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ABSTRACT
We propose a new form of Particle Number Conserving Fermionic Coherent States (PNCFCSs) that provide an efficient basis for calculating
electronic wave functions. We demonstrate that a simple algorithm based on combinatorial analysis can be used for calculations of PNCFCS
overlaps and matrix elements. We show an example where a basis of such coherent states with randomly selected parameters can converge
quickly to the full configuration interaction result. In the future, PNCFCS can be used in dynamics just like other types of coherent states and
in electronic structure theory.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0291058

Coherent states can greatly economize the basis sets that are
required for accurate representation of quantum wave functions. A
classical example is coherent states of harmonic oscillator, where
single trajectory guided Gaussian coherent state, also known as
Glauber coherent state,1 gives exact solution of time dependent
Schrödinger equation. Evolution of several coupled quantum oscilla-
tors can efficiently be described by a small basis of trajectory guided
multidimensional harmonic oscillator coherent states.2,3 This idea
is behind many methods of quantum dynamics in chemistry and
photochemistry. See reviews in Refs. 4–6. Coherent states of har-
monic oscillator can be used also for description of bosonic systems,
where in second quantization the populations and amplitudes of
quantum states are represented by the amplitudes and numbers of
vibrational quanta of effective harmonic oscillators. See Ref. 7 as
an example of such approach. Many other types of coherent states
are known,8,9 and the approaches developed for HO CSs can be
generalized.10,11 For the purpose of this paper, we particularly men-
tion particle number conserving bosonic CSs (PNCBCSs) and spin
coherent states or coherent states of two level systems, also known
as SU(2) CSs.8,9 In the recent papers,12,13 we also introduced a gen-
eralization of SU(2) states for fermionic systems termed as zombie
states, where each spin-orbital is treated like a two level system
with “dead” or “alive” states. See also the supplementary material.

In this paper, we will focus on generalization of bosonic coherent
states to fermionic systems and introduce Particle Number Conserv-
ing Fermionic Coherent States (PNCFCSs), for which we also work
out efficient algorithm to calculate their overlap and one- and two-
electron interaction matrix elements. Using a numerical example of
Li2 molecule, we demonstrate that our formalism is exact and can
approach full configuration interaction result with a small number
of PNCFCSs as a basis set.

Particle Number Conserving Bosonic Coherent States
(PNCBCSs) are based on the standard harmonic oscillator creation
and annihilation operators, also used to construct standard HO CSs.
In the second quantization approach, a PNCBCS is generated as

∣S, ξ⟩ = ∣S, ξ1, ξ2, . . . , ξM⟩ =
1
S!
(∑

i=1,M
ξiâ †

Bi)

S

∣0⟩, (1)

where operators â†
Bi are the bosonic creation operators, equivalent to

those of HO, and the vacuum state ∣0⟩ = ∣0, 0, . . . , 0⟩ is a product of
zero states of all M second quantization “vibrations.” The overlap of
such CSs is calculated very easily, as bosonic creation operators com-
mute and (1) is a polynomial. Wave function (1) is a superposition

J. Chem. Phys. 163, 131102 (2025); doi: 10.1063/5.0291058 163, 131102-1

© Author(s) 2025

 14 O
ctober 2025 14:10:19

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0291058
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0291058
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0291058&domain=pdf&date_stamp=2025-October-2
https://doi.org/10.1063/5.0291058
https://orcid.org/0000-0001-6104-1277
https://orcid.org/0000-0003-1795-3820
mailto:d.shalashilin@leeds.ac.uk
https://doi.org/10.1063/5.0291058
https://doi.org/10.60893/figshare.jcp.c.8038525


The Journal
of Chemical Physics COMMUNICATION pubs.aip.org/aip/jcp

of the states ∣n1, n2, . . . , nM⟩ such that the total number of bosonic
particles in it is by construction equal to S,

n1 + n2 + ⋅ ⋅ ⋅ + nM = S. (2)

See Ref. 8 and recent applications.10,14 How can this idea be gen-
eralized for fermions and zombie states? A straightforward replace-
ment of bosonic operator â†

Bm by its fermionic counterpart â†
Fm in (1)

yields zero due to anticommutation of fermionic operators. To avoid
this problem, let us introduce a new CS as

∣S, ξ⟩ = ∣S, ξ1, ξ2, . . . , ξM⟩ =
1
S!
( ∑

m=1,M
ξmb̂ †

m)

S

∣0⟩, (3)

where ∣0⟩ is the fermionic vacuum state and operator b̂†
m acts on the

m-th component of zombie state in a very simple manner,

b̂†
m∣0m⟩ = ∣1m⟩, (4)

by creating an electron on the mth spin-orbital. Importantly, we
assume that the order of creating electrons by operators b̂†

m does not
depend on the order of operators in the product but is determined
by the pre-chosen order of electronic spin-orbitals. In other words,
we assume that operators b̂†

m and b̂†
n commute,

[b̂†
m, b̂†

n] = 0. (5)

Thus, the operator b̂†
m is not a fermionic creation operator but can be

recognized as a spin coherent state creation operator of a two-level
system or a qubit creation operator that creates information about
occupation. For such an operator,

(b̂ †
m)

2
= 0. (6)

Then, Eq. (3) yields a sum of products of the first powers of
operators b̂†

m, containing all possible selections of S indices among
m = 1, . . ., M. As we assumed that the operators commute, their
products can be arranged in the ascending order of their index m.
Then, CS generated by (3) is a sum of all possible combinations of
first powers of S spin-orbitals,

∣S, ξ⟩=∣S, ξ1, ξ2, . . . , ξM⟩= ∑
m1 ,<m2<,...,<mS ,

ξm1 ξm2 . . . ξmS[m1, m2, . . . , mS],

(7)
where [m1, m2, . . . , mS] is a Slater determinant representing S occu-
pied orbitals m1, m2, . . . , mS. Just like the full configuration inter-
action wave function, ansatz (7) contains contributions from all
possible occupations of M spin-orbitals with S electrons,

∣S, ξ⟩= ∣S, ξ1, ξ2, . . . , ξM⟩ = ∑
m1 ,<m2<,...<mS ,

Cm1 ,m2 ,...,mS[m1, m2, . . . , mS].

(8)
However, in (7), the coefficients Cm1 ,m2 ,...,mS is factorized as

Cm1 ,m2 ,...,mS = ξm1 ξm2 . . . ξmS. (9)

We find it convenient to annotate an S × S Slater determinant
[m1, m2, . . . , mS] in the form suggested in Ref. 15 as

[m1, m2, . . . , mS] = [
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅
], (10)

where a 2 ×M array on the right-hand side contains [1

0
] for S occu-

pied spin-orbital in the columns m1, m2, . . . , mS and [0

1
] for M − S

unoccupied spin-orbitals. These notations help recognize that the
operator b̂†

m is indeed the qubit creation operator in a two level
system. In addition, we can write each term in (7) as a zombie
state,12

ξm1 ξm2 . . . ξmS[m1, m2, . . . , mS] = [
⋅ ⋅ ⋅ ξm1 ⋅ ⋅ ⋅ ξm2 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ξmS ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅
], (11)

where ZS (11) contains [ξmi
0
] for occupied spin-orbitals and [0

1
] for unoccupied spin-orbitals. See Refs. 12 and 13 and the supplementary

material for a brief summary of the ZS theory and notations. A simple algorithm for calculating matrix elements between ZSs based on
sign changing rule has been derived.12

The expression for the overlap of two PNCFCSs (7) is

⟨S, ξ(a)∣S, ξ(b)⟩ = ∑
m1 ,<m2<,...<mS ,

C(a)∗m1 ,m2 ,...,mS C(b)m1 ,m2 ,...,mS = ∑
m1 ,<m2<,...<mS ,

(ξ(a)∗m1
ξ(b)m1

)(ξ(a)∗m2
ξ(b)m2

) . . . (ξ(a)∗mS
ξ(b)mS

)

= ∑
m1 ,<m2<,...<mS ,

(zm1)(zm2) . . . (zmS),
(12)
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where zm = ξ(a)∗mξ(b)m. Calculating sum (12) is a combinatorial
problem. Consider M numbers zm. Then, select S < M numbers
among them, multiply the selected numbers, and sum up over all
possible selections. Such a sum can be found with the help of a
generating function,

∏
i=1,M
(1 + xzi) = ∑

k=1,M
ek(z1, z2, . . . , zM)xk, (13)

as the coefficient ek(z1, z2, . . . , zM) before the Sth power k = S of x
and can be calculated via the recursive formula. We have to define
e(k)(n) to be the kth elementary symmetric sum over the first n
variable z1, z2, . . . , zn. Then,

e(k)(n) = e(k)(n − 1) + zne(k−1)
(n), (14)

with the following base cases: e(0)(n) = 1 for all n ≥ 0 and e(k)(n)
= 1 for all k < 0 or k > n. See Ref. 16. Solutions (13) and (14) and
Ref. 16 were found for us by the ChatGPT AI tool. Similar algo-
rithms have been used in the antisymmetrized geminal power (AGP)
theory.17

Now let us calculate the matrix elements of one electron
interaction ⟨S, ξ(b)∣â†

FiâFj ∣S, ξ(a)⟩ between two particle number con-
serving fermionic CSs, where â†

Fi, âFj are fermionic creation and
annihilation operators. The following algorithm should be used:

(1) Get âFj ∣S, ξ(a)⟩ and âFi∣S, ξ(b)⟩ in the form of PNCFCS by
acting with an annihilation operator with sign-changing
rule,12

âFj∣S, ξ(a)⟩ = âFj∣S, ξ(a)1 , . . . , ξ(a)j , . . . , ξ(a)M ⟩

= ξ(a)j ∣S − 1,−ξ(a)1 , . . . ,−ξ(a)j−1 , 0, ξ(a)j+1 , . . . , ξ(a)M ⟩,

âFi∣S, ξ(b)⟩ = âFi∣S, ξ(b)1 , . . . , ξ(b)i , . . . , ξ(b)M ⟩

= ξ(b)i ∣S − 1,−ξ(b)1 , . . . ,−ξ(b)i−1 , 0, ξ(b)i+1 , . . . , ξ(b)M ⟩.
(15)

where we annihilate the electron on the spin-orbital i (or j)
and also change the sign of the all parameters ξ on the left
from i (or j). This is equivalent to the sign changing rule pro-
posed in Ref. 12 to represent in zombie states approach the
Jordan–Wigner factor, which appears in standard electronic
structure theory where creation and annihilation operators
act on the first column in Slater determinant and an addi-
tional sign factor is introduced due to the permutation of
columns.18

(2) Using the combinatorial algorithm described above, find the
matrix element ⟨S, ξ(b)∣â†

FiâFj ∣S, ξ(a)⟩ as an overlap of the two
PNCFCSs (15),

⟨S, ξ(b)∣â†
FiâFj∣S, ξ(a)⟩ = ξ(b)∗i ξ(a)j ⟨S − 1, ξ′(b)∣S − 1, ξ′(a)⟩,

(16)
where

ξ′(a) = −ξ(a)1 , . . . ,−ξ(a)j−1 , 0, ξ(a)j+1 , . . . , ξ(a)M ,

ξ′(b) = −ξ(b)1 , . . . ,−ξ(b)i−1 , 0, ξ(b)i+1 , . . . , ξ(b)M .
(17)

The overlap ⟨S − 1, ξ′(b)∣S − 1, ξ′(a)⟩ in (16) is calculated by the
combinatorial algorithm, which chooses only S − 1 out of M num-
bers. For the proof, you may think of (11) as a standard S × S Slater
determinant and (7) as a sum of standard Slater determinants. Then,
the operator âFj acts on the members of the sum, which contains
ξj. Then, it moves ξj to the first column and adds Jordan–Wigner
factor, which is equivalent to changing the sign of all ξk < j. The
operator âFi acts similarly. Then, formula (10) becomes obvious,
as the overlap is determined by all combinations of S − 1 elec-
trons in the columns from 2 to S. In the supplementary material,
we also present another proof based on the ZS sign changing
rule.12

The matrix elements of the two electron terms â†
Fiâ

†
FkâFjâFl

should be calculated in a similar fashion as

⟨S, ξ(b)∣â†
Fiâ

†
FkâFjâFl∣S, ξ(a)⟩

= ξ(b)∗i ξ(b)∗k ξ(a)j ξ(a)l ⟨S − 2, ξ′′(b)∣S − 2, ξ′′(a)⟩, (18)

where ξ′′(a) and ξ′′(b) are obtained from (17) by acting with another
annihilation operator on ξ′(a) and ξ′(b). This action must again
involve sign changing rule, and in (18), we calculate the overlap by
combinatorial algorithm selecting only S − 2 electrons. The proof of
(18) is identical to the proof of (16).

For the Li2 molecule described by S = 6 electrons on M = 10
spin-orbitals, we generated the basis of PNCFCSs and used the wave
function

∣Ψ⟩ = ∑
b=1,K

A(b)∣S, ξ(b)⟩. (19)

Then, the Hamiltonian was diagonalized to obtain electronic
states.

As a first test, we have reproduced MolPro19 full CI result for
7 lowest singlet electronic states. For this, we generated a complete
basis set of K = 100 configurations ∣S, ζ(b)⟩ with random amplitudes
ζ(b) generated according to Gaussian distribution with mean 0 and
standard deviation 1. The results are presented in Table I. One can
see that the results essentially coincide with the energies given by
MolPro computational package. Although this is expected consider-
ing the completeness of the basis, the results confirm that coherent
states (19) can indeed be used as a basis in electronic structure cal-
culations and that there are no mistakes in our formulas for matrix
elements and overlap.

In the next step, we focused on reproducing full CI ground
state energy with a significantly smaller basis set. We use the advan-
tages of the CS approach by biasing the random amplitudes ξm in
(3) toward what they are intuitively expected to be for the ground
state. As before, we generate amplitudes according to Gaussian
distribution, but now, we use mean and standard deviation both
equal to 100 for two lowest orbitals, equal to 1 for the highest
occupied molecular orbital, and mean 0 with deviation 0.1 for unoc-
cupied orbitals. This choice of distribution ensures that random
configurations include mostly excitations from the highest occupied
orbital. As we are now interested in the ground state only, we use
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TABLE I. Comparison of the energies for seven lowest singlet states of Li2 molecule calculated using full PNCFCS basis with
reference full CI energies provided my MolPro electronic structure package.

Energies calculated
with full PNCFCS basis

Reference full CI
energies by MolPro Difference

S0 −14.869 965 823 254 −14.869 965 823 579 3.248× 10−10

S1 −14.765 180 074 409 −14.765 180 074 491 8.249 93× 10−11

S2 −14.690 251 533 647 −14.690 251 534 192 5.451× 10−10

S3 −14.540 494 124 872 −14.540 494 125 236 3.643 01× 10−10

S4 −12.631 584 997 523 −12.631 584 998 860 1.337 4× 10−9

S5 −12.568 039 081 478 −12.568 039 083 831 2.353× 10−9

S6 −12.483 026 922 091 −12.483 026 922 131 4.030 02× 10−11

equal amplitudes for spin-up and spin-down spin-orbitals of each
configuration.

Figure 1 shows the convergence of the ground state energy
toward the exact full CI result as the number of configurations
grows. The results are shown for four random sets of amplitudes.
One can see that the convergence is sufficiently fast: while a sin-
gle random configuration produces unrealistic energies in most of
the cases, the results for two configurations are typically close to
Hartree–Fock energy, and from 7 to 11, random configurations
are required to reproduce correct full CI ground state energy. For
comparison, we also include here the convergence of the regular
basis set, where configurations are gradually added according to
their amplitudes in the precalculated full CI vector, namely double
3 → 4 excitation, double 3 → 5 excitation, and single 3 → 5 exci-
tations. As expected, the regular basis converges slightly faster for
this very small system. However, due to better scaling for random

FIG. 1. Convergence of calculations with respect to the number of basis functions
(19). The Hartree–Fock energy is chosen as zero. The results are given for four
different sets of random amplitudes ζ (b). Energy converges toward the exact full
CI result very quickly. For comparison, the black curve shows the convergence of
the regular basis, where we added a regular basis function already knowing their
full CI contributions.

basis, the PNCFCS basis approach may be more efficient for larger
molecules.

We would like to emphasize that this particular way of gener-
ating amplitudes is just an example of biasing: the problem of the
optimal choice of amplitudes is far beyond the scope of this paper.
However, it can be easily demonstrated that a properly optimized
basis set of random PNCFCSs can be at least as efficient as a regular
basis. For this, we generated 100 random configurations using the
same distribution for amplitudes as before and then chose the one
with lowest energy. After that, we generated another 100 and chose
that one that if added to the first selected gives the lowest energy
of the pair. Then, we continue adding 3rd, 4th, etc., PNCFCSs in
the similar way by adding the best nth basis function to the already
selected basis of n − 1. Figure 2 shows that the random basis set opti-
mized using the above algorithm converges even faster than a regular
basis, with only 4 PNCFCSs needed to reproduce the accurate full
CI ground state energy of the Li2 molecule. Whether the above algo-
rithm is practical for larger and more challenging systems remains

FIG. 2. Comparison of the convergence of the optimized basis set of ran-
dom PNCFCSs (19) and the regular basis toward the exact full CI energy. The
Hartree–Fock energy is chosen as zero.
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to be seen. However, these results show that a random PNCFCS
basis can, in principle, greatly economize basis sets and represent
electronic wave functions very efficiently.

Our approach bares similarity to antisymmetrized geminal
power (AGP),17,20–22 used in nuclear physics,23 electronic structure
theory,24 and theory of superconductivity where it is called num-
ber projected Bardeen–Cooper–Schrieffer (BCS) theory.22 The AGP
approach is based on the wave function ansatz ∣η⟩,

∣AGP⟩ = ∣η⟩ =
1

N!
⎛

⎝
∑

i,j=1,M
ηij Ŝ †

ij
⎞

⎠

N

∣0⟩, (20)

where Ŝ†
ij = â†

Fiâ
†
Fj is an operator that creates a pair of electrons on

spin-orbitals i and j, a geminal pair, and N is the number of gem-
inals populated by electrons. The difference between Eqs. (20) and
(3) is that the latter includes a qubit creation operator b̂†

m [see (4)]
instead of a geminal creation operator Ŝ†

ij in the former. This reflects
the fact that our approach is designed for single spin-orbitals, while
AGP theory has been developed to describe strong correlated sys-
tems where electrons pair. However, operators b̂†

m and Ŝ†
ij have the

same commutation relations, and, as a result, vast literature exist-
ing on AGP theory can be also used in our approach. This includes,
for example, algorithms for calculating reduced density matrices
and overlaps between AGP functions, the efficiency and stability of
which is analyzed in Ref. 17.

In addition, fermionic coherent states ∣τ⟩ based on Thouless’s
construction,25

∣τ⟩ = exp
⎛

⎝
∑

i=1,S
∑

j=S+1,M
τijâ○†i â●j

⎞

⎠
∣Ψ0⟩, (21)

have been known for quite some time and were used for description
of electron dynamics.26,27 They are generated by acting with expo-
nential operator on the state ∣Ψ0⟩ = ∣1, 1, . . . , 1, 0, 0, . . . , 0⟩, where S
electrons occupy the lowest spin-orbitals. Following the notation of
Ref. 26, â○†i and â●j here are the operators that annihilate electron
at initially populated spin-orbital j and create an electron at initially
unoccupied spin-orbital i of ∣Ψ0⟩. Wave function (21) is parameter-
ized by S × (M − S) parameters τij but similarly to (8) contains all
configurations, like the full CI wave function.

As can be seen from the comparison of (3), (20), and (21),
the approach proposed here is different from those of AGP and
Thouless. It is a generalization of the bosonic PNCBCS10,14 (1). Its
efficiency is based on its simplicity and the use of sign changing rule
combined with the combinatorial algorithm for calculating matrix
elements between two PNCFCSs. We have demonstrated that the
full CI result can be approached with a linear combination of a few
PNCFCSs. Just like ZSs,12,13 the new PNCFCSs allow intuitive ways
of importance sampling of their parameters, but the advantage is
that, unlike ZSs, the new PNCFCSs are restricted within the Fock
space with the right number of electrons.

How efficient the new approach proposed in this paper will be
for larger and more challenging systems remains to be seen. How-
ever, as the parameters of the basis functions ∣S, ξ(b)⟩ were chosen
randomly, the hope is that for larger molecules, this Monte Carlo
based method may scale well avoiding exponential scaling.

One also can anticipate that PNCFCSs will be used in the
dynamics, just like other types of CSs have been used. In this case,
guiding PNCFCSs with trajectories will be vital for efficiency of
quantum propagation so that the wave function ansatz will include
time dependent parameters,

∣Ψ⟩ = ∑
b=1,K

A(b)(t)∣S, ξ(b)(t)⟩. (22)

Just like in the case of Gaussian CSs, various choice of trajec-
tories ∣S, ξ(b)(t)⟩ will be possible and the whole variety of meth-
ods developed for Gaussian CSs may be transferable to the case
of PNCFCSs. See Ref. 28 for detailed analysis of possible tra-
jectories to guide Gaussian coherent states. Fully variational tra-
jectories of PNCFCSs can be obtained from variational principle
applied to full wave function (22) or analytically for quadratic
Hamiltonian similarly to how it has been done for number con-
serving bosonic coherent states.10,14,29 “Classical” trajectories to
guide the basis would follow from variational principle applied
to the individual basis function28 ∣S, ξ(b)(t)⟩. Again, the effi-
ciency of such an approach remains to be seen, but it is worth
trying.

We derived our formalism with the help of CS generator (3)
and coherent state language. However, the language is a matter of
taste. In the traditional electronic structure based paradigm, we can
simply start from Eqs. (8) and (9), postulate factorization of the coef-
ficient Cm1 ,m2 ,...,mS , and simply use a number of such functions with
different sets of parameters ξ there. Then, using an efficient algo-
rithm for calculating overlaps and matrix elements would be the
main advantage.

In summary, we propose a new type of particle num-
ber conserving fermionic coherent states as basis functions for
electron dynamics and electronic structure. The simplicity of
PNCFCS parameterization combined with efficient algorithms to
calculate matrix elements, based on zombie states sign changing
rule and combinatorics, is the key feature of the proposed
approach.

The supplementary material gives a brief summary of the zom-
bie states, sign changing rule, and provides justification of the
formula (16) for matrix elements.
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