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Klingen Eisenstein congruences and Mod-
ularity

Tobias Berger, Jim Brown and Krzysztof Klosin

Abstract. We construct a mod ℓ congruence between a Klingen Eisenstein series (associated to a clas-

sical newform 𝜙 of weight 𝑘) and a Siegel cusp form 𝑓 with irreducible Galois representation. We

use this congruence to show non-vanishing of the Bloch-Kato Selmer group𝐻1
𝑓
(Q, ad0 𝜌𝜙 (2 − 𝑘 ) ⊗

Qℓ/Zℓ ) under certain assumptions and provide an example. We then prove an 𝑅 = 𝑑𝑣𝑟 theorem for

the Fontaine-Laffaille universal deformation ring of 𝜌 𝑓 under some assumptions, in particular, that

the residual Selmer group𝐻1
𝑓
(Q, ad0 𝜌𝜙 (𝑘−2) ) is cyclic. For thiswe prove a result about extensions

of Fontaine-Laffaille modules. We end by formulating conditions for when𝐻1
𝑓
(Q, ad0 𝜌𝜙 (𝑘 − 2) ) is

non-cyclic and the Eisenstein ideal is non-principal.

1 Introduction

The construction of Eisenstein congruences has a long and consequential history.
Interesting in their own right, their significance is amplified by the existence of Galois
representations attached to the congruent forms, as the ones attached to Eisenstein
series are always reduciblewhile the ones attached to cusp forms are often irreducible.
Using various generalizations of the result known as Ribet’s Lemma, they lead to the
construction of non-zero elements in Selmer groups.This directionwas first explored
by Ribet himself in the context of the groupGL2 in [45] and later used by many other
authors in a variety of different settings e.g. [60], [16], [49].

In a different direction, such congruences can play a crucial role in proving modu-
larity of deformations of reducible residual Galois representations 𝜌, see e.g. [50], [6],
[9], [10], [17], [56], and [54]. In [17] Calegari introduced a method of proving modular-
ity assuming 𝜌 is unique up to isomorphism, which relies on proving the principality
of the ideal of reducibility of the universal deformation ring 𝑅 of 𝜌. This method was
developed further byBerger andKlosin [5, 6, 9] andWake andWang-Erickson [56] and
successfully applied in many contexts (see also [1, 29]). It relies heavily on the ideas of
Bellaiche and Chenevier [4] and their study of Generalized Matrix Algebras (GMAs).

In this paper we pursue both of these directions in the case of Klingen Eisenstein
series of level one on the group Sp4. More precisely, let 𝑘 ≥ 12 be an even integer
and 𝜙 a classical weight 𝑘 Hecke eigenform of level 1 (i.e., on the groupGL2/Q ). Write

𝐸
2,1
𝜙

for the (appropriately normalized) Klingen Eisenstein series on Sp4 induced
from 𝜙. It is a Siegel modular form of weight 𝑘 and full level. Congruences between
Klingen Eisenstein series and cusp forms have been studied previously by Kurokawa

AMS subject classification: 11F33,11F67,11F80.
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2 T. Berger and J. Brown and K. Klosin

[35, 36], Katsurada andMizumoto [32, 39], Takeda [52], andUrban (unpublished). Kat-
surada and Mizumoto obtain congruences as an application of the doubling method.
In this paper, we produce congruences via a much shorter argument using results
of Yamauchi [61]. The trade-off is that while our proof is much shorter, we obtain
congruences only modulo a prime ℓ whereas Katsurada and Mizumoto obtain con-
gruences modulo powers of ℓ. However, the hypotheses required for our result are
different and less restrictive than those needed in [32]. We show that under certain
conditions 𝐸2,1

𝜙
is congruent to some cusp form 𝑓 of the same weight and level with

irreducible Galois representation (Theorem 3.5). This is the first main result of the
paper.These congruences are governed by the numerator of the (algebraic part) of the
symmetric square 𝐿-function 𝐿alg (2𝑘 − 2, Sym2𝜙) of 𝜙. We also exhibit a concrete
example when the assumptions of Theorem 3.5 are satisfied (see Example 3.6).

We then proceed to show that these congruences give rise (under some assump-
tions) to non-trivial elements in the Selmer group 𝐻2−𝑘 := 𝐻1

𝑓
(Q, ad 𝜌𝜙 (2 − 𝑘) ⊗

Qℓ/Zℓ). Here 𝜌𝜙 is the Galois representation attached to 𝜙 by Deligne and we use
the Fontaine-Laffaille condition at ℓ. Assuming the Vandiver Conjecture for ℓ we
also deduce the non-triviality of the Selmer group 𝐻1

𝑓
(Q, ad0 𝜌𝜙 (2 − 𝑘) ⊗ Qℓ/Zℓ)

(Corollary 5.7 and Remark 5.8). This is our second main result and gives evidence for
new cases of the Bloch-Kato conjecture. This conjecture was studied for other twists
of ad 𝜌𝜙 by [20] and [34]. In [53] Urban assumed the existence of Klingen Eisenstein
congruences to prove a result towards the main conjecture of Iwasawa theory for the
adjoint 𝐿-function.

To properly analyze these Selmer groups we require some results on extensions
of Fontaine-Laffaille modules whose proofs appear to be absent in the literature. In
Section 4 we carefully study certain aspects of Fontaine-Laffaille theory, in particu-
lar, prove the Hom-tensor adjunction formula and give a precise definition of Selmer
groups with coefficient rings of finite length.

Given the eigenvalue congruence 𝐸2,1
𝜙
≡ 𝑓 (mod ℓ) we also study deformations

of a non-semi-simple Galois representation 𝜌 : 𝐺Q → GL4 (Fℓ) whose semi-
simplification arises from the Klingen Eisenstein series. Such a representation is
reducible with two 2-dimensional Jordan-Holder blocks and more precisely one has

𝜌 =

[
𝜌𝜙 ∗

𝜌𝜙 (𝑘 − 2)

]
.

Conjecturally such representations should arise as mod ℓ reductions of Galois rep-
resentations attached to Siegel cusp forms which are congruent to 𝐸2,1

𝜙
mod ℓ. We

assume that dim𝐻2−𝑘 [ℓ] = 1, where [ℓ] indicates ℓ-torsion. This can be seen as
a refinement of the uniqueness assumption of [50] similar to the one in [6] and as
in [6, 17] we prove the principality of the reducibility ideal of the universal defor-
mation. However, this principality cannot be achieved through the method of [6]
because the representation in question fails to satisfy the strong self-duality property
required for the method of [loc.cit.]. Instead we improve on a recent result of Akers
[1] which replaces the self-duality condition with a one-dimensionality assumption
on the Selmer group 𝐻𝑘−2 := 𝐻1

𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) of the ‘opposite’ Tate twist of
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Klingen Eisenstein congruences and Modularity 3

ad 𝜌𝜙 . With these assumptions in place we are able to show that the universal defor-
mation ring 𝑅 is a discrete valuation ring and prove a modularity result guaranteeing
that the unique deformation of 𝜌 indeed arises from a Siegel cusp form congruent to
𝐸
2,1
𝜙

(Theorem 6.20). This is the third main result of the paper.
We then proceed to formulate conditions for non-cyclicity of the Selmer group

𝐻𝑘−2. Whilemany results in the literature give bounds on the orders of Selmer groups
(in particular, Corollary 5.7 gives such a lower bound on 𝐻2−𝑘 ), the structure of these
groups is notoriously mysterious. In this paper we prove that if the (local) Klingen
Eisenstein ideal 𝐽𝔪 is not principal then 𝐻𝑘−2 is not cyclic (Corollary 7.3). We further
refine this result by providing a criterion for non-principality in terms of the depth
of congruences between cusp forms and 𝐸2,1

𝜙
(Corollary 7.5). An intriguing feature of

these results is that 𝐻𝑘−2 is non-critical, i.e. this Selmer group is not controlled by a
critical 𝐿-value in the sense of Deligne.

The authors would like to thank Jeremy Booher and Neil Dummigan for helpful
discussions.

2 Background and notation

Given a field 𝐹 we denote by𝐺𝐹 its absolute Galois group. Fix a rational prime ℓ > 2.
If 𝑀 is a topological Zℓ [𝐺𝐹]-module we will write 𝑀 (𝑛) = 𝑀 ⊗ 𝜖𝑛 for the 𝑛-th Tate
twist where 𝜖 denotes the ℓ-adic cyclotomic character.

For each prime 𝑝, we fix an embedding Q ↩→ Q𝑝 . This is equivalent to choosing

a prime 𝑝 of Q lying over 𝑝 and fixes an isomorphism 𝐷 𝑝 � 𝐺Q𝑝
, where 𝐷 𝑝 is the

decomposition group of 𝑝. We will denote by 𝐼𝑝 ⊂ 𝐷 𝑝 the corresponding inertia

group. We also fix an isomorphismQℓ � C.
Let 𝐸 denote a finite extension of Qℓ with valuation ring O, uniformizer 𝜆 and

residue field F. For a continuous homomorphism 𝜌 : 𝐺𝐹 → GL𝑛 (O) we write 𝜌 :

𝐺𝐹 → GL𝑛 (F) for the mod 𝜆 reduction of 𝜌.
For 𝑛 ∈ Z+, we denote by Mat𝑛 (resp. GL𝑛) the affine group scheme

over Z of 𝑛 × 𝑛 (resp. invertible) matrices. Given a matrix 𝛾 ∈ Mat2𝑛, we

will write it as 𝛾 =

[
𝑎𝛾 𝑏𝛾
𝑐𝛾 𝑑𝛾

]
where the blocks are in Mat𝑛. Set GSp2𝑛 =

{𝑔 ∈ GL2𝑛 :
𝑡𝑔𝐽𝑛𝑔 = 𝜇𝑛 (𝑔)𝐽𝑛, 𝜇𝑛 (𝑔) ∈ GL1} ,where 𝐽𝑛 =

[
0𝑛 −1𝑛
1𝑛 0𝑛

]
where 1𝑛 is the

𝑛 by 𝑛 identity matrix, and 𝜇𝑛 : GL2𝑛 → GL1 is the homomorphism defined via
the equation given in the definition. Write GSp+2𝑛 (R) for the subgroup of GSp2𝑛 (R)
consisting of elements 𝑔 with 𝜇𝑛 (𝑔) > 0. We set Sp2𝑛 = ker(𝜇𝑛) and

Γ𝑛 = Sp2𝑛 (Z) =
{
𝑔 ∈ GL2𝑛 (Z) :

𝑡𝑔𝐽𝑛𝑔 = 𝐽𝑛
}
.

Note that Sp2 = SL2, the subgroup scheme of GL2 of matrices of determinant one.
The Siegel upper half-space is given by

𝔥𝑛 = {𝑧 = 𝑥 + 𝑖𝑦 ∈ Mat𝑛 (C) : 𝑥, 𝑦 ∈ Mat𝑛 (R),
𝑡𝑧 = 𝑧, 𝑦 > 0}

where we write 𝑦 > 0 to indicate that 𝑦 is positive definite. The groupGSp+2𝑛 (R) acts
on 𝔥𝑛 via 𝛾𝑧 = (𝑎𝛾𝑧 + 𝑏𝛾) (𝑐𝛾𝑧 + 𝑑𝛾)

−1.
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4 T. Berger and J. Brown and K. Klosin

For a function 𝑓 : 𝔥𝑛 → C set ( 𝑓 |𝜅𝛾) (𝑧) = 𝜇𝑛 (𝛾)
𝑛𝑘/2 𝑗 (𝛾, 𝑧)−𝑘 𝑓 (𝛾𝑧) for 𝛾 ∈

GSp+2𝑛 (R) and 𝑧 ∈ 𝔥𝑛 where 𝑗 (𝛾, 𝑧) = det(𝑐𝛾𝑧+𝑑𝛾). A Siegelmodular formofweight
𝑘 and level Γ𝑛 is a holomorphic function 𝑓 : 𝔥𝑛 → C satisfying ( 𝑓 |𝑘𝛾) (𝑧) = 𝑓 (𝑧)

for all 𝛾 ∈ Γ𝑛. If 𝑛 = 1, we also require the standard growth condition at the cusp.
We denote the C-vector space of Siegel modular forms of weight 𝑘 and level Γ𝑛 as
𝑀𝑘 (Γ𝑛). Any 𝑓 ∈ 𝑀𝑘 (Γ𝑛) has a Fourier expansion of the form

𝑓 (𝑧) =
∑︁
𝑇∈Λ𝑛

𝑎(𝑇 ; 𝑓 )𝑒(Tr(𝑇𝑧))

where Λ𝑛 is defined to be the set of 𝑛 by 𝑛 half-integral (diagonal entries are in Z,
off diagonal are allowed to lie in 1

2
Z) positive semi-definite symmetric matrices and

𝑒(𝑤) := 𝑒2𝜋𝑖𝑤 . Given a ring 𝐴 ⊂ C, we write 𝑓 ∈ 𝑀𝑘 (Γ𝑛; 𝐴) if 𝑎(𝑇 ; 𝑓 ) ∈ 𝐴 for
all 𝑇 ∈ Λ𝑛. Define the subspace 𝑆𝑘 (Γ𝑛) = kerΦ ⊂ 𝑀𝑘 (Γ𝑛) of cusp forms, where

Φ( 𝑓 ) (𝑧) = lim𝑡→∞ 𝑓

( [
𝑧 0

0 𝑖𝑡

] )
.

We will now introduce certain Eisenstein series, which will play a prominent role
in this paper. For 𝑛 ≥ 1 and 0 ≤ 𝑟 ≤ 𝑛 define the parabolic subgroup

𝑃𝑛,𝑟 =






𝑎1 0 𝑏1 ∗

∗ 𝑢 ∗ ∗

𝑐1 0 𝑑1 ∗

0 0 0 𝑡𝑢−1


∈ Γ𝑛 :

[
𝑎1 𝑏1
𝑐1 𝑑1

]
∈ Γ𝑟 , 𝑢 ∈ GL𝑛−𝑟 (Z)



.

We define projections★ : 𝔥𝑛 → 𝔥𝑟 , 𝑧 =

[
𝑧★ ∗

∗ ∗

]
↦→ 𝑧★‘ and★ : 𝑃𝑛,𝑟 → Γ𝑟 , 𝛾 ↦→ 𝛾★ =[

𝑎1 𝑏1
𝑐1 𝑑1

]
.

Let 𝜙 ∈ 𝑆𝑘 (Γ1). The Klingen Eisenstein series attached to 𝜙 is the series

𝐸
2,1
𝜙
(𝑧) =

∑︁
𝛾∈𝑃2,1\Γ2

𝜙((𝛾𝑧)★) 𝑗 (𝛾, 𝑧)−𝑘

where 𝑧 ∈ 𝔥2. The Eisenstein series converges for 𝑘 ≥ 12, see [33] Theorem 1 page 67
for example. Note that [33] Proposition 5 page 68 givesΦ(𝐸2,1

𝜙
) = 𝜙.

Given two Siegel modular forms 𝑓1, 𝑓2 ∈ 𝑀𝑘 (Γ𝑛) with at least one a cusp form, set

⟨ 𝑓1, 𝑓2⟩ =

∫
Γ𝑛\𝔥𝑛

𝑓1 (𝑧) 𝑓2 (𝑧) (det 𝑦)
𝑘𝑑𝜇𝑧,

where 𝑧 = 𝑥 + 𝑖𝑦 with 𝑥 = (𝑥𝛼,𝛽), 𝑦 = (𝑦𝛼,𝛽) ∈ Mat𝑛 (R), 𝑑𝜇𝑧 =

(det 𝑦)−(𝑛+1)
∏
𝛼≤𝛽 𝑑𝑥𝛼,𝛽

∏
𝛼≤𝛽 𝑑𝑦𝛼,𝛽 with 𝑑𝑥𝛼,𝛽 and 𝑑𝑦𝛼,𝛽 the usual Lebesgue

measure on R.
Given 𝛾 ∈ GSp+2𝑛 (Q), we write 𝑇 (𝛾) to denote the double coset Γ𝑛𝛾Γ𝑛 and set

𝑇 (𝛾) 𝑓 =
∑
𝑖 𝑓 |𝑘𝛾𝑖 where the 𝛾𝑖 are given by the finite decomposition Γ𝑛𝛾Γ𝑛 =∐

𝑖 Γ𝑛𝛾𝑖 and 𝑓 ∈ 𝑀𝑘 (Γ𝑛). Let 𝑚 > 1. We define 𝑇 (𝑛) (𝑚) via

𝑇 (𝑛) (𝑚) =
∑︁

𝑑1𝑒1=· · ·=𝑒𝑛𝑑𝑛=𝑚
𝑑1 |𝑑2 | · · · |𝑑𝑛 |𝑒𝑛 |𝑒𝑛−1 | · · · |𝑒1

𝑇 (diag(𝑑1, . . . , 𝑑𝑛, 𝑒1, . . . , 𝑒𝑛)).
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Klingen Eisenstein congruences and Modularity 5

In particular, for 𝑝 a prime we have

𝑇 (𝑛) (𝑝) = 𝑇 (diag(1𝑛, 𝑝1𝑛)).

We also define

𝑇
(𝑛)
𝑖
(𝑝2) = 𝑇 (diag(1𝑛−𝑖 , 𝑝1𝑖 , 𝑝

21𝑛−𝑖 , 𝑝1𝑖)), 1 ≤ 𝑖 ≤ 𝑛.

The spaces 𝑀𝑘 (Γ𝑛) and 𝑆𝑘 (Γ𝑛) are both stable under the action of 𝑇 (𝑛) (𝑝) and

𝑇
(𝑛)
𝑖
(𝑝2) for 1 ≤ 𝑖 ≤ 𝑛 and all 𝑝. We say a nonzero 𝑓 ∈ 𝑀𝑘 (Γ𝑛) is an eigenform

if it is an eigenvector of 𝑇 (𝑛) (𝑝) and 𝑇
(𝑛)
𝑖
(𝑝2) for all 𝑝 and all 1 ≤ 𝑖 ≤ 𝑛. As we

will be focused on the case 𝑛 = 2, we specialize to that case. We let T′ denote the Z-

subalgebra of EndC (𝑆𝑘 (Γ2)) generated by the Hecke operators 𝑇
(2) (𝑝) and 𝑇

(2)
1
(𝑝2)

for all primes 𝑝.
Recall that 𝐸/Qℓ denotes a finite extension with valuation ring O and uniformizer

𝜆. Given eigenforms 𝑓1, 𝑓2 ∈ 𝑀𝑘 (Γ𝑛;O), following the notation in [61] we write
𝑓1 ≡ev 𝑓2 (mod 𝜆) if 𝜆 𝑓1 (𝑇) ≡ 𝜆 𝑓2 (𝑇) (mod 𝜆) for all𝑇 ∈ T′ where𝑇 𝑓𝑖 = 𝜆 𝑓𝑖 (𝑇) 𝑓𝑖 .

For an eigenform 𝜙 ∈ 𝑆𝑘 (Γ1) we set

𝐿 (𝑠, 𝜙) :=
∏
𝑝

(1 − 𝜆𝜙 (𝑝)𝑝
−𝑠 + 𝑝𝑘−1−2𝑠)−1,

𝐿 (𝑠, Sym2 𝜙) =
∏
𝑝

[
(1 − 𝛼2𝑝𝑝

−𝑠) (1 − 𝛼𝑝𝛽𝑝𝑝
−𝑠) (1 − 𝛽2𝑝𝑝

−𝑠)
]−1

where 𝜆𝜙 (𝑝) is the eigenvalue of 𝑇 (𝑝) := 𝑇 (1) (𝑝) corresponding to 𝜙 and 𝛼𝑝 , 𝛽𝑝
denote the roots of 𝑋2−𝜆𝜙 (𝑝)𝑋+ 𝑝

𝑘−1.The symmetric square 𝐿-function converges
in the right half-plane ℜ(𝑠) > 𝑘 , satisfies a functional equation, and has analytic
continuation to the entire complex plane.

For an eigenform 𝑓 ∈ 𝑆𝑘 (Γ2) we define

𝐿𝑝 (𝑋, 𝑓 , spin) =(1 − 𝜆 𝑓 (𝑝)𝑋 + (𝜆 𝑓 (𝑝)
2 − 𝜆 𝑓 (𝑝

2) − 𝑝2𝑘−4)𝑋2

− 𝜆 𝑓 (𝑝)𝑝
2𝑘−3𝑋3 + 𝑝4𝑘−6𝑋4)

where we write 𝜆 𝑓 (𝑝) is the eigenvalue of 𝑇
(2) (𝑝) corresponding to 𝑓 and 𝜆 𝑓 (𝑝

2)

for the eigenvalue 𝑇 (2) (𝑝2) corresponding to 𝑓 .

Theorem 2.1 ([59] Theorem 1) Let 𝑓 ∈ 𝑆𝑘 (Γ2) be an eigenform. For a sufficiently large
finite extension 𝐹/Qℓ one has 𝐿𝑝 (𝑋, 𝑓 , spin) ∈ 𝐹 [𝑋] for all primes 𝑝 ≠ ℓ and there is a
semisimple continuous representation 𝜌 𝑓 : 𝐺Q → GL4 (𝐹) which is unramified outside of ℓ
so that for 𝑝 ≠ ℓ one has 𝐿𝑝 (𝑋, 𝑓 ; spin) = det(1 − 𝜌 𝑓 (Frob𝑝)𝑋).

3 Congruence

We keep the notation of Section 2. Throughout this section we fix an even weight
𝑘 ≥ 12 and an odd prime ℓ and make the following assumption.

Assumption 3.1 Given an even weight 𝑘 ≥ 12 and prime ℓ, assume that 𝐸/Qℓ is sufficiently
large to contain the fields 𝐹 from Theorem 2.1 for all forms 𝑓 ∈ 𝑆𝑘 (Γ2). We also assume that

2025/09/05 10:46



6 T. Berger and J. Brown and K. Klosin

for every eigenform 𝜙 ∈ 𝑆𝑘 (Γ1) the field 𝐸 contains all the Hecke eigenvalues of 𝜙 as well as
the value 𝐿alg (2𝑘 − 2, Sym2 𝜙) (see (3.1) for the definition). In addition we suppose that 𝐸
contains a primitive cube root of unity.

Recall that we denote the valuation ring of 𝐸 by O. Let 𝜙 ∈ 𝑆𝑘 (Γ1) be a nor-
malized eigenform and consider the Klingen Eisenstein series 𝐸2,1

𝜙
. In this section we

show under certain conditions that 𝐸2,1
𝜙

is eigenvalue-congruent to a cuspidal Siegel
modular form with irreducible Galois representation.

Write

𝐸
2,1
𝜙
(𝑧) =

∑︁
𝑇∈Λ2

𝑎(𝑇 ; 𝐸2,1
𝜙
)𝑒(Tr(𝑇𝑧)).

For 𝑇 that are singular, i.e., det𝑇 = 0, one has 𝑇 is unimodularly equivalent to[
𝑛 0

0 0

]
for some 𝑛 ∈ Z≥0. For such 𝑇 , one has 𝑎(𝑇 ; 𝐸

2,1
𝜙
) = 𝑎(𝑛; 𝜙) where 𝜙(𝑧) =∑

𝑛>0 𝑎(𝑛; 𝜙)𝑒(𝑛𝑧).
We use the following result to prove our congruence.

Corollary 3.2 ([61] Corollary 2.3) Assume ℓ ≥ 7. Let 𝑔 be a Hecke eigenform in𝑀𝑘 (Γ2;O)

with Fourier expansion 𝑔(𝑧) =
∑
𝑇∈Λ2

𝑎(𝑇 ; 𝑔)𝑒(Tr(𝑇𝑧)). Assume that 𝜆 | 𝑎(𝑇 ; 𝑔) for all
𝑇 with det𝑇 = 0 and that there exists at least one 𝑇 > 0 with 𝑎(𝑇 ; 𝑔) ∈ O× . Then there
exists a Hecke eigenform 𝑓 ∈ 𝑆𝑘 (Γ2;O) so that 𝑔 ≡ev 𝑓 .ev 0 (mod 𝜆).

For 𝑇 =

[
𝑚 𝑟/2

𝑟/2 𝑛

]
, we say 𝑇 is primitive if gcd(𝑚, 𝑛, 𝑟) = 1. We set det(2𝑇) =

Δ(𝑇)𝔣2 for a positive integer 𝔣 and where −Δ(𝑇) is the discriminant of the quadratic

fieldQ(
√︁
− det(2𝑇)). We set 𝜒𝑇 =

(
−Δ(𝑇 )
·

)
, the quadratic character associated to the

fieldQ(
√︁
− det(2𝑇)).

Define 𝜗𝑇 (𝑧) =
∑
𝑎,𝑏∈Z2 𝑒(𝑧(𝑚𝑎2 + 𝑟𝑎𝑏 + 𝑛𝑏2)) =

∑
𝑛≥0 𝑏(𝑛; 𝜗𝑇 )𝑒(𝑛𝑧). Given

𝑣 ∈ Z≥1, set

𝜗
(𝑣)
𝑇
(𝑧) =

∑︁
𝑛≥0

𝑏(𝑣2𝑛; 𝜗𝑇 )𝑒(𝑛𝑧).

One can check that 𝜗
(𝑣)
𝑇

∈ 𝑀1 (Γ(4 det𝑇)) where Γ(𝑁) =

ker (SL2 (Z) → SL2 (Z/𝑁Z)) and 𝑀𝑘 (Γ(𝑁)) denotes the modular forms of weight 𝑘
and level Γ(𝑁). Set

𝐷 (𝑠, 𝜙, 𝜗
(𝑣)
𝑇
) =

∑︁
𝑛≥1

𝑎(𝑛; 𝜙)𝑏(𝑣2𝑛; 𝜗𝑇 )𝑛
−𝑠 .

We have that 𝐷 (𝑠, 𝜙, 𝜗
(𝑣)
𝑇
) converges in a right half-plane with meromorphic contin-

uation to the entire complex plane ([47]). Set

𝐿alg (2𝑘 − 2, Sym
2 𝜙) :=

𝐿 (2𝑘 − 2, Sym2 𝜙)

𝜋3𝑘−3⟨𝜙, 𝜙⟩
, (3.1)

𝐿alg (𝑘 − 1, 𝜒𝑇 ) =
Δ(𝑇)𝑘−3/2𝐿 (𝑘 − 1, 𝜒𝑇 )

𝜋𝑘−1
,
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and

𝐷alg (𝑘 − 1, 𝜙, 𝜗
(𝑣)
𝑇
) =

𝐷 (𝑘 − 1, 𝜙, 𝜗
(𝑣)
𝑇
)

𝜋𝑘−1⟨𝜙, 𝜙⟩
.

We have each of these terms is algebraic, see ([47], [51], [62]). Moreover, we have via
[62] Equation (22) that if ℓ > 𝑘 − 1, then 𝐿alg (𝑘 − 1, 𝜒𝑇 ) is ℓ-integral.

Theorem 3.3 [38] Let 𝜙 ∈ 𝑆𝑘 (Γ1) be a normalized eigenform with a Fourier expansion as
above. Let 𝑇 > 0 be primitive. We have

𝑎(𝑇 ; 𝐸2,1
𝜙
) =(−1)𝑘/2

(𝑘 − 1)!

(2𝑘 − 2)!
2𝑘−1

𝐿alg (𝑘 − 1, 𝜒𝑇 )

𝐿alg (2𝑘 − 2, Sym2 𝜙)

·
∑︁
𝑚 |𝔣
𝑚>0

𝑀𝑇 (𝔣𝑚
−1)

∑︁
𝑡 |𝑚
𝑡>0

𝜇(𝑡)𝐷alg (𝑘 − 1, 𝜙, 𝜗
(𝑚/𝑡 )
𝑇
)

where

𝑀𝑇 (𝑎) =
∑︁
𝑑 |𝑎
𝑑>0

𝜇(𝑑)𝜒𝑇 (𝑑)𝑑
𝑘−2𝜎2𝑘−3 (𝑎𝑑

−1) and 𝜎𝑠 (𝑑) =
∑︁
𝑔 |𝑑
𝑔>0

𝑔𝑠 .

Note that while this theorem is only stated for Fourier coefficients indexed by
primitive 𝑇 , we have that Fourier coefficients indexed by non-primitive 𝑇 are an
integral linear combination of Fourier coefficients indexed by primitive 𝑇 by [38]
Equation 1.3, so we only need to consider the primitive𝑇 to guarantee the hypotheses
of Corollary 3.2 are satisfied.

Lemma 3.4 Assume ℓ > 4𝑘 − 7. Let 𝑓 ∈ 𝑆𝑘 (Γ2;O) be an eigenform. If there exists a nor-
malized eigenform 𝜙 ∈ 𝑆𝑘 (Γ1;O) so that 𝑓 ≡ev 𝐸

2,1
𝜙
(mod 𝜆) and that 𝜌𝜙 is irreducible,

then 𝜌 𝑓 is irreducible.

Proof We know via [59] that if 𝜌 𝑓 is reducible, then the automorphic representation
associated to 𝑓 is either CAP or a weak endoscopic lift. Moreover, by [42] Corollary
4.5 since 𝑓 ∈ 𝑆𝑘 (Γ2) and 𝑘 > 2, the automorphic representation attached to 𝑓 can be
CAP only with respect to the Siegel parabolic, i.e., 𝑓 is a classical Saito-Kurokawa lift.
Suppose that 𝑓 is a Saito-Kurokawa lift of 𝜓 ∈ 𝑆2𝑘−2 (Γ1). Then we have 𝜌ss𝑓 = 𝜌𝜓 ⊕

𝜖 𝑘−1 ⊕ 𝜖 𝑘−2. Using the fact that 𝑓 ≡ev 𝐸
2,1
𝜙
(mod 𝜆) and that the eigenvalues of 𝐸2,1

𝜙

are given by 𝜆(𝑝; 𝐸2,1
𝜙
) = 𝑎(𝑝; 𝜙) + 𝑝𝑘−2𝑎(𝑝; 𝜙), the Brauer-Nesbitt and Chebotarev

Theorems give that 𝜌ss𝑓 = 𝜌𝜙 ⊕ 𝜌𝜙 (𝑘 − 2), where recall that we write 𝜌𝜙 (𝑘 − 2)

for 𝜌𝜙 ⊗ 𝜖
𝑘−2. This is a contradiction if 𝜌𝜙 is irreducible. Thus, 𝑓 cannot be a Saito-

Kurokawa lift. It remains to show that the automorphic representation associated to
𝑓 is not a weak endoscopic lift. The possible decompositions of 𝜌 𝑓 are given in [48]
Theorem 3.2.1 under the assumption that ℓ > 4𝑘−7. Of these, the only case remaining
to check is Case B(v), which states if 𝜌 𝑓 = 𝜎 ⊕ 𝜎

′ with 𝜎 and 𝜎′ both 2-dimensional,
then det(𝜎) = det(𝜎′). In our case, this would require det(𝜌𝜙) = det(𝜌𝜙 (𝑘 − 2)),

i.e., 𝜖 𝑘−1 = 𝜖2𝑘−3, which is impossible by our assumption that ℓ > 4𝑘 − 7. Thus, 𝜌 𝑓 is
irreducible. ■
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Theorem 3.5 Assume that ℓ > 4𝑘 − 7. Let 𝜙 ∈ 𝑆𝑘 (Γ1;O) be a normalized eigenform.
Suppose that 𝜆 | 𝐿alg (2𝑘 − 2, Sym

2 𝜙). Furthermore, assume there exists 𝑇0 > 0 so that

val𝜆

(
𝐿alg (2𝑘 − 2, Sym

2 𝜙)𝑎(𝑇0, 𝐸
2,1
𝜙
)
)
≤ 0.

Then there exists an eigenform 𝑓 ∈ 𝑆𝑘 (Γ2;O) so that

𝐸
2,1
𝜙
≡ev 𝑓 (mod 𝜆).

If in addition 𝜌𝜙 is irreducible, then 𝜌 𝑓 is irreducible.

Proof Set 𝐻2,1
𝜙
(𝑧) = 𝐿alg (2𝑘 − 2, Sym2 𝜙)𝐸2,1

𝜙
(𝑧). For 𝑇 ≥ 0, define 𝑐(𝑇) =

val𝜆 (𝑎(𝑇 ;𝐻
2,1
𝜙
)). Let 𝑐 = min𝑇≥0 𝑐(𝑇). Since 𝐻

2,1
𝜙
∈ 𝑀𝑘 (Γ2), the Fourier

coefficients 𝑎(𝑇 ;𝐻2,1
𝜙
) have bounded denominators so 𝑐 is well-defined ([46]).

Moreover, our assumption that there is a 𝑇0 > 0 with val𝜆 (𝑎(𝑇0;𝐻
2,1
𝜙
)) =

val𝜆

(
𝐿alg (2𝑘 − 2, Sym

2 𝜙)𝑎(𝑇0, 𝐸
2,1
𝜙
)
)
≤ 0 gives that 𝑐 ≤ 0. Set

𝐺
2,1
𝜙
(𝑧) = 𝜆−𝑐𝐻2,1

𝜙
(𝑧).

We have 𝑎(𝑇 ;𝐺2,1
𝜙
) ∈ O for all 𝑇 ≥ 0 since 𝑐(𝑇) − 𝑐 ≥ 0 for all 𝑇 ≥ 0. Observe that

for 𝑇 with det𝑇 = 0, we have 𝑎(𝑇 ;𝐺2,1
𝜙
) = 𝜆−𝑐𝐿alg (2𝑘 − 2, Sym

2 𝜙)𝑎(𝑛; 𝜙) for some

𝑛 ∈ Z≥0. Since 𝑎(𝑛; 𝜙) ∈ O by assumption and−𝑐 ≥ 0, this gives 𝜆 | 𝑎(𝑇 ;𝐺2,1
𝜙
) for all

𝑇 with det𝑇 = 0, i.e., all the Fourier coefficients indexed by singular𝑇 vanish modulo
𝜆. Moreover, since 𝑐 = 𝑐(𝑇) for some 𝑇 , we have 𝑎(𝑇 ;𝐺2,1

𝜙
) ∈ O× for some 𝑇 . Since

𝑐 ≤ 0 and 𝜆 | 𝑎(𝑇 ;𝐺2,1
𝜙
) for all singular𝑇 , we have𝑇 > 0. Thus, Corollary 3.2 and the

fact that 𝐺2,1
𝜙

and 𝐸2,1
𝜙

have the same eigenvalues gives an eigenform 𝑓 ∈ 𝑆𝑘 (Γ2;O)

so that 𝐸2,1
𝜙
≡ev 𝑓 . 0 (mod 𝜆). By Lemma 3.4 we get that 𝜌 𝑓 is irreducible. ■

Example 3.6 Consider the space 𝑀26 (Γ2). This space has dimension seven and is
spanned by 𝐸2,0 (Siegel Eisenstein series), 𝐸2,1

𝜙
(KlingenEisenstein series), three Saito-

Kurokawa lifts, and two non-lift forms Υ1 and Υ2 where here 𝜙 ∈ 𝑆26 (Γ1) is the
unique newform given by

𝜙(𝑧) = 𝑒(𝑧) − 48𝑒(2𝑧) − 195804𝑒(3𝑧) + · · · .

We have via [21] that

𝐿alg (50, Sym
2 𝜙)

=
241 · 163 · 187273

326 · 510 · 77 · 114 · 132 · 172 · 19 · 232 · 29 · 31 · 37 · 41 · 43 · 47 · 657931

We consider ℓ ∈ {163, 187273} and show that both primes produce an example for
Theorem 3.5.

TheKlingenEisenstein series associated to 𝜙 is given in the beta version of LMFDB.

By considering the Fourier coefficients indexed by

[
1 0

0 0

]
and

[
2 0

0 0

]
one can see that
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the Klingen Eisenstein series given there, say 𝐸LMFDB
𝜙

, is given by

𝐸
2,1
𝜙
(𝑧) = −

𝐸LMFDB
𝜙

(𝑧)

26 · 33 · 11 · 19 · 163 · 187273
.

We have from LMFDB that

𝑎

( [
1 1/2

1/2 1

]
; 𝐸2,1

𝜙

)
=

22 · 5 · 43

11 · 19 · 163 · 187273

Consider 𝐺2,1
𝜙
(𝑧) = 𝐿alg (50, Sym

2 𝜙)𝐸2,1
𝜙
(𝑧). We have for ℓ as above that ℓ |

𝑎(𝑇 ;𝐺2,1
𝜙
) for all 𝑇 with det𝑇 = 0 and 𝑎

( [
1 1/2

1/2 1

]
;𝐺2,1

𝜙

)
. 0 (mod ℓ). Thus

by Theorem 3.5 there exists a non-trivial Hecke eigenform 𝑓 ∈ 𝑆𝑘 (Γ2;Zℓ) with
𝐸
2,1
𝜙
≡ev 𝑓 (mod ℓ).

Consider first the prime ℓ = 163 and suppose that 𝜌ss𝜙,163 = 𝜓1 ⊕ 𝜓2 for some
characters 𝜓1, 𝜓2. Since 𝜌𝜙 is unramified for all 𝑝 ≠ ℓ we see that 𝜓1 and 𝜓2 are each
an integer power of 𝜖 (see the proof of Lemma 5.3). As 163 ∤ 𝑎(163; 𝜙) we know 𝜙

is ordinary at 163 and we get 𝜌ss𝜙,163 = 𝜖25 ⊕ 1. By [45] Proposition 2.1 we can find a
lattice such that

𝜌𝜙,163 =

[
1 ∗

0 𝜖25

]
� 1 ⊕ 𝜖25.

One can use ordinarity of 𝜙 to show that ∗ gives an unramified 163-extension
of Q(𝜁163) (see e.g. the proof of Theorem 4.28 in [10]). By Herbrand’s Theorem this
implies that 163 | 𝐵26. However, one can check this is not true, so we must have that
𝜌𝜙,163 is irreducible and so 𝐸

2,1
𝜙

must be congruent (modulo 163) to a cusp form 𝑓 that
is not a Saito-Kurokawa lift, i.e. 𝜌 𝑓 is irreducible by Theorem 3.5. One uses LMFDB
to check that 𝑓 = Υ2.

Now consider the case that ℓ = 187273. In this case it is less practical to calculate
𝑎(187273; 𝜙), so we directly eliminate the possibility that 𝐸2,1

𝜙
is congruent to a Saito-

Kurokawa lift modulo 187273. The space to consider is 𝑆50 (Γ1). This space has one
Galois conjugacy class of newforms consisting of three newforms, call them 𝜓1, 𝜓2,
and 𝜓3. Each newform has a field of definition 𝐾𝜓𝑖 generated by a root 𝛼𝑖 of

𝑐(𝑥) = 𝑥3 + 24225168𝑥2 − 566746931810304𝑥 − 13634883228742736412672.

One has that 𝜆(2, 𝐸2,1
𝜙
) = −805306416 and that 𝜆(2, 𝜓𝑖) = 249 + 248 + 𝛼𝑖 . One uses

SAGE to check that 𝜆(2, 𝐸2,1
𝜙
) . 𝜆(2, 𝜓𝑖) (mod 187273), so 𝐸2,1

𝜙
must be congruent

to a cusp form that is not a Saito-Kurokawa lift. One uses LMFDB to see that 𝐸2,1
𝜙
≡ev

Υ1 (mod 187273).

4 Extensions of Fontaine-Laffaille modules

In this section we gather various facts (in particular Proposition 4.8 and Proposition
4.20) about extensions of Fontaine-Laffaille modules, which we use in this article but
which to the best of our knowledge have not been published elsewhere.
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4.1 DeĄnitions

We keep our assumption that ℓ is an odd prime. We fix integers 𝑎, 𝑏 such that 0 ≤
𝑏 − 𝑎 ≤ ℓ − 2. In this section let 𝐸 be an arbitrary finite extension of Qℓ with ring
of integers O, uniformizer 𝜆 and residue field F. Write LCAO (respectively LCNO )
for the category of local complete Artinian (respectively Noetherian) O-algebras with
residue field F. For a category C we will write 𝑋 ∈ C to mean that 𝑋 is an object of C.

Definition 4.1 ([31] Definition 2.3/[13] Definition 4.1)

(1) A Fontaine-Laffaille module is a finitely generated Zℓ-module 𝑀 together with
a decreasing filtration by Zℓ-module direct summands 𝑀 𝑖 for 𝑖 ∈ Z such that
there exists 𝑘 ≤ 𝑙 with 𝑀 𝑖 = 𝑀 for 𝑖 ≤ 𝑘 and 𝑀 𝑖+1 = 0 for 𝑖 ≥ 𝑙 , and a
collection of Zℓ-linear maps 𝜙𝑖

𝑀
: 𝑀 𝑖 → 𝑀 such that 𝜙𝑖

𝑀
|𝑀𝑖+1 = ℓ𝜙𝑖+1

𝑀
for all 𝑖

and𝑀 =
∑
𝑖 𝜙
𝑖
𝑀
(𝑀 𝑖). The category of all Fontaine-Laffaille modules is denoted

𝑀𝐹
𝑓

Zℓ
. Morphisms in this category are Zℓ-linear maps 𝑓 : 𝑀 → 𝑁 satisfying

𝑓 (𝑀 𝑖) ⊂ 𝑁 𝑖 and 𝑓 ◦ 𝜙𝑖
𝑀

= 𝜙𝑖
𝑁
◦ 𝑓 |𝑀𝑖 for all 𝑖. We will write 𝑀𝐹

𝑓

tor,Zℓ
for the

full subcategory whose objects are of finite length as a Zℓ-modules.

(2) For a fixed interval [𝑘, 𝑙] wedenote the full subcategory of𝑀𝐹
𝑓

?,Zℓ
whose objects

𝑀 have a filtration satisfying 𝑀𝑘 = 𝑀 and 𝑀 𝑙+1 = 0 by 𝑀𝐹
𝑓 , [𝑘,𝑙]
?,Zℓ

for ? ∈
{∅, tor}.

(3) For any 𝐴 ∈ LCAO , a Fontaine-Laffaille module over 𝐴 consists of an object

𝑀 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

together with a map 𝜃 : 𝐴 → End
𝑀𝐹

𝑓 , [𝑎,𝑏]
tor,Zℓ

(𝑀) that makes 𝑀

into a free finitely generated module over 𝐴 in such a way that𝑀 𝑖 is an 𝐴-direct
summand of 𝑀 for each 𝑖. A morphism between two such objects is required to
additionally preserve the 𝐴-structure. We will denote this category of Fontaine-

Laffaille modules over 𝐴 as 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

⊗Zℓ
𝐴.

(4) For 𝑀 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

⊗Zℓ
𝐴 any integer 𝑖 for which 𝑀 𝑖/𝑀 𝑖+1 ≠ 0 is called a

Fontaine-Laffaille weight for𝑀 .The set of Fontaine-Laffaille weights for𝑀 will
be denoted by FL(𝑀).

Remark 4.2 We impose the stronger restriction on the length of the filtration as in
[12] Section 4 and [18] Section 2.4.1, compared to that in Section 1.1.2 of [20] or [31]
Definition 2.3 (which allow the length to be ℓ − 1).

Definition 4.3 We introduce the following examples of Fontaine-Laffaille modules:

(i) If 0 ∈ [𝑎, 𝑏] we write 1 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
Zℓ

for the Fontaine-Laffaille module defined

by 1𝑖 = Zℓ for 𝑖 ≤ 0 and 1
𝑖 = 0 for 𝑖 > 0. We set 𝜙𝑖 : 1𝑖 → 1 to be given by

𝑥 ↦→ ℓ−𝑖𝑥 for 𝑖 ≤ 0.
(ii) For any 𝐴 ∈ LCAO we define 𝑀𝑛,𝐴 ∈ 𝑀𝐹

𝑓 , [𝑎,𝑏]
tor,Zℓ

⊗Zℓ
𝐴 to be the free rank

one 𝐴-module equipped with the filtration 𝑀 𝑖
𝑛,𝐴

= 𝐴 for 𝑖 ≤ 𝑛, 𝑀𝑛+1
𝑛,𝐴

= 0 and

𝜙𝑖 : 𝑀 𝑖
𝑛,𝐴
→ 𝑀𝑛,𝐴 given by 𝑥 ↦→ ℓ𝑛−𝑖𝑥 for 𝑖 ≤ 𝑛. We put 1𝐴 = 𝑀0,𝐴.
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Definition 4.4 ([13] Definition 4.9) For 𝑀 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

and 𝑠 ∈ Z define 𝑀 (𝑠) to be

the same underlying Zℓ-module, but change the filtration to 𝑀 (𝑠)𝑖 = 𝑀 𝑖−𝑠 for any

𝑖 ∈ Z. This means that 𝑀 (𝑠) ∈ 𝑀𝐹
𝑓 , [𝑎+𝑠,𝑏+𝑠]
tor,Zℓ

.

4.2 Extensions

To ease notation in the rest of this sectionwe putC𝐼
𝐴
= 𝑀𝐹

𝑓 ,𝐼

tor,Zℓ
⊗Zℓ

𝐴 for 𝐴 ∈ LCAO .
Here 𝐼 = [𝑎, 𝑏].

Definition 4.5 (Definition/Lemma) Given 𝑀, 𝑁 ∈ C𝐼
𝐴
define a filtration on the 𝐴-

moduleHom𝐴(𝑀, 𝑁) by

Hom𝐴(𝑀, 𝑁)
𝑖 = { 𝑓 ∈ Hom𝐴(𝑀, 𝑁) | 𝑓 (𝑀

𝑗 ) ⊂ 𝑁 𝑗+𝑖 for all 𝑗 ∈ Z}

and Zℓ-linear maps 𝜙𝑖 : Hom𝐴(𝑀, 𝑁)
𝑖 → Hom𝐴(𝑀, 𝑁) by

𝜙𝑖 ( 𝑓 ) (𝜙
𝑗

𝑀
(𝑚)) = 𝜙

𝑖+ 𝑗
𝑁
( 𝑓 (𝑚))

(note that 𝑀 =
∑
𝜙
𝑗

𝑀
(𝑀 𝑗 )) for 𝑓 ∈ Hom𝐴(𝑀, 𝑁)

𝑖 and all 𝑚 ∈ 𝑀 𝑗 and 𝑗 ∈

Z. We claim this defines a Fontaine-Laffaille structure and that Hom𝐴(𝑀, 𝑁) ∈

𝑀𝐹
𝑓 , [𝑎−𝑏,𝑏−𝑎]
tor,Zℓ

⊗Zℓ
𝐴.

Proof First note that there exists a canonical 𝐴-module homomorphism 𝜓 : 𝑀∨ ⊗𝐴
𝑁 → Hom𝐴(𝑀, 𝑁), where 𝑀

∨ = Hom𝐴(𝑀, 𝐴). Definition 4.19 in [13] defines a
Fontaine-Laffaille structure on 𝑀∨ (and Lemma 4.20 and 4.21 prove that this struc-

ture is well-defined and so we get an object in 𝑀𝐹
𝑓 , [−𝑏,−𝑎]
tor,Zℓ

⊗Zℓ
𝐴). Definition 4.17

in [13] then gives us the Fontaine-Laffaille structure on 𝑀∨ ⊗𝐴 𝑁 .
We claim that transferring this structure on 𝑀∨ ⊗𝐴 𝑁 via 𝜓 to Hom𝐴(𝑀, 𝑁)

matches our definition. Recall from [13] that (𝑀∨)𝑖 = { 𝑓 ∈ Hom𝐴(𝑀, 𝐴) | 𝑓 (𝑀
𝑘) ⊂

1𝑖+𝑘
𝐴

for all 𝑘 ∈ Z} and (𝑀∨ ⊗ 𝑁)𝑛 =
∑
𝑖+ 𝑗=𝑛 (𝑀

∨)𝑖 ⊗𝐴 𝑁
𝑗 .We will first show that

𝜓((𝑀∨ ⊗ 𝑁)𝑛) ⊂ Hom𝐴(𝑀, 𝑁)
𝑛. Let 𝑓𝑖 ⊗ 𝑛 𝑗 ∈ (𝑀

∨)𝑖 ⊗𝐴 𝑁
𝑗 . Then 𝜓( 𝑓𝑖 ⊗ 𝑛 𝑗 ) :

𝑚 ∈ 𝑀𝑘 ↦→ 𝑓𝑖 (𝑚)𝑛 𝑗 ∈ 𝑁
𝑗 . In fact, the image lies in 𝑁𝑛+𝑘 . This is clear for 𝑗 ≥ 𝑛 + 𝑘 .

If 𝑗 < 𝑛 + 𝑘 (and hence 0 < 𝑖 + 𝑘 ) it follows since 𝑓𝑖 (𝑚) ∈ 1𝑖+𝑘
𝐴

= 0. To show the
reverse inclusion 𝜓((𝑀∨ ⊗ 𝑁)𝑛) ⊃ Hom𝐴(𝑀, 𝑁)

𝑛 consider 𝑓 ∈ Hom𝐴(𝑀, 𝑁)
𝑛 and

let 𝑗 be maximal among integers 𝑙 such that 𝑓 (𝑀) ⊂ 𝑁 𝑙 . To satisfy 𝑓 (𝑀𝑘) ⊂ 𝑁 𝑘+𝑛

for all integers 𝑘 we need 𝑓 (𝑀𝑘) = 0 for 𝑘 + 𝑛 > 𝑗 by maximality of 𝑗 . This means
that we need 𝑓 to factor through𝑀/𝑀1−𝑖 for 𝑖 := 𝑛− 𝑗 . By [13] Lemma 4.20 we have
(𝑀∨)𝑖 = Hom𝐴(𝑀/𝑀

1−𝑖 , 𝐴) so we get

(𝑀∨)𝑖 ⊗ 𝑁 𝑗 = Hom𝐴(𝑀/𝑀
1−𝑖 , 𝐴) ⊗ 𝑁 𝑗

𝜓
� Hom𝐴(𝑀/𝑀

1−𝑖 , 𝑁 𝑗 ).

We conclude that 𝑓 ∈ 𝜓−1 ((𝑀∨)𝑖 ⊗ 𝑁 𝑗 ) ⊂ 𝜓−1 ((𝑀∨ ⊗ 𝑁)𝑛).
Now we check the Zℓ-linear maps: Recall from [13] that for 𝑓 ∈ 𝑀∨ we have

𝜙𝑖
𝑀∨
( 𝑓 ) (𝜙

𝑗

𝑀
(𝑚)) = 𝜙𝑖+ 𝑗 ( 𝑓 (𝑚)) for all 𝑚 ∈ 𝑀 𝑗 and 𝑗 ∈ Z. We also have 𝜙𝑛

𝑀∨⊗𝐴𝑁
=∑

𝑖+ 𝑗=𝑛 𝜙
𝑖
𝑀∨
⊗ 𝜙

𝑗

𝑁
.We claim that 𝜙𝑛

Hom𝐴 (𝑀,𝑁 )
◦ 𝜓 = 𝜓 ◦ 𝜙𝑛

𝑀∨⊗𝐴𝑁
: (𝑀∨ ⊗ 𝑁)𝑛 →

Hom𝐴(𝑀, 𝑁). For this one calculates that both sides map 𝑓 ⊗ 𝑛 ∈ (𝑀∨)𝑖 ⊗ 𝑁𝑛−𝑖 to
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the homomorphism, for which

𝜙𝑘𝑀 (𝑚) ↦→

{
0 if 𝑖 + 𝑘 ≥ 0

𝜙𝑛+𝑘
𝑁
( 𝑓 (𝑚)𝑥) if 𝑖 + 𝑘 ≤ 0

for any 𝑚 ∈ 𝑀 𝑘 (for 𝜓 ◦ 𝜙𝑛
𝑀∨⊗𝐴𝑁

this uses 𝜙𝑛+𝑘
𝑁
|𝑁𝑛−𝑖 = ℓ𝑘+𝑖𝜙𝑛−𝑖

𝑁
for 𝑖 + 𝑘 ≤ 0).

This claim, combined with the results in [13] shows that the definition of 𝜙𝑛
Hom𝐴 (𝑀,𝑁 )

is well-defined and satisfies the requirements for Hom𝐴(𝑀, 𝑁) to be a Fontaine-

Laffaille module in 𝑀𝐹
𝑓 , [𝑎−𝑏,𝑏−𝑎]
tor,Zℓ

⊗Zℓ
𝐴. ■

For 𝑀, 𝑁 ∈ C𝐼
𝐴
consider the map 𝜙 − 1 : Hom𝐴(𝑀, 𝑁)

0 → Hom𝐴(𝑀, 𝑁) which

takes 𝑓 to the homomorphism that sends 𝑚 =
∑
𝑗 𝜙

𝑗

𝑀
(𝑚 𝑗 ) to

∑︁
𝑗

𝜙
𝑗

𝑁
( 𝑓 (𝑚 𝑗 )) − 𝑓 (𝑚) =

∑︁
𝑗

(
𝜙
𝑗

𝑁
( 𝑓 (𝑚 𝑗 )) − 𝑓 (𝜙

𝑗

𝑀
(𝑚 𝑗 ))

)
.

Note that ker(𝜙 − 1) = HomC𝐼
𝐴
(𝑀, 𝑁).

Proposition 4.6 ([18] Lemma 2.4.2, [31] Proposition 2.17) Given 𝑀, 𝑁 ∈ C𝐼
𝐴
we have an

exact sequence of 𝐴-modules (note that HomFil,𝐴(𝑀, 𝑁) in [31] equals Hom𝐴(𝑀, 𝑁)
0)

0→ HomC𝐼
𝐴
(𝑀, 𝑁) → Hom𝐴(𝑀, 𝑁)

0 𝜙−1→ Hom𝐴(𝑀, 𝑁) → Ext1
C𝐼
𝐴

(𝑀, 𝑁) → 0.

Given 𝑀, 𝑁 ∈ C𝐼
𝐴
we write FL(𝑀) > FL(𝑁) if there is an integer 𝑗 such that

all elements of FL(𝑀) are greater than or equal to 𝑗 , and all elements of FL(𝑁) are
strictly less than 𝑗 .

Proposition 4.7 The extension group Ext1
C𝐼
𝐴

(𝑀, 𝑁) is a finitely generated 𝐴-module.

Furthermore one has

(i) If FL(𝑀) > FL(𝑁) then Ext1
C𝐼
𝐴

(𝑀, 𝑁) � Hom𝐴(𝑀, 𝑁), in particular it is a free

𝐴-module and rk𝐴(Ext
1
C𝐼
𝐴

(𝑀, 𝑁)) = rk𝐴(𝑀)rk𝐴(𝑁).

(ii) If FL(𝑀) < FL(𝑁) then Ext1
C𝐼
𝐴

(𝑀, 𝑁) = 0.

Proof This follows from Proposition 4.6. In particular, Ext1
C𝐼
𝐴

(𝑀, 𝑁) is a quotient of

the finitely generated 𝐴-module Hom𝐴(𝑀, 𝑁). The calculation on [31] p. 238 (łtwo

notable cases") is carried out for 𝑀𝐹
𝑓 , [0,ℓ−1]
tor,Zℓ

⊗Zℓ
𝐴, but applies verbatim to C𝐼

𝐴
.

If FL(𝑀) > FL(𝑁) then this calculation shows that Hom𝐴(𝑀, 𝑁)
0 = 0, while if

FL(𝑀) < FL(𝑁) then one getsHom𝐴(𝑀, 𝑁)
0 = Hom𝐴(𝑀, 𝑁). ■

Proposition 4.8 (Hom-tensor adjunction) Let 𝑀, 𝑁 ∈ C𝐼
𝐴
. Assume that Hom𝐴(𝑀, 𝑁)

equipped with the filtration as in Definition 4.5 is an object in C𝐼
𝐴
and that 0 ∈ 𝐼 . Then there
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exists a canonical isomorphism of 𝐴-modules:

Ext1
C𝐼
𝐴

(𝑀, 𝑁) � Ext1
C𝐼
𝐴

(1𝐴,Hom𝐴(𝑀, 𝑁)).

Proof The statement follows from the existence of the following commutative
diagram with exact columns:

0

��

0

��

HomC𝐼
𝐴
(𝑀, 𝑁)

��

HomC𝐼
𝐴
(1𝐴,Hom𝐴(𝑀.𝑁))

��

Hom𝐴(𝑀, 𝑁)
0

𝜓′
//

𝜙−1

��

Hom𝐴(1𝐴,Hom𝐴(𝑀, 𝑁))
0

𝜙−1

��

Hom𝐴(𝑀, 𝑁)
𝜓

//

𝛼

��

Hom𝐴(𝐴,Hom𝐴(𝑀, 𝑁))

��

Ext1
C𝐼
𝐴

(𝑀, 𝑁)
𝜓̃

//

��

Ext1
C𝐼
𝐴

(1𝐴,Hom𝐴(𝑀, 𝑁))

��

0 0

(4.1)

The exactness of both columns follows fromProposition 4.6.The secondhorizontal
arrow is the usual isomorphism 𝜓 of 𝐴-modules given by 𝑓 ↦→ (𝑎 ↦→ 𝑎 𝑓 ) (recall that
the underlying module of the object 1𝐴 is 𝐴) with the inverse map sending 𝑔 to 𝑔(1),
where 1 is themultiplicative identity of 𝐴.Themap 𝜓̃ is defined by lifting an element of
Ext1
C𝐼
𝐴

(𝑀, 𝑁) toHom𝐴(𝑀, 𝑁) and using 𝜓. The exactness of the first column ensures

that such a map is well-defined.
The first horizontal arrow is the restriction 𝜓′ of 𝜓 to Hom𝐴(𝑀, 𝑁)

0 (note that
Hom𝐴(𝑀, 𝑁)

0 is a subgroup of Hom𝐴(𝑀, 𝑁) even though 𝜙 − 1 is not necessarily
injective). We need to check that 𝜓′ lands in Hom𝐴(1𝐴,Hom𝐴(𝑀, 𝑁))

0. By its def-
inition we need to check if 𝑓 (1

𝑗

𝐴
) ⊂ Hom𝐴(𝑀, 𝑁)

𝑗 . If 𝑗 > 0 there is nothing to

check as then 1
𝑗

𝐴
= 0, so assume that 𝑗 ≤ 0. Then 1

𝑗

𝐴
= 𝐴 and Hom𝐴(𝑀, 𝑁)

𝑗 ⊃

Hom𝐴(𝑀, 𝑁)
0. So, it is enough to show that if 𝑓 ∈ Hom𝐴(𝑀, 𝑁)

0 then 𝜓′ ( 𝑓 ) (𝐴) ⊂
Hom𝐴(𝑀, 𝑁)

0. Let 𝑎 ∈ 𝐴. Then 𝜓′ ( 𝑓 ) (𝑎) = 𝑎 𝑓 which clearly lies in Hom𝐴(𝑀, 𝑁)
0

asHom𝐴(𝑀, 𝑁)
0 is an 𝐴-module.

Now let 𝑔 ∈ Hom𝐴(1𝐴,Hom𝐴(𝑀, 𝑁))
0. We need to show that 𝜓−1 (𝑔) lands in

Hom𝐴(𝑀, 𝑁)
0. Again we need to consider 𝜓−1 (𝑔) (1

𝑗

𝐴
). If 𝑗 > 0, then 𝑔 = 0, hence

we are done. Assume that 𝑗 ≤ 0. Then 1
𝑗

𝐴
= 𝐴 and 𝜓−1 (𝑔) = 𝑔(1). As 1 ∈ 10

𝐴
and

𝑔 ∈ Hom𝐴(1𝐴,Hom𝐴(𝑀, 𝑁))
0 we must have that 𝑔(1) ∈ Hom𝐴(𝑀, 𝑁)

0. So, we are
done again.
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This shows that 𝜓′ is a bijection, hence an isomorphism. Hence by the second Four
Lemma 𝜓̃ is injective, and since it is clearly surjective, it is an isomorphism.

■

4.3 Fontaine-Laffaille Galois representations

Fix an interval 𝐼 = [𝑎, 𝑏] with 𝑎, 𝑏 ∈ Z and 𝑏 − 𝑎 ≤ ℓ − 2. In this subsection we
introduce certain categories of 𝐺Qℓ

-representations and define a covariant version
𝑉𝐼 of the functor in [25] from the categories of Fontaine-Laffaille modules defined in
section 4.1 to these categories of Galois representations.

Let 𝐴cris and 𝐵cris denote the usual Fontaine’s ℓ-adic period rings (see Definition
7.3 and 7.7 in [26] and [24]). We recall that aQℓ [𝐺Qℓ

]-module𝑉 is called crystalline if
dimQℓ

𝑉 = dimQℓ
𝐻0 (Qℓ , 𝑉 ⊗Qℓ

𝐵cris). Our convention is that theHodge-Tateweight
of the cyclotomic character is +1.

Definition 4.9 Let 𝐴 ∈ LCAO . We introduce the following categories:

(i) Rep
𝑓

Zℓ
(𝐺Qℓ

), the category ofZℓ [𝐺Qℓ
]-modules that are finitely generated asZℓ-

modules.
(ii) Rep

𝑓

tor,Zℓ
(𝐺Qℓ

), the full subcategory of Rep
𝑓

Zℓ
(𝐺Qℓ

) whose objects are required
to be of finite length as Zℓ [𝐺Qℓ

]-modules.

(iii) Repcris,𝐼
Zℓ
(𝐺Qℓ

), the full subcategory of Rep
𝑓

Zℓ
(𝐺Qℓ

) whose objects are isomor-
phic to 𝑇/𝑇 ′, where 𝑇 and 𝑇 ′ are 𝐺Qℓ

-stable finitely generated submodules of a
crystallineQℓ-representation with Hodge-Tate weights in 𝐼 .

(iv) Repcris,𝐼
tor,Zℓ
(𝐺Qℓ

), the full subcategory of Rep
𝑓

tor,Zℓ
(𝐺Qℓ

) whose objects are iso-
morphic to 𝑇/𝑇 ′, where 𝑇 and 𝑇 ′ are 𝐺Qℓ

-stable lattices in a crystalline Qℓ-
representation with Hodge-Tate weights in 𝐼 .

(v) Repcris,𝐼
free,𝐴
(𝐺Qℓ

), the category of free finite rank 𝐴-modules 𝑀 with an 𝐴-linear
𝐺Qℓ

-action, for which there exists a crystalline representation of 𝐺Qℓ
defined

over 𝐸 with Hodge-Tate weights in 𝐼 containing 𝐺Qℓ
-stable O-lattices 𝑇 ′ ⊂ 𝑇 ,

and an O-algebra map 𝐴 → EndO (𝑇/𝑇
′) such that 𝑀 is isomorphic as an

𝐴[𝐺Qℓ
]-module to 𝑇/𝑇 ′. We will call objects of this category Fontaine-Laffaille

𝐴-representations (with weights in 𝐼).

Remark 4.10 Definition 4.9(v) matches Definition 2.1 in [31] .

Definition 4.11 ([12] p. 363, [13] Definition 4.7+4.9) Similar to [13] we define the
following two functors.

(i) A covariant functor 𝑇cris : 𝑀𝐹
𝑓 , [2−ℓ,0]
Zℓ

→ Rep
𝑓

Zℓ
(𝐺Qℓ

) defined via

𝑇cris (𝑀) := ker
(
1 − 𝜙0𝐴cris⊗Zℓ𝑀

: Fil0 (𝐴cris ⊗Zℓ
𝑀) → 𝐴cris ⊗Zℓ

𝑀
)
.

(ii) A covariant functor𝑉𝐼 : 𝑀𝐹
𝑓 , [𝑎,𝑏]
Zℓ

→ Rep
𝑓

Zℓ
(𝐺Qℓ

), defined via

𝑉𝐼 (𝑀) = 𝑇cris (𝑀 (−𝑏)) (−𝑏). (4.2)
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Recall that 𝑀 (−𝑏) was defined in Definition 4.4, while (−𝑏) on the outside
denotes the Tate twist as defined in Section 2.

Remark 4.12 We note that for ? ∈ {∅, tor} the category 𝑀𝐹
𝑓 , [𝑎,𝑏]
?,Zℓ

is a full subcate-

gory of𝑀𝐹
𝑓 , [𝑎,𝑎+ℓ−2]
?,Zℓ

, since they are both full subcategories of𝑀𝐹
𝑓

?,Zℓ
(cf. Definition

4.1), so in particular (4.2) makes sense.

Remark 4.13 Note that 𝑉𝐼 extends 𝑇cris to general 𝐼 (in particular 𝑉[2−ℓ,0] = 𝑇cris).

Also observe that for 𝑀 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

we have 𝑀 (−𝑏) ∈ 𝑀𝐹
𝑓 , [2−ℓ,0]
tor,Zℓ

since

𝑀 (−𝑏)1 = 𝑀𝑏+1 = 0 and 𝑀 (−𝑏)2−ℓ = 𝑀2−ℓ+𝑏 = 𝑀 as 𝑏 + 2 − ℓ ≤ 𝑎. In particular,
the definition of𝑉𝐼 makes sense.

Compared to [13] we work with themore restrictive interval [2−ℓ, 0] for𝑇cris and
correct a sign error in the Galois twist in [13] Definition 4.9.

Theorem 4.14 ([12] Theorem 4.3, [41] Section 2, [20] Section 1.1.2, [27] Section 2.2, [13] Fact

4.10, [31] Theorem 2.10) We have:

(𝑖) The covariant functor𝑉[𝑎,𝑏] : 𝑀𝐹
𝑓 , [𝑎,𝑏]
Zℓ

→ Rep
𝑓

Zℓ
(𝐺Qℓ

) is well-defined, exact and
fully faithful.

(𝑖𝑖) For 𝑀 ∈ 𝑀𝐹 𝑓 , [𝑎,𝑏]
Zℓ

one has 𝑉[𝑎,𝑏] (𝑀) = lim
←−−
𝑛

𝑉[𝑎,𝑏] (𝑀/ℓ
𝑛).

(𝑖𝑖𝑖) The essential image of 𝑉[𝑎,𝑏] is closed under formation of sub-objects, quotients and

finite direct sums. It is given by the subcategory Rep
cris, [−𝑏,−𝑎]
Zℓ

(𝐺Qℓ
). For 𝑀 ∈

𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

the lengths of 𝑀 and 𝑉𝐼 (𝑀) as Zℓ-modules agree; in particular the

essential image of 𝑀𝐹 𝑓 , [𝑎,𝑏]
tor,Zℓ

under 𝑉[𝑎,𝑏] is Rep
cris, [−𝑏,−𝑎]
tor,Zℓ

(𝐺Qℓ
).

(𝑖𝑣) For 𝐴 ∈ LCAO , the functor 𝑉[𝑎,𝑏] induces a functor from 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

⊗Zℓ
𝐴

to the category of free finite rank 𝐴-modules with an 𝐴-linear 𝐺Qℓ
-action, which

we will also denote by 𝑉[𝑎,𝑏] . Its essential image is given by Rep
cris, [−𝑏,−𝑎]

free,𝐴
(𝐺Qℓ

).

In fact, 𝑉[𝑎,𝑏] gives an equivalence of categories between 𝑀𝐹 𝑓 , [𝑎,𝑏]
tor,Zℓ

⊗Zℓ
𝐴 and

Rep
cris, [−𝑏,−𝑎]

free,𝐴
(𝐺Qℓ

).

Remark 4.15

(1) Note that for 𝑀 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

we have𝑉[𝑎+𝑠,𝑏+𝑠] (𝑀 (𝑠)) = 𝑉[𝑎,𝑏] (𝑀) (−𝑠).
(2) For 𝐼 = [𝑎, 𝑏] = [0, ℓ − 2] the functor 𝑉𝐼 agrees with that of the functor V in

[20] p. 670 by [14] Proposition 3.2.1.7.

(3) For𝑀 ∈ 𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

⊗Zℓ
𝐴 theHodge-Tateweights of𝑉𝐼 (𝑀) (in the sense ofDef-

inition 4.9(3)) equal the negatives of the Fontaine-Laffaille weights of𝑀 , defined
in Definition 4.1(3), due to our convention that the Hodge-Tate weight of the
cyclotomic character is +1.

As an immediate consequence of the equivalence of categories inTheorem 4.14(iv)
we obtain the following corollary.
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Corollary 4.16 For any 𝑀, 𝑁 ∈ 𝑀𝐹 𝑓 ,𝐼
tor,Zℓ

⊗Zℓ
𝐴 there is an isomorphism of 𝐴-modules

Ext1
𝑀𝐹

𝑓 ,𝐼

tor,Zℓ
⊗Zℓ 𝐴
(𝑀, 𝑁) � Ext1

Repcris,−𝐼
𝐴

(𝐺Qℓ
)
(𝑉𝐼 (𝑀), 𝑉𝐼 (𝑁)). (4.3)

4.4 Local Selmer groups

Let 𝐼 = [𝑎, 𝑏] be an interval as in the previous section (so 0 ≤ 𝑏 − 𝑎 ≤ ℓ − 2) but we

now also require that 0 ∈ 𝐼 (so that 1 ∈ 𝑀𝐹
𝑓 ,𝐼

Zℓ
, see Definition 4.3).

For an extension between two objects 𝑀, 𝑁 in Rep𝐴(𝐺Qℓ
) 0→ 𝑀 → 𝐸 → 𝑁 →

0 we define the 𝑛-th Tate twist of the extension to be the extension 0 → 𝑀 (𝑛) →

𝐸 (𝑛) → 𝑁 (𝑛) → 0. For a subgroup 𝐺 of Ext1
Rep𝐴 (𝐺Qℓ

)
(𝑀, 𝑁) we define 𝐺 (𝑛) to

consist of extensions which are the 𝑛-th Tate twists of the elements of𝐺 .
Given an extension E ∈ Ext1

𝑀𝐹
𝑓 ,𝐼

tor,Zℓ
⊗Zℓ 𝐴
(𝑀3, 𝑀1) represented by an exact

sequence

0→ 𝑀1 → 𝑀2 → 𝑀3 → 0

we will write 𝑉𝐼 (E) for the extension in Ext1
Repcris,−𝐼

free,𝐴
(𝐺Qℓ

)
(𝑉𝐼 (𝑀3), 𝑉𝐼 (𝑀1)) repre-

sented by

0→ 𝑉𝐼 (𝑀1) → 𝑉𝐼 (𝑀2) → 𝑉𝐼 (𝑀3) → 0.

This uses the exactness of the functor 𝑉𝐼 (cf. Theorem 4.14(i)). Since we defined
𝑉𝐼 (𝑀) = 𝑇cris (𝑀 (−𝑏)) (−𝑏) (see Equation (4.2)) we conclude the following lemma:

Lemma 4.17 For 𝐴 ∈ LCAO and 𝑀 ∈ 𝑀𝐹 𝑓 ,𝐼
tor,Zℓ

⊗Zℓ
𝐴 we have

𝑉𝐼 (Ext
1

𝑀𝐹
𝑓 ,𝐼

tor,Zℓ
⊗Zℓ 𝐴
(1𝐴, 𝑀)) = Ext1

Repcris,−𝐼
free,𝐴

(𝐺Qℓ
)
(𝑇cris (𝑀−𝑏,𝐴) (−𝑏), 𝑇cris (𝑀 (−𝑏)) (−𝑏))

� Ext1
Rep

cris, [0,ℓ−2]

free,𝐴
(𝐺Qℓ

)
(𝐴(𝑏), 𝑇cris (𝑀 (−𝑏))) (−𝑏).

Note that the latter is naturally isomorphic to Ext1
Rep

cris, [0,ℓ−2]

free,𝐴
(𝐺Qℓ

)
(𝐴(𝑏), 𝑇cris (𝑀 (−𝑏)))

and they give rise to the same subgroup of 𝐻1 (Qℓ , 𝑉𝐼 (𝑀)), see Definition 4.18.

Definition 4.18 For 𝑀 ∈ 𝑀𝐹
𝑓 ,𝐼

tor,Zℓ
⊗Zℓ

𝐴 let 𝐻1
𝑓 ,𝐼
(Qℓ , 𝑉𝐼 (𝑀)) =

𝑉𝐼 (Ext
1

𝑀𝐹
𝑓 ,𝐼

tor,Zℓ
⊗Zℓ 𝐴
(1𝐴, 𝑀)) ⊂ 𝐻

1 (Qℓ , 𝑉𝐼 (𝑀)).

Remark 4.19 This is amore precise version of the definitionmade in [6] Section 5.2.1
(where the prime ℓwas denoted by 𝑝). In [6] weworked (implicitly) with 𝐼 = [0, 𝑝−2],
but the results in [6] Section 5 (in particular Corollary 5.4 and Proposition 5.8 restated
below) carry over to 𝐻1

𝑓 ,𝐼
defined here for general 𝐼 .

T.B. and K.K. would like to clarify how certain definitions and results in some of
our papers fit in with this more precise description of the groups 𝐻1

𝑓 ,𝐼
: In [8] the rele-

vant interval 𝐼 is 𝐼 = [1−𝑘, 𝑘−1] for Section 5, and 𝑝 should satisfy 𝑝−1 > 2𝑘−2.The
examples in Section 6 of [loc. cit] satisfy this stronger condition. Similarly in [9] one
has 𝐼 = [3−2𝑘, 2𝑘 −3] (𝑝−1 > 4𝑘 −6). In [6] Section 6 the suitable interval 𝐼 is such
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thatHomO ( 𝜌̃2, 𝜌̃1) has Hodge-Tate weights in 𝐼 . For 𝑖, 𝑗 ∈ {1, 2} the local condition
at 𝑣 | 𝑝 for the Selmer groups 𝐻1

Σ
(𝐹,HomF (𝜌𝑖 , 𝜌 𝑗 )) is 𝐻

1
𝑓 ,𝐼
(𝐹𝑣 ,HomF ( 𝜌̃𝑖 , 𝜌̃ 𝑗 )). In

[loc.cit.] Section 9 one has 𝐼 = [−1, 1] (𝑝 − 1 > 2), in Section 10 𝐼 = [1 − 𝑘, 𝑘 − 1]

(𝑝 − 1 > 2𝑘 − 2). In [7] Sections 7 and 8 the same comment applies as for [6] Section 9.
In J.B.’s paper [16] the argument in Sections 8 and 9 to show the splitting at ℓ of(

𝜖 𝑘−2 ∗

0 𝜖 𝑘−1

)
by relating it to𝐻1

𝑓
(Qℓ , F(−1)) = 0 requires an interval 𝐼 containing−1

and 2𝑘 − 3, so would need 𝑝 − 1 > 2𝑘 − 2. However, one could instead not twist and
invoke Proposition 4.7.

Similar comments apply to other results in the literature, e.g. in [20] Corollary
2.3 the expression 𝐻1

𝑓
(Qℓ , ad

0
𝜅𝐿) is only indirectly defined by 𝐻1

𝑓
(Qℓ , ad𝜅𝐿) =

𝐻1
𝑓
(Qℓ , ad

0
𝜅𝐿) ⊕ 𝐻

1
𝑓
(Qℓ , 𝜅). To define the Selmer group for the trace zero endo-

morphisms and prove this identity requires ad0𝜅 to lie in the essential image of the
Fontaine-Laffaille functor, and therefore 𝐼 = [1− 𝑘, 𝑘 −1] should be specified, rather
than 𝐼 = [0, ℓ − 2] as in [20] Section 1.1.2.

If 𝑀, 𝑁 ∈ Repcris,𝐼
free,𝐴
(𝐺Qℓ

), then 𝑀 ⊕ 𝑁 ∈ Repcris,𝐼
free,𝐴
(𝐺Qℓ

) and it is clear that

𝐻1
𝑓 ,𝐼 (Qℓ , 𝑀 ⊕ 𝑁) = 𝐻

1
𝑓 ,𝐼 (Qℓ , 𝑀) ⊕ 𝐻

1
𝑓 ,𝐼 (Qℓ , 𝑁) (4.4)

because the extension groups as well as the functor𝑉𝐼 commute with direct sums.

Proposition 4.20 For any 𝑛 ∈ [2 − ℓ, ℓ − 2] such that 0,−𝑛 ∈ 𝐼 the group
𝐻1
𝑓 ,𝐼
(Qℓ , 𝑉𝐼 (𝑀−𝑛,F)) is independent of 𝐼 . In fact we have

𝐻1
𝑓 ,𝐼 (Qℓ , F(𝑛)) =




0 𝑛 < 0

𝐻1
un (Qℓ , F) 𝑛 = 0

𝐻1
fl
(Qℓ , 𝜇ℓ) 𝑛 = 1

𝐻1 (Qℓ , F(𝑛)) 𝑛 > 1,

where

𝐻1
un (Qℓ , F) := ker(𝐻1 (Qℓ , F) → 𝐻1 (𝐼ℓ , F)) � Hom(𝐺Qℓ

/𝐼ℓ , F)

and 𝐻1
fl
(Qℓ , 𝜇ℓ) denotes the peu ramifiée classes, namely those classes corresponding

to Z×
ℓ
/(Z×

ℓ
)ℓ ⊂ Q×

ℓ
/(Q×

ℓ
)ℓ � 𝐻1 (Qℓ , F(1)). For 𝑛 ≥ 0 we note that

dimF 𝐻
1
𝑓 ,𝐼
(Qℓ , F(𝑛)) = 1.

Remark 4.21 (1) Proposition 4.20 justifies writing 𝐻1
Σ
(Qℓ , 𝑉𝐼 (𝑀𝑛)) as we did in

[8], without specifying the interval 𝐼 , as long as 𝐼 contains −𝑛. Under the con-
ditions of Proposition 4.23 (see comment after Proposition 5.1), once we have
fixed a suitable interval 𝐼 we will also drop the subscript 𝐼 in this paper.

(2) Note that the definition of 𝐻1
𝑓 ,𝐼
(Qℓ , 𝑉𝐼 (𝑀𝑛)) depends on 𝑛 ∈ Z, even though

the coefficients𝑉𝐼 (𝑀𝑛) = F(𝑛) only depend on 𝑛 mod ℓ − 1.
(3) [41] Section 9.3 states a version of this result for the local crystalline cohomology

of unramified extensions ofQℓ and with Zℓ/ℓ
𝑚 (𝑛) coefficients for 𝑚 ∈ Z>0.
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Proof We first note that 𝐻1 (Qℓ , F(𝑛)) is 1-dimensional for 𝑛 ≠ 0, 1, which follows
from local Tate duality and the Euler characteristic formula, see e.g. [58] Theorem 1
and Proposition 3.

For 𝑛 = 0we refer the reader to [18] Corollary 2.4.4 for identifying𝐻1
𝑓 ,𝐼
(Qℓ , F(𝑛))

with 𝐻1
un (Qℓ , F). That 𝐻1

un (Qℓ , F) is 1-dimensional follows since #𝐻1 (𝐺Qℓ
/𝐼ℓ , F) =

#𝐻0 (Qℓ , F). Recall that

𝐻1
𝑓 ,𝐼 (Qℓ , F(𝑛)) = 𝐻

1
𝑓 ,𝐼 (Qℓ , 𝑉𝐼 (𝑀−𝑛,F)) = 𝑉𝐼 (Ext

1

𝑀𝐹
𝑓 ,𝐼

tor,Zℓ
⊗Zℓ F
(𝑀0,F, 𝑀−𝑛,F)).

If 𝑛 < 0 then by Proposition 4.7(ii) Ext1
𝑀𝐹

𝑓 ,𝐼

tor,Zℓ
⊗Zℓ F
(𝑀0,F, 𝑀−𝑛,F) = 0 since the

Fontaine-Laffaille weights satisfy the inequality −𝑛 > 0.
On the other hand, if 𝑛 > 0 then 𝐻1

𝑓 ,𝐼
(Qℓ , 𝑉𝐼 (𝑀−𝑛)) is 1-dimensional by Propo-

sition 4.7(i). For 𝑛 > 1 this equals 𝐻1 (Qℓ , F(𝑛)) by our observation at the start of the
proof.

For 𝑛 = 1 we have 𝐻1 (Qℓ , F(1)) � Q×
ℓ
/(Q×

ℓ
)ℓ is 2-dimensional, and one can

identify the Fontaine-Laffaille extensions with the peu ramifiée classes (see e.g. [15]
Lemma 8.1.3). ■

Remark 4.22 Note that [2−ℓ, 0] contains both 0 and 2−ℓ (and is the only interval of
this length that contains both).Then since F(−1) = F(ℓ − 2) = 𝑉[2−ℓ,0] (𝑀2−ℓ) we get

𝐻1
𝑓 , [2−ℓ,0] (Qℓ , F(−1)) = 𝐻

1
𝑓 , [2−ℓ,0] (Qℓ , F(ℓ − 2))

= 𝐻1
𝑓 , [2−ℓ,0] (Qℓ , 𝑉[2−ℓ,0] (𝑀2−ℓ,F))

≠ 0,

corresponding to the crystalline non-split extension

(
𝜖ℓ−2 ∗

0 1

)
. Note that 1 ∉ [2−ℓ, 0].

However for all other intervals 𝐼 ⊂ [2−ℓ, ℓ−2] of length ℓ−2we have 1 ∈ 𝐼 and so

𝐻1
𝑓 ,𝐼 (Qℓ , F(−1)) = 𝑉𝐼 (Ext

1

𝑀𝐹
𝑓 , [𝑎,𝑏]
tor,Zℓ

(𝑀0,F, 𝑀1,F))

= 𝑇cris (Ext
1

𝑀𝐹
𝑓 , [2−ℓ,0]
tor,Zℓ

(𝑀−𝑏,F, 𝑀1−𝑏,F)) (−𝑏)

= 0

by Proposition 4.20. This demonstrates that 𝐻1
𝑓 ,𝐼
(Qℓ , F(𝑛)) is only independent of 𝐼

for 𝐼 containing −𝑛.

Following [12] for a Qℓ [𝐺Qℓ
]-module 𝑉 define 𝐻1

𝑓
(Qℓ , 𝑉) =

ker
(
𝐻1 (Qℓ , 𝑉) → 𝐻1 (Qℓ , 𝑉 ⊗Qℓ

𝐵cris)
)
. Let 𝑉 be a finite-dimensional 𝐸-vector

space and 𝑇 ⊂ 𝑉 a 𝐺Qℓ
-stable O-lattice, i.e., 𝑇 is a free O-submodule of 𝑉 that spans

𝑉 as a vector space over 𝐸 . We set𝑊 = 𝑉/𝑇 and𝑊 [𝜆𝑚] = {𝑤 ∈ 𝑊 : 𝜆𝑚𝑤 = 0} �

𝑇/𝜆𝑚𝑇 for any 𝑚 ∈ Z>0. Note that𝑊 [𝜆𝑚] lies in Repcris,−𝐼
O/𝜆𝑚

(𝐺Qℓ
) if 𝑉 is crystalline

with Hodge-Tate weights in −𝐼 . We let 𝐻1
𝑓
(Qℓ ,𝑊) be the image of 𝐻1

𝑓
(Qℓ , 𝑉) under

the natural map 𝐻1 (Qℓ , 𝑉) → 𝐻1 (Qℓ ,𝑊).
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Proposition 4.23 ([20] Proposition 2.2) Assume𝑉 is a crystalline 𝐸 [𝐺Qℓ
]-module as above

with Hodge-Tate weights in −𝐼 = [−𝑏,−𝑎] (and 0 ∈ 𝐼). For 𝑇 ⊂ 𝑉 and𝑊 = 𝑉/𝑇 as above
we then have 𝐻1

𝑓
(Qℓ ,𝑊) = lim

−−→
𝑚

𝐻1
𝑓 ,𝐼
(Qℓ ,𝑊 [𝜆

𝑚]).

Proof We note that the proof of [20] Proposition 2.2 carries over from [0, ℓ − 2] to
general 𝐼 (in particular one has Proposition 4.6) and apply the argument with (in their
notation)𝑉1 the trivial𝐺Qℓ

-representation and𝑉2 = 𝑉 . ■

Corollary 4.24 ([20] (33), [6] Corollary 5.4) For every 𝑚 ∈ Z>0 we have an exact sequence
of O-modules

0→ 𝐻0 (Qℓ ,𝑊)/𝜆
𝑚 → 𝐻1

𝑓 ,𝐼 (Qℓ ,𝑊 [𝜆
𝑚]) → 𝐻1

𝑓 (Qℓ ,𝑊) [𝜆
𝑚] → 0.

Corollary 4.25 For 𝑛 ∈ Z with 0, 𝑛 ∈ 𝐼 ⊂ [2 − ℓ, ℓ − 2] and 𝑛 ≠ 0 we have

𝐻1
𝑓 ,𝐼 (Qℓ , 𝑉𝐼 (𝑀−𝑛,F)) = 𝐻

1
𝑓 (Qℓ , 𝐸/O(𝑛)) [𝜆] .

Proof Note that 𝐻0 (Qℓ , 𝐸/O(𝑛) [𝜆]) = 0 since 𝑛 . 0 mod ℓ − 1. This implies
𝐻0 (Qℓ , 𝐸/O(𝑛)) = 0, hence we are done by Corollary 4.24. ■

5 Selmer Groups

5.1 DeĄnitions

For 𝑀 a topological Zℓ [𝐺Q]-module set

𝐻1
un (Q𝑝 , 𝑀) := ker

(
𝐻1 (Q𝑝 , 𝑀) → 𝐻1 (𝐼𝑝 , 𝑀)

)
for every prime 𝑝. Let 𝐸/Qℓ be a finite extension with valuation ring O, uniformizer
𝜆, and residue field F. Let𝑉 be a finite dimensional 𝐸-vector space on which one has
a continuous 𝐸-linear𝐺Q action. For finite primes 𝑝 with 𝑝 ≠ ℓ, we set

𝐻1
𝑓 (Q𝑝 , 𝑉) = 𝐻

1
un (Q𝑝 , 𝑉).

For 𝑝 = ℓ, we recall from Section 4 that

𝐻1
𝑓 (Qℓ , 𝑉) = ker

(
𝐻1 (Qℓ , 𝑉) → 𝐻1(Qℓ , 𝑉 ⊗Qℓ

𝐵cris)
)
.

Let 𝑇 ⊂ 𝑉 be a 𝐺Q-stable O-lattice. We set𝑊 = 𝑉/𝑇 and𝑊 [𝜆𝑛] = {𝑤 ∈ 𝑊 :

𝜆𝑛𝑤 = 0} � 𝑇/𝜆𝑛𝑇 . For every 𝑝 we let𝐻1
𝑓
(Q𝑝 ,𝑊) be the image of𝐻1

𝑓
(Q𝑝 , 𝑉) under

the natural map 𝐻1 (Q𝑝 , 𝑉) → 𝐻1 (Q𝑝 ,𝑊). We have 𝐻1
𝑓
(Q𝑝 ,𝑊) = 𝐻

1
un (Q𝑝 ,𝑊) for

all 𝑝 ≠ ℓ, as long as𝑉 is unramified at 𝑝, which for us will always be the case.
We define the global Selmer group of𝑊 as

𝐻1
𝑓 (Q,𝑊) = ker

{
𝐻1 (Q,𝑊) →

⊕
𝑝

𝐻1 (Q𝑝 ,𝑊)

𝐻1
𝑓
(Q𝑝 ,𝑊)

}
.
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We note that as 𝐻1
𝑓
(Qℓ ,𝑊) commutes with direct sums and so clearly does

𝐻1
un (Qℓ ,𝑊), we get that 𝐻

1
𝑓
(Q,𝑊) does as well.

Let 𝐼 = [𝑎, 𝑏] with 𝑎, 𝑏 ∈ Z and 𝑏 − 𝑎 ≤ ℓ − 2 and assume that 0 ∈ 𝐼 . If 𝑉 is
crystalline with Hodge-Tate weights in −𝐼 we define

𝐻1
𝑓 ,𝐼 (Q,𝑊 [𝜆

𝑛])

= ker



𝐻1 (Q,𝑊 [𝜆𝑛]) →

⊕
𝑝≠ℓ

𝐻1 (Q𝑝 ,𝑊 [𝜆
𝑛])

𝐻1
un (Q𝑝 ,𝑊 [𝜆𝑛])

⊕
𝐻1 (Qℓ ,𝑊 [𝜆

𝑛])

𝐻1
𝑓 ,𝐼
(Qℓ ,𝑊 [𝜆𝑛])



.

As noted in (4.4) 𝐻1
𝑓
(Qℓ ,𝑊 [𝜆

𝑛]) also commutes with direct sums and so we get

that 𝐻1
𝑓 ,𝐼
(Q,𝑊 [𝜆𝑛]) does as well.

Proposition 5.1 Assume that the interval 𝐼 = [𝑎, 𝑏] contains 0 and 𝑉 is 𝐸 [𝐺Q]-module
which is finite-dimensional as an 𝐸-vector space and a crystalline 𝐺Qℓ

-module with Hodge-
Tate weights in −𝐼 . If 𝐻0(Q,𝑊 [𝜆]) = 0 then we have

𝐻1
𝑓 (Q,𝑊) [𝜆

𝑛] � 𝐻1
𝑓 ,𝐼 (Q,𝑊 [𝜆

𝑛]).

Proof [6] Proposition 5.8 proves the claim under the assumption 𝐻0 (Q,𝑊) = 0.
Suppose we have 𝛼 ∈ 𝐻0 (Q,𝑊). We know every element of𝑊 is annihilated by

some power of 𝜆, so if 𝛼 ≠ 0 there is an integer𝑚 so that 𝜆𝑚𝛼 = 0 but 𝜆𝑛𝛼 ≠ 0 for all
0 < 𝑛 < 𝑚. However, this gives 𝜆𝑚−1𝛼 ∈ 𝐻0 (Q,𝑊 [𝜆]) = 0, so it must be that 𝛼 = 0.
Thus, 𝐻0 (Q,𝑊) = 0 as desired. ■

After a suitable interval 𝐼 has been fixed we will therefore also drop the subscript
𝐼 and write 𝐻1

𝑓
(Q,𝑊 [𝜆𝑛]).

Let𝐺 be a group, 𝑅 a commutative ringwith identity, and𝑀𝑖 finitely generated free
𝑅-modules with 𝑅-linear action given by 𝜌𝑖 : 𝐺 → GL𝑅 (𝑀𝑖) for 𝑖 = 1, 2. The action
of 𝐺 on Hom𝑅 (𝜌2, 𝜌1) is given by (𝑔 · 𝜑) (𝑣) = 𝜌1 (𝑣)𝜑(𝜌2 (𝑔

−1)𝑣). In particular,
if 𝜌1 = 𝜌2 = 𝜌, we define the adjoint representation of 𝜌 to be the 𝑅[𝐺]-module
ad 𝜌 = Hom𝑅 (𝜌, 𝜌). We write ad0 𝜌 for the 𝑅[𝐺]-submodule of ad 𝜌 consisting of
endomorphisms of trace zero.

If 𝜌 is of rank 𝑛 and 2𝑛 ∈ 𝑅× then we have an isomorphism of 𝑅[𝐺]-modules

ad 𝜌 � ad0 𝜌 ⊕ 𝑅. (5.1)

5.2 Non-vanishing of a Selmer group

In this section we explain how the congruence of a Siegel cusp form to the Klingen
Eisenstein series in Section 3 leads to a non-zero element of 𝐻1

𝑓
(Q, ad0 (𝜌𝜙,𝜆) (2 −

𝑘) ⊗ 𝐸/O).
From now on, we fix the weight 𝑘 ≥ 12 even and the prime ℓ satisfying ℓ > 4𝑘 −

5 and impose Assumption 3.1 on the field 𝐸/Qℓ . Let 𝜙 ∈ 𝑆𝑘 (Γ1) be a normalized
eigenform. Let 𝜌𝜙 be the 𝜆-adic Galois representation associated to 𝜙 and assume 𝜌𝜙
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is irreducible. Let 𝑓 ∈ 𝑆𝑘 (Γ2) be an eigenformwith irreducible Galois representation
𝜌 𝑓 so that 𝑓 is eigenvalue congruent to 𝐸

2,1
𝜙

modulo 𝜆.
The following result shows we can choose a lattice so that the residual Galois

representation gives rise to a non-split extension.

Lemma 5.2 There exists a 𝐺Q-stable lattice in the space of 𝜌 𝑓 such that with respect to this
lattice

𝜌 𝑓 =

[
𝜌𝜙 ∗

𝜌𝜙 (𝑘 − 2)

]
� 𝜌𝜙 ⊕ 𝜌𝜙 (𝑘 − 2).

Proof Using the compactness of 𝐺Q one can show that there exists a 𝐺Q-stable
lattice Λ′ in the space of 𝜌 𝑓 . One uses Brauer-Nesbitt Theorem together with the
Chebotarev DensityTheorem to conclude that 𝜌ss𝑓 ,Λ′ = 𝜌𝜙 ⊕ 𝜌𝜙 (𝑘−2). Now the exis-
tence of the desired lattice which gives the non-split extension follows fromTheorem
4.1 in [9]. ■

From now on, whenever we write 𝜌 𝑓 , we assume we have made a choice of lattice
as in Lemma 5.2, so we consider 𝜌 𝑓 as a map from𝐺Q to GL4 (O).

We now choose the interval 𝐼 = [3 − 2𝑘, 2𝑘 − 3] so that it contains all the Hodge-
Tate weights of 𝜌 𝑓 , 𝜌𝜙 , 𝜌𝜙 (𝑘 − 2), ad 𝜌𝜙 (2− 𝑘), and ad 𝜌𝜙 (𝑘 − 2). Note that −𝐼 = 𝐼 .
We assume that ℓ − 2 ≥ 4𝑘 − 6. When we write 𝐻1

𝑓
from now on this refers to 𝐻1

𝑓 ,𝐼

as defined in Section 5.1.
Let 𝜌 be any of the representations above and write𝑉 for the representation space

of 𝜌. We choose a𝐺Q-stable lattice𝑇 ⊂ 𝑉 and recall that the isomorphism class of the
semi-simplification of the F[𝐺Q]-representation 𝑇/𝜆𝑇 is independent of the choice
of 𝑇 . It is well-known that if 𝑇/𝜆𝑇 is irreducible then the O-length of 𝐻1

𝑓
(Q,𝑊) is

independent of 𝑇 , where as before𝑊 = 𝑉/𝑇 . By Proposition 5.1 we then conclude
that also the O-length of 𝐻1

𝑓
(Q,𝑊 [𝜆𝑛]) is independent of the choice of 𝑇 as long as

𝐻0 (Q,𝑊) = 0.

Lemma 5.3 Under our assumptions (in particular, 𝜌𝜙 irreducible and ℓ > 4𝑘 − 5) the

modulo 𝜆 reduction of ad0 𝜌𝜙 is irreducible.

Proof Assume the three-dimensional representation ad0 𝜌𝜙 is reducible. Then it
either has a one-dimensional 𝐺Q-stable subspace or quotient. Since ad 𝜌𝜙 and 1 are
self-dual, so is ad0 𝜌𝜙 . Hence we can assumewithout loss of generality that ad0 𝜌𝜙 has
a𝐺Q-stable line. Write 𝜓 for the character by which𝐺Q acts on the line.

As 𝜌𝜙 is unramified away from ℓ and the order of 𝜓 is prime to ℓ, we have 𝜓 =

𝜖𝑎 for some integer 𝑎 ∈ 𝐼 . This would require 𝐻0 (Q, ad0 𝜌𝜙 (−𝑎)) ≠ 0. Note that

𝐻0 (Q, ad 𝜌𝜙 (−𝑎)) = Hom𝐺Q
(𝜌𝜙 (𝑎), 𝜌𝜙). If 𝑎 ≡ 0 (mod (ℓ − 1)), then this space is

one-dimensional by Schur’s Lemma since 𝜌𝜙 is irreducible. So, 𝐻0 (Q, ad0 𝜌𝜙) = 0,
contradiction.

If 𝑎 . 0 (mod (ℓ − 1)), then 𝐻0 (Q, ad 𝜌𝜙 (−𝑎)) = 𝐻0 (Q, ad0 𝜌𝜙 (−𝑎)) ≠ 0.This
means that 𝜌𝜙 is isomorphic to 𝜌𝜙 (𝑎). Considering the determinant, 𝜖𝑎 must be the
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trivial character or the quadratic character 𝜖 (ℓ−1)/2. Both are ruled out since 𝑎 ∈ 𝐼 =
[3 − 2𝑘, 2𝑘 − 3] by our assumption that ℓ > 4𝑘 − 5. ■

Remark 5.4 FromLemma5.3we conclude thatwhen 𝜌 ∈ {𝜌𝜙 , 𝜌𝜙 (𝑘−2), ad
0 𝜌𝜙 (2−

𝑘), ad0 𝜌𝜙 (𝑘 − 2)}, the O-length of 𝐻1
𝑓
(Q,𝑊) and 𝐻1

𝑓
(Q,𝑊 [𝜆𝑛]) are independent

of the choice of 𝑇 . As we will ever only be interested in the order of these groups, the
choice of 𝑇 is immaterial and we will simply assume that such a choice was made. So,
for example we will use the notation 𝐻1

𝑓
(Q, ad0 𝜌𝜙,𝜆 (𝑘 − 2) ⊗ 𝐸/O), thus assum-

ing that when we write ad0 𝜌𝜙,𝜆 (𝑘 − 2), we have made a choice of a lattice for this
representation. Likewise any one-dimensional representation 𝜌 is irreducible, so the
O-length of 𝐻1

𝑓
(Q, 𝜌 ⊗ 𝐸/O) is independent of the choice of 𝑇 .

For the representation ad 𝜌(𝑚),𝑚 ∈ {𝑘 − 2, 2− 𝑘} (which is reducible) we choose
a lattice which is a direct sum of a lattice inside ad0 𝜌(𝑚) and a lattice inside 𝐸 (𝑚). So,
from now onwhenever we write ad 𝜌(𝑚) wemean such a lattice. Since the formation
of Selmer groups commutes with direct sums we then get

𝐻1
𝑓 (Q, ad 𝜌𝜙 (𝑚) ⊗ 𝐸/O) = 𝐻

1
𝑓 (Q, ad

0 𝜌𝜙 (𝑚) ⊗ 𝐸/O) ⊕ 𝐻
1
𝑓 (Q, 𝐸/O(𝑚)) (5.2)

for 𝑚 ∈ {𝑘 − 2, 2 − 𝑘}. Note that the O-length (and in particular, the non-triviality)
of 𝐻1

𝑓
(Q, ad 𝜌(𝑚) ⊗ 𝐸/O) is independent of the choice of a lattice inside ad 𝜌𝜙 (𝑚)

as long as it is the direct sum of lattices in ad0 𝜌𝜙 (𝑚) and 𝐸 (𝑚).

Theorem 5.5 With the set-up as above we have 𝐻1
𝑓
(Q, ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O) ≠ 0.

Proof We have via Lemma 5.2 that there is a lattice 𝑇 𝑓 ⊂ 𝑉 𝑓 so that the residual
representation 𝜌 𝑓 : 𝐺Q → GL4 (F) has the form

𝜌 𝑓 =

[
𝜌𝜙 𝜓

0 𝜌𝜙 (𝑘 − 2)

]
(5.3)

and is not semisimple. The fact that 𝜓 as in (5.3) gives a non-trivial class [𝜓] in
𝐻1 (Q,HomF (𝜌2, 𝜌1)) = 𝐻1 (Q, ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]) is clear. We need to show
that [𝜓] lies in 𝐻1

𝑓
(Q, ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]) and that the latter group injects into

𝐻1
𝑓
(Q, ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O).

We first show that [𝜓] satisfies the conditions to be in 𝐻1
𝑓
(Q, ad 𝜌𝜙 (2 − 𝑘) ⊗

𝐸/O[𝜆]). We have that 𝜌 𝑓 is unramified at all primes 𝑝 ≠ ℓ, so the local conditions
are satisfied for all primes 𝑝 ≠ ℓ.

Since 𝑓 has level one and weight 𝑘 , 𝜌 𝑓 |𝐷ℓ
is crystalline with Hodge-Tate weights

in [0, 2𝑘 − 3] ⊂ 𝐼 = −𝐼 . Hence 𝜌 𝑓 (considered as a 𝐺Qℓ
-module) belongs to

Repcris,𝐼
free,F
(𝐺Qℓ

) and gives rise to an element of Ext1
Repcris,𝐼

free,F
(𝐺Qℓ

)
(𝜌𝜙 (𝑘 − 2), 𝜌𝜙) ⊂

Ext1
F[𝐺Qℓ

]
(𝜌𝜙 (𝑘 − 2) ⊗ 𝐸/O[𝜆], 𝜌𝜙 ⊗ 𝐸/O[𝜆]). By our choice of 𝐼 we can use (4.3)

and Proposition 4.8 to get a non-zero element in

Ext1
Repcris,𝐼

free,F
(𝐺Qℓ

)
(F, ad 𝜌𝜙 (2− 𝑘) ⊗𝐸/O[𝜆]) ⊂ Ext1

F[𝐺Qℓ
] (F, ad 𝜌𝜙 (2− 𝑘) ⊗𝐸/O[𝜆]).

2025/09/05 10:46



Klingen Eisenstein congruences and Modularity 23

As this extension maps to [𝜓 |𝐺Qℓ
] in 𝐻1 (Qℓ , ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]) under the

canonical isomorphism Ext1
F[𝐺Qℓ

]
(F, ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]) � 𝐻

1 (Qℓ , ad 𝜌𝜙 (2 −

𝑘) ⊗ 𝐸/O[𝜆]), we conclude that

[𝜓 |𝐺Qℓ
] ∈ 𝐻1

𝑓 (Qℓ , ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]) ⊂ 𝐻
1 (Qℓ , ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]).

Thereforewe have established that [𝜓] ∈ 𝐻1
𝑓
(Q, ad 𝜌𝜙 (2−𝑘)⊗𝐸/O[𝜆]).ByProposi-

tion 5.1 this group is isomorphic to𝐻1
𝑓
(Q, ad 𝜌𝜙 (2−𝑘)⊗𝐸/O)[𝜆] if𝐻

0 (Q, ad 𝜌𝜙 (2−

𝑘) ⊗ 𝐸/O[𝜆]) = 0. The latter holds since

ad 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O[𝜆]
𝐺Q = Hom𝐺Q

(𝜌𝜙 (𝑘 − 2), 𝜌𝜙) = 0 (5.4)

as 𝜌𝜙 and 𝜌𝜙 (𝑘 − 2) are absolutely irreducible (by assumption) and non-isomorphic

since 𝑘 − 2 . 0, ℓ−1
2
(mod ℓ − 1) as ℓ > 4𝑘 − 5 and 𝑘 ≠ 2 (cf. the proof of Lemma

5.3). ■

Lemma 5.6 Let 𝑛 be an even integer satisfying 3 − 2𝑘 < 𝑛 ≤ 0. Assuming ℓ ∤ #Cl𝜖
𝑛

Q (𝜁ℓ )+
,

one has 𝐻1
𝑓
(Q, F(𝑛)) = 0 and, if additionally 𝑛 ≠ 0, 𝐻1

𝑓
(Q, 𝐸/O(𝑛)) = 0.

Proof We see from Proposition 4.20 that any cohomology class in 𝐻1
𝑓
(Q, F(𝑛))

must vanish when restricted to 𝐼ℓ . As all classes in 𝐻1
𝑓
(Q, F(𝑛)) are unramified

away from ℓ, we get that they are unramified everywhere. Using inflation-restriction
sequence where 𝐻 = Gal(Q(𝜁ℓ)

+/Q) we see that

𝐻1 (Q, F(𝑛)) � 𝐻1 (Q(𝜁ℓ)
+, F(𝑛))𝐻 = Hom𝐻 (𝐺Q (𝜁ℓ )+ , F(𝑛)).

Note that everywhere unramified classes map to homomorphisms that kill all the

inertia groups. Hence the image of 𝐻1
𝑓
(Q, F(𝑛)) lands insideHom

(
Cl𝜖

𝑛

Q (𝜁ℓ )+
, F
)
= 0.

Note that a torsion O-module 𝑀 is zero if and only if 𝑀 [𝜆] = 0. There-
fore the vanishing of 𝐻1

𝑓
(Q, 𝐸/O(𝑛)) follows from Proposition 5.1, which tells us

that 𝐻1
𝑓
(Q, 𝐸/O(𝑛)) [𝜆] = 𝐻1

𝑓
(Q, F(𝑛)) if 𝐻0 (Q, 𝐸/O(𝑛)) = 0. We know that

𝐻0 (Qℓ , 𝐸/O(𝑛) [𝜆]) = 𝐻0 (Q, F(𝑛)) = 0 for 𝑛 ≠ 0 since 𝑛 . 0 (mod ℓ − 1) under
our assumption ℓ > 4𝑘 − 5. ■

Corollary 5.7 Let 𝜙 ∈ 𝑆𝑘 (Γ1) be as in Theorem 3.5 and assume the hypotheses of Theorem

3.5 are satisfied. Assuming ℓ ∤ #Cl𝜖
2−𝑘

Q (𝜁ℓ )+
one has 𝐻1

𝑓
(Q, ad0 𝜌𝜙 (2 − 𝑘) ⊗ 𝐸/O) ≠ 0.

Proof This follows fromTheorem 5.5, Lemma 5.6 and isomorphism (5.2). ■

Remark 5.8 If we assume Vandiver’s conjecture for the prime ℓ, this gives that ℓ ∤

#Cl𝜖
2−𝑘

Q (𝜁ℓ )+
.

6 Modularity

We begin with the following commutative algebra result that will be useful in this
section.

2025/09/05 10:46



24 T. Berger and J. Brown and K. Klosin

Lemma 6.1 If 𝐽 is an ideal of F[[𝑋1, . . . , 𝑋𝑛]] that is strictly contained in the maximal
ideal, then F[[𝑋1, . . . , 𝑋𝑛]]/𝐽 admits an F-algebra surjection to F[𝑇]/𝑇2.

Proof For a positive integer 𝑘 let 𝐼𝑘 be the ideal of F[[𝑋1, . . . , 𝑋𝑘]] generated by
all the monomials of degree at least 2. Set 𝑆𝑘 := F[[𝑋1, . . . , 𝑋𝑘]]/𝐼𝑘 and write 𝜙𝑘 :

F[[𝑋1, . . . , 𝑋𝑘]] → 𝑆𝑘 for the canonical F-algebra surjection. If 𝜙𝑛 (𝐽) = 0, then
composing 𝜙𝑛 with the map 𝑆𝑛 → F[[𝑇]]/𝑇2 sending 𝑋1 to 𝑇 and 𝑋𝑖 for 𝑖 > 1 to
zero gives the desired surjection.

Now suppose 𝜙𝑛 (𝐽) ≠ 0. Without loss of generality (renumbering the variables
if necessary) we may assume then that 𝐽 contains an element of the form 𝑢 := 𝑋𝑛 +

𝑓 (𝑋1, . . . , 𝑋𝑛−1) + 𝑔(𝑋1, . . . , 𝑋𝑛), where 𝑓 is homogeneous of degree one and all the
terms in 𝑔 have degree at least 2. Note that we can assume without loss of generality
that some power of 𝑋𝑛 appears in 𝑔. (Indeed, if 𝑔 contains no 𝑋𝑛 then we replace
𝑢 by 𝑢 + 𝑢2 ∈ 𝐽 .) By Theorem 7.16(a) in [23] there is a unique F-algebra map from
F[[𝑋1, . . . , 𝑋𝑛]] to itself sending 𝑋𝑛 to − 𝑓 − 𝑔 and 𝑋𝑖 to itself for 𝑖 < 𝑛. In other
words, for any power series ℎ(𝑋1, . . . , 𝑋𝑛), the element ℎ(𝑋1, . . . , 𝑋𝑛−1,− 𝑓 −𝑔) also
lives in F[[𝑋1, . . . , 𝑋𝑛]] and we denote it by ℎ

′ (𝑋1, . . . , 𝑋𝑛). Clearly ℎ − ℎ
′ ∈ 𝐽 .

Thus for any power series ℎwhere the smallest total degree of any term containing
𝑋𝑛 is 𝑠 we have

ℎ ≡ ℎ′ (mod 𝐽)

for some power series ℎ′ with the smallest total degree of any term containing 𝑋𝑛
equal to 𝑠′ > 𝑠. By the same process we get an ℎ′′ such that ℎ′ ≡ ℎ′′ mod 𝐽 and the
smallest total degree of any term 𝑋𝑛 in ℎ

′′ is strictly greater than 𝑠′. This way we can
construct a sequence of power series ℎ𝑠 where for every 𝑠 we have the smallest total
degree of any termcontaining 𝑋𝑛 being greater thanor equal to 𝑠 and such that ℎ−ℎ𝑠 ∈
𝐽 for every 𝑠. We note that ℎ𝑠 is a Cauchy sequence with respect to the (𝑋1, . . . , 𝑋𝑛)-
adic topology (indeed, for 𝑡, 𝑢 > 𝑠 we see that ℎ𝑡 − ℎ𝑢 lies in (𝑋1, . . . , 𝑋𝑛)

𝑠). Set
ℎ0 = lim𝑠→∞ ℎ𝑠 . As 𝐽 is a closed ideal, we get that ℎ0 − ℎ ∈ 𝐽 . For every 𝑠 we have

ℎ0 ≡ ℎ𝑠 ≡ 𝑤𝑠 mod 𝑋𝑠𝑛,

for some 𝑤𝑠 ∈ F[[𝑋1, . . . , 𝑋𝑛−1]]. Note that the 𝑤𝑠 also form a Cauchy sequence
since ℎ𝑠 does. Set 𝑤 := lim𝑠→∞ 𝑤𝑠 ∈ F[[𝑋1, . . . , 𝑋𝑛−1]]. Thus ℎ0 ≡ 𝑤 modulo⋂
𝑠 (𝑋

𝑠
𝑛) ⊂

⋂
𝑠 (𝑋1, . . . , 𝑋𝑛)

𝑠 = 0, so ℎ0 ∈ F[[𝑋1, . . . , 𝑋𝑛−1]].
Hence the naturalF-algebramap𝜓𝑛−1 : F[[𝑋1, . . . , 𝑋𝑛−1]] → F[[𝑋1, . . . , 𝑋𝑛]]/𝐽

given by ℎ0 ↦→ ℎ0 + 𝐽 is surjective. Thus we get an F-algebra isomorphism
F[[𝑋1, . . . , 𝑋𝑛]]/𝐽 → F[[𝑋1, . . . , 𝑋𝑛−1]]/𝐽𝑛−1, where 𝐽𝑛−1 = ker𝜓𝑛−1.

If 𝜙𝑛−1 (𝐽𝑛−1) ≠ 0, continue this way obtaining a sequence of ideals 𝐽𝑛−2, 𝐽𝑛−3, ....
If at any stage (1 ≤ 𝑟 ≤ 𝑛 − 2) we get 𝜙𝑛−𝑟 (𝐽𝑛−𝑟 ) = 0, then we are done. Otherwise
we can eliminate all but one variable and get F[[𝑋1, . . . , 𝑋𝑛]]/𝐽 � F[[𝑋1]]/𝐽1 and
now we must have 𝜙1 (𝐽1) = 0 as otherwise 𝐽1 and hence 𝐽 is maximal. ■

Recall that in the earlier sections we fixed the weight 𝑘 ≥ 12 even and prime ℓ >
4𝑘 − 5 and imposed Assumption 3.1 on the field 𝐸/Qℓ . We also fixed the Fontaine-
Laffaille interval 𝐼 = [3 − 2𝑘, 2𝑘 − 3]. Let 𝜙 ∈ 𝑆𝑘 (Γ1) be a newform such that 𝜌𝜙
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is irreducible. The goal of this section is to prove a modularity theorem under the
following assumption:

Assumption 6.2 For 𝑘 , and 𝜙 as above we assume that

(i) there exists 𝑓 ∈ 𝑆𝑘 (Γ2) such that 𝑓 ≡ev 𝐸
2,1
𝜙

(mod 𝜆), and

(ii) #𝐻1
𝑓
(Q, ad0𝜌𝜙 (2 − 𝑘) ⊗O 𝐸/O) = #O/𝜆 (recall that the left hand side is independent

of the choice of lattice, see Remark 5.4), and
(iii) 𝐻1

𝑓
(Q, ad0 𝜌𝜙) = 0.

Remark 6.3 Assumption 6.2 (i) is satisfied under the assumptions ofTheorem3.5, and
so is one inequality in Assumption 6.2 (ii) under the assumptions of Corollary 5.7.

We impose Assumption 6.2 and fix 𝑓 as in Assumption 6.2 in what follows.Wewill
write𝐺 {ℓ } for theGalois groupof themaximalGalois extensionofQ unramified away
from ℓ. Let 𝜌 𝑓 : 𝐺 {ℓ } → GL4 (𝐸) be as in Theorem 2.1. Lemma 3.4 gives that 𝜌 𝑓 is
irreducible. We will use Mazur’s deformation theory and refer the reader to standard
references such as [19, 43] for the definitions and basic properties.

Definition 6.4 For 𝐵 ∈ LCNO we say that a representation 𝜌 : 𝐺Qℓ
→ GL𝑛 (𝐵) is

Fontaine-Laffaille (with Hodge-Tate weights in −𝐼) if 𝜌 ⊗𝐵 𝐴 lies in Repcris,−𝐼
free,𝐴

(𝐺Qℓ
)

(see Definition 4.9(v)) for every Artinian quotient 𝐴 of 𝐵. By Theorem 4.14(iv) this is
equivalent to requiring 𝜌 ⊗𝐵 𝐴 to lie in the essential image of the Fontaine-Laffaille
functor.

Remark 6.5 We know that any choice of O-lattice 𝜌𝐿 in 𝜌𝜙 or 𝜌 𝑓 is Fontaine-

Laffaille in this sense, since their restrictions to 𝐺Qℓ
lie in Repcris,−𝐼

Zℓ
(𝐺Qℓ

) and
therefore in the essential image of the Fontaine-Laffaille functor byTheorem 4.14(iii).
Since they are also free O-modules this implies by Theorem 4.14 (iii) and (iv) that
𝜌𝐿 ⊗ 𝐵 lies in Repcris,−𝐼

free,𝐴
(𝐺Qℓ

) for every Artinian quotient 𝐵 of O.

For any local complete Noetherian O-algebra 𝐴 with residue field F by a defor-
mation of a residual Galois representation 𝜏 : 𝐺 {ℓ } → GL𝑛 (F) we will mean a strict
equivalence class of lifts 𝜏 : 𝐺 {ℓ } → GL𝑛 (𝐴) of 𝜏 that are Fontaine-Laffaille at ℓ.This
deformation condition is introduced in [6] Section 5.3 and [18] p.35.

As is customary, we will denote a strict equivalence class of deformations by any of
itsmembers. If 𝜏 has scalar centralizer then this deformation problem is representable
by a local complete Noetherian O-algebra which we will denote by 𝑅𝜏 [44]. In par-
ticular, the identity map in HomO−alg (𝑅𝜏 , 𝑅𝜏) furnishes what is called the universal
deformation 𝜏univ : 𝐺 {ℓ } → GL𝑛 (𝑅𝜏).

Lemma 6.6 One has 𝑅𝜌𝜙 � 𝑅𝜌𝜙 (𝑘−2) � O. Furthermore, 𝜌𝜙 (resp. 𝜌𝜙 (𝑘 − 2)) is the

unique deformation of 𝜌𝜙 (resp. 𝜌𝜙 (𝑘 − 2)) to GL2 (O).
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Proof We have

#HomO−alg (𝑅𝜌𝜙 , F[𝑋]/𝑋
2) = #𝐻1

𝑓 (Q, ad 𝜌𝜙) = 0, (6.1)

where the first equality follows from the fact that our deformation condition is the
property of being Fontaine-Laffaille (see e.g., Section 2.4.1 [18]), and the second one
holds sincewe have𝐻1

𝑓
(Q, ad 𝜌𝜙) = 𝐻

1
𝑓
(Q, ad0 𝜌𝜙)⊕𝐻

1
𝑓
(Q, F) = 0 and𝐻1

𝑓
(Q, F) =

0 by Lemma 5.6 as we have imposed Assumption 6.2(iii).
By Theorem 7.16 in [23] we know that any local complete Noetherian O-algebra

with residue field F is a quotient of O[[𝑋1, . . . , 𝑋𝑛]] for some positive integer 𝑛.
Hence 𝑆 := 𝑅𝜌𝜙/(𝜆𝑅𝜌𝜙 ) � F[[𝑋1, . . . , 𝑋𝑛]]/𝐽 for some ideal 𝐽 . Suppose first that 𝐽

is not maximal.Then by Lemma 6.1 we know that 𝑆 admits a surjection 𝜑 to F[𝑇]/𝑇2.
This contradicts (6.1), hence 𝑆 = F. We now use the complete version of Nakayama’s
Lemma to conclude that the structure map O → 𝑅𝜌𝜙 is surjective (cf. [23], Exer-
cise 7.2 or [37] Theorem 8.4). Let us briefly explain why this version applies here. As
𝑅𝜌𝜙 ⊗O F ≠ 0, we see that 𝜆 ∈ 𝔪, where𝔪 is the maximal ideal of 𝑅𝜌𝜙 . Hence⋂

𝑛

𝜆𝑛𝑅𝜌𝜙 ⊂
⋂
𝑛

𝔪𝑛. (6.2)

The latter intersection is zero, since 𝑅𝜌𝜙 is complete, so separated with respect to
𝔪. Hence (6.2) implies that 𝑅𝜌𝜙 is separated with respect to 𝜆𝑅𝜌𝜙 allowing for the
application of the complete version of Nakayama’s Lemma.

As 𝜌𝜙 is a deformation to O, we conclude that 𝑅𝜌𝜙 = O. This implies that if 𝜌 :

𝐺 {ℓ } → GL2 (O) is any deformation of 𝜌𝜙 , one has 𝜌 � 𝜌𝜙 . Similarly, if 𝜌 : 𝐺 {ℓ } →

GL2 (O) is a deformation of 𝜌𝜙 (𝑘 −2) then 𝜌(2− 𝑘) is a deformation of 𝜌𝜙 . Note that
our choice of 𝐼 = [3−2𝑘, 2𝑘 −3] means that this twisting stays inside our category of
Fontaine-Laffaille representations. Hence we get that 𝜌(2 − 𝑘) � 𝜌𝜙 , and so we are
done. ■

Remark 6.7 Note that the determinant of our deformations is automatically fixed as
𝐻1
𝑓
(Q, ad 𝜌𝜙) = 𝐻1

𝑓
(Q, ad0 𝜌𝜙) under our assumptions. This means that all defor-

mations 𝜌 of 𝜌𝜙 (respectively 𝜌𝜙 (𝑘 − 2)) satisfy det 𝜌 = 𝜖 𝑘−1 (respectively det 𝜌 =

𝜖2𝑘−3).

Remark 6.8 Regarding Assumption 6.2(iii) we note that if one additionally assumes

that 𝜌𝜙 is absolutely irreducible when restricted to Gal(Q/Q(
√︁
(−1) (ℓ−1)/2ℓ) then

[20] Theorem 3.7 (see also [28] Theorem 5.20) relates 𝐻1
𝑓
(Q, ad0𝜌𝜙 ⊗ 𝐸/O) (via an

𝑅𝜌𝜙 = T theorem) to a congruence ideal 𝜂∅
𝜙
. One can use Proposition 5.1 to see that

𝐻1
𝑓
(Q, ad0 𝜌𝜙) = 𝐻

1
𝑓
(Q, ad0𝜌𝜙 ⊗ 𝐸/O)[𝜆] = 0 if 𝜂∅

𝜙
is coprime to ℓ.

Lemma 6.9 Let 𝐺 be a group and 𝐹 be a field. For 𝑖 ∈ {1, 2}, let 𝑛𝑖 ∈ Z+ and 𝜌𝑖 : 𝐺 →
GL𝑛𝑖 (𝐹) be an irreducible representation with 𝜌1 � 𝜌2. Let 𝜌 : 𝐺 → GL𝑛1+𝑛2 (𝐹) be a
representation such that

𝜌 =

[
𝜌1 𝑎

𝜌2

]
� 𝜌1 ⊕ 𝜌2.
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Then 𝜌 has scalar centralizer.

Proof This is a simple consequence of Schur’s Lemma and the fact that 𝑎 : 𝑔 →

𝜌2 (𝑔)
−1𝑎(𝑔) defines a cocycle from𝐺 toHom(𝜌2, 𝜌1)which is not a coboundary. ■

Fix a lattice in the space of 𝜌 𝑓 as in Lemma 5.2, i.e. such that 𝜌 𝑓 =[
𝜌𝜙 ∗

𝜌𝜙 (𝑘 − 2)

]
: 𝐺 {ℓ } → GL4 (F) is non-semisimple. For simplicity, we will write

𝑅 for the universal deformation ring 𝑅𝜌 𝑓
of 𝜌 𝑓 and 𝜌

univ : 𝐺 {ℓ } → GL4 (𝑅) for the
universal deformation. Note that the deformation problem is representable because
𝜌 𝑓 is non-semisimple with irreducible, mutually non-isomorphic Jordan-Holder fac-
tors, hence by Lemma 6.9 the centralizer of 𝜌 𝑓 consists of only scalar matrices. We
say that a deformation 𝜌̃ is upper-triangular if 𝜌̃ is strictly equivalent to a deformation

of 𝜌 𝑓 of the form

[
∗ ∗

0 ∗

]
with the stars representing 2 × 2 blocks.

Lemma 6.10 There do not exist any non-trivial deformations of 𝜌 𝑓 into GL4 (F[𝑋]/𝑋
2)

that are upper-triangular.

Proof Weuse Proposition 7.2 in [6] noting that Assumption 6.1(i) in [loc.cit.] is satis-
fied becausewe impose the currentAssumption 6.2(ii).On the other hand, Assumption
6.1(ii) in [loc.cit.] is satisfied because of Lemma 6.6. ■

Definition 6.11 The smallest ideal 𝐼 of 𝑅 such that tr 𝜌univ is the sum of two pseu-
docharacters mod 𝐼 will be called the reducibility ideal of 𝑅. We will denote this ideal
by 𝐼re.

Proposition 6.12 Let 𝐼 ⊂ 𝑅 be an ideal such that 𝑅/𝐼 is an Artin ring. Then 𝐼 ⊃ 𝐼re if and
only if 𝜌univ (mod 𝐼) is upper-triangular.

Proof This is proved as Corollary 7.8 in [6]. ■

Corollary 6.13 The structure mapO → 𝑅/𝐼re is surjective and descends to an isomorphism
O/𝜆𝑠 → 𝑅/𝐼re for some 𝑠 ∈ Z≥0 ∪ {∞}. In fact, one has

𝑅/𝐼re � O/𝜆.

Proof By Theorem 7.16 in [23] we know that any local complete Noetherian O-
algebra with residue field F is a quotient ofO[[𝑋1, . . . , 𝑋𝑛]] for some positive integer
𝑛. Hence 𝑆 := 𝑅/(𝐼re+𝜆𝑅) � F[[𝑋1, . . . , 𝑋𝑛]]/𝐽 for some ideal 𝐽 . Suppose first that 𝐽
is not maximal.Then by Lemma 6.1 we know that 𝑆 admits a surjection 𝜑 to F[𝑇]/𝑇2.
Thismeans that there exists a non-trivial (because the image of 𝜑 is not contained in F)
deformation of 𝜌 to F[𝑇]/𝑇2 which is upper-triangular (by Proposition 6.12), which
contradicts Lemma 6.10. Thus, indeed, 𝑆 = F.
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Hence, the structure map O → 𝑅/𝐼re is surjective by the complete version of
Nakayama’s Lemma (see the proof of Lemma 6.6). So, 𝑅/𝐼re � O/𝜆

𝑠 for some 𝑠 ∈
Z≥0 ∪ {∞}.

The composition of 𝜌univ with the map 𝑅 → 𝑅/𝐼re gives rise to a deformation 𝜌re :
𝐺 {ℓ } → GL4 (𝑅/𝐼re) = GL4 (O/𝜆

𝑠). By Proposition 6.12, this deformation is upper

triangular, i.e., one has 𝜌re =

[
∗1 ∗2
∗3

]
. As the property of being Fontaine-Laffaille is

preserved by subobjects and quotients, we see that ∗1 and ∗3 are Fontaine-Laffaille
representations with values inGL2 (𝑅/𝐼re) = GL2 (O/𝜆

𝑠). Thus by Lemma 6.6 we can
conclude that ∗1 = 𝜌𝜙 , ∗3 = 𝜌𝜙 (𝑘 − 2) mod 𝜆𝑠 . Hence by (5.4) and Proposition 5.1
∗2 gives rise to a class in 𝐻1

𝑓
(Q, ad0𝜌𝜙 (2 − 𝑘) ⊗O 𝐸/O) as 𝜌re is Fontaine-Laffaille.

As 𝜌 is non-semi-simple, we conclude that ∗2 is not annihilated by 𝜆
𝑠−1, i.e., the class

of ∗2 gives rise to a subgroup of 𝐻
1
𝑓
(Q, ad0𝜌𝜙 (2 − 𝑘) ⊗O 𝐸/O) isomorphic to O/𝜆𝑠 .

Thus 𝑠 ≤ 1 as #𝐻1
𝑓
(Q, ad0𝜌𝜙 (2− 𝑘) ⊗O 𝐸/O) ≤ #O/𝜆 by Assumption 6.2(ii). Finally,

𝑠 > 0 as 𝜌 𝑓 itself is reducible. This concludes the proof. ■

The following Proposition does not use Assumption 6.2(ii).

Proposition 6.14 Assume that dim𝐻1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) ≤ 1. Then the ideal 𝐼re is a

principal ideal.

Proof Since 𝜌univ is a trace representation in the sense of Section 1.3.3 of [4] Lemma
1.3.7 in [loc.cit.] tells us that we can conjugate 𝜌univ by a matrix 𝑃 ∈ GL2 (𝑅) (here
we use that every finite type projective 𝑅-module is free since 𝑅 is local) to get 𝜌univ

adapted to a data of GMA idempotents for 𝑅[𝐺 {ℓ }]/ker 𝜌
univ. By [4] Lemma 1.3.8 we

then get an isomorphism of 𝑅-modules

𝑅[𝐺 {ℓ }]/ker 𝜌
univ
�

[
Mat2(𝑅) Mat2 (𝐵)

Mat2(𝐶) Mat2 (𝑅)

]

for ideals 𝐵,𝐶 ⊂ 𝑅. By [4] Proposition 1.5.1 we further know that 𝐼re = 𝐵𝐶.
[4] Theorem 1.5.5 proves that there are injections Hom𝑅 (𝐵, F) ↩→

𝐻1 (𝐺 {ℓ } , ad 𝜌𝜙 (2 − 𝑘)) and Hom𝑅 (𝐶, F) ↩→ 𝐻1 (𝐺 {ℓ } , ad 𝜌𝜙 (𝑘 − 2)). Argu-
ing as in [1] Proposition 4.2 (see also [55] Theorem 4.3.5 and Remark 4.3.6) one
sees that the images are contained in the Selmer groups 𝐻1

𝑓
(Q, ad 𝜌𝜙 (2 − 𝑘))

and 𝐻1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)), respectively. From Assumption 6.2 (ii) and Proposi-

tion 5.1 we see that 𝐻1 (Q, ad 𝜌𝜙 (2 − 𝑘)) � F. Together with the assumption

dim𝐻1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) ≤ 1 we deduce by Nakayama’s Lemma that both 𝐵 and 𝐶 ,

and therefore also 𝐼re are principal ideals of 𝑅. Note that Nakayama’s Lemma applies
since 𝐵 and 𝐶 are ideals in 𝑅, which is Noetherian, hence they are finitely generated
over 𝑅. ■

Remark 6.15 [1] Proposition 3.10 proves the principality of the reducibility ideal of
the reduced Fontaine-Laffaille deformation ring 𝑅red for any residual representations
with two Jordan-Hölder factors. Our argument (whilst relying on [1] Proposition 4.2)
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is slightly more general as it allows us to treat the case of non-reduced deformation
rings.

Remark 6.16 By (5.2) we have

𝐻1
𝑓 (Q, ad 𝜌𝜙 (𝑘 − 2)) = 𝐻

1
𝑓 (Q, ad

0 𝜌𝜙 (𝑘 − 2)) ⊕ 𝐻
1
𝑓 (Q, F(𝑘 − 2)).

However, as opposed to the case of the (2 − 𝑘)-twist of the trivial representation (cf.
proof of Lemma 5.6), there is no simple relation between 𝐻1

𝑓
(Q, F(𝑘 −2)) and part of

a class group except for the case 𝑘 = 2 by Proposition 4.20. By the same Proposition
for 2 < 𝑘 ≤ ℓ the group 𝐻1

𝑓
(Q, F(𝑘 − 2)) requires no ramification condition at ℓ, so

equals 𝐻1 (𝐺 {ℓ } , F(𝑘 − 2)).

We have the following results about 𝐻1 (𝐺 {ℓ } , F(𝑛)) for 𝑛 > 0:

Proposition 6.17 ([8] Proposition 6.5) Suppose 𝑛 ∈ Z>0 and 𝑛 . 1 mod ℓ − 1. Assume
that ℓ ∤ #Cl𝜖

𝑛

Q (𝜁ℓ )
. Then dim𝐻1 (𝐺 {ℓ } , F(𝑛)) ≤ 1.

Proposition 6.18 Let 𝑛 > 0 be an even integer. Assume ℓ ∤ 𝐵𝑛 (the 𝑛-th Bernoulli number)
and 𝑛 . 0 mod ℓ − 1. Then 𝐻1(𝐺 {ℓ } , F(𝑛)) = 0.

Proof Since 𝑛 is even and 𝐻0 (𝐺 {ℓ } , F(𝑛)) = 0 as 𝑛 . 0 mod ℓ − 1 we know
dimF 𝐻

1 (𝐺 {ℓ } , F(𝑛)) = dimF 𝐻
2 (𝐺 {ℓ } , F(𝑛)) by [40] Corollary 8.7.5 (Euler Poincare

characteristic). [3] Proposition 1.3 (condition (𝑖𝑖, 𝛽)) proves that 𝐻2 (𝐺 {ℓ } , F(𝑛)) = 0

if 𝑛 . 1 mod ℓ − 1 (which is automatically satisfied for even 𝑛) and ℓ ∤ #Cl𝜖
1−𝑛

Q (𝜁ℓ )
.

By Herbrand’s Theorem (see e.g. [57] Theorem 6.17) the latter follows from our
assumption that ℓ ∤ 𝐵𝑛 (here we use again 𝑛 . 0 mod ℓ − 1). ■

Remark 6.19 Note that the assumption ℓ ∤ 𝐵𝑛 is stronger than ℓ ∤ #Cl𝜖
𝑛

Q (𝜁ℓ )
in [8]

Proposition 6.5. As noted in the proof of Proposition 6.18 ℓ ∤ 𝐵𝑛 implies ℓ ∤ #Cl𝜖
ℓ−𝑛

Q (𝜁ℓ )

byHerbrand’sTheorem. By the łreflection theorem" [57]Theorem10.9 thismeans that
also ℓ ∤ Cl𝜖

𝑛

Q (𝜁ℓ )
.

This allows us to prove the following modularity theorem.

Theorem 6.20 Recall that we impose Assumptions 3.1 and 6.2. Furthermore, assume that
dim𝐻1

𝑓
(Q, ad𝜌𝜙 (𝑘 − 2)) ≤ 1. Then the structure map 𝜄 : O → 𝑅 is an isomorphism. In

particular, if 𝜏 : 𝐺Q → GL4 (𝐸) is any continuous irreducible homomorphism unramified
outside ℓ, crystalline at ℓ with Hodge-Tate weights in [3 − 2𝑘, 2𝑘 − 3] and such that

𝜏ss = 𝜌𝜙 ⊕ 𝜌𝜙 (𝑘 − 2),

then 𝜏 � 𝜌univ � 𝜌 𝑓 , i.e., in particular 𝜏 is modular.

Proof It follows from Corollary 6.13 that 𝐼re is a maximal ideal of 𝑅. As the defor-
mation 𝜌 𝑓 induces a surjective map 𝑗 : 𝑅 → O, we get the following commutative
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diagram of O-algebra maps

O
𝜄

//

id

((

��

𝑅
𝑗

//

��

O

��

O/𝜆
𝜄

//

id

55
𝑅/𝐼re

𝑗
// O/𝜆

(6.3)

As 𝜄 is an isomorphism,we get that so is 𝑗 . So, using the fact that 𝐼re is principal (Propo-
sition 6.14), we can now applyTheorem 6.9 in [5] to the right square to conclude that
𝑗 is an isomorphism.

Now, let 𝜏 be as in the statement of the Theorem. Then 𝜏 factors through a repre-
sentation of 𝐺 {ℓ } . Using that 𝜏 is irreducible, Theorem 4.1 in [9] allows us to find a
lattice in the space of 𝜏 such that with respect to that lattice one has

𝜏 =

[
𝜌𝜙 ∗

𝜌𝜙 (𝑘 − 2)

]

that is non-semi-simple.UsingRemark 6.5we see that this lattice is Fontaine-Laffaille,
so the star gives rise to a non-zero element in 𝐻1

𝑓
(Q, ad0𝜌𝜙 (2 − 𝑘) ⊗O 𝐸/O). As

the latter group has order #O/𝜆 by Assumption 6.2(ii), we conclude that 𝜏 � 𝜌. In
particular, 𝜏 is a deformation of 𝜌. Hence 𝜏 gives rise to an O-algebra map 𝑅 → O,
which must equal 𝑗 by the first part of the theorem. ■

Remark 6.21 We return to Example 3.6 and note that Assumption 6.2 (i) holds, as
discussed earlier. Since ℓ = 163 or 187273 do not divide (2𝑘 − 1) (2𝑘 − 3)𝑘 ! for
𝑘 = 26 and 𝜌𝜙 is irreducible, [20] Lemma 2.5 proves that 𝜌𝜙 stays irreducible when

restricted toGal(Q/Q(
√︁
(−1) (ℓ−1)/2ℓ)). Via Remark 6.8 we can therefore check that

𝐻1
𝑓
(Q, ad0 𝜌𝜙) = 0 as 𝜙 is the only cusp form of weight 26 and level 1, so in par-

ticular, 𝜙 is not congruent mod ℓ to other forms. Since in addition 𝐿alg (50, Sym
2𝜙)

has ℓ-valuation 1 for both ℓ = 163 and 187273 the Bloch-Kato conjecture for
#𝐻1

𝑓
(Q, ad0𝜌𝜙 (2− 𝑘) ⊗𝐸/O) = #O/𝜆 (see [22] Conjecture (5.2) and (5)) would imply

that Assumption (ii) holds.
We do not know how to check dim𝐻1

𝑓
(Q, ad𝜌𝜙 (𝑘 − 2)) ≤ 1, as the corre-

sponding divisible Selmer group is not critical (in the sense of Deligne). Note that
dim𝐻1

𝑓
(Q, ad𝜌𝜙 (𝑘 − 2)) = dim𝐻1

𝑓
(Q, ad0𝜌𝜙 (𝑘 − 2)) by Proposition 6.18 since

neither prime ℓ divides 𝐵24.

7 (Non-)principality of Eisenstein ideals

In this section we formulate conditions when the Eisenstein ideal of the local Hecke
algebra acting on 𝑆𝑘 (Γ2) is non-principal and dimF 𝐻

1
𝑓
(Q, ad0 𝜌𝜙 (𝑘 − 2)) > 1. In

particular, in that case 𝑅 � O.
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Let T′ be as in Section 2. Let T denote the O-subalgebra of T′ ⊗Z O generated by

the operators𝑇 (2) (𝑝) and𝑇
(2)
1
(𝑝2) for all primes 𝑝 ∤ ℓ. Since strong multiplicity one

holds in the level one case, we can choose an orthogonal basisN ′ of 𝑆𝑘 (Γ2) consisting
of eigenforms for all the operators in T.

Each 𝑔 ∈ N ′ gives rise to 𝜓𝑔 ∈ HomO−alg (T,O) where 𝜓𝑔 (𝑇) = 𝜆𝑔 (𝑇), with
𝜆𝑔 (𝑇) the eigenvalue of the operator 𝑇 corresponding to 𝑔. Thus we get a map Ψ :

N ′ → HomO−alg (T,O) given by 𝑔 ↦→ 𝜆𝑔 , which by strong multiplicity one is an
injection.

Lemma 7.1 The natural O-algebra map

T→
∏
𝑔∈N′

O given by 𝑇 ↦→ (𝜓𝑔 (𝑇))𝑔 (7.1)

is injective and has finite cokernel, i.e. T can be viewed as a lattice in
∏
𝑔∈N′ O.

Proof The injectivity follows from the fact that the elements ofN ′ form a basis.
Wewill now show that themap has finite cokernel. Note that the (set) mapΨ⊗Qℓ :

N ′ → Hom
Qℓ−alg

(T ⊗ Qℓ ,Qℓ) ↩→ Hom
Qℓ
(T ⊗ Qℓ ,Qℓ) given by 𝑔 ↦→ 𝜆𝑔 ⊗ Qℓ

is injective (because Ψ is injective), and strong multiplicity one implies that no non-
trivial linear relation

∑
𝑔∈N′ 𝑐𝑔𝜆𝑔 = 0 can hold. Thus the set {𝜆𝑔 | 𝑔 ∈ N

′} is a

linearly independent subset ofHom
Qℓ
(T ⊗ Qℓ ,Qℓ). Hence

dim
Qℓ

T ⊗ Qℓ = dim
Qℓ

Hom
Qℓ
(T ⊗ Qℓ ,Qℓ) ≥ #N ′. (7.2)

Tensoring themap (7.1)withQℓ weget a correspondingmapT⊗Qℓ →
∏
𝑔∈N′ Qℓ ,

which is injective as (7.1) is.Thus it must be surjective by (7.2). Hence themap (7.1) has
finite cokernel. ■

We now identify T with the image of the map (7.1) and note that T =∏
𝔪∈MaxSpecT T𝔪, where T𝔪 is the localization of T at the maximal ideal𝔪. LetN be

the subset ofN ′ consisting of all the 𝑔 ∈ N ′ which satisfy

𝜓𝑔 (𝑇) ≡ 𝜆𝐸1,2
𝜙
(𝑇) (mod 𝜆) for all 𝑇 ∈ T.

We write 𝔪 for the corresponding maximal ideal. Set 𝐽 ⊂ T to be the Eisenstein
ideal, i.e., 𝐽 is the ideal ofT generated by the set {𝑇 (2) (𝑝) − (tr 𝜌𝜙 (Frob𝑝) + tr 𝜌𝜙 (𝑘 −
2) (Frob𝑝)) | 𝑝 ≠ ℓ}.Write 𝐽𝔪 to be the image of 𝐽 under the canonicalmapT→ T𝔪 .

Recall that we fixed in Section 5.2 the weight 𝑘 ≥ 12 even and prime ℓ > 4𝑘 − 5

and imposed Assumption 3.1 on the field 𝐸/Qℓ . We also fixed the Fontaine-Laffaille
interval 𝐼 = [3−2𝑘, 2𝑘−3]. Let 𝜙 ∈ 𝑆𝑘 (Γ1) be a newform such that 𝜌𝜙 is irreducible.

For the rest of this section we also impose Assumption 6.2 and fix the correspond-
ing 𝑓 ∈ 𝑆𝑘 (Γ2). Then 𝑓 ∈ N , i.e., T𝔪/𝐽𝔪 ≠ 0. Let 𝑅 = 𝑅𝜌 𝑓

be the universal
deformation ring defined in Section 6.
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Theorem 7.2 Recall that we impose Assumptions 3.1 and 6.2. Then there exists a surjective
O-algebra map 𝜑 : 𝑅 → T𝔪 such that 𝜑(𝐼re) = 𝐽𝔪 and 𝐽𝔪 is a maximal ideal of T𝔪 . If, in
addition dimF 𝐻

1
𝑓
(Q, ad𝜌𝜙 (𝑘 − 2)) ≤ 1, then all of the following are true:

• the map 𝜑 is an isomorphism;
• the Hecke ring T𝔪 is isomorphic to O;
• the Eisenstein ideal 𝐽𝔪 is principal.

Proof Let 𝑔 ∈ N . Then by Lemma 5.2 there exists a 𝐺Q-stable lattice with respect

to which one has 𝜌𝑔 =

[
𝜌𝜙 ∗

𝜌𝜙 (𝑘 − 2)

]
and is not semi-simple. Hence the ∗ gives rise

to an element in 𝐻1
𝑓
(Q,𝑊 [𝜆]), where𝑊 = ad0𝜌𝜙 (2 − 𝑘) ⊗O 𝐸/O.

By (5.4) and Proposition 5.1 we get 𝐻1
𝑓
(Q,𝑊 [𝜆]) = 𝐻1

𝑓
(Q,𝑊) [𝜆]. The latter

group is cyclic by Assumption 6.2 (ii), so we must have that 𝜌𝑔 � 𝜌 𝑓 , and so after
adjusting the basis if necessary we get that 𝜌𝑔 is a deformation of 𝜌 𝑓 .

This implies that for every 𝑔 ∈ N we get an O-algebra (hence continuous)
map 𝜑𝑔 : 𝑅 → O with the property that tr 𝜌univ (Frob𝑝) ↦→ 𝜆𝑔 (𝑇

(2) (𝑝)). This
property completely determines 𝜑𝑔 because 𝑅 is topologically generated by the set
{tr 𝜌univ (Frob𝑝) | 𝑝 ≠ ℓ} by Proposition 7.13 in [6]. Putting these maps together we
get an O-algebra map 𝜑 : 𝑅 →

∏
𝑔∈N O whose image is an O-subalgebra of

∏
𝑔∈N O

generated by {𝑇 (2) (𝑝) | 𝑝 ≠ ℓ}. Note that 𝜑(𝑅) ⊂ T𝔪 . To see the opposite inclu-
sion consider the characteristic polynomial 𝑓𝑝 (𝑋) ∈ 𝑅[𝑋] of 𝜌

univ (Frob𝑝) for 𝑝 ≠ ℓ.
Combining Theorem 2.1 with the definition of 𝐿𝑝 (𝑋, 𝑓 ; spin) we see that the coeffi-
cient at 𝑋2 is mapped by 𝜑 to 𝑇 (2) (𝑝)2 − 𝑇 (2) (𝑝2) − 𝑝2𝑘−4 ∈

∏
𝑔∈N O. As 𝑇

(2) (𝑝)

and 𝑝2𝑘−4 both belong to 𝜑(𝑅), so therefore must 𝑇 (2) (𝑝2). We now use the fact ([2,
3.3.38], [30, pg. 547]) that

𝑝𝑇
(2)
1
(𝑝2) = 𝑇 (2) (𝑝)2 − 𝑇 (2) (𝑝2) − 𝑝(𝑝2 + 𝑝 + 1)𝑇 (diag(𝑝, 𝑝, 𝑝, 𝑝))

to conclude that𝑇
(2)
1
(𝑝2) ∈ 𝜑(𝑅). Hence 𝜑(𝑅) contains all the Hecke operators away

from ℓ, i.e., 𝜑(𝑅) = T𝔪 . We denote the resulting O-algebra epimorphism 𝑅 → T𝔪

again by 𝜑. We claim that 𝜑(𝐼re) ⊂ 𝐽𝔪 .
Indeed, using the Chebotarev Density Theorem, one sees that

tr 𝜌univ ≡ tr 𝜌𝜙 + tr 𝜌𝜙 (𝑘 − 2) (mod 𝜑−1 (𝐽𝔪)),

so 𝐼re ⊂ 𝜑
−1 (𝐽𝔪). As 𝜑 is a surjection, this implies that 𝜑(𝐼re) ⊂ 𝐽𝔪 . Hence 𝜑 gives rise

to a sequence of O-algebra surjections 𝑅/𝐼re → T𝔪/𝜑(𝐼re) → T𝔪/𝐽𝔪 . As 𝑅/𝐼re = F

by Corollary 6.13 we conclude that all these surjections are isomorphisms (note that
T𝔪/𝐽𝔪 ≠ 0), hence 𝜑(𝐼re) = 𝐽𝔪 and 𝐽𝔪 is maximal. This proves the first claim.

Now assume in addition that dim𝐻1
𝑓
(Q, ad𝜌𝜙 (𝑘 − 2)) ≤ 1. Then Theorem 6.20

gives us that 𝑅 = O, so we get that 𝜑 is an isomorphism, and so 𝑅 � T𝔪 � O. Hence
𝐽𝔪 is a principal ideal. ■

Corollary 7.3 If 𝐽𝔪 is not principal, then dimF 𝐻
1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) > 1. If in addition

ℓ ∤ 𝐵𝑘−2 then dimF 𝐻
1
𝑓
(Q, ad0 𝜌𝜙 (𝑘 − 2)) > 1.
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Proof The first inequality is just a restatement of one of the claims of Theorem 7.2.
The second follows from the first one and Proposition 6.18. ■

Proposition 7.4 For each 𝑔 ∈ N write 𝑚𝑔 for the largest positive integer 𝑚 such that 𝑔 ≡

𝐸
𝜙

2,1
mod 𝜆𝑚. If

valℓ (#T𝔪/𝐽𝔪) < [F : Fℓ] ·
∑︁
𝑔∈N

𝑚𝑔 (7.3)

then 𝐽𝔪 is not principal.

Proof Set 𝐴 =
∏
𝑔∈N 𝐴𝑔 , where 𝐴𝑔 = O for all 𝑔 ∈ N . Let 𝜙𝑔 : 𝐴 → 𝐴𝑔 be the

canonical projection. Since by Lemma 7.1 T is a full rank O-submodule of
∏
𝑔∈N′ O

we conclude that the local complete O-subalgebra T𝔪 ⊂ 𝐴 is of full rank as an O-
submodule and 𝐽𝔪 ⊂ T𝔪 is an ideal of finite index. Set 𝑇𝑔 = 𝜙𝑔 (T𝔪) = 𝐴𝑔 = O and
𝐽𝑔 = 𝜙𝑔 (𝐽𝔪) = 𝜆𝑚𝑔O. Hence we are in the setup of Section 2 of [11]. Assume 𝐽𝔪 is
principal. Then Proposition 2.3 in [11] gives us that

#T𝔪/𝐽𝔪 =
∏
𝑔∈N

#𝑇𝑔/𝐽𝑔 . (7.4)

Note that one has

valℓ
©­«
∏
𝑔∈N

#𝑇𝑔/𝐽𝑔
ª®¬
= [F : Fℓ] ·

∑︁
𝑔∈N

𝑚𝑔 . (7.5)

This equality together with (7.4) contradicts the inequality (7.3). ■

Corollary 7.5 Let 𝑚𝑔 be defined as in Proposition 7.4. If
∑
𝑔∈N 𝑚𝑔 > 1 then 𝐽𝔪 is

not principal and dimF 𝐻
1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) > 1. If in addition ℓ ∤ 𝐵𝑘−2 then

dimF 𝐻
1
𝑓
(Q, ad0 𝜌𝜙 (𝑘 − 2)) > 1.

Proof Note that from the proof ofTheorem7.2we get thatT𝔪/𝐽𝔪 = F, evenwithout
assuming dimF 𝐻

1
𝑓
(Q, ad 𝜌𝜙 (𝑘−2)) ≤ 1. Assume that 𝐽𝔪 is principal.Then from (7.4)

and (7.5) we conclude that
∑
𝑔∈N 𝑚𝑔 = 1, which contradicts our assumption. Hence

𝐽𝔪 is not principal.The Selmer group inequalities now follow fromCorollary 7.3. ■

Remark 7.6 Corollary 7.3 directly ties the cyclicity of the non-critical Selmer group
𝐻1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) with the principality of the Eisenstein ideal 𝐽𝔪 . We note that

Assumption 6.2(ii) implies the equalityT𝔪/𝐽𝔪 = F. Contrary towhat onemight think,
the existence of several forms 𝑔 ≡ 𝐸

𝜙

2,1
mod 𝜆 does not preclude this equality. For

example, if there are exactly two linearly independent eigenforms 𝑔1, 𝑔2 ∈ N with
𝑚𝑔1 = 𝑚𝑔2 = 1 such that 𝑔1 . 𝑔2 mod 𝜆2 then T𝔪 � O ×F O = {(𝑎, 𝑏) ∈ O × O |

𝑎 ≡ 𝑏 mod 𝜆} and in this case 𝐽𝔪 is the maximal ideal, i.e. T𝔪/𝐽𝔪 = F, so Corollary
7.5 applies and dimF 𝐻

1
𝑓
(Q, ad 𝜌𝜙 (𝑘 − 2)) > 1.
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