

(
ERλ

2ε2C1

)
> c · 2ε2C1

}
≥ 1− ε1.

On {]Cβ(H ) > c · 2ε2C1}, the block BC1 is ϑ-good if enough of the remaining vertices in
BC1 \ H are connected to Cβ(H ). Each such remaining vertex is connected to Cβ(H)

with a probability of at least

q := q(C1) = 1− (1− ρ(1))2ε2C1 .

For ψ > (ϑ − cε2)/(1 − ε2) and C1 large enough such that q > ψ, we have, by writing
FBin(n,p) for the distribution function of a binomial random variable with parameters n
and p, that

Pη0=ω
{
]Cβ(BC1

) > 2ϑC1

}
≥ (1− ε1)P

η0=ω
(
]Cβ(BC1

) > 2ϑC1

∣∣∣ ]Cβ(H ) > c(2ε2C1)
)

≥ (1− ε1)
(
1− FBin(2(1−ε2)C1,q)

(
2ψ(1− ε2)C1

))
≥ 1− exp(−c′C1),

for some c′ > 0 by a standard Chernoff bound. We conclude again with the observation
that the established bound is uniform in all properly spaced configurations ω.

If g is not bounded, we can argue as follows: fix a small ε > 0 and only consider
vertices with marks smaller than 1−ε and therefore each vertex is removed independently
with probability ε due to independence of marks and locations. However, the new block
BC1

still consists of order (1− ε)C1 vertices with an error term exponentially small in
C1 by Chernoff’s bound. Furthermore, the thinned process η is still evenly spaced and
we can repeat the proof above since it holds that g(s, t) ≤ g(1 − ε, 1 − ε) < ∞ for all
remaining marks s and t.

3.3 Finalising the proof of Proposition 2.3

We are now ready to prove Proposition 2.3, which we do by following the arguments
of the proof of Theorem 1(i) of [13] in the following lemma.

Lemma 3.5. Let the assumptions of Proposition 2.3 be fulfilled. Then there exist
βc ∈ (0,∞) such that

θ(β) = P{0 ↔ ∞ in Gβ} ≥ 3
8

for all β > βc.
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Proof. Fix ϑ∗ ∈ (3/4, 1) and ϑ ∈ (ϑ∗, 1). Choose K = C1 and afterwards β both large
enough, such that the assumptions of the Lemmas 3.2 and 3.4 are satisfied. Recall also
that Cn = n3K, K1 = C1 and Kn = CnKn−1. Define ϑn := ϑ − 2/Cn+1 for n ≥ 2. Since
the assumptions of Lemma 3.2 are satisfied, we have ϑn > ϑ∗ for all n. We have by
Lemma 3.4 that pβ(C1, ϑ) ≤ (400C2

1 )
−1, and by Lemma 3.2 that

pβ(Kn, ϑn) ≤ 1
100pβ(Kn−1, ϑn−1) + 2C2

npβ(Kn−1, ϑn−1)
2, ∀n ≥ 2.

Inductively, this yields pβ(Kn, ϑn) ≤ (400C2
n)

−1 for all n ∈ N, and hence

P{BKn is ϑn-good} ≥ 1− 1
400C2

n
≥ 1

2 .

We derive from this

3
4Kn ≤ 3

4 (2Kn)P{BKn
is 3/4-good} ≤ E

[
]Cβ(BKn

)1{BKn is 3/4-good}
]

≤ 2KnPβ{∃ a cluster of size at least 3
2Kn}.

Dividing both sides by 2Kn and then sending n → ∞ together with the translation
invariance yield the desired result.

In the remainder of the section we prove Corollary 1.6 and specifically the existence
of a component of linear size in the constructed graph sequence for large enough β if
the assumption of Theorem 1.1(a) is fulfilled.

Proof of Corollary 1.6. We are interested in the limiting behaviour of the non-negative
random variable ]C (Gn(β))/n for a fixed β. First note that this is a translation invariant
functional of the ergodic point process ξ. Hence, ]C (Gn(β))/n converges almost surely
towards a non-negative constant. Consider now for some K ∈ N the subsequence of
graphs (G4Kn

: n ∈ N). Observe, that the vertices of the block BKn
are contained in

the interval (−2Kn, 2Kn) with an error term going to zero when Kn → ∞. Hence, we
choose K and β large enough to fulfil the assumptions of the Lemmas 3.2 and 3.4 and n0
large enough such that P0(BKn0

6⊂ (−2Kn, 2Kn)) ≤ 1/3 for all n ≥ n0 and infer from the
calculations in the proof of Lemma 3.5

P
{ ]C (G4Kn (β))

4Kn
≥ 3

8

}
≥ 1

4

uniformly for n ≥ n0. Hence, the considered sequence
(
]C (G

(n)
β )/n : n ∈ N

)
contains a

subsequence with a strictly positive limit, finalising the proof.

4 Proof of Proposition 2.4

We define the disjoint sets of vertices

Γ`
k := {X−2k , . . . ,X−1}, Γ``

k := {X−2k+1 , . . . ,X−2k−1}
Γr
k := {X0, . . . ,X2k−1}, Γrr

k := {X2k , . . . ,X2k+1−1}

for each k ∈ N. We say that a crossing of the origin occurs at stage

k = 1, if any edge connects the sets Γ` ∪ Γ`` and Γr ∪ Γrr or at stage

k ≥ 2, if any edge connects either Γ``
k to Γrr

k , Γ``
k to Γr

k or Γ`
k to Γrr

k . Note that any edges
between Γ`

k and Γr
k have by necessity already been considered at an earlier stage.
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We denote by χ(k) ∈ {0, 1} the indicator of the event that a crossing of the origin occurs
at stage k ∈ N. The event that there is no edge crossing the origin is then given by⋂

k{χ(k) = 0}. We write

P
{ ⋂

k∈N

χ(k) = 0
}
= E0

[
Pη0

{ ⋂
k∈N

χ(k) = 0
}]
, (4.1)

an focus on the right-hand side’s inner probability where again E0 denotes the expecta-
tion of η0 and Pη0 the probability measure P, given the vertex locations η0. Note that,
given the vertex locations, Pη0 is a product measure with Uniform(0, 1) marginals and
that all these events are decreasing when vertex and/or edge marks are decreased (and
therefore new edges are added). Thus, applying the FKG-inequality [14], we infer

Pη0

( ⋂
k∈N

{χ(k) = 0}
)
≥

∏
k∈N

Pη0{χ(k) = 0}.

To show that the product on the right-hand side is bounded away from zero, it suffices to
show the equivalent statement that∑

k∈N

Pη0{χ(k) = 1} <∞.

which in particular implies that the probability in (4.1) is strictly larger than zero if∑
k∈N

E0

[
Pη{χ(k) = 1}

]
=

∑
k∈N

P{χ(k) = 1} <∞.

For k ≥ 2, we have by symmetry,

P{χ(k) = 1} = P
{
Γrr
k ∼ Γ``

k

}
+ 2P

{
Γ``
k ∼ Γr

k

}
≤ 3P

{
Γ``
k ∼ Γr

k

}
.

The following lemma shows that for profile functions satisfying ρ(0+) < 1 the probability
on the right hand side is bounded by the term bounded in Assumption (A2), which
immediately implies Proposition 2.4.

Lemma 4.1. Assume that ρ satisfies ρ(0+) < 1. Then for all β > 0, there exist constants
c > 0 and K ∈ N such that for all k ≥ K, we have

P{Γ``
k ∼ Γr

k} ≤ c22k
∫ 1

2−(1+µ)k

ds

∫ 1

2−(1+µ)k

dt ρ(β−1g(s, t)2k).

Proof. We begin by modifying the definition of µ-regularity (cf. Section 3.1) since we are
now interested in upper bounds on connection probabilities. Throughout this proof, we
say a set Γo

k, o ∈ {`, ``, r, rr}, is µ-regular if, for all i ∈ {1, . . . , d2k(1−µ)e},

(i)
∑

T :(X,T )∈Γo
k

1{T≤d2−(1+µ)ke} = 0,

(ii)
∑

T :(X,T )∈Γo
k

1{T≤i/d2(1−µ)ke} ≤ i2k+1

d2(1−µ)ke .

Note, that the event of Assumption (i) occurs with extremely high probability as the
complementary event has probability O(2−kµ) for large k. For Assumption (ii), we use
Chernoff’s bounds to deduce

P
{ ∑

T :(X,T )∈Γo
k

1{T≤i/d2(1−µ)ke} >
i2k+1

d2(1−µ)ke

}
≤ 2(1−µ)k exp(−c2µk).
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Applying a straightforward union bound, it follows that the event⋂
o∈{`,``,r,rr}

{Γo
k is µ-regular}

occurs with probability at least 1 − ε for any ε ∈ (0, 1), if k is sufficiently large. Fur-
thermore, distances between end vertices of a left and right box cannot be too small
due to the renewal structure. More precisely, by the law of large numbers for renewal
processes, we have

](η ∩ [−n, n])
2n

−→ λ, (4.2)

P-almost surely, where λ > 0 denotes the intensity of the process. Thus, we obtain for
some sufficiently small (λ dependent) constant a > 0 and correspondingly chosen ε > 0,

P0{|X−2k+1 −X2k | < a 2k} = P0

{
](η ∩ [−n, n]) > 3(1 + ε)2k

}
−→ 0,

as k → ∞. We thus deduce that the event

Ek :=
( ⋂

o∈{`,``,r,rr}

{Γo
k is µ-regular}

)
∩ {|X−2k+1 −X2k | > a2k}

occurs with probability at least 1− ε, for large enough k.
We now argue as in the proof of Lemma 3.1. We adapt the notion of properly spaced

configurations and call such a point configuration ω = (xi : i ∈ Z) properly spaced if it
satisfies |x−2k+1 − x2k | > a2k; again we suppress the dependence of k in the notation.
The property of µ-regularity is measurable with respect to vertex marks only and thus
independent of the vertex locations and edge marks. Hence, given a fixed configuration
of properly spaced vertex locations ω, we obtain

Eη0=ω
[
1{Γ``

k 6∼Γr
k}
1Ek

]
≥ Eη0=ω

[
1Ek

∏
(x,T )∈Γ``

k

(y,S)∈Γr
k

(1− ρ
(
β−1g(S, T )a2k

)]

≥ Eη0=ω

[
1Ek

exp
(
− c

∑
(x,T )∈Γ``

k

(y,S)∈Γr
k

ρ(β−1g(S, T )a2k)
)]

= Eη0=ω

[
1Ek

exp
(
− c

∫ 1

0

2kFΓ``
k
(ds)

∫ 1

0

2kFΓr
k
(dt) ρ(β−1g(s, t)a2k)

)]
,

(4.3)

for some constant c > 0, where the second to last inequality follows from the fact
that ρ(x) ≤ ρ(0+) < 1 for all x > 0 by assumption. Here, FΓ``

k
denotes the empirical

distribution function of the vertex marks in Γ``
k . By µ-regularity of the marks, we have by

a similarly argument as used to derive (3.3) that

2kFΓ``
k
(t) ≤ 2k

d2k(1+µ)e∑
j=1

2j

d2k(1+µ)e
1{j−1<td2k(1+µ)e≤j} ≤

⌈
td2k(1+µ)e

⌉
d2k(1+µ)e

2k

≤ c′2k(t+ 2−k(1+µ))

for some c′ ≥ 2 uniformly for all µ-regular vertex mark configurations. Plugging this into
(4.3), we infer

Pη0=ω({Γ``
k 6∼ Γr

k}∩Ek) ≥ exp
(
−c22k

∫ 1

2−k(1+µ)

ds

∫ 1

2−k(1+µ)

dt ρ
(
β−1g(s, t)a2k

))
Pη0=ω(Ek).
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Since this bound is uniform in the properly spaced configuration ω for large enough k,
we conclude

P{Γ``
k ∼ Γr

k} ≤ 1− exp
(
− c22k

∫ 1

2−k(1+µ)

ds

∫ 1

2−k(1+µ)

dt ρ
(
β−1g(s, t)a2k

))
� 22k

∫ 1

2−k(1+µ)

ds

∫ 1

2−k(1+µ)

dt ρ
(
β−1g(s, t)a2k

)
,

as desired.

Remark 4.2. Besides the ergodicity induced by the i.i.d. nature of the location dif-
ferences, we only used that η is a renewal process when we applied the law of large
numbers in (4.2) in order to justify the crossing edge argument. However, if one replaces
the renewal process by any stationary and ergodic simple point process, one can easily
replace the law of large numbers by the mean ergodic theorem for point processes [35,
Theorem 8.14] to obtain the same result. This justifies Remark 2.5.

It remains to prove Corollary 2.6, i.e., the statement that the assumption ρ(0+) < 1

can be dropped when the vertex locations are given by a standard Poisson process.

Proof of Corollary 2.6. Let η be a Poisson point process of intensity λ > 0. In this case,
β can be seen as a scaling parameter of the Euclidean distance between the vertices
and therefore varying β is equivalent to varying the intensity of the Poisson process. To
see this, one can perform a linear coordinate transform on the underlying space and
applying the mapping theorem for Poisson processes [35, Theorem 5.1].

We now fix an arbitrarily β > 0 and show that no infinite component exists in Gβ

constructed on the Poisson process η, or rather on its Palm version η0. By Poisson thinning
[35, Corollary 5.9], we can interpret Gβ as the graph resulting from i.i.d. Bernoulli site
percolation of the graph Gβ/p for some arbitrary p < 1. That is, each site and all its
adjacent edges are independently removed from Gβ/p with probability 1− p. We perform
Bernoulli bond percolation on the graph Gβ/p with retention parameter p′ ∈ (p, 1) i.e., each
edge is independently removed with probability 1− p′. By construction, this coincides
with constructing the graph Gβ/p with the profile function ρ replaced by p′ρ. Hence, we
are working with the graph Gβ/p,ρ,g(ξ0), its bond percolated version Gβ/p,p′ρ,g(ξ0) and its
site percolated version Gβ,ρ,g(ξ0). Since site percolation removes at least as many edges
from the graph as bond percolation, see e.g. [21], and p′ > p, we have

P{0 ↔ ∞ in Gβ,ρ,g(ξ0)} ≤ P{0 ↔ ∞ in Gβ/p,p′ρ,g(ξ0)}.

Note that assumption (A2) is still satisfied and that we additionally have p′ρ(0+) < 1.
Hence, the right hand side equals zero by Proposition 2.4, finalising the proof.
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