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Abstract
Background.   Glioblastoma (GBM), the most aggressive adult brain cancer, comprises a complex tumor microen-
vironment (TME) with diverse cellular interactions that drive progression and pathobiology. The aim of this study 
was to understand how these spatial patterns and interactions evolve with treatment.
Methods.   To explore these relationships, we employed imaging mass cytometry to measure the expression of 
34 protein markers, enabling the identification of GBM-specific cell types and their interactions at the single-cell 
protein level in paired primary (pre-treatment) and recurrent (post-treatment) GBM samples from five patients.
Results.   We find a significant post-treatment increase in normal brain cells alongside a reduction in vascular cells. 
Moreover, despite minimal overall change in cellular diversity, interactions among astrocytes, oligodendrocytes, 
and vascular cells increase post-treatment, suggesting reorganization of the TME. The GBM TME cells form spatially 
organized layers driven by hypoxia pre-treatment, but this influence diminishes post-treatment, giving way to less 
organized layers with organization driven by reactive astrocytes and lymphocytes.
Conclusions.   These findings provide insight into treatment-induced shifts in GBM’s cellular landscape, highlighting 
aspects of the evolving TME that appear to facilitate recurrence and are, therefore, potential therapeutic targets.

Key Points

•	 Spatial organization in primary GBM consists of layers driven by hypoxia.

•	 The layers in recurrent GBM are driven more by the presence of reactive astrocytes.

•	 Increased cellular cross-talk in recurrent GBM presents novel therapeutic targets.

Isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is 
the most common and aggressive form of adult diffuse glioma, 
with a median survival of ~15 months.1 Standard treatment 
consists of surgical resection followed by radiation and che-
motherapy with temozolomide.2 However, tumor recurrence 
is inevitable due to (a) the infiltrative nature of primary GBM, 
which precludes complete surgical removal and (b) significant 
intra- and inter-tumor heterogeneity, which enables residual 
cells to resist chemoradiation and continue proliferating.3,4 
Characterizing how unresected GBM cells respond to treatment 
can highlight potential mechanisms of treatment resistance that 
could be additionally targeted with combined therapies.

It is known that IDH-wildtype GBM cells exhibit plasticity 
across four neoplastic cell states along a proneural to mesen-
chymal axis5–7: neural progenitor-like (NPC), oligodendrocyte 
progenitor-like (OPC), astrocyte-like (AC), and mesenchymal-
like (MES). However, these neoplastic cells do not function in 
isolation. In their updated hallmarks of cancer, Hanahan and 
Weinberg remarked that any understanding of tumors “must 
encompass the contributions of the tumor microenvironment 
(TME).”8 In GBM, the TME comprises a diverse array of tumor 
cells and also a complex network of immune cells, stromal 
cells, and vascular elements that play a critical role in GBM 
progression and treatment resistance, acting as a dynamic 

Spatial profiling of longitudinal glioblastoma 
reveals consistent changes in cellular architecture, 
post-treatment  
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ecosystem that influences tumor behavior and therapeutic 
response.9

To truly understand GBM tumor response to treat-
ment, therefore, requires characterization at single-cell 
level in ways that incorporate information about inter-
actions with the TME. This is now possible through the 
use of spatial molecular profiling technologies.10 Such 
approaches have recently been applied to GBM tumors, 
revealing niches containing specific neoplastic cells and 
distinct immune-associated programs.11–13 These niches 
have also been shown to organize into structured layers, 
beyond what is visible via conventional microscopy and 
histopathology, and are associated with cellular states 
such as hypoxia.11

These findings describe consistent organizational pat-
terns across GBM tumors, suggesting that neoplastic 
phenotypes are driven by environmental interactions. 
However, one crucial aspect remains unexplored: how 
the spatial patterns and interactions within the TME are 
impacted by treatment to enable some neoplastic cells to 
survive. To begin to address this, we analyzed multiplex 
imaging mass cytometry (IMC) data,14 from five paired 
pre- and post-treatment IDH-wildtype GBM patient sam-
ples, focusing on protein-level changes that reveal al-
terations in cellular prevalence and states. This extends 
previous studies by analyzing longitudinal samples to try 
and understand how cellular landscapes are altered at re-
currence and provide insights into tumor adaptation. Our 
use of spatial proteomics enables profiling at single-cell 
resolution (in contrast to previous results from spot-based 
transcriptomics, which profiles, on average, 8 cells simul-
taneously) using more stably expressed markers that have 
been validated through decades of use in the analogous 
approach of immune-histochemistry (IHC). The trade-off 
is that spatial proteomics is limited to significantly fewer 
marker genes with which to accurately assign cell types. 
To account for this, we have mapped our findings to pre-
vious studies, but also taken advantage of the significant 
advances in technologies in the past 12 months to perform 
spatial transcriptomics profiling of ~6000 genes at single-
cell resolution in two of the same paired samples that we 
profiled via IMC, and one independent pair. This has en-
abled us to further probe key findings using an orthogonal 
approach.

Materials and Methods

For full details, please see the Supplementary Methods.

Imaging Mass Cytometry (IMC) Analysis

Paired glioblastoma (GBM) samples from five patients 
were analyzed at primary surgery and first recurrence as 
per Supplementary Figure 1 (30 total regions of interest 
[ROIs]; 3 per sample)15. A 34-antibody panel was validated 
on control tissues (Supplementary Table 3) and used to 
stain 5 µm FFPE sections. IMC data were acquired via laser 
ablation (1 µm, 200 Hz), and resulting MCD files were ex-
ported in OME-TIFF format.

Image processing and downstream analyses were per-
formed using R (≥ 4.3.0) and Python (3.11.3). Cell–cell inter-
actions and spatial contexts were computed using imcRtools 
(v1.10.0); visualizations were created using ggplot2 (v3.5.1).

Cell Segmentation

Raw MCD files were converted to multi-channel TIFFs using 
Steinbock16 (v0.13.5), then cropped into 100 µm² sections. 
Nuclear (Ir191/Ir193) and cytoplasmic channels (Sm149, 
Eu153, etc.) were merged into RGB images. Segmentation 
was performed using Cellpose17 (v2.0) with the “cyto2” 
model, refined iteratively. The final model was applied to 
1000 µm² ROIs. Mean intensity values and spatial features 
were extracted using Steinbock’s measurement functions.

Single-Cell and Image Processing

Single-cell expression values were transformed using the 
asinh function (cofactor = 5), and batch effects across pa-
tients were corrected using Harmony.

Cell Phenotyping

Cells with broadly high marker expression were excluded. 
Remaining cells were z-score normalized and ranked by 
expression level. Cell types were assigned using a logical 

Importance of the Study

To fully understand glioblastoma requires us to not only 
recognize the distinct niches within its tumor microen-
vironment but also the complex interactions that sus-
tain them and allow them to proliferate. Previous spatial 
studies in GBM have identified cellular neighborhoods 
and key interactions, including those between immune 
and GBM cancer cells. More recently, the GBM tumors 
have been shown to organize into structured regions de-
fined by a five-layer architecture, with hypoxia playing 
a central role. Building on this work, here we show that 

this layered organization appears to be lacking in re-
current GBM, wherein interactions between the tumor 
cells and non-malignant brain cells seem to become 
more prevalent.

Furthering this understanding has far-reaching impli-
cations for improving patient outcomes by developing 
better treatments; optimizing current immunotherapies 
and refining models so that they more accurately reflect 
GBM evolution post-treatment.
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gating strategy (Supplementary Table 4) based on marker-
specific thresholds. Hypoxia (HIF1A+) and EMT (SNAI1+) 
statuses were classified using z-score cutoffs (<−1.2 or > 1.2).

Intra-patient Heterogeneity

Shannon entropy was used to quantify cell type diversity 
across ROIs, calculated using 1,000 randomly sampled 
cells per ROI over 10 iterations. Entropy values were com-
pared between primary and recurrent samples using the 
Wilcoxon rank-sum test.

Spatial Analyses

Spatial interaction graphs were created using Delaunay tri-
angulation (imcRtools)18 and pruned (max_dist = 50 µm). 
Cell–cell interactions were tested using test interactions, 
comparing observed counts against a null model via per-
mutation testing.

Cell Neighborhoods and Spatial Contexts

Neighborhoods were defined based on local cell-type 
proportions (aggregateNeighbors), then clustered using 
k-means (k = 12). Spatial contexts (SCs) were inferred 
using detectSpatialContext and filtered to retain dominant 
SCs (> 3 patients and > 5% of total cells per group)19.

Spatial Transcriptomics

GBM tissue microarray (TMA) cores were profiled using 
the NanoString CosMX platform with the Human 6k RNA 
Panel. FFPE sections were stained with IF markers and im-
aged at subcellular resolution. Fields of view were placed 
using H&E guidance.

Transcriptomic Cell Phenotyping

Cells were segmented using machine learning on IF im-
ages. Transcripts were background-corrected, normalized, 
and low-quality cells were excluded. Dimensionality reduc-
tion (UMAP) and clustering (Leiden, InSituType) were per-
formed on high-variance genes. Clusters were annotated 
via marker gene expression and spatial localization.

Mapping to Greenwald Metaprograms (MPs)

Top 20 marker genes per cluster were used for enrichment 
analysis against MPs defined by Greenwald et al. (2024). 
Cluster-MP assignments were confirmed via z-scored av-
erage expression profiles and adjusted DE gene sets 
(P < .01), yielding robust biological mappings.

Results

Identifying and Labeling Cell Types in GBM

To assess the spatial evolution of GBM tumors through 
treatment, we collected tumor samples from five patients 

who had undergone surgical resections of both primary 
and recurrent IDH-wildtype GBM. Each primary tumor de-
veloped de novo, and all patients received radiation, che-
motherapy with temozolomide, and had a local recurrence. 
For patient and surgery information, see Supplementary 
Table 1 and Supplementary Figure 1. Three spatially dis-
tinct 1 mm2 regions of interest (ROIs) were selected for 
each tumor sample, following immunohistochemical 
staining for key markers of proliferation (Ki67), hypoxia 
(HIF1A), and immune cells (CD45), to capture intra-tumor 
heterogeneity and avoid the bias of examining only a 
single small region (Figure 1A, Supplementary Figure 2 
and Supplementary Table 2).

We designed a panel of 34 protein markers to identify 
GBM-specific cell types (neoplastic, immune, and normal 
brain cells) along with markers of cell states such as pro-
liferation and hypoxia (see Supplementary Table 3). Using 
a deep learning-based image segmentation approach, we 
assigned cell type labels to each segmented object and 
also subsequently grouped cells into four categories: im-
mune, cancer, normal brain, and vasculature (Figure 1B). 
Approximately 107,000 cells were labeled across all sam-
ples (Figure 1C–D) after applying batch effect correction 
to account for variability between individual patients 
and to ensure that expression profiles were comparable 
(Supplementary Figures 4–5).

To ensure that our approach was accurately delineating 
GBM cells, we performed two independent reviews. 
Firstly, we extracted and sequenced RNA within corre-
sponding regions of each tumor from consecutive FFPE 
sections and performed cellular deconvolution of bulk 
RNAseq.15 This showed significant concordance with the 
spatial proteomics across both neoplastic and immune 
cell types.15 Secondly, we asked a neuropathologist to in-
dependently quantify immune and vascular cells within 
all 30 ROIs, and compared this to the quantification from 
our automated pipeline. There was a significant correla-
tion in score for both immune (r = 0.55, P = .02) and vas-
cular (r = 0.84, P = 5.8e-9). The more moderate correlation 
in immune scoring was discussed with the pathologist, 
who believed it was likely owing to their own subjectivity 
in relation to thresholding/apparent intensity, and dis-
tinguishing true staining from artefact. This gave us con-
fidence in our approach. However, we also performed 
spatial transcriptomics, using the Nanostring CosMX 6k 
panel, of distinct regions within paired samples from two 
patients for whom we had IMC (patients 64 and 84) and 
one additional patient (patient 40). We used these data to 
further investigate some key findings from the proteomics 
results, as relayed throughout this section, where relevant.

A comparison of cell categories across each ROI (Figure 
1E) showed surprisingly consistent within-sample distribu-
tions, confirming that there is intra-tumor TME heteroge-
neity but that this is not as significant as inter-tumor TME 
heterogeneity. ANOVA analysis (see Supplementary Table 
5) confirmed that the effect of patient and surgery was 
significant for all cell types (P < .001), indicating consid-
erable inter-tumor heterogeneity. In contrast, intra-tumor 
heterogeneity, represented by differences across ROIs, 
was not significant for any cell category, suggesting that 
intra-tumor TME variability is less pronounced compared 
to inter-tumor heterogeneity. Therefore, we combined the 
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Figure 1.  Cell segmentation and phenotyping overview. (A) Schematic detailing the imaging mass cytometry (IMC) process for one patient 
sample, including the downstream analysis steps comprising object segmentation and marker abundance quantification. (B) Heatmap of protein 
marker abundances (rows) for each of the labeled cell types (columns). The tile colors denote the scaled (z-score) marker intensities, and the tile 
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three ROIs per sample, prior to subsequent downstream 
analyses, to increase the number of cells per sample whilst 
minimizing sampling bias from specific regions.

Alterations in Cellular Prevalence Through 
Treatment in GBM

We first assessed how the prevalence of each cell cate-
gory changed through treatment, between primary and 
recurrent samples (Figure 2A and Supplementary Table 6). 
Whilst a reduction in the percentage of both immune and 
neoplastic cells was observed, from primary to recurrence, 
only the decrease in vasculature cells was significant 
(Wilcoxon P = .09, 0.06, and 9.88E-03, respectively). The 
only significant increase was in the proportion of normal 
brain cells (Wilcoxon P = 4.52E-04). These changes were 
further validated using a different spatial transcriptomics 
approach with the Nanostring CosMx platfrom (Figure 2A).

Drilling down into how specific cell types change through 
treatment showed that no individual immune cell type ex-
hibited significant changes (Figure 2B and Supplementary 
Table 7). Similarly, no individual cancer cell types altered 
in a consistent direction, although the astrocyte-like (AC) 
cancer cell type showed the largest and most consistent 
decrease (Wilcoxon P = .065). All normal brain cell types 
showed significant increases during treatment, with astro-
cytes exhibiting a particularly notable increase from pri-
mary to recurrence (Wilcoxon P = 3.02E-03), which was 
consistent across each patient. Of note, astrocytes appear 
to be the most prevalent normal brain cell type overall, 
consistent with reports of their high prevalence in both 
normal brain and the GBM TME.20,21

These changes agree with those from our larger cohort 
studies, where we performed deconvolution from bulk 
RNAseq, validating our approach.22,23

The limited number of consistent, significant changes 
in the prevalence of cell categories or types over time 
highlights the variability in immune and neoplastic cell 
categories, post-treatment, across patients (Figure 2A–B). 
We, therefore, decided to systematically evaluate how cell 
diversity changes through treatment, both overall and at 
an individual patient level, to determine if any consistent 
patterns emerge.

Alterations in Cellular Diversity Through 
Treatment in GBM

To inspect cellular diversity in our samples, we quanti-
fied the Shannon’s entropy (H) for each one (Figure 2C 
and Supplementary Table 8). A high Shannon’s entropy 
value indicates a tumor with many different cell types of 
similar frequency, whereas low entropy suggests that the 
tumor is dominated by few(er) cell types. This metric thus 
serves as a good proxy for assessing intra-tumor cellular 

heterogeneity for each sample, for example, pre- and 
post-treatment.

We found that, overall, Shannon’s entropy signifi-
cantly decreased from primary to recurrence (Wilcoxon 
q = 3.93E-03, Figure 2C), suggesting that cell distributions 
become less diverse, likely owing to certain cell types be-
coming more dominant within the distribution at recur-
rence. Linking this back to the results in Figure 2A and 
B, this appears to be driven by the greater abundance of 
normal brain cells, and especially astrocytes, in the recur-
rent tumors. However, analysis of individual patients re-
vealed variability in how cellular heterogeneity changed 
over time. Two patients (71 and 84) had significantly in-
creased diversity through treatment (Wilcoxon q = 8.45E-
17 and 7.10E-04, respectively, Figure 2C). In patient 84, 
this increase was primarily driven by the appearance of 
oligodendrocytes at recurrence, which weren’t present in 
the primary tumor (Figure 2B). Conversely, for patient 71, 
the increase in entropy was associated with a reduction of 
dominating macrophages in the primary and presence of 
a larger neoplastic and normal brain cell fraction at recur-
rence (Figure 2B).

Given a lack of consistent trends in how treatment af-
fects cell type prevalence or dominance, we proceeded 
to investigate whether changes in cell state could indicate 
how treatment shapes cancer cell phenotypes.

Alterations in Neoplastic Cellular States Through 
Treatment in GBM

The mesenchymal (MES) phenotype in GBM cancer cells 
is characterized by high proliferative and metastatic po-
tential, often leading to a poorer prognosis compared to 
proneural subtypes.24–27 Moreover, elevated hypoxia and 
the expression of epithelial-to-mesenchymal transition 
(EMT) genes, typically involved in neural tube formation or 
wound healing, have been shown to be closely linked to 
the MES cell state.28

In our IMC panel, we included antibodies against proteins 
indicating hypoxia (HIF1A) and epithelial to mesenchymal 
transition (SNAI1 & TGFBeta) to assess the proportion of 
each of the four identified neoplastic cancer cell types that 
are in these cellular states, and how they changed through 
treatment. We found that significantly more AC cancer 
cells expressed hypoxia markers post-treatment (Wilcoxon 
P = 4.98E-115), whilst significantly fewer MES and NPC 
cells did (Wilcoxon P = 9.62E-125 and P = 5.49E-70, respec-
tively) (Figure 2D and Supplementary Table 9).

All four neoplastic cell types had a significantly higher 
proportion of cells expressing markers of EMT post-
treatment, with the largest effect sizes observed in AC 
and NPC cells (Wilcoxon P = 5.29E-161 and P = 2.32E-183, 
respectively).

The power of our approach is not just in inspecting 
paired longitudinal GBM samples at single-cell resolution 

highlight colors represent the four main cell categories. (C–D) UMAP of all (patients and surgeries) cell objects identified following segmenta-
tion, batch correction, and phenotyping: cells are colored by cell category (C) and cell type (D). (E) Proportion of labeled cell categories (columns) 
across each region of interest (ROI). The facets are grouped by patient/surgery, and each of the facet header colors denotes an individual patient.
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Figure 2.  Changes in GBM cell categories and types through treatment. (A) Top: stacked bar charts showing the labeled cell category 
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but also describing how treatment alters the cellular land-
scape in terms of spatial context. Hence, we moved on to 
looking at in situ cellular interactions, that is, cells directly 
adjacent to one another.

Alterations in Cellular Interactions Through 
Treatment in GBM

We evaluated pairwise cell–cell adjacency, serving as an in-
dicator of cell interaction partners, to assess whether any 
were significantly more likely (cells are “interacting”) or less 
likely (cells are “avoiding”) compared to the null hypoth-
esis of spatial randomness (Figure 3A and Supplementary 
Tables 10 and 11). Herein, these cellular localizations are re-
ferred to as “interactions” to remain consistent with previ-
ously used terminology11; however, this does not imply any 
direct or mechanistic interactions between the cell types.

We performed this analysis on the primary and recurrent 
samples separately to see which significant findings were 
timepoint dependent. Many cell types predominantly inter-
acted with themselves in the primary tumors (Figure 3B). 
This is in keeping with previous spatial analysis of GBM 
that used a “spot-based” technology, which is not resolved 
at the single-cell level but rather aggregated over a small 
defined area (spot), which found that signal from the ma-
jority of spots seemed to emanate from a single cell type.11 
Our expansion to recurrent samples shows that these 
“self” interactions remained consistent through treatment 
(Figure 3B). Two additional, clear observations from our re-
sults are that there are no cells significantly avoiding one 
another, and there are many more recurrence-specific, sig-
nificant cell–cell interactions than primary-specific ones 
(27 versus 10). Hence, despite finding an overall reduction 
in cell diversity at recurrence (Figure 2C), there are more 
interactions between differing cell types, suggesting that 
these are non-random and, thus, phenotypically important.

Neoplastic cells
Amongst the GBM cancer cell types, MES cells formed 
the highest number of significant interactions with other 
cell types. MES interactions with immune cells remained 
consistent between paired samples, but interactions with 
normal brain cells were increased at recurrence.

Vasculature
Despite decreasing through treatment (Figure 2A), endo-
thelial cells still formed significant interactions at both 
time points (Figure 3C). Unique to the primary tumors 

were significant interactions from the endothelial cells to 
the microglia (permutation test, P = 9.99E-04) and MES 
cancer cells (permutation test, P = 9.99E-04). MES cells 
interacting with myeloid lineage cells (eg, macrophages 
and microglia) have been shown to lead to a highly pro-
liferative state, increasing angiogenesis and contributing 
to a more invasive phenotype, which may explain these 
findings in the primary tumor.29 Moreover, these inter-
actions have also been shown to induce chemoresistance 
in GBM, which has the potential to be addressed 
therapeutically.30

The interactions from the endothelial cells to the macro-
phages were particular to recurrent tumors (permutation 
test, P = 9.99E-04). These findings could be visualized in 
the IMC data (Figure 3C), where a clear reduction in endo-
thelial cells over time coincided with changes in the cells 
interacting with the remaining vasculature. It has previ-
ously been shown that bone-derived macrophages popu-
late a GBM tumor post-treatment, via the vascular system, 
which may explain this result and further indicate that ther-
apies which hijack this infiltration could be effective for 
preventing or prolonging GBM recurrence.31 Interactions 
from all normal brain cells to endothelial cells were also 
specific to the recurrent tumor. The post-treatment increase 
in normal brain cell abundance within the resected tissue 
(Figure 2A) may reflect the brain’s wound healing re-
sponse, with neuronal and glial cells re-populating the 
void left by surgery.32

Normal Brain Cells

Significant interactions from and to oligodendrocytes al-
most universally occurred in the recurrent tumors, barring 
those from oligodendrocytes to MES cancer cells, which 
were primary-specific (Figure 3B). This could be observed 
in the IMC visualizations and also further validated using 
spatial transcriptomics (Figure 3D). The prevalence of oligo-
dendrocytes increases from primary to recurrent (Figure 
2B), suggesting that this population did not simply expand 
in situ but rather infiltrated the recurrent TME. In GBM, oli-
godendrocyte lineage cells have commonly been reported 
to reside at tumor border niches, including the invasion 
front/resection border, where they co-localize with macro-
phages/microglia.33 Moreover, oligodendrocytes have 
been shown to support GBM tumorigenicity and migration 
by promoting angiogenesis in GBM.34,35 We also found ev-
idence supporting the model of interactions, as microglia 
and endothelial cells were significantly interacting with 
oligodendrocytes at recurrence (Figure 3D).

category proportion across all patients grouped by primary and recurrent surgeries. Bottom: representative spatial transcriptomic (CosMX) im-
ages showing single-cell segmentation masks colored by normal brain and vasculature cell category labels for primary (left) and recurrent (right) 
surgery from one patient (patient 84). Cells with white fill color represent cell categories other than normal brain or vasculature. (B) Top: stacked 
bar charts showing the labeled cell type prevalences across all patients (top left) and also separately for each individual patient. Bottom: boxplots 
showing the distribution of each cell type proportion across all patients grouped by primary and recurrent surgeries. (C) Boxplots showing 
the distribution of Shannon’s entropy values grouped by surgery and split across all patients (top left) and also for each individual patient. (D) 
Boxplots, grouped by surgery, showing the distribution of protein marker abundance for markers that define hypoxia (top) and the epithelial-
to-mesenchymal transition (bottom). The black horizontal boxplot lines represent the median, and the upper and lower box bounds denote the 
25th and 75th quantiles, respectively. Astrocyte-like (AC); mesenchymal-like (MES); neural progenitor-like (NPC); oligodendrocyte progenitor-like 
(OPC); epithelial-to-mesenchymal transition (EMT). Significance thresholds: *P < .05; **P < .01; ***P < .001; ****P < .0001.
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Of all the normal brain cells, astrocytes were found to 
significantly interact most frequently and significantly 
with the cancer cells, though this is mostly specifically at 
recurrence. In fact, aside from “self” interactions, which 
were consistent through treatment, normal astrocytes only 
formed significant interactions during recurrence.

Crosstalk between microglia and macrophages is 
known to induce reactive astrocyte phenotypes, which 
are crucial for the brain’s wound healing process—a key 
aspect in GBM.36,37 Moreover, the MES phenotypes, as de-
scribed by Wang et al. and Neftel et al., have been shown 
to overlap significantly with the presence of reactive 
astrocytes, indicating that these cells may migrate to in-
jury sites after resection as part of the healing process.32 
In our samples, we found significant interactions be-
tween normal neurons and astrocytes, suggesting the 
activation of cellular programs that could restore normal 
tissue function (Figure 3E and 3F). Moreover, these find-
ings were further validated using spatial transcriptomics, 
which allowed us to refine the identification of a reac-
tive astrocyte phenotype based on the meta-module 
described by Greenwald et al.11 We also observed 
treatment-associated changes in the two MES-like cancer 
cell states defined in their study: one linked to hypoxia 
(MES-Hyp) and the other to reactive astrocytes (MES-Ast) 
(Figure 3E). Leveraging this approach and the expanded 
set of markers available for cell phenotyping, we were 
further able to assess the dynamics between cancer cells 
and reactive astrocytes, where we found the latter to be 
increasing through treatment (Figure 3F).

Alterations in Cellular Neighborhoods Through 
Treatment in GBM

Cell interactions within the GBM TME are heavily influ-
enced by the spatial context, as GBM tumors consist of 
distinct anatomical regions.38 To generalize groups of 
interacting cell types, we defined cellular neighborhoods 
(CNs) using a nearest-neighbor approach (Figure 4A). 
These cellular neighborhoods refer to recurring patterns 
or groupings of cell types that tend to co-localize together 
within the GBM TME, and often reflect functional or biolog-
ically significant units.

This method defined 12 distinct cellular neighborhoods 
that provided a different level of structure from that ob-
served based just on individual cells (as exemplified in 
Figure 4B). As expected, owing to the fact that each cell 

significantly associates with itself in both the primary 
and recurrent tumors (Figure 3B), we found that most cell 
neighborhoods are dominated by a specific type (Figure 
4C). CNs capture multiple cells in close proximity (Figure 
4A), so are akin to the information captured by spot-based 
spatial technologies such as the 10X Visium platform. Our 
finding of dominance of a given cell type in each defined 
CN agrees with Greenwald et al.’s recently published re-
sults from application of the Visium platform to primary 
GBM samples.11 Extending these results using imaging 
mass cytometry, which provides single-cell resolution, we 
can further see that this dominance rarely equates to more 
than 50% of the cell types in a given CN, meaning there 
is clear ad-mixture and heterogeneity in interacting cells 
even when signal from one type predominates (Figure 4C).

Greenwald et al proceeded to cluster their spot-based 
gene expression profiles into 16 “metaprograms” (MPs). 
These programs are derived in an unsupervised manner 
and represent recurrent transcriptional profiles that are 
present across multiple cells, tissues, or conditions. 
Moreover, they reflect shared biological processes such 
as hypoxia and proliferation and also cellular states such 
as reactive astrocytes. Our CNs map to these MPs (Table 
1 and Supplementary Table 12), though with some differ-
ences due to the level of cellular resolution and the dif-
ferences in dimensionality and modality between the two 
studies. Specifically, Visium spots capture signals from 
1–35 cells, so some MPs result from more than just nearest 
neighbors; and MPs are derived from gene expression 
(typically 7000 parameters our CNs derive from protein ex-
pression (34 parameters). It is worth noting that we aligned 
both CN4 (T-cell dominated) and CN10 (NK cell dominated) 
with the T-cell MP, owing to the functional similarities be-
tween T- and NK-cells.39

Having aligned with previous findings from GBM tumors 
at a single time point, we wished to see how the preva-
lence of CNs changes over time. We see that certain CNs 
increased in abundance from primary to recurrent tumors, 
and others decreased (Figure 4D). Primary samples were 
enriched in neighborhoods that included immune cells, 
particularly macrophages (CN1 and CN12) and lympho-
cytes (CN10), vasculature (CN5), hypoxic MES (CN6), and 
AC cancer cells (CN8). In contrast, the recurrent surgery 
samples were enriched in neighborhoods dominated by 
normal brain cells: astrocytes (CN9 and CN11); neurons 
(CN7); and oligodendrocytes (CN3). Interestingly, we found 
that whilst hypoxic mesenchymal-driven CN6 decreased, 

neighbor of type B. Finally, each observed cell–cell interaction count is compared against a null distribution that is generated by shuffling the cell-
type labels 1000 times (1000 iterations) and counting the interactions between two specific cell types, giving the interaction counts under spatial 
randomness. Two cell types are “avoiding” when there are significantly fewer interactions compared to random expectation for a given P value 
threshold. Conversely, when there are significantly more interactions between the two cell types, they are “interacting.” (B) Dotplot showing the 
significant (P < .01) cell–cell interactions that are present across a minimum of three patients. Shape denotes whether a specific cell–cell inter-
action is significant across either primary, recurrent, or both surgeries. Point colors denote the type of significant interaction, that is, interacting/
avoiding, and also cases where the interaction type changes through surgery. The tile highlights denote the cell category of each cell type. (C) 
Representative IMC images showing single-cell segmentation masks colored by the corresponding cell type labels for primary (left) and recur-
rent (right) surgery regions of interest. (D–F) Top: Representative IMC images showing single-cell segmentation masks colored by the corre-
sponding cell type labels for primary (left) and recurrent (right) surgery regions of interest. Bottom: representative spatial transcriptomic (CosMX) 
images showing single-cell segmentation corresponding with cell categories and types. The “other” white filled cells denote cells which do not 
correspond to the respective labels shown. The Reactive-Ast, MES-hyp, and the MES-Ast cell types correspond to those identified in Greenwald 
et al. 2024.11
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astrocytic-like mesenchymal-driven CN2 was increased 
from primary to recurrence.

Ultimately these results reconfirm what was seen when 
looking at cell type or category prevalences in isolation 
(Figure 2), that is, that immune cell-driven (CN1, CN10, and 
CN12), vascular-cell driven (CN5) and cancer cell-driven 
(CN6 and CN8) neighborhoods decreased from primary to 
recurrence, whereas normal brain cell driven (CN2, CN3, 
CN7, CN9, and CN11) neighborhoods increased. CN4, which 
was dominated by T-cells, changed least in prevalence over 
time.

Greenwald et al.’s seminal finding was that, in some pri-
mary GBMs, MPs form organized layers that result in a 
global tumor architecture, which is seemingly driven by 
the presence of hypoxic niches. We, therefore, proceeded 
to investigate whether this organization was evident in 
our primary samples and whether it was maintained 
post-treatment.11

Alterations in Spatial Organization Through 
Treatment in GBM

To better understand higher-order structuring of our cel-
lular neighborhoods, we classified spatial contexts (SCs); 
locations where distinct cellular neighborhoods were 
found to consistently interact (Figure 4A). When consid-
ering the most dominant CN interactions present across 
primary and recurrent surgeries, our results reproduce 
similar ordered layers to those reported in Greenwald 

et.al.11 However, the prevalence and importance of states 
which make up the layers differs greatly through treat-
ment, as revealed by the structure and parameters of the 
calculated CN interaction networks (Figure 5).

In the primary samples, the most influential and preva-
lent cellular neighborhoods were those characterized by 
layers 1 and layers 3, which denote the hypoxic/necrotic 
core niche and the angiogenesis-immune hub, respectively 
(Figure 5A). These layers were comprised of CNs with high 
network centrality scores across three key measures: de-
gree (the number of direct connections a CN has to others, 
indicating its interaction density); closeness (how cen-
trally positioned a CN is based on its average distance to 
all other CNs); and betweenness (the extent to which a CN 
lies on the shortest paths between other CNs, reflecting its 
role as a bridge between other CNs). This concurs with pre-
vious findings suggesting that hypoxia potentially drives 
the presence of the organized layers owing to phenotypic 
consequences of reduced oxygen, especially at the tumor 
core.11

Conversely, in recurrent samples, there were many more 
significant interactions between CNs in different layers 
(Figure 5B) in agreement with our findings from pairwise 
cellular interaction analysis (Figure 3B). Additionally, the 
most influential and prevalent cellular neighborhoods in 
recurrent samples were mostly in layers 2 and 5, which 
represented the hypoxia-adjacent and normal infiltrative 
brain layers (Figure 5B). This suggests a reduced global 
structure with less well-organized layers, potentially owing 

Table 1.  Mapping of Previously Defined Spatial GBM Metaprograms to the Cellular Neighborhoods Defined in This Study.

Greenwald et al Metaprogram (MP) Metaprogram description Cellular neighborhood (Figure 4C)

MES-Hyp Hypoxic mesenchymal cancer cells CN6

MES-Ast Astrocytic-like mesenchymal cancer cells CN2

MES Mesenchymal (other) cancer cells

OPC Oligodendrocyte progenitor cell-like cancer cells CN3

AC Astrocytic like cancer cells CN8

NPC Neural progenitor cell-like cancer cells

Oligo Oligodendrocytes CN3

Neuron Neurons CN7 & CN9

Reactive Ast Reactive astrocytes CN9 & CN11

Inflammatory Mac Inflammatory macrophages CN12

Mac Macrophage and microglia CN1

T-cell T-cells CN4 & CN10

B-cell B-cells

Vasc Vasculature CN5

Chromatin-Reg Chromatin regulation

Prolif-Metab Proliferation and metabolism

representative patient/surgery sample regions of interest visualized as nodes on a two-dimensional plane, with cell–cell interactions shown in 
the form of undirected edges between nodes (top). The nodes are colored according to the cell type label (top) and also by the cellular neigh-
borhoods they belong to (bottom). (C) Stacked bar charts showing the proportion of each cell category (left) and cell type (right) that is present 
across each CN (rows). (D) Dot plots showing the relative proportion of cells in each of the CNs (facets) across each surgery type..

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noaf190/8246370 by guest on 19 Septem

ber 2025



 12 Ajaib et al.: Spatial profiling of longitudinal glioblastoma

A

Layer 1:
hypoxic
niche

Layer 1:
hypoxic
niche

Layer 2:
hypoxia-
adjacent

MES-Hyp (6)

nCells

Degree Centrality

Closeness Centrality

Betweennes Centrality

nCells

Degree Centrality

Closeness Centrality

Betweenness Centrality

MES-Ast (2)

Inflammatory-Mac (12)

Mac (1)

Vasc (5)

T-cell (4 & 10)

AC (8)

Oligo (3)

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Vasc (5)

T-cell (4 &10)

Reactive-Ast/Neuron (9)

Neuron (7)

Reactive-Ast (11)

Oligo (3)

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Vasc (5)

T-cell (4 &10)

Reactive-Ast/Neuron (9)

Neuron (7)

Reactive-Ast (11)

Oligo (3)

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Vasc (5)

T-cell (4 &10)

Reactive-Ast/Neuron (9)

Neuron (7)

Reactive-Ast (11)

Oligo (3)

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Vasc (5)

T-cell (4 &10)

Reactive-Ast/Neuron (9)

1

Layers

2 3 4 5

Neuron (7)

Reactive-Ast (11)

Oligo (3)

1000 2000 3000 4000 5000 6000 7000

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Mac (1)

Vasc (5)

T-cell (4 & 10)

AC (8)

Oligo (3)

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Mac (1)

Vasc (5)

T-cell (4 & 10)

AC (8)

Oligo (3)

MES-Hyp (6)

MES-Ast (2)

Inflammatory-Mac (12)

Mac (1)

Vasc (5)

T-cell (4 & 10)

AC (8)

Oligo (3)

3000

4

0.075

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 78 9 10 11

6 7

0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125

8 9 10 11 12 13 14 15 16

0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125

5 6 7 8 9 10 11 12

4000 5000 6000 7000 8000 9000 10000

Layer 2:
hypoxia-
adjacent

Layer 3:
angiogenesis
immune-hub

Layer 3:
angiogenesis
immune-hub

Layer 4:
neurodev.
GBM states

Layer 5:
normal
brain

Layer 5:
normal
brain

B
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to a reduction in the presence of hypoxic niches in recur-
rent versus primary GBM.

Worth noting is that T-cell dominated CN4, which re-
mained the most stably prevalent between primary and 
recurrent samples (Figure 4D), in combination with CN10 
(together these CNs align to the previously denoted T-cell 
MP: Table 1) maintain high network parameters in both 
primary and recurrent GBMs (Figure 5), implying they 
are important in driving spatial contexts both pre- and 
post-treatment.

Discussion

While we observe validated longitudinal changes in the 
GBM TME cellular architecture, we acknowledge that this 
was a small study (n = 5) and based primarily on correla-
tional analyses. As such, we cannot definitively determine 
whether the observed changes are direct consequences of 
treatment or reflect the natural course of tumor evolution. 
Further studies with larger cohorts and experimental vali-
dation will be needed to clarify these dynamics. Moreover, 
the technical limitations of protein-based expression pro-
filing confined the number of markers that could be used 
to assign cell types (n = 34). This meant that some cells 
(eg, B-cells) were not included, and there were fewer 
markers available with which to conclusively discern be-
tween neoplastic and normal brain cell types, which are 
closely related, or between different phenotypes of specific 
cell types (eg, M1 vs M2 polarization of macrophages).6 
Notwithstanding, protein markers exhibit less stochastic 
expression and lower signal dropout (false negatives) 
compared to single-cell sequencing approaches. In this 
study, we utilized archival FFPE patient samples, which can 
exhibit variable preservation over time, and therefore, this 
is also a constraint of this study.

Our results reveal an influx of normal brain cells into the 
GBM microenvironment post-treatment, alongside a re-
duction in vascular cells (Figure 2A). The latter is expected, 
as surgery aims to debulk the highly vascularized tumor 
core.40,41 However, the reduction in endothelial cells in re-
current GBM suggests a reduced functional reliance on 
vasculature, which may explain the failure of angiogenic 
therapies like bevacizumab (Avastin) in clinical trials.42 
It should be noted that although throughout this study 
we refer to stromal cells present within the GBM TME as 
“normal” brain cells, this is solely to distinguish them from 
malignant, neoplastic populations. In reality, these stromal 
cells reside in tumor-influenced brain parenchyma and 
likely exhibit altered phenotypes in response to the sur-
rounding milieu.

Several large cohort studies that deconvoluted cel-
lular signals from paired GBM using bulk and single-cell 

RNA-seq have reported an increased presence of oligo-
dendrocytes at recurrence.22,43,44 Herein, we confirm this 
finding (Figure 2B) and further show that oligodendro-
cytes integrate into the GBM TME, as their interactions with 
other cells significantly increase at recurrence (Figure 3B). 
Oligodendrocytes are essential for cerebral homeostasis 
and regulate neuronal activity via axon myelination.33 We 
characterized oligodendrocytes using the myelin oligo-
dendrocyte glycoprotein (MOG) marker (Figure 1B), sug-
gesting that the increases we observe relate to myelinating 
oligodendrocytes integrating into the tissue and implying 
a potential functional role for myelination within the GBM 
TME post-treatment. Interestingly, the increased inter-
actions and integration of oligodendrocytes we observed 
in recurrent tumors, primarily involve non-neoplastic 
cells. Among cancer cells, recurrence-specific interactions 
involving oligodendrocytes are restricted to MES neo-
plastic cells (Figure 3B). Oligodendrocytes have been 
shown to upregulate the invasive capacity of GBM cancer 
cells via Angiopoietin-2 signaling, and MES are the most 
invasive neoplastic subtype.34,45

We found that all neoplastic GBM cells showed increased 
epithelial to mesenchymal transition (EMT) at recurrence 
(Figure 2D). Moreover, the cellular neighborhood domin-
ated by oligodendrocytes (CN3) had higher closeness and 
degree centrality at recurrence (Figure 5), indicating greater 
connectivity and interaction with other CNs. We propose 
that the role of oligodendrocytes in driving post-treatment 
recovery of GBM is worthy of further exploration.

Astrocytes exhibit the largest increase of normal brain 
cells (Figure 2B) within the recurrent GBM TME and also 
the highest number of recurrence-specific interactions, 
particularly with neoplastic cells (Figure 3B). Within 
the healthy brain parenchyma, astrocytes are crucial 
for neuronal cell homeostasis and also help drive the 
brain’s injury response by acquiring a reactive pheno-
type. Consistent with this role, cellular neighborhoods 
that map to the previously defined reactive astrocytic 
metaprogram (CN9 and CN11) and the astrocytic mesen-
chymal metaprogram (CN2) are increased at recurrence 
(Figure 4D and Table 1). Astrocytes also exhibit resist-
ance to apoptosis triggered by death receptors during in-
flammation, such as apoptosis antigen 1 and TNF-related 
apoptosis-inducing ligands (FAS, TRAIL), indicating their 
resilience under inflammatory conditions. Together, this 
suggests a phenotypic response within the (infiltrating) 
astrocytic population of the TME that could serve to pro-
tect neoplastic cells.

Previous research has indicated that there is a shift to-
ward a more mesenchymal state in bulk tumors at re-
currence.22 Single-cell analyses have further refined this 
understanding, showing that, whilst some GBMs show 
an increase in MES cancer cells post-treatment, others 
show increases in more proneural (OPC and NPC) cells 

respectively. Middle: dot plots showing the number of cells present across each surgery-specific cellular neighborhood, and also three network-
specific centrality measures: degree, closeness, and betweenness. Bottom: representative spatial transcriptomic (CosMX) images showing 
single-cell segmentation masks colored by the Greenwald et al. layers for primary (left) and recurrent (right) surgery from one patient sample. 
Cells with white fill do not align to any of the corresponding layers. Both network graphs and their corresponding metrics are colored and ordered 
according to the structured GBM spatial layers described in Greenwald et al. (2024).11
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at recurrence.46,47 We also find that there is no significant, 
consistent change in neoplastic cell types at recurrence, 
but instead, a universal increase in EMT markers across 
all the neoplastic cell (Figure 2D). This potentially explains 
the shift to mesenchymal expression signatures observed 
from bulk tumor profiling.22

In keeping with our previous findings, AC-like cancer 
cells reduce most consistently at recurrence.23 However, 
the remaining AC-like cells had elevated levels hypoxia 
(Figure 2B and D), while these decreased within MES and 
NPC cell populations. Hypoxia can induce a reactive as-
trocyte phenotype within the TME, which may extend to 
AC-like cancer cells, potentially even promoting plastic 
conversion to this neoplastic subtype.48,49

Overall, we find no consistent changes in cellular diver-
sity between primary and recurrent GBM (Figure 2C), sug-
gesting that while cellular heterogeneity is maintained, 
post-treatment GBM tumor have greater interactions be-
tween differing cell types (greater admixture, Figures 3 and 
4). A recent spatial profiling study of primary GBM tumors 
by Greenwald et al. concluded that hypoxia drives organ-
ization of a GBM architecture, composed of layers.11 Our 
findings concur with theirs for primary GBM but expand 
further, revealing that this layering is less structured post-
treatment (Figure 5). The decrease in CN6, which maps to 
their hypoxic MES cancer cell metaprogram (Table 1), but 
an increase in CN2, which maps to their astrocytic MES 
cancer cell metaprogram (Table 1), at recurrence suggests 
that an overall reduction in hypoxia post-treatment could 
drive this increased disorder. This influx and integration 
of normal brain cells in the GBM TME at recurrence cor-
responds with these cells becoming much more influ-
ential in terms of the interaction between cellular layers, 
particularly CN11, which maps to the reactive astrocyte 
metaprogram of Greenwald et al. (Figure 5B).

Whilst lymphocyte abundance remains unchanged 
between primary and recurrent GBM (Figure 2B), 
neighborhoods (CN4 and CN10) mapping to the T-cell 
metaprogram (Table 1) become much more influential 
in the recurrent GBM (Figure 5B). T-cells and tertiary lym-
phoid structures (regions enriched in lymphocytes, re-
sembling CN4 and CN10) have been shown to increase 
in subsets of paired primary and recurrent GBM,46,50 
which has renewed interest in understanding their poten-
tial role in immunotherapy. In support of this, activated 
T-cells have been shown to associate specifically with as-
trocytic MES, which is the subtype we also find increased 
recurrent tumors.24

This study highlights prominent post-treatment 
changes in the GBM cellular landscape and offers novel 
insight into the importance of specific interactions be-
tween GBM cancer cells and the TME during tumor 
survival and regrowth. Within the last decade the char-
acterization of how glioblastoma brain tumors interact 
with surrounding non-neoplastic neuronal and glial cells, 
in ways which impact tumor phenotype, have become 
central to the emerging field of cancer neuroscience.51 
Our study indicates that these may be some of the most 
important cellular interactions that enable the tumor to 
survive standard treatment, and thus a further, more-
mechanistic, exploration of them may yield important 
therapeutic targets.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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