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Abstract 

We propose a new form of Particle Number Conserving Fermionic Coherent States (PNCFCS) which provide an 
efficient basis for calculating electronic wave functions.  We demonstrate that a simple algorithm based on 
combinatorial analysis can be used for calculations of PNCFCS overlaps and matrix elements.  We show an 
example where a basis of such Coherent States with randomly selected parameters can converge quickly to the 
Full Configuration Interaction result.  In future PNCFCS can be used in dynamics just like other types of Coherent 
States and in electronic structure theory and in electronic structure theory. 
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Coherent States can greatly economise the basis sets which are required for accurate representation 

of quantum wave functions.  Classical example is Coherent States of Harmonic Oscillator, where single 

trajectory guided Gaussian Coherent State, also known as Glauber Coherent State1, gives exact 

solution of Time Dependent Schrödinger Equation.  Evolution of several coupled quantum oscillators 

can efficiently be described by a small basis of trajectory guided multidimensional Harmonic Oscillator 

Coherent States2, 3.  This idea is behind many methods of quantum dynamics in chemistry and 

photochemistry.  See reviews4-6.  Coherent states of Harmonic Oscillator can be used also for 

description of Bosonic systems, where in second quantisation the populations and amplitudes of 

quantum states are represented by the amplitudes and numbers of vibrational quanta of effective 

Harmonic Oscillators.  See ref7 as an example of such approach.   Many other types of Coherent States 

are known8, 9 and the approaches developed for HO CSs can be generalised10, 11   For the purpose of 

this paper we particularly mention Particle Number Conserving Bosonic CSs (PNCBCS) and Spin 

Coherent States or Coherent States of two level systems, also known as SU(2) CSs8, 9.  In the recent 

papers12, 13 we also introduced a generalisation of SU(2) states for fermionic systems termed as Zombie 

States, where each spin orbital is treated like a two level system with “dead” or “alive” states.  See 

also Supplementary Material.  In this paper we will focus on generalisation of Bosonic Coherent States 

to Fermionic systems, and introduce Particle Number Conserving Fermionic Coherent States (PNCFCS), 

for which we also work out efficient algorithm to calculate their overlap and one and two electron 

interaction matrix elements.  Using a numerical example of Li2 molecule we demonstrate that our 

formalism is exact and can approach full Configuration Interaction result with a small number PNCFCSs 

as a basis set.   

 Particle Number Conserving Bosonic Coherent States (PNCBCS) are based on the standard 

Harmonic oscillator creation and annihilation operators, also used to construct standard HO CSs.  In 

second quantisation approach a PNCBCS is generated as  

 

  |𝑆, 𝝃⟩ = |𝑆, 𝜉ଵ, 𝜉ଶ, … , 𝜉ெ⟩ = ଵௌ! ൫∑ 𝜉௜𝑎ො஻௜ற௜ୀଵ,ெ ൯ௌ|𝟎⟩    (1) 
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where operators 𝑎ො஻௜ற  are the Bosonic creation operators, equivalent to those of HO, and the vacuum 

state |𝟎⟩ = |0,0, … ,0⟩ is a product of zero states of all M second quantisation “vibrations”.   The 

overlap of such CSs is calculated very easily, as bosonic creation operators commute and (1) is a 

polynomial.  The wave function (1) is a superposition of the states |𝑛ଵ, 𝑛ଶ, … , 𝑛ெ⟩ such that the total 

number of bosonic particles in it is by construction equal to S  

  𝑛ଵ + 𝑛ଶ + ⋯ + 𝑛ெ = 𝑆         (2) 

See8 and recent applications10, 14.   How can this idea be generalised for fermions and Zombie States? 

Straightforward replacement of Bosonic operator 𝑎ො஻௠ற   by its fermionic counterpart 𝑎ොி௠ற  in (1) yields 

zero due to anticommutation of fermionic operators.  To avoid this problem let us introduce a new CS 

as   

  |𝑆, 𝝃⟩ = |𝑆, 𝜉ଵ, 𝜉ଶ, … , 𝜉ெ⟩ = ଵௌ! ൫∑ 𝜉௠𝑏෠௠ற௠ୀଵ,ெ ൯ௌ|𝟎⟩    (3) 

where operator  𝑏෠௠ற  acts on the m-th  component of zombie state in a very simple manner 

  𝑏෠௠ற |0௠⟩ = |1௠⟩         (4) 

by creating an electron on the m-th spin-orbital.  Importantly we assume that the order of creating 

electrons by operators 𝑏෠௠ற  does not depend on the order of operators in the product but is determined 

by the pre-chosen order of electronic spin-orbitals.  In other words, we assume that operators 𝑏෠௠ற  and 𝑏෠௡ற commute:  

  ൣ𝑏෠௠ற , 𝑏෠௡ற൧ = 0         (5) 

Thus, operator 𝑏෠௠ற  is not a fermionic creation operator, but can be recognised as spin coherent state 

creation operator of a two-level system or a qubit creation operator which creates information about 

occupation.  For such operator 

  ൫𝑏෠௠ற ൯ଶ = 0         (6) 

Then, eq (3) yields a sum of products of the first powers of operators 𝑏෠௠ற ,  containing all possible 

selections of S indexes among m=1,…,M.   As we assumed that the operators commute, their products 
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can be arranged in the ascending order of their index m.  Then CS generated by (3) is a sum of all 

possible combinations of 1st powers of S spin-orbitals.    

 

  |𝑆, 𝝃⟩ = |𝑆, 𝜉ଵ, 𝜉ଶ, … , 𝜉ெ⟩ = ∑ 𝜉௠భ𝜉௠మ … 𝜉௠ೄ[𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ]௠భ,ழ௠మழ,…ழ௠ೄ,   (7) 

 

where [𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ]  is a Slater Determinant representing S occupied orbitals 𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ.  Just 

like the Full Configuration Interactions wave function, the ansatz (7) contains contributions from all 

possible occupations of M spin-orbitals with S electrons.  

  |𝑆, 𝝃⟩ = |𝑆, 𝜉ଵ, 𝜉ଶ, … , 𝜉ெ⟩ =  ∑   𝐶௠భ,௠మ,…,௠ೄ   [𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ]௠భ,ழ௠మழ,…ழ௠ೄ,  (8) 

But in (7) the coefficient   𝐶௠భ,௠మ,…,௠ೄ  is factorised as 

    𝐶௠భ,௠మ,…,௠ೄ = 𝜉௠భ𝜉௠మ … 𝜉௠ೄ       (9) 

We find it convenient to annotate 𝑆 × 𝑆 slater determinant  [𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ] in the form suggested in 

the ref15 as   

  [𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ] = ቂ… 1 …… 0 …   1 …0 …    0 … 11 … 0   ……ቃ    (10) 

where a 2 × 𝑀 array on the right hand side contains ቂ10ቃ for S occupied spin-orbital in the columns 

𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ and ቂ01ቃ for M-S unoccupied spin-orbitals.   This notations help to recognise that 

operator 𝑏෠௠ற  is indeed the qubit creation operator in a two level system.  Also we can write each term 

in (7) as a Zombie State12 

  𝜉௠భ𝜉௠మ … 𝜉௠ೄ[𝑚ଵ, 𝑚ଶ, … , 𝑚ௌ] = ൤… 𝜉௠భ …… 0 …   𝜉௠మ …0 …    0 … 𝜉௠ೄ1 … 0    ……൨ 

            (11) 

where ZS (11) contains  ൤𝜉௠೔0 ൨ for occupied spin-orbital and  ቂ01ቃ  for unoccupied spin-orbital.  See refs12, 

13 and Supplementary Material for a brief summary of the ZS theory and notations.  Simple algorithm 

for calculating matrix elements between ZSs based on sign changing rule has been derived12.   

 The expression for the overlap of two PNCFCSs (7) is 
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  ൻ𝑆, 𝝃(𝒂)ห𝑆, 𝝃(𝒃)ൿ = ∑   𝐶(௔)∗௜భ,௜మ,…,௜ೄ     𝐶(௕)௜భ,௜మ,…,௜ೄ௠భ,ழ௠మழ,…ழ௠ೄ, =   

  = ∑ ቀ𝜉(௔)∗௠భ𝜉(௕)௠భቁ ቀ𝜉(௔)∗௠మ𝜉(௕)௠మቁ … ቀ𝜉(௔)∗௠ೄ𝜉(௕)௠ೄቁ௠భ,ழ௠మழ,…ழ௠ೄ, = 

  = ∑ ൫𝑧௠భ൯൫𝑧௠మ൯ … ൫𝑧௠ೄ൯௠భ,ழ௠మழ,…ழ௠ೄ,       (12) 

 

where  𝑧௠ = 𝜉(௔)∗௠𝜉(௕)௠.   Calculating the sum (12) is a combinatorial problem.  Consider M numbers 𝑧௠.  Then select S<M numbers among them, multiply the selected numbers and sum up over all 

possible selections.  Such a sum can be found with the help of generating function    

 

  ∏ (1 + 𝑥 𝑧௜) = ∑ 𝑒௞( 𝑧ଵ, 𝑧ଶ, … , 𝑧ெ) 𝑥௞௞ୀଵ,ெ௜ୀଵ,ெ     (13) 

 

as the coefficient 𝑒௞( 𝑧1, 𝑧2, … , 𝑧𝑀) before the S-th power k=S of x and can be calculated via the 

recursive formula.  We have to define  𝑒(௞)(𝑛)  to be the k-th elementary symmetric sum over the first 

n variable  𝑧1, 𝑧2, … , 𝑧𝑛.  Then: 

 

  𝑒(௞)(𝑛) = 𝑒(௞)(𝑛 − 1) + 𝑧𝑛𝑒(௞ିଵ)(𝑛)          (14) 

 

with base cases:  𝑒(଴)(𝑛) = 1  for all  𝑛 ≥ 0     and  𝑒(௞ )(𝑛) = 1  for all 𝑘 < 0 or 𝑘 > 𝑛.   See ref16.  

The solution  (13,14) and the ref16  were found for us by ChatGPT AI tool.  Similar algorithms have been 

used in the antisymmetrized geminal power (AGP) theory17.  

 Now let us calculate the matrix elements of one electron interaction ൻ𝑆, 𝝃(௕)ห𝑎ොி௜ற 𝑎ොி௝ห𝑆, 𝝃(௔)ൿ 

between two Particle Number Conserving Fermionic CSs, where 𝑎ොி௜ற  , 𝑎ොி௝ are Fermionic creation and 

annihilation operators.   The following algorithm should be used: 

 

1) Get 𝑎ොி௝ห𝑆, 𝝃(௔)ൿ and 𝑎ොி௜ห𝑆, 𝝃(௕)ൿ  in the form of PNCFCS by acting with annihilation operator 

with sign-changing rule12 
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 𝑎ොி௝ห𝑆, 𝝃(௔)ൿ = 𝑎ොி௝ ቚ𝑆, 𝜉ଵ(௔), … , 𝜉௝(௔), … , 𝜉ெ(௔)඀ = 𝜉௝(௔) ቚ𝑆 − 1, −𝜉ଵ(௔), … , −𝜉௝ିଵ(௔) , 0, 𝜉௝ାଵ(௔) , … , 𝜉ெ(௔)඀ 

 𝑎ොி௜ห𝑆, 𝝃(௕)ൿ = 𝑎ොி௜ ቚ𝑆, 𝜉ଵ(௕), … , 𝜉௜(௕), … , 𝜉ெ(௕)඀ = 𝜉௜(௕) ቚ𝑆 − 1,   − 𝜉ଵ(௕), … , −𝜉௜ିଵ(௕) , 0, 𝜉௜ାଵ(௕) , … , 𝜉ெ(௕)඀ 

            (15) 

In (15) we annihilate the electron on the spin orbital i (or j) and also change sign of the all parameters 𝜉 on the left from i (or j).   This is equivalent to the sign changing rule proposed in ref12 to represent in 

Zombie States approach the Jordan-Wigner factor, which appears in standard electronic structure 

theory where creation and annihilation operators act on the first column in Slater determinant and 

additional sign factor is introduced due to the permutation of columns.18  

2) Using the combinatorial algorithm described above find the matrix element ൻ𝑆, 𝝃(௕)ห𝑎ොி௜ற 𝑎ොி௝ห𝑆, 𝝃(௔)ൿ as an overlap of the two PNCFCSs (15) 

 

  ൻ𝑆, 𝝃(௕)ห𝑎ොி௜ற 𝑎ොி௝ห𝑆, 𝝃(௔)ൿ = 𝜉௜(௕)∗𝜉௝(௔)ൻ𝑆 − 1, 𝝃′(௕)ห𝑆 − 1, 𝝃′(௔)ൿ   (16) 

where 

    𝝃ᇱ(௔) = −𝜉ଵ(௔), … , −𝜉௝ିଵ(௔) , 0, 𝜉௝ାଵ(௔) , … , 𝜉ெ(௔) 

    𝝃′(௕) = −𝜉ଵ(௕), … , −𝜉௜ିଵ(௕) , 0, 𝜉௜ାଵ(௕) , … , 𝜉ெ(௕)       (17) 

 

The overlap ൻ𝑆 − 1, 𝝃′(௕)ห𝑆 − 1, 𝝃′(௔)ൿ in (16) is calculated by combinatorial algorithm, which chooses 

only 𝑆 − 1 out of M numbers.  For the proof you may think of (11) as a standard 𝑆 × 𝑆  Slater 

determinants and (7) as a sum of standard Slater determinants.  Then operator 𝑎ොி௝  acts on the 

members of the sum which contains 𝜉௝.  Then it moves 𝜉௝  to the first column and adds Jordan-Wigner 

factor, which is equivalent to changing sign of all 𝜉௞ழ௝.  The operator 𝑎ොி௜  acts similarly.   Then the 

formula (10) becomes obvious, as the overlap is determined by all combinations of S-1 electrons in 

the columns from 2 to S.   In the Supplementary Material we also present another proof based on the 

ZS sign changing rule12.     
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 Matrix elements of the two electron terms 𝑎ොி௜ற 𝑎ොி௞ற  𝑎ොி௝𝑎ොி௟   should be calculated in a similar 

fashion as 

  ൻ𝑆, 𝝃(௕)ห𝑎ොி௜ற 𝑎ොி௞ற  𝑎ොி௝𝑎ොி௟ห𝑆, 𝝃(௔)ൿ = 𝜉௜(௕)∗𝜉௞(௕)∗𝜉௝(௔)𝜉௟(௔)ൻ𝑆 − 2, 𝝃′ᇱ(௕)ห𝑆 − 2, 𝝃′ᇱ(௔)ൿ (18) 

 

Where 𝝃ᇱ′(௔)  and  𝝃ᇱ′(௕) are obtained from (17) by acting with another annihilation operator on 𝝃ᇱ(௔)  

and  𝝃ᇱ(௕) .  This action must again involve sign changing rule, and in (18) we calculate the overlap by 

combinatorial algorithm selecting only S-2 electrons.  The proof of (18) is identical to the proof of (16).    

 For the Li2 molecule described by S=6 electrons on M=10 spin orbitals, we generated the basis 

of  PNCFCSs and used the wave function 

  |Ψ⟩ = ∑ 𝐴(௕)ห𝑆,   𝝃(௕)ൿ௕ୀଵ,௄ .       (19) 

Then, the Hamiltonian was diagonalised to obtain electronic states.   

 As a first test, we have reproduced MolPro19 full CI result for 7 lowest singlet electronic states. 

For this, we generated a complete basis set of K=100 configurations ห𝑆, 𝜻(௕)ൿ with random amplitudes 𝜻(௕) generated according to Gaussian distribution with mean 0 and standard deviation 1. The results 

are presented in Table I. One can see that the results essentially coincide with the energies given by 

MolPro computational package.  Although this is expected considering the completeness of the basis, 

the results confirm that coherent states (19) can indeed be used as a basis in electronic structure 

calculations, and that there are no mistakes in our formulas for matrix elements and overlap.  

 

  Energies calculated 
with full PNCFCS basis 

Reference full CI 
energies by MolPro Difference 

S0 -14.869965823254 -14.869965823579 3.248E-10 
S1 -14.765180074409 -14.765180074491 8.24993E-11 
S2 -14.690251533647 -14.690251534192 5.451E-10 
S3 -14.540494124872 -14.540494125236 3.64301E-10 
S4 -12.631584997523 -12.631584998860 1.3374E-09 
S5 -12.568039081478 -12.568039083831 2.353E-09 
S6 -12.483026922091 -12.483026922131 4.03002E-11 

 
 
Table I. Comparison of the energies for seven lowest singlet states of Li2 molecule calculated using full 
PNCFCS basis with reference full CI energies provided my MolPro electronic structure package.  
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 In the next step, we focused on reproducing full CI ground state energy with a significantly 

smaller basis set.  We use the advantages of the CS approach by biasing the random amplitudes 𝜉௠ in 

(3) towards what they are intuitively expected to be for the ground state.  As before, we generate 

amplitudes according to Gaussian distribution, but now we use mean and standard deviation both 

equal to 100 for two lowest orbitals, equal to 1 for highest occupied molecular orbital, and mean 0 

with deviation 0.1 for unoccupied orbitals. This choice of distribution ensures that random 

configurations include mostly excitations from the highest occupied orbital. As we are now interested 

in the ground state only, we use equal amplitudes for spin-up and spin-down spin-orbitals of each 

configuration.  

Figure (1) shows the convergence of the ground state energy towards the exact Full CI result 

as the number of configurations grow.  The results are shown for four random sets of amplitudes. One 

can see that the convergence is sufficiently fast: while a single random configuration produces 

unrealistic energies in most of the cases, the results for two configurations are typically close to 

Hartree-Fock energy, and from 7 to 11 random configurations are required to reproduce correct full 

CI ground state energy. For comparison, we also include here the convergence of the regular basis set, 

where configurations are gradually added according to their amplitudes in the precalculated full CI 

vector, namely double 34 excitation, double 35 excitation, single 35 excitations etc.  As 

expected, the regular basis converges slightly faster for this very small system.  However, due to better 

scaling for random basis, the PNCFCS basis approach may be more efficient for larger molecules.  
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Figure 1. Convergence of calculations with respect to the number of basis functions (19). Hartree-Fock 
energy is chosen as zero. The results are given for four different sets of random amplitudes 𝜻(௕).  
Energy converges towards the exact Full CI result very quickly.  For comparison, the black curve shows 
the convergence of the regular basis, where we added regular basis function already knowing their 
full CI contributions.  

 

We would like to emphasize that this particular way of generating amplitudes is just an 

example of biasing: the problem of the optimal choice of amplitudes is far beyond the scope of this 

paper.  However, it can be easily demonstrated that properly optimized basis set of random PNCFCSs 

can be at least as efficient as a regular basis. For this, we generated 100 random configurations using 

the same distribution for amplitudes as before, and then choose one with lowest energy.  After that, 

we generated another 100 and choose one which if added to the first selected gives the lowest energy 

of the pair. Then we continue adding 3rd, 4th etc. PNCFCSs in the similar way by adding the best n-th 

basis function to the already selected basis of n-1.  Figure (2) shows that the random basis set 

optimised using the above algorithm converges even faster than a regular basis, with only 4 PNCFCSs 

needed to reproduce accurate full CI ground state energy of Li2 molecule.   Whether the above 

algorithm is practical for larger and more challenging systems remains to be seen.   However, these 
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results shows that random PNCFCS basis can, in principle, greatly economise basis sets and represent 

electronic wave functions very efficiently.  

 

Figure 2. Comparison of the convergence of the optimised basis set of random PNCFCSs (19) and the 
regular basis towards the exact Full CI energy. Hartree-Fock energy is chosen as zero.  
 

 Our approach bares similarity to antisymmetrised geminal power (AGP)17, 20-22, used in nuclear 

physics23, electronic structure theory24, and theory of superconductivity where it is called number 

projected Bardeen-Cooper-Schieffer (BCS) theory22.  AGP approach is based on the wave function 

ansatz |𝜼⟩ 

  |𝐴𝐺𝑃⟩ = |𝜼⟩ = ଵே! ൫∑ 𝜂௜௝𝑆መ௜௝ற௜,௝ୀଵ,ெ ൯ே|𝟎⟩     (20) 

where 𝑆መ௜௝ற = 𝑎ොி௜ற 𝑎ොி௝ற  is an operator which creates a pair of electrons on spin-orbitals i and j, a geminal 

pair, and N is the number of geminals populated by electrons.  The difference between Eqs.(20) and 

(3) is that the latter includes qubit creation operator 𝑏෠௠ற   (see (4)) instead of geminal creation operator 𝑆መ௜௝ற  in the former. This reflects the fact that our approach is designed for single spin-orbitals, while AGP 

theory has been developed to describe strong correlated systems where electrons pair. However, 

operators 𝑏෠௠ற   and  𝑆መ௜௝ற  have the same commutation relations, and, as a result, vast literature existing 
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on AGP theory can be also used in our approach.  This include, for example, algorithms for calculating 

reduced density matrixes and overlaps between AGP functions, efficiency and stability of which is 

analysed in the ref17.         

 Also Fermionic Coherent States | 𝝉⟩ based on Thouless’s construction25  

  | 𝝉⟩ = exp൫∑ ∑  𝜏௜௝𝑎ො௜∘ற𝑎ො௝⦁௝ୀௌାଵ,ெ௜ୀଵ,ௌ ൯|𝚿𝟎⟩    (21) 

have been known for quite some time and were used for description of electron dynamics26, 27.  They 

are generated by acting with exponential operator on the state |𝚿𝟎⟩ = |1,1, … ,1,0,0, … ,0⟩,  where S 

electrons occupy the lowest spin-orbitals.  Following the notation of the ref26, 𝑎ො௜∘ற and 𝑎ො௝⦁  here are the 

operators which annihilate electron at initially populated spin-orbital j and create an electron at 

initially unoccupied spin orbital i of |𝜳𝟎⟩.  The wave function (21) is parametrised by 𝑆 × (𝑀 − 𝑆) 

parameters 𝜏௜௝  but similarly to (8) contains all configurations, like full CI wave function.  

 As can be seen from comparison of (3), (20) and (21), the approach proposed here is different 

from those of AGP and Thouless.   It is a generalisation of the Bosonic PNCBCS10, 14 (1).  Its efficiency is 

based on its simplicity and the use of sign changing rule combined with combinatorial algorithm for 

calculating matrix elements between two PNCFCSs.  We have demonstrated that full CI result can be 

approached with a linear combination of a few PNCFCSs.  Just like ZSs12, 13 the new PNCFCSs allow 

intuitive ways of importance sampling of their parameters but the advantage is that unlike ZSs the 

new PNCFCSs are restricted within the Fock space with the right number of electrons.   

 How efficient the new approach proposed in this paper will be for larger and more challenging 

systems remains to be seen.  However, as the parameters of the basis functions ห𝑆, 𝝃(௕)ൿ  were chosen 

randomly the hope is that for larger molecules this Monte-Carlo based method may scale well avoiding 

exponential scaling.    

 One also can anticipate that PNCFCSs will be used in the dynamics, just like other types of CSs 

have been used.  In this case guiding PNCFCSs with trajectories will be vital for efficiency of quantum 

propagation so that the wave function ansatz will include time dependent parameters 

  |Ψ⟩ = ∑ 𝐴(௕)(𝑡)ห𝑆, 𝝃(௕)(𝑡)ൿ௕ୀଵ,௄       (22) 



12 
 

Just like in the case of Gaussian CSs various choice of trajectories ห𝑆, 𝝃(௕)(𝑡)ൿ will be possible and the 

whole variety of methods developed for Gaussian CSs may be transferable to the case of PNCFCSs.  

See ref28 for detailed analysis of possible trajectories to guide Gaussian Coherent States.  Fully 

variational trajectories of PNCFCSs can be obtained from variational principle applied to the full wave 

function (22) or analytically for quadratic Hamiltonian similarly to how it has been done for Number 

Conserving Bosonic Coherent States10, 14, 29.  “Classical” trajectories to guide the basis, would follow 

from variational principle applied to individual basis function28 ห𝑆, 𝝃(௕)(𝑡)ൿ.   Again, the efficiency of 

such an approach remains to be seen but it is worth trying.  

 We derived our formalism with the help of the CS generator (3) and Coherent States language. 

But the language is a matter of taste.  In the traditional electronic structure based paradigm we can 

simply start from Eqs(8) and (9), postulate factorisation of the coefficient   𝐶௠భ,௠మ,…,௠ೄ,  and simply 

use a number of such functions with different sets of parameters 𝝃 there.  Then, using efficient 

combinatorial algorithm for calculating overlaps and matrix elements would be the main advantage.       

 In summary we propose a new type of Particle Number Conserving Fermionic Coherent States 

as basis functions for electron dynamics and electronic structure.  The simplicity of PNCFCS 

parametrisation combined with efficient algorithms to calculate matrix elements, based on Zombie 

States sign changing rule and combinatorics, are the key feature of the proposed approach.  
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Supplementary Material.  

 

Zombie States, Sign Changing rule, and justification of the formula for matrix elements 

 

As mentioned in the Discussion and Conclusions section, the proposed approach can be derived 

without the Coherent States language but personally we found this language productive.  Our thinking 

was based on the Zombie States1, which we outline here for convenience.  The term Zombie State (ZS) 

refers to a superposition of “dead” or “alive” states |1௠⟩  and |0௠⟩, which describe an occupied or 

unoccupied spin-orbital m.   

 |𝜁௠(𝑎ଵ௠, 𝑎଴௠)⟩ = 𝑎ଵ௠|1௠⟩  +  𝑎଴௠|0௠⟩      (S1) 

Zombie States are similar to the SU(2) coherent states of a two levels system2.  In SU(2) states one of 

the coefficients is usually assumed to be real, but it does not have to be.  Both 𝑎଴௠ and 𝑎ଵ௠ can be 

complex, which would introduce an insignificant phase factor. (S1) is sometimes also called Bogoliubov 

quasiparticle.  For multi-electronic system we associate a ZS with each spin-orbital, so that there are 

M simultaneously “dead” and “alive” Zombie electrons, one at each of the M spin-orbital.  Let us write 

an M-particle ZS as an antisymmetrised product of M single particle/single orbit ZSs, or a Slater 

determinant made of M one electron Zombie States|𝜁௠⟩:  

 |𝜻⟩ = |𝜁ଵ, 𝜁ଶ, … , 𝜁௠⟩ = ଵ√ெ! 𝐴መ ∏ (𝑎ଵ௠|1௠⟩  +  𝑎଴௠|0௠⟩)௠ୀଵ,ெ  = 

 = ଵ√ெ! 𝑑𝑒𝑡 ൥ 𝜁ଵ(1) ⋯ 𝜁ெ(1)⋮ ⋱ ⋮𝜁ଵ(𝑀) ⋯ 𝜁ெ(𝑀)൩       (S2) 

 

Notice that the   𝑀 × 𝑀  matrix in (S2) is of the size of the number of orbitals.  It is bigger than the     𝑆 × 𝑆 matrix of the size of the number of electrons, used in standard theory of many-body Fermionic 

systems3.   A particular ZS (S2) ห𝜻(௕)ൿ can be denoted as 

 ห𝜻(௕)ൿ = ൥𝑎ଵଵ(௕) … 𝑎ଵெ(௕)𝑎଴ଵ(௕) … 𝑎଴ெ(௕)൩        (S3) 
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The first low index in the amplitude 𝑎ଵ௠(௕) or  𝑎଴௠(௕)  is either 1 or 0 and labels “life” or “death”, the index 

m is that of a spin-orbital, and the upper index (b) refers to the particular ZS.  Then, the overlap of two 

ZSs is given simply as 

 Ω௔௕ =  ൻ𝜻(௔)ห𝜻(௕)ൿ = ∏ ቀ𝑎ଵ௠(௕)∗ 𝑎ଵ௠(௔)  +  𝑎଴௠(௕)∗ 𝑎଴௠(௔)ቁ௠ୀଵ,ெ     (S4) 

A standard Fock Space “physical” electronic structure configuration with S electrons occupying S out 

of M orbitals are given by ZSs with S ones and M-S zeros in the 1st  row, meaning S fully alive electrons 

(or S occupied spin-orbitals) and M-S fully dead electrons (or unoccupied spin-orbitals):   

   ห𝜻(ଵଵ଴…ଵ)ൿ = ቂ10100 … 11 … 0ቃ       (S5) 

This way of enumerating of the Fock space configurations has been used in the ref 4 where it was 

shown to have certain bookkeeping advantages.  In this paper we go further assuming arbitrary 

amplitudes of |1௠⟩ and |0௠⟩ states.  The space of all 2M Fock states ranging from zero occupancy ห𝜻(଴଴଴…଴)ൿ to full occupancy ห𝜻(ଵଵଵ…ଵ)ൿ is a Full Fock Space (FFS).   A wave function 

  |Ψ⟩ = ∑ 𝐴(௕)ห𝜻(௕)ൿ௕ୀଵ,௄         (S6) 

can be manipulated by acting on it with fermionic creation and annihilation operators.  A simple sign 

changing rule has been proposed, which expresses Wigner-Jourdan rule for Zombie States.  Acting on 

the m-th spin-orbital also changes sign of the amplitudes of alive electron for l<m. 

  𝑎ොி௠ற ห𝜻(௕)ൿ = ൥−𝑎ଵଵ(௕)𝑎଴ଵ(௕)    −𝑎ଵଶ(௕) … −𝑎ଵ ௠ିଵ(௕)𝑎଴ଵ(௕) … 𝑎଴ ௠ିଵ(௕)   𝑎଴௠(௕)0   𝑎ଵ ௠ାଵ(௕) … 𝑎ଵெ(௕)𝑎଴ ௠ାଵ(௕) … 𝑎଴ெ(௕)൩ 

  𝑎ොி௠ห𝜻(௕)ൿ = ൥−𝑎ଵଵ(௕)𝑎଴ଵ(௕)    −𝑎ଵଶ(௕) … −𝑎ଵ ௠ିଵ(௕)𝑎଴ଵ(௕) … 𝑎଴ ௠ିଵ(௕)   0𝑎ଵ௠(௕)  𝑎ଵ ௠ାଵ(௕) … 𝑎ଵெ(௕)𝑎଴ ௠ାଵ(௕) … 𝑎଴ெ(௕)൩ 

             (S7) 

Changing the sign of the alive amplitudes in the top row for all elements on the left follows from the 

antisymmetric nature of fermionic wave functions described by anticommuting of fermionic 

operators1.  It replaces Jordan-Wigner factor which appears in front of a standard Slater determinant 

due to permuting a column corresponding to the m–th orbital of the usual Slater matrix to the left 

where it is acted upon with creation or annihilation operators 𝑎ොி௠ற  or 𝑎ොி௠ .  See ref3 



17 
 

 The number of electrons in a Zombie State is not well defined.  In general a ZS may include 

contributions of all possible numbers of electrons from zero to M and a wave function expressed as a 

superposition of Zombie states is not guaranteed to be an eigen state of the number operator.  As has 

been shown in the ref5 a special procedure called cleaning can be developed, which projects wave 

functions in the zombie state on the Fock subspace with the right number of electrons and improves 

greatly the accuracy of the wave functions.   

 ZS formalism provides easy derivation of the matrix element (16).   Matrix element is nonzero 

only between configurations (11) in the states (a) and (b) which differ only by population of i and j 

spin-orbital.  In the ZS language the eq (15)  becomes:   

 𝑎ොி௝ ቈ… 𝜁௠భ(௔) …… 0 …      0 … 𝜁௝(௔)1 … 0    ……቉ = ቈ… −𝜁௠భ(௔) …… 0 …      0 … 01 … 𝜁௝(௔)   ……቉  (S8) 

where ቂ… 01 … ቃ represents the i-th column.   Similarly  

 𝑎ොி௜ ቈ… 𝜁௠భ(௕) …… 0 …      𝜁௜(௕) … 00 … 1   ……቉ = ቈ… −𝜁௠భ(௕) …… 0 …      0 … 0𝜁௜(௕) … 1   ……቉  (S9) 

where ቂ… 01 … ቃ represents the j-th column.   Then the origin of the sign changing in the eq (16) and 

the factor 𝜉௜(௕)∗𝜉௝(௔) there becomes obvious after calculating ZS overlap (S4) between (S8) and (S9).   

 

 

References 

1. Shalashilin, D. V., Zombie states for description of structure and dynamics of multi-electron 
systems. Journal of Chemical Physics 2018, 148 (19), 194109. 
2. Perelomov, A., Generalized Coherent States and Their Applications. Springer Berlin 
Heidelberg: 2012. 
3. Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic 
Structure Theory. Dover Publications: 1989. 
4. Streltsov, A. I.;  Alon, O. E.; Cederbaum, L. S., General mapping for bosonic and fermionic 
operators in Fock space. Physical Review A 2010, 81 (2), 12. 
5. Bramley, O. A.;  Hele, T. J. H.; Shalashilin, D. V., Electronic energies from coupled fermionic 
“Zombie” states' imaginary time evolution. The Journal of Chemical Physics 2022, 156 (17), 174116. 

 


