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A B S T R A C T

Existing unsupervised keyphrase extraction methods typically emphasize the importance of the
candidate keyphrase itself, ignoring other important factors such as the influence of uninfor-
mative sentences. We hypothesize that the salient sentences of a document are particularly
important as they are most likely to contain keyphrases, especially for long documents. To
our knowledge, our work is the first attempt to exploit sentence salience for unsupervised
keyphrase extraction by modeling hierarchical multi-granularity features. Specifically, we
propose a novel position-aware graph-based unsupervised keyphrase extraction model, which
includes two model variants. The pipeline model first extracts salient sentences from the
document, followed by keyphrase extraction from the extracted salient sentences. In contrast
to the pipeline model which models multi-granularity features in a two-stage paradigm, the
joint model accounts for both sentence and phrase representations of the source document
simultaneously via hierarchical graphs. Concretely, the sentence nodes are introduced as an
inductive bias, injecting sentence-level information for determining the importance of candidate
keyphrases. We compare our model against strong baselines on three benchmark datasets
including Inspec, DUC 2001, and SemEval 2010. Experimental results show that the simple
pipeline-based approach achieves promising results, indicating that keyphrase extraction task
benefits from the salient sentence extraction task. The joint model, which mitigates the potential
accumulated error of the pipeline model, gives the best performance and achieves new state-
of-the-art results while generalizing better on data from different domains and with different
lengths. In particular, for the SemEval 2010 dataset consisting of long documents, our joint
model outperforms the strongest baseline UKERank by 3.48%, 3.69% and 4.84% in terms of
F1@5, F1@10 and F1@15, respectively. We also conduct qualitative experiments to validate
the effectiveness of our model components.

1. Introduction

Keyphrase extraction (KE) is the task of extracting from a document a set of salient words or phrases that can summarize the main
contents of the document (Hasan & Ng, 2014). Keyphrases have immense value to various downstream text mining tasks, such as
text summarization (Song, Huang, & Ruan, 2019), entity recognition and detection (Peng et al., 2021; Zhao, Yan, Cao, & Li, 2021),
and question generation (Cheng et al., 2021), to name a few. Broadly speaking, KE methods could be classified into supervised
and unsupervised learning methods. Supervised methods require large amounts of labeled training data, which often have limited
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Fig. 1. Salience Statistics. Oracle is the salient sentence which contains keyphrases of the document. Noun phrase is the candidate keyphrase which consists of
zero or more adjectives followed by one or multiple nouns. Both oracle and keyphrase are salient information of the document which we called salience in this
paper.

performance when applied to different domains or dataset types. In contrast to supervised methods, unsupervised methods are more
flexible and adaptable by extracting keyphrases based on intrinsic information from the input documents themselves. In this paper,
we focus on unsupervised keyphrase extraction (UKE) methods.

UKE methods have been extensively studied in the field of keyphrase extraction. Recently, with the rapid development
of representation learning, embedding-based methods (Bennani-Smires, Musat, Hossmann, Baeriswyl, & Jaggi, 2018; Sun, Qiu,
Zheng, Wang, & Zhang, 2020) have achieved encouraging performance and become state-of-the-art models. Most embedding-
based approaches first calculate the representations of candidate keyphrases and the whole document with static embeddings
(e.g. GloVe Pennington, Socher, & Manning, 2014, Sen2Vec Pagliardini, Gupta, & Jaggi, 2018 and Doc2Vec Le & Mikolov, 2014) or
contextual representations from pre-trained language models (e.g. BERT Devlin, Chang, Lee, & Toutanova, 2019). Next, candidate
keyphrases are ranked by calculating their similarities to the whole document in the vector space. Although these approaches
outperform statistics-based (Campos et al., 2018) and topic-based (Boudin, 2018) methods, they ignore the local salience of candidate
keyphrases due to the simple similarity calculation between phrases and the whole document, thus limiting their performance. To
obtain sufficient information from the context, we previously proposed UKERank (Liang, Wu, Li, & Li, 2021b), which allows joint
modeling of the local and global context of the input document. Concretely speaking, UKERank calculates the similarity between
candidate keyphrase and the entire document as global similarity, and combines it with boundary-aware centrality which is regarded
as local salience to extract keyphrases. The promising results of UKERank are mainly attributed to the modeling of local context
which is ignored by previous methods.

Although UKERank demonstrates very good results on benchmark datasets, it focuses on the importance of candidate keyphrases
themselves, where the salience of sentences is not taken into account. We hypothesize that the salience of sentences is a very
important factor when extracting keyphrases from the full document. For instance, Fig. 1 shows the statistics of the averaged number
of sentences/oracles and the averaged number of noun phrases/keyphrases per document across three benchmark datasets. It can
be observed that the averaged number of both oracles1 and keyphrases are much lower than those of sentences and noun phrases.2

In other words, a significant portion of sentences, especially for long documents such as scholarly documents, may not contain
keyphrases. Therefore, taking the full-text of the document as the input for keyphrase extraction may include too many insignificant
sentences that contain little salient information, thus hindering the performance of the model. To this end, we propose to explicitly
characterize the salience of sentences and phrases via a novel graph-based unsupervised keyphrase extraction model. Table 1 shows
an example of hierarchical multi-granularity features from the document, to oracle (sentence), and to keyphrase levels. We can
observe that keyphrases often appear in only a few sentences of the entire document. Presumably, selecting the salient sentences
from the target document and then extracting keyphrases based on them would be more effective.

Motivated by this observation, in this paper, we propose a novel unsupervised keyphrase extraction model by modeling
hierarchical multi-granularity features. Our model includes two model variants, a pipeline model (Sentence-then-Keyphrase Ranking
Model) and a joint model (Hierarchical Graph Representation Ranking Model). The pipeline model first extracts salient sentences
from the full-text document with the proposed position-aware graph-based ranking algorithm, followed by keyphrase extraction from
the extracted salient sentences using the same ranking algorithm. In contrast to the pipeline model which models multi-granularity
features in a two-stage paradigm, the proposed joint model accounts for both sentence and phrase representations of the source
document simultaneously via hierarchical graphs. By doing so, we convert a flat graph into a hierarchical, non-fully-connected

1 Salient sentence which contains keyphrases of the document are regarded as Oracle in our paper.
2 A phrase which consists of zero or more adjectives followed by one or multiple nouns is called Noun Phrase. The keyphrases are usually from the top

ranked noun phrases.
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Table 1
An example from Inspect dataset. Words in red represent the keyphrases.

Document
1. A friction compensator for pneumatic control valves.
2. A procedure that compensates for static friction -LRB- stiction -RRB- in
pneumatic control valves is presented.
3. The compensation is obtained by adding pulses to the control signal.
4. The characteristics of the pulses are determined from the control action.
5. The compensator is implemented in industrial controllers and control
systems , and the industrial experiences show that the procedure reduces the
control error during stick–slip motion significantly compared to standard
control without stiction compensation.

Oracle
1. A friction compensator for pneumatic control valves.
5. The compensator is implemented in industrial controllers and control
systems , and the industrial experiences show that the procedure reduces the
control error during stick–slip motion significantly compared to standard
control without stiction compensation.

Keyphrases
friction compensator; pneumatic control valves; stiction
compensation; stick–slip motion; standard control

graph, which offers two advantages: (1) it can inject sentence-level information for determining the importance of a candidate
keyphrase; and (2) it helps avoid the inherent error propagation of the pipeline model.

Experimental results based on three benchmark datasets show that our proposed models achieve the state-of-the-art performance
on the keyphrase extraction task, demonstrating that the keyphrase extraction task indeed benefits from extracted salient sentences.
We further conducted detailed analysis on the positive relationship between the keyphrase extraction task and the salient sentence
extraction task (see Section 4.3), which reveals that salience sentences can retain the most important information of the full document
while significantly reduces the input to be processed by the model.

The main contributions of our work are summarized below: (1) To our knowledge, this is the first attempt to exploit the salience of
sentences for unsupervised keyphrase extraction by modeling hierarchical multi-granularity features. (2) Our empirical study shows
positive synergy between the salient sentence extraction task and the keyphrase extraction task, suggesting that better integration
of these two tasks is a promising research direction. This will be a useful insight to practitioners in the field. (3) Our methods
consistently outperform all existing competitors across the three datasets, each with different document lengths, covering two
different domains. We also add a more detailed discussion of the analysis of various model components.

The rest of our paper is organized as follows. Section 2 illustrates a detailed explanation of our methodology on how to
further improve the performance of keyphrase extraction. Section 3 describes our experimental setups, which is followed by our
experimental results in Section 4. Section 5 discusses the difference between our model and UKERank to highlight the theoretical and
practical implications of our research. Section 6 reviews the related work of this paper. We finally conclude the paper in Section 7.

2. Methodology

In this section, we give a detailed description of our models for unsupervised keyphrase extraction. Considering that our joint
and pipeline model share the key model components, we first briefly introduce the pipeline model, and then describe the joint model
in detail and its key differences to its counterpart.

2.1. Pipeline model: Sentence-then-Keyphrase ranking model

We first propose a pipeline model which employs a two-stage Sentence-then-Keyphrase paradigm. The pipeline model first
extracts salient sentences from the corresponding full-text document using our position-aware graph-based ranking algorithm (see
Section 2.2.3). Next, we extract keyphrases based on the extracted salient sentences using the same ranking algorithm. The pipeline
model serves a few purposes: (1) it can provide further evidence whether the extracted salient sentences manage to capture the
keyphrases, thereby improving the performance of keyphrase extraction; (2) it can support the investigation of impacts on the
signal-to-noise ratios of the input document, i.e. the percentage of extracted sentences with respect to the total number of sentences
of the document in the salient sentence extraction stage. For more detailed analysis, please refer to Section 4.3

2.2. Joint model: Hierarchical graph representation ranking model

The overall framework of our joint model is illustrated in Fig. 2. Formally, given a document 𝐷, our model learns to extract a
set of salient words or phrases that summarize the main contents of the document. Specifically, the joint model consists of three key
components, including (1) Candidate keyphrase generation; (2) Sentence and candidate keyphrase representation; and (3) Keyphrase
importance ranking. The first component identifies and extracts the candidate keyphrases, followed by the second component which
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Fig. 2. The framework of our hierarchical graph representation ranking model. (1) Tokenize a document into tokens and tag them with POS tags. (2) Identify
noun phrases consisting of zero or more adjectives followed by one or more nouns as candidate keyphrase. (3) Generate contextual representations of tokens
and sentences with BERT. (4) Score each sentence and candidate keyphrase using our ranking model. (5) Extract keyphrases from the candidate keyphrases
according to the scores of the ranking algorithm.

extracts the contextualized representations of sentences and candidate keyphrases. Based on these contextual representations, the
last component ranks the importance of keyphrases from two perspectives by simultaneously modeling hierarchical multi-granularity
features: phrase-level and sentence-level information. In the following sections, we describe the components in detail.

2.2.1. Candidate keyphrase generation
Based on our observation, a keyphrase usually contains more than one word (Sun, Qiu et al., 2020). Therefore, we adopt heuristics

to extract noun keyphrases based on their part-of-speech (POS) tag patterns as EmbedRank (Bennani-Smires et al., 2018) does.
Specifically, we first tokenize document 𝐷 into sentences {𝑠1, 𝑠2,… , 𝑠𝑚} and tokens {𝑡1, 𝑡2,… , 𝑡𝑛}, and then we use StanfordCoreNLP
Tools3 to obtain POS tags of the input text. Finally, we extract noun phrases from the document based on the regular expression which
encodes the phrase pattern of interest {⟨𝑁𝑁. ∗ |𝐽𝐽⟩ ∗ ⟨𝑁𝑁. ∗⟩}, where 𝑁𝑁 and 𝐽𝐽 denote the POS tags of noun and adjective,
∗ acts as the wildcard character. This process corresponds to Steps (1) and (2) shown in Fig. 2. The extracted noun phrases are
then regarded as candidate keyphrases {𝐾𝑃1, 𝐾𝑃1,… , 𝐾𝑃𝑘} that serve as the input to the subsequent representation methods and
ranking algorithms. Note that this part is not the focus of this study and we simply follow this heuristic method as was done for
most baselines to make a fair comparison. Nevertheless, we also conducted the further analysis to verify the effectiveness of this
common practice (see Section 4.2).

2.2.2. Sentence and candidate keyphrases representation
The second component concerns representation learning of candidate keyphrases and input sentences. In contrast to previous

work (Bennani-Smires et al., 2018) that uses static vector embedding Sen2Vec (Pagliardini et al., 2018) to represent tokens and
sentences, we adopt BERT, a powerful pre-trained language model (PLM), to generate dynamic contextual representations of
sentences and candidate keyphrases with Eq. (1). BERT can provide high quality embedding of the text by encoding word, sentence
with context dynamically.

{𝐻1,𝐻2,… ,𝐻𝑛} = 𝙱𝙴𝚁𝚃({𝑡1, 𝑡2,… , 𝑡𝑛}), (1)

where 𝐻𝑖 is the contextualized representation of token 𝑡𝑖. The contextualized representation 𝐻𝙺𝙿𝑖
of candidate keyphrases are

obtained by averaging the candidate keyphrase’s token vector representations. The sentence vector representation 𝐻𝚜𝑖
is derived by

averaging the sentence’s token vector representations.
In this way, we obtain a set of sentence representations 𝑆 = {𝐻𝚜𝑖

}𝑖=1,…,𝑚 and a set of candidate keyphrase representations
𝐾 = {𝐻𝙺𝙿𝑖

}𝑖=1,…,𝑘. These representations will be used as the input to the core ranking algorithm of our model.

3 https://stanfordnlp.github.io/CoreNLP/

https://stanfordnlp.github.io/CoreNLP/
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2.2.3. Keyphrase importance ranking
One of the core technical contributions of our framework is the hierarchical graph representation ranking model. We first briefly

describe the traditional graph-based centrality scoring algorithm as the background knowledge. Then we introduce our enhanced
position-aware centrality scoring algorithm. Finally, we illustrate the process of characterizing hierarchical multi-granularity features
of our ranking model.

Traditional Graph-based Centrality Scoring. Given document 𝐷, a set of sentences 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑚} and a set of candidate
keyphrases 𝑇 = {𝐾𝑃1, 𝐾𝑃2,… , 𝐾𝑃𝑘}, a graph-based centrality scoring algorithm treats 𝐷 as a graph  = (𝑉 ,𝐸). Here, 𝑉 =

{𝑣1, 𝑣2,… , 𝑣𝑛} is a set of vectors representing the nodes in the graph (e.g. sentences or candidate keyphrases in 𝐷), and 𝐸 = {𝑒𝑖𝑗}

is a 𝑛 × 𝑛 matrix encoding a set of edges, where each element {𝑒𝑖𝑗} ∈ 𝐸 denotes the weight between vertex 𝑣𝑖 and 𝑣𝑗 . The key idea
of traditional graph-based centrality scoring algorithm is to calculate the degree of each node (sentence or candidate keyphrase) as
the centrality to measure the importance of the node. A node’s centrality can be measured by simply summing all similarities with
other nodes. It is computed as follows:

𝐂𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑣𝑖) =

𝑛∑

𝑗=1

𝑒𝑖𝑗 (2)

Where 𝑒𝑖𝑗 = 𝑣𝑖 ⋅𝑣𝑗 is the dot-product similarity score for each pair (𝑣𝑖, 𝑣𝑗 ). Empirically, the simple dot-product usually performs better
than other similarity measurements (e.g. cosine similarity) (Zheng & Lapata, 2019). We further conducted the impact of different
similarity measure methods (see Section 4.6).

Position-Aware Graph-based Centrality Scoring. In general, for most long documents or news articles, the author tends to
write the key information at the beginning of the document. Specifically, prior work (Florescu & Caragea, 2017a) point out that
the position-biased weight can greatly improve the performance for keyphrase extraction and they employ the sum of the position’s
inverse of words in the document as the weight. SIFRank (Sun, Qiu et al., 2020) and UKERank (Liang, Wu et al., 2021b) adopt a
simpler position bias weight, which only consider where the candidate phrase first appears. To implement this important insight,
we also follow this simpler position bias weight as shown in Eq. (4) to make a fair comparison.

𝐂𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑣𝑖) = 𝑝̂(𝑣𝑖) ⋅

𝑛∑

𝑗=1

max(𝑒𝑖𝑗 − 𝜃, 0) (3)

𝑝̂(𝑣𝑖) =
exp(𝑝(𝑣𝑖))∑𝑛

𝑘=1
exp(𝑝(𝑣𝑘))

(4)

First, a threshold 𝜃 = 𝛽 ⋅ (max(𝑒𝑖𝑗 ) −min(𝑒𝑖𝑗 )) is employed to exclude the effect from the nodes that are far from the current node
𝑖. It removes their influence on the centrality score by setting all 𝑒𝑖𝑗 < 𝜃 to zero. 𝛽 is a hyper-parameter that controls the scale. The

position bias weight is computed by 𝑝(𝑣𝑖) =
1

𝑝𝑖
, where 𝑝𝑖 is the position of the sentence’s (or candidate keyphrase’s) first appearance

in the document. Finally, the softmax function is adopted to normalize the position bias weight. In this paper, we employ this
normalized position-aware centrality to measure the importance of nodes.

Hierarchical Graph Representation Ranking. To characterize the features of both salient sentences and keyphrases in a joint
manner, our joint model accounts for both sentence and phrase representations of the source document via hierarchical graphs. The
two perspectives from phrase-level and sentence-level information are considered to improve the keyphrase importance ranking
simultaneously.

Specifically, the sentence nodes are introduced as an inductive bias, injecting sentence-level information for determining the
importance of candidate phrases. We use our position-aware graph-based centrality scoring algorithm to compute the centralities
of the sentence and candidate keyphrase nodes simultaneously. Then we combine these two centralities as follows:

𝐂𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑣𝑖) = 𝜆 ⋅ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑠𝑖) + 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑘𝑖) (5)

where 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑘𝑖) is the centrality score of the candidate keyphrase, and the 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑠𝑖) is the centrality score of the sentence
in which the candidate keyphrase is located. 𝜆 is also a hyper-parameter that controls the weight of the sentence node. We rank
candidate keyphrases according to their final score 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑣𝑖), and extract the top 𝑘 candidate keyphrases as the final keyphrases
of the document.

3. Experimental setup

3.1. Datasets

To fully validate the effectiveness of our model, we evaluate our method on 3 benchmark datasets: Inspec, DUC2001 and
SemEval2010. Table 2 shows the detailed data statistics. The Inspec (Hulth, 2003) consists of 2000 documents that are selected
from scientific document abstracts. We choose 500 documents as the testset to verify our method. The DUC2001 (Wan & Xiao,
2008) is derived from news articles and contains 308 documents. The SemEval2010 (Kim, Medelyan, Kan, & Baldwin, 2010) is
ACM full length paper with keyphrases annotated by authors and readers. We select 100 papers as the testset for our experiment.



Information Processing and Management 60 (2023) 103356

6

Z. Zhang et al.

Table 2
Data statistics. #Doc, #Uni-gram and #N-gram denote the numbers of documents, uni-grams and N-grams. AveWords
and AveKeyphrase represent the averaged numbers of words and keyphrases.

Datasets Domain #Doc AveWords AveKeyphrase #Uni-gram #N-gram

Inspec Scientific 500 135 10 662 4251
DUC2001 News 308 846 8 431 2057
SemEval2010 Scientific 100 1585 12 235 969

3.2. Baselines and evaluation metrics

We compare our approach with three kinds of models to fully validate the effectiveness of our model. Firstly, we compare our
approach with statistics-based models, including TF-IDF and YAKE (Campos et al., 2018). Then, we compare our approach with five
popular graph-based models. TextRank (Mihalcea & Tarau, 2004), which converts the document into a graph with co-occurrence
of phrases, is the first attempt to rank candidate keyphrases using PageRank algorithm (Page, Brin, Motwani, & Winograd, 1999).
SingleRank (Wan & Xiao, 2008) extends TextRank by enhancing the graph construction using a slide window. PositionRank (Florescu
& Caragea, 2017b) incorporates position bias in determining the significance of candidate keyphrases. TopicRank (Bougouin, Boudin,
& Daille, 2013) mines keyphrases using topic distribution information. MultipartiteRank (Boudin, 2018) ranks candidate keyphrases
with graph theory by splitting the whole graph into sub-graphs. Finally, we compare our approach with three strong embedding-
based models. Specifically, EmbedRank (Bennani-Smires et al., 2018) measures the similarities between candidate keyphrases and
the whole document with Doc2Vec/Sent2Vec embeddings to rank keyphrases. SIFRank (Sun, Qiu et al., 2020) enhances EmbedRank
by replacing static embedding with contextual representations from the pre-trained language models. KeyGames (Saxena, Mangal, &
Jain, 2020) incorporates game theoretic method into the ranking algorithm. As the strongest baseline, our previous UKERank (Liang,
Wu et al., 2021b), which jointly model global and local context to rank candidate keyphrases, is also included.

The performance of keyphrase model is typically evaluated by comparing the top 𝑁 predicted keyphrases with target keyphrases
(ground-truth labels). The evaluation cutoff 𝑁 can be a fixed number (e.g., F1@5 compares the top-5 keyphrases predicted by the
model with the ground-truth to compute an F1 score). We follow the common practice and evaluate the performance of all the
models using macro F-measure at the top 𝑁 keyphrases (F1@N), and 𝑁 is set to be 5, 10 and 15. Concretely speaking, we report
F1@5, F1@10 and F1@15 scores and we apply stemming to both extracted the keyphrases and the ground truth.

3.3. Implementation details and hyper-parameter setting

Stanford CoreNLP Tool is adopted for tokenizing, part-of-speech tagging, and noun phrase chunking. We employ regular expression
{⟨𝑁𝑁. ∗ |𝐽𝐽 ⟩ ∗ ⟨𝑁𝑁. ∗⟩} to identify noun phrases as the candidate keyphrases. We use the uncased BERT-base version4 to generate
the contextualized word embeddings. For the pipeline model, we set the number of the extracted salient sentences to 33, 6 and 73,
i.e. the averaged numbers of documents, for DUC2001, Inspect, and SemEval2010, respectively. For more details on the impact of
this parameter please refer to Section 4.3. For the joint model, we set the hyper-parameter 𝜆, which is the weight that balances the
importance of the sentence node, to 0.2, 0.2 and 1.0 for DUC2001, Inspect, and SemEval2010, respectively. Another hyper-parameter
𝛽, which is used to filter noise, is set to 0.2 for all three datasets. For more details on the sensitivity analysis of these parameters
please refer to Section 4.5.

4. Experimental results

4.1. Overall results

Table 3 shows the keyphrase extraction performance (measured by F1@N) of our approaches and the baselines on three
benchmark datasets. It is worth noting that the experimental datasets exhibit distinctive characteristics in terms of averaged
document length (cf. Table 2) and domains, and thus serve as a good test bed for assessing the generalizability of the tested models.

In terms of the overall performance, it can be seen that our joint model consistently outperforms all the baselines, achieving
the state-of-the-art performance across all three datasets. Our pipeline model gives the second best performance for most of the
cases, except on F1@5 and F1@15 for DUC2001. The promising results of our methods are mainly attributed to our modeling
of hierarchical multi-granularity features (phrase-level and sentence-level information), which are ignored by previous works.
Especially worth mentioning is that our hierarchical graph representation ranking method injects sentence-level information in
determining the importance of candidate keyphrase in a joint paradigm. It helps avoid the inherent error propagation of our pipeline
model and further the performance of unsupervised keyphrase extraction.

Comparing different baseline methods, embedding-based methods generally give stronger performance than statistics-based and
graph-based methods. This is likely attributed to the fact that embedding-based methods learn representations that can better capture
the context information of the input document, especially for short documents that contain less aspects of information. We can further

4 https://github.com/google-research/bert

https://github.com/google-research/bert
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Table 3
Model comparison. The best results are in bold, and the second best underline.

Models Inspec DUC2001 SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistics-based models

TF-IDF 11.28 13.88 13.83 9.21 10.63 11.06 2.81 3.48 3.91
YAKE 18.08 19.62 20.11 12.27 14.37 14.76 11.76 14.4 15.19

Graph-based models

TextRank 27.04 25.08 36.65 11.80 18.28 20.22 3.80 5.38 7.65
SingleRank 27.79 34.46 36.05 20.43 25.59 25.70 5.90 9.02 10.58
TopicRank 25.38 28.46 29.49 21.56 23.12 20.87 12.12 12.90 13.54
PositionRank 28.12 32.87 33.32 23.35 28.57 28.60 9.84 13.34 14.33
MultipartiteRank 25.96 29.57 30.85 23.20 25.00 25.24 12.13 13.79 14.92

Embedding-based Models

EmbedRank d2v 31.51 37.94 37.96 24.02 28.12 28.82 3.02 5.08 7.23
EmbedRank s2v 29.88 37.09 38.40 27.16 31.85 31.52 5.40 8.91 10.06
SIFRank 29.11 38.80 39.59 24.27 27.43 27.86 – – –
SIFRank+ 28.49 36.77 38.82 30.88 33.37 32.24 – – –
KeyGames 32.12 40.48 40.94 24.42 28.28 29.77 11.93 14.35 14.62

Our model

UKERank 32.61 40.17 41.09 28.62 35.52 36.29 13.02 19.35 21.72
Pipeline 34.03 40.67 41.42 28.74 35.55 36.23 14.55 21.75 24.13
Joint 34.59 40.90 42.19 31.80 36.66 38.87 18.03 25.44 28.97

Table 4
Recall score with different candidate keyphrase generation
method.

Method Inspec DUC2001 SemEval2010

NPChunk 76.27 87.82 73.93
MaxSpan 15.08 19.41 41.24
Wiki-Filter 11.15 9.64 8.96

see that both EmbedRank and SIFRank perform better than graph-based models on short length documents (i.e. DUC2001 and
Inspec). KeyGames and our previous work UKERank are more generalized and work well on both short and long input documents.
The strength of UKERank is evident on long scientific documents (i.e. SemEval2010). This is mainly attributed to the modeling of
local context by boundary-aware centrality (Liang, Wu et al., 2021b).

Although these works above yield good results on benchmark datasets, the existing methods, either graph-based or embedding-
based, do not consider the salience of sentences, which inevitably hinder their performance. The large margin gains by our methods
(i.e. the pipeline model and joint model) through modeling hierarchical multi-granularity features (i.e. the phrase-level and sentence-
level information) strongly demonstrate that our models are very effective. The encouraging results of our pipeline model reveal
positive synergy between keyphrase extraction task and salient sentences extraction task. Moreover, the further performance gains
by our joint model, which accounts for both sentence and phrase representations of the source document via hierarchical graphs,
demonstrate the effectiveness of simultaneously modeling of hierarchical multi-granularity features.

4.2. Evaluation of different candidate keyphrase generation method

To further verify the effectiveness of the heuristic method (noun phrase chunking method, i.e. NPChunk), we select two
alternative approaches for candidate keyphrase generation stage. They are MaxSpan (maximum span from all possible spans) and
Wiki-Filter (distantly supervised method based on WiKi entities), respectively (Gu et al., 2021). MaxSpan keeps the maximum span
as candidate phrase if there exist overlaps among all possible multi-word spans. Wiki-Filter follows a string matching from the
Wikipedia entities from all possible multi-word spans. We compare the recall scores of different candidate keyphrase generation
methods. As illustrated in Table 4, it can be seen that NPChunk outperforms MaxSpan and Wiki-Filter by a large margin. The
average recall score of NPChunk can reach over 79.34, which is sufficient to support subsequent ranking methods.

4.3. Impact of the number of extracted sentences

As discussed in Section 1, only a small fraction of sentences in a document may contain keyphrases. Therefore, the number of
extracted salient sentences will have a profound impact on the performance of our pipeline model. We evaluate the performance
of our pipeline model with varying numbers of extracted salient sentences. Specifically, we vary the proportions of the number of
the extracted salient sentences to the averaged number of sentences, which includes: {40, 60, 80, 100} (%). As shown in Fig. 3, there
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Fig. 3. Recall score with different proportions of the number of the extracted sentences to the averaged number of sentences.

Table 5
Performance with different proportions of the number of extracted sentences to the averaged number of sentences.

Models Inspec DUC2001 SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Oracle 34.88 42.91 44.05 36.14 45.21 45.33 19.75 27.30 29.96

UKERank 32.61 40.17 41.09 28.62 35.52 36.29 13.02 19.35 21.72

Pipeline+40% 30.57 31.49 31.33 29.18 34.64 35.15 14.63 21.75 23.97
Pipeline+60% 33.48 38.49 37.10 28.68 35.30 35.82 14.55 21.75 24.13
Pipeline+80% 34.24 40.03 39.67 28.74 35.59 36.21 14.55 21.75 24.13
Pipeline+100% 34.03 40.67 41.42 28.74 35.55 36.23 14.55 21.75 24.13

Table 6
The results of ablation experiments on three benchmark datasets.

Models Inspec DUC2001 SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Joint 34.59 40.90 42.19 31.80 36.66 38.87 18.03 25.44 28.97

- Sentence 34.06 40.77 42.07 29.53 35.08 37.52 16.05 23.78 27.05

is a clear trend that the recall scores increase as a higher proportion of the extracted sentences are included. With only 60% of the

averaged number of sentences on all datasets, the recall score can reach over 70%.

Similarly, Table 5 presents the detailed performance when the proportions of the extracted sentences are varied on the three

datasets. From the results, we can find that our pipeline model even outperforms the strong baseline UKERank with only 60% of

the averaged number of sentences in terms of F1@5 on all three datasets. These results indicate that our Sentence-then-Keyphrase

ranking model is able to significantly highlight the salient information of the full-text document and improve the performance of

unsupervised keyphrase extraction. Note that Oracle baseline can be considered as the upper bound of the pipeline model, which

extracts keyphrases from the oracle sentences5 directly. Presumably, using more recent and state-of-the-art extractive summarization

methods will further improve the performance of our pipeline model, which could be investigated in future work.

4.4. Impact of sentence node

We perform ablation study to evaluate the contribution of the sentence node in our joint model, where the results are illustrated

in Table 6. It can be observed that our joint model performance degrades after removing sentence nodes. This result verifies the

effectiveness of our hierarchical graph representation ranking model. Note that the performance of our model on Inspec is not

sensitive to the removal of sentence nodes. One plausible explanation is that the document length of Inspec is very short compared

to the other two datasets, the limited number of sentences leads to a limited impact of sentence nodes. However, for relatively long

documents, especially for DUC2001 and SemEval2010, the sentence node plays an important role. Overall, we show that modeling

hierarchical multi-granularity features in a joint manner is crucial for unsupervised keyphrase extraction.

5 Salient sentence which contains keyphrases of the document are regarded as Oracle in our paper.
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Fig. 4. Performance with different 𝜆.

Fig. 5. Performance with different 𝛽.

4.5. Impact of hyper-parameters

In this section, we analyze the influence of the hyper-parameters and report the optimal settings for each dataset. We have two
hyper-parameter 𝜆 and 𝛽 in our joint model, where 𝜆 is the weight that balances the importance between the sentence nodes and
phrase nodes, 𝛽 is used to control the filter boundary.

We test the performance of our model based on the development set by changing the values of 𝜆 from 0.0 to 1.0, with an
increment step of 0.2. From Fig. 4, the best values of 𝜆 are 0.2 for DUC2001 and Inspec, and 1.0 for SemEval2010. These settings are
intuitive and conform to the characteristics of the experimental datasets. As Inspec comes from the abstracts of scientific papers and
DUC2001 is derived from news articles, the number of sentences in these two datasets is relatively small compared to SemEval2010.
As a result, salient sentences are more evenly distributed, parameter 𝜆 should be set to a smaller value to minimize the influence
of non-salient sentence nodes. In contrast, SemEval2010 is constructed based on long scientific documents with more unimportant
sentences, and hence require setting 𝜆 with a larger value to maximize the influence of salient sentences nodes.

In our experiment, we follow the setting of prior work (Liang, Wu et al., 2021b) by setting the value of 𝛽 = 0.2. To validate the
setting, we further evaluate the performance of our model based on the development set by changing the values of 𝛽 from 0.0 to 0.8,
with an increment step of 0.2. As shown in Fig. 5, 𝛽 = 0.2 is the best setting for all three experimental datasets. Hyper-parameter
𝛽 controls the threshold below which the similarity score is set to 0. The figure shows that hyper-parameter 𝛽 has great impact on
the performance of the model. This also shows that noisy phrases/sentences do exist and hurt the performance of centrality-based
models.

4.6. Impact of different similarity measure method

We adopt dot-product similarity score as centrality scoring in this paper. Empirically, the simple dot-product usually performs
better than other similarity measurements (e.g. cosine similarity) for BERT representations (Liang, Li, Wu, Li, & Li, 2021; Liang, Wu,
Li, & Li, 2021c; Zheng & Lapata, 2019). To verify it, we also use other similarity measure methods (e.g. cosine similarity). As shown
in Table 7, we find that the simple dot-product indeed performs better. One possible explanation is that we use the frozen BERT to
encode the text and its representations are only optimized for the masked word prediction task, which does not aim to measure the
similarity between words. The normalization of representations may break the learned relative relation between words. This is a
very meaningful problem, and we believe investigating this phenomenon could be research problem in itself. We will try to explore
this problem in our future work.
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Table 7
The results of different similarity measure methods for centrality scoring.

Similarity Inspec DUC2001 SemEval2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Dot-product 34.59 40.90 42.19 31.80 36.66 38.87 18.03 25.44 28.97
Cosine 32.79 36.69 37.24 27.79 33.02 34.79 17.15 21.98 22.45

Table 8
An example from DUC2001. The extracted salient sentences are underlined. Red text indicates the
extracted gold truth. Blue text indicates other phrases extracted by our model.

Article
A formal model of computing with words. Classical automata are formal models of
computing with values. Fuzzy automata are generalizations of classical automata where
the knowledge about the system ’s next state is vague or uncertain. It is worth noting that
like classical automata, fuzzy automata can only process strings of input symbols.
Therefore, such fuzzy automata are still -LRB- abstract -RRB- devices for computing with
values, although a certain vagueness or uncertainty are involved in the process of
computation. We introduce a new kind of fuzzy automata whose inputs are instead
strings of fuzzy subsets of the input alphabet. These new fuzzy automata may serve as
formal models of computing with words. We establish an extension principle from
computing with values to computing with words. This principle indicates that computing
with words can be implemented with computing with values with the price of a big
amount of extra computations.

Gold Truth
formal model; computing with words; fuzzy automata; fuzzy subsets; input alphabet; extension
principle; pushdown automata

Our Model
Top5: formal model; words; classic automata; fuzzy automata; input symbols;
Top10: fuzzy subsets; values; input alphabet; strings; next state;
Top15: knowledge; system; extension principle; generalizations;

4.7. Quantitative analysis

We further conducted a qualitative analysis (see Table 8) based on DUC2001 to validate the effectiveness of our approach. The
top row of Table 8 shows a new article from the dataset, where the extracted salient sentences (i.e., important sentence nodes) are
underlined. Phrases in red indicate the extracted gold truth and the phrase in blue denote other phrases extracted by our model. We
can see that our model extracts a lot of correct keyphrases which are the same as the ground truth. It is worth mentioning that salient
sentences extracted by our model contain the keyphrases successfully. These salient sentences highlight the full-text’s important
information and shorten the length of the full-text document greatly. By adding more weight to these salient sentence nodes, or
just extracting keyphrases based on them, the performance of keyphrase extraction is further improved. This example strongly
demonstrates that our modeling of hierarchical multi-granularity features is very effective for unsupervised keyphrase extraction.

5. Discussion and implication

Our previously proposed UKERank model6 (Liang, Wu et al., 2021b) jointly models global and local context. Specifically, for
the global view, we compute the similarity between the given phrase and the whole document in the vector space. For the local
view, we first build a graph based on the input document itself, where candidate keyphrases are considered as vertices and edges
between them are weighted by their similarities. We then propose a boundary-aware centrality computational approach to measure
the salience of local context, which is based on the observation that most significant information usually appears at the beginning
or end of a document (Dong, Romascanu, & Cheung, 2021). Finally, we combine global and local context modeling for keyphrase
ranking. The good experimental results demonstrate that UKERank can effectively capture global and local information. The ablation
study also verifies the effectiveness of local context modeling, which was ignored by previous methods.

Nevertheless, UKERank ignores the salience of sentences, which is an important factor for keyphrase extraction. To address this
issue, we propose a novel position-aware graph-based unsupervised keyphrase extraction model (pipeline model and joint model) to
explicitly characterize phrase-level and sentence-level information simultaneously. The improvement of our models over UKERank
validates the effectiveness of our modeling of hierarchical multi-granularity features. Our model also shows positive synergy between
the salient sentence extraction task and the keyphrase extraction task, suggesting that better integration of these two tasks is a
direction worth studying in depth.

It is worth noting that in addition to modeling the salience of sentences, another difference between UKERank and the proposed
models in this paper is that we remove both global similarity and boundary-aware centrality components, and instead adopt a simpler

6 Note that Xinnian Liang, the second author of this manuscript, is also the first author of UKERank model (Liang, Wu et al., 2021b).
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and general position-aware graph-based centrality to score the keyphrases/sentences. Specifically, in terms of global similarity, the
representation of a long document may contain multiple aspects of information that affect the similarity between the phrase and the
entire document, which results in a limited impact on the global information. In addition, boundary-aware centrality imposes hard
constraint on modeling the amount of text from the beginning and the end of the document that are considered important, controlled
by a fixed hyper-parameter. In contrast, our algorithm is more flexible in the sense that we add the salience of sentence-level node to
the importance of phrase-level node using graph-based centrality scoring where sentences are regarded as vertices and the edges are
sentence similarities. Essentially, the sentence-level information can also be regarded a kind of inductive bias, this coarse-grained
sentence-level node, which contains more global information compared to fine-grained phrase-level node, helps the model locate
salient sentences across the whole document and enhance the representations of the source document to improve the keyphrase
importance ranking (it could be regarded as a kind of soft constraint). All of these modifications, including the removal of both
global similarity and boundary-aware centrality components, make our model more generic and robust.

6. Related work

6.1. Pre-trained language model

Pre-trained language models (PLMs) are the type of models that are trained on large amounts of unlabeled corpora through neural
networks and then fine-tuned with respect to specific downstream tasks. Different from previous static text representations which
are obtained by Word2Vec (Mikolov, Chen, Corrado, & Dean, 2013), GloVe (Pennington et al., 2014), or FastText (Joulin, Grave,
Bojanowski, & Mikolov, 2017), PLMs can provide high quality embeddings of the text by encoding words, sentences, or documents
with dynamic context. Contextual representations obtained from PLMs can provide better semantic information in contrast with
Sen2Vec (Pagliardini et al., 2018) or Doc2Vec (Le & Mikolov, 2014). Moreover, the out of vocabulary (OOV) problem can also be
alleviated by calculating text representations dynamically based on the context.

ELMo (Peters et al., 2018) can produce deep contextualized representation by capturing bidirectional information via concate-
nating the forward and backward layers of the Bi-LSTM model. Recently, autoencoding Pre-trained Language Model BERT (Devlin
et al., 2019), a deep bidirectional Transformers model, can capture better contextual representations than ELMo. There are other
PLMs such as BERT’s variant RoBERTa (Liu et al., 2019), autoregressive XLNet (Yang et al., 2019), Denoising Sequence-to-Sequence
BART (Lewis et al., 2020), and Knowledge-enhanced ERNIE 2.0 (Sun, Wang et al., 2020). In this paper, BERT is employed to generate
contextual representations of phrases and sentences by pooling their embeddings.

6.2. Supervised keyphrase extraction

Typical supervised keyphrase extraction methods consists of two steps: (1) extract candidate keyphrases from the source
document and (2) estimate keyphrase importance to rank the candidate keyphrases. In the candidate keyphrase extraction stage,
the heuristic algorithms are employed to compose words into n-grams as candidate keyphrases (Gu et al., 2021; Wang, Fan, &
Rosé, 2020; Xiong, Hu, Xiong, Campos, & Overwijk, 2019). The representations of the candidate keyphrases are often captured by
Convolution Neural Network (CNN) or Pre-trained Language Model. In the keyphrase importance estimation stage, many ranking
algorithms are proposed to rank the candidate keyphrases (Jiang, Hu, & Li, 2009). This process is often reformulated as a span
classification problem, where keyphrases are extracted by a binary classifier. Recently, Sun, Xiong, Liu, Liu, and Bao (2020) jointly
employs a chunking network and a ranking network to balance the estimation of keyphrase quality and salience for keyphrase
extraction. Song, Jing, and Xiao (2021) proposes a new keyphrase importance estimation approach from multiple perspectives,
including syntactic accuracy, information saliency, and concept consistency simultaneously.

Despite their effectiveness, all of these extraction methods can only extract keyphrases that appear in the source document.
They fail to extract absent keyphrases that do not appear in the source document. Researchers attempt to formalize the keyphrase
extraction as a unified keyphrase generation problem using generic Sequence-to-Sequence model (Meng et al., 2021). Chowdhury,
Rossiello, Glass, Mihindukulasooriya, and Gliozzo (2022) adopts a generative pre-trained language model BART to generate both
present and absent keyphrases. Ye, Cai, Gui, and Zhang (2021) proposes a heterogeneous graph-based approach that can capture
explicit knowledge from related references for absent keyphrase generation. In contrast to supervised methods which require large
amount of labeled training corpora, unsupervised methods are more flexible and adaptable by extracting keyphrases based on
information from the input documents themselves. In this paper, we focus on unsupervised keyphrase extraction methods.

6.3. Unsupervised keyphrase extraction

Researchers have developed a series of solutions for unsupervised keyphrase extraction (UKE). The most traditional methods are
statistics-based models (Campos et al., 2018). These methods extract keyphrases by analyzing the word frequency feature, position
feature or linguistic feature of an article. Topic-based models (Liu, Li, Zheng, & Sun, 2009) mine keyphrases according to the
probability distribution of documents.

Graph-based models, which use centrality scoring algorithm to determine the importance of candidate keyphrases, are the most
popular approaches. A document is represented as a graph where words or phrases are nodes of the graph and edges between them
are weighted by their similarities. Specifically, the early work TextRank (Mihalcea, 2004) translates the keyphrase extraction into
the ranking of nodes of the graph. After that, a variety of works are proposed to extend TextRank. SingleRank (Wan & Xiao, 2008)
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adopts co-occurrences of words as edge weights. TopicRank (Bougouin et al., 2013) assigns a significance score to each topic by
clustering candidate keyphrases. Boudin (2018) proposes MultipartiteRank, which encodes topical information within a multipartite
graph structure. Recently, Vega-Oliveros, Gomes, Milios, and Berton (2019) analyzes nine centrality measures to find the optimal
combination of word rankings for keyphrase extraction. Ushio, Liberatore, and Camacho-Collados (2021) conducts a quantitative
analysis of statistical and graph-based term weighting scheme for keyphrase extraction. Their interesting findings could serve as a
reference for future studies to understand the advantages and disadvantages of each method in different settings.

Embedding-based models (Papagiannopoulou & Tsoumakas, 2018; Wang, Jin, Zhu, & Goutte, 2016) map natural text into low-
dimension vector representation space. Thanks to the development of representation learning, these methods have achieved potential
performance. Specifically, EmbedRank (Bennani-Smires et al., 2018) extract keyphrases by measuring the similarities between
embeddings of candidate keyphrases and the document. SIFRank (Sun, Qiu et al., 2020) extends EmbedRank by replacing the static
embedding with a deep contextualized representations from the pre-trained language model. Zhang et al. (2022) address the issue
of sequence length mismatch between candidate keyphrases and the document by computing the similarity between a masked
document and source document. These existing models ignore the local information by calculating similarities between document
and candidate keyphrases only. To this end, UKERank (Liang, Wu, Li, & Li, 2021a) calculates the similarity between candidate
keyphrase and the entire document as global similarity, and combines it with boundary-aware centrality which is regarded as local
salience to extract keyphrase. There also exists some works that resort to pre-trained language models to extract keyphrases. Ding
and Luo (2021) investigates the accumulated self-attention and cross-attention from the pre-trained language model for unsupervised
keyphrase extraction.

As we pointed out earlier, the salience of sentences has not been exploited by all of these existing methods, which limits their
performance for this task. We hypothesize that salient sentences in a document are particularly important as they are most likely to
contain keyphrases. To this end, we propose two model variants, Sentence-then-Keyphrase Ranking Model and Hierarchical Graph
Representation Ranking Model, to characterize the salience of sentences and further improve the performance of unsupervised
keyphrase extraction.

7. Conclusion

In this paper, we demonstrate that the existing works ignore the salience of sentences for unsupervised keyphrase extraction. Our
work is among the earliest studies to exploit the salience of sentences for unsupervised keyphrase extraction by modeling hierarchical
multi-granularity features. We propose two model variants, a Sentence-then-Keyphrase Ranking Model and a Hierarchical Graph
Representation Ranking Model, to characterize the salience of sentence and further improve the performance of unsupervised
keyphrase extraction. Extensive experiments are conducted to validate and explain the effectiveness of our model. Our study
also shows positive synergy between the salient sentence extraction task and the keyphrase extraction task, suggesting that better
integration of these two tasks is a promising direction. This will be a useful insight to practitioners of the field. Future work will
further exploit the strong relations between the salient sentence extraction task and the keyphrase extraction task in a supervised
manner.
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