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A B S T R A C T   

Surface water quality is frequently impacted by acute rainfall driven pollutant sources such as sewer overflows. 
Understanding the risk of exposure from faecal pollution from short term impacts is challenging due to a paucity 
of high-resolution data from river systems. This paper proposes practical modelling approach for forecasting 
arrival time and durations of elevated E. coli levels based on hydrological routing of catchment source loadings, 
characterized by distributed and remote sensing techniques (including sewer overflow monitoring). The model is 
calibrated and validated using new high resolution E. coli datasets from a UK catchment featuring both diffuse 
field runoff and storm overflow impacts. Hourly/Bihourly sampling of E. coli was undertaken in the river 
following different rainfall events across a range of seasonal conditions. The model provides a good estimate of 
arrival times and durations of elevated E. coli periods following rainfall events. Model simulations suggest that 
key sources in the catchment are event specific, with sewer overflow spills being more significant following short, 
intense rainfall events.   

1. Introduction 

Developing understanding of the fate, transport and survival of fae-
cally derived microorganisms in river systems is a requirement for 
improving the effective and safe management of water resources (DWI, 
2020; Dienus et al., 2016; Graydon et al., 2022), and for health risk 
assessments associated with recreational activities undertaken in water 
bodies (Bathing Water Regulations 2013; Marsalek and Rochfort, 2004; 
Boehm and Soller, 2020). In many countries, the quality of surface water 
bodies has come under increasing recent focus due to increased spill 
frequency monitoring of storm sewer overflows (SSOs) and public de-
mand for designated bathing water sites (Zan et al., 2023). For example, 
in the UK the Environment Act (2021) has recently increased re-
quirements for the direct monitoring of water quality impacts of SSOs. 
Whilst the robust direct real time measurement of microbial water 
quality remains unproven (Demeter et al., 2020; Burnet et al., 2021), 
modelling tools can potentially consider and provide warning of periods 
of elevated risk to surface water sources and public health. However, the 
development of widely applicable, generalized tools to understand 
faecal pollution and associated risks in surface waters remains chal-
lenging, especially those caused by acute impacts with high temporal 

variability (Taghipour et al., 2019; Kammouna at al., 2023). A number 
of studies have conducted detailed monitoring and/or small scale 
modelling to understand spatial and temporal dynamics of E. coli at 
individual river reaches, or in small agricultural sub catchments (e.g. 
Hellweger and Masopust, 2008; Sokolova et al., 2013; Gao et al., 2015; 
Neill et al., 2020). However, there is a current lack of well validated 
modelling methodologies for acute impacts that can be applied in mixed 
use (i.e. urban and rural) catchments, without extensive characterisation 
of sources and the use of detailed 2D/3D hydrodynamic modelling (and 
associated topographic surveys). Further, forecasting models for early 
warning applications (such as water abstraction management or bathing 
water alerts) require input datasets which characterise source loadings 
that can be collected and communicated remotely and be available in 
near real time (Seis et al., 2018; Yassin et al., 2021). 

Many studies utilize E. coli counts as an indicator of faecal contam-
ination in waterbodies (Madoux-Humery et al., 2013). However, the 
conventional microbial analysis of water quality samples is relatively 
time/resource intensive. For example, the membrane filtration method 
(standard used by the UK water industry), involves dilution (if needed), 
filtration and incubation of the sample for a minimum of 18 h (The 
Standing Committee of Analysts, 2016). The characterization of the 
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microbial quality of surface waters is therefore commonly based on 
sampling and analysis conducted at relativity coarse resolution in rela-
tion to the temporal dynamics of potential rainfall driven sources, and 
hence can neglect the full influence of SSOs which may only discharge 
for a few hours (Seis et al., 2018; Madoux-Humery et al., 2016; Jallif-
fier-Verne et al., 2017; Shepherd et al., 2023). Further, a number of 
previous studies have shown that a significant source of faecal 
contamination in rivers within mixed catchments is diffuse, 
rainfall-driven runoff, with risks particularly high during elevated flow 
events due to contaminated runoff from pastoral farmland which also 
commonly exhibits high temporal variability at sub hourly timescales 
(Oliver et al., 2009; Ghimire and Deng, 2013; McKergow and Davies--
Colley, 2010; Jovanovic et al., 2017; Buckerfield et al., 2019; Hubbart 
et al., 2022). The mismatch in monitoring practice and timescales of key 
water quality processes mean that significance of many accumulation 
and transport processes is currently poorly understood, particularly 
those which may dominate acute impacts over shorter timescales, such 
as mixing and dispersion processes in river and streams (Camacho 
Suarez et al., 2019a), spatially variable rainfall runoff and associated 
processes (Jovanovic et al., 2017) and volumes and loadings from in-
dividual highly intermittent SSOs (Madoux-Humery et al., 2015; Owo-
labi et al., 2022). Many existing approaches widely applied to predict 
diffuse pollution exposure in surface water bodies are developed with a 
view to analysing long-term effects of catchment management practices 
and are often calibrated and validated with relatively coarse datasets 
(daily and above). (Sadeghi and Arnold, 2002; Collins and Rutherford, 
2004; Dorner et al., 2006; Ferguson et al., 2007; Walker and Stedinger, 
1999; Whelan et al., 2014; Haydon and Deletic, 2006; Schijven et al., 
al.2015; Sterk et al., 2016; Brannan et al., 2002). As a result, many 
existing catchment scale water quality models lack detailed represen-
tation of spatio-temporally distributed surface runoff generation from 
source areas, intermittent point loadings (e.g. from SSOs) and transport 
processes and hydrological pathways throughout the catchment. How-
ever this is likely to be required for accurate prediction of the arrival of 
temporally variable short-term (sub daily) peak concentrations of pol-
lutants following rainfall events (Asfaw et al., 2018; Buckerfield et al., 
2019). This limits such process based models applicability and viability 
for forecasting applications such as active water abstraction manage-
ment (Yassin et al., 2021) or real time bathing water condition mod-
elling/early warning (Seis et al., 2018). There is therefore a need to 
develop and validate new, practically applicable forecasting tools for 
feacal contamination that can be applied at catchment scales and 
consider acute inputs from both agricultural and urban sources. In 
addition to a lack of water quality data at appropriate resolution for 
calibration and validation, further challenges associated with the 
modelling of faecal contamination include high inherent parametric and 
structural uncertainties associated with modelling loadings from inputs 
such as SSOs and diffuse agricultural runoff (Srivastava et al., 2018; 
Tscheikner-Gratl et al., 2019). 

The lack of integrated monitoring and modelling capabilities of acute 
impacts across the urban drainage and catchment domains, means that 
quantifying the relative scale and nature of risks to water resource sys-
tems from different potential sources (e.g. SSOs vs rural diffuse runoff) is 
also practically difficult (Derx et al., 2023). The recent use of microbial 
source tracking techniques has been shown to successfully elucidate 
potential sources (Joseph et al., 2021; Wiesner-Fridman et al. 2022; Zan 
et al., 2023). However, the present cost and complexity of such tech-
niques means that they are generally only applied to a limited number of 
samples, which may not provide a representative apportionment of 
source loadings over longer timescales. 

Despite challenges, in recent years the quality and quantity of 
spatially distributed environmental datasets of concern to water appli-
cations has increased, including radar rainfall data, remote sensing of 
soil condition and land use, and in some cases such as in the U.K., 
datasets concerning timing of SSO discharges from urban drainage 
networks. Further to this, the use of automated sampling techniques has 

simplified the logistics concerning the collection of high resolution 
water quality samples. The potential for real time sensing/monitoring of 
feacal pollution is also a subject of current research, for example based 
on fluorescence-based detection of the enzymatic activity (Demeter 
et al., 2020; Burnet et al., 2021), however the reported performance of 
such techniques for E. coli measurement is variable across different 
waterbody types. Whilst these tools provide potential to improve un-
derstanding of short-term dynamics in surface runoff-based generation 
and transport, many of approaches/datasets have yet to be integrated 
into river impact models or fully deployed to characterise and assess the 
significance of acute loadings of Faecal Indicator Organisms (FIOs) into 
receiving waters. For example, to the authors knowledge the use of 
directly monitored SSO water levels as an alternative to hydrodynamic 
and water quality modelling of an urban drainage network to estimate 
SSO impacts has not been previously attempted. 

The aim of this work is to develop a novel, practically applicable 
process-based forecasting approach to characterize short term E. coli 
dynamics in catchment scale river networks, considering both inputs 
from SSO discharges and diffuse agricultural runoff. The model appli-
cation is focused on providing advanced warning of water quality issues 
at a water abstraction site, although a similar model structure may be 
considered for forecasting the quality of recreational waters. As such, 
understanding the arrival time and duration of elevated loadings within 
the river network following commonly occurring rainfall events is the 
primary objective of the model. The approach is based on the temporal 
routing of individual source areas (based on land use) within the 
catchment through the river network, considering spatially variable 
rainfall runoff processes (for agricultural areas), and the novel use of 
hydraulic monitoring data from individual SSO sites provided by the 
water infrastructure operator. The model is calibrated and validated 
against new hourly/bihourly datasets of E. coli concentrations in a UK 
case study catchment featuring both agricultural and SSO inputs, 
collected during and after rainfall events over a range of seasonal con-
ditions. The model outputs are further used to consider the relative 
significance of urban and rural sources in the catchment area over dif-
fernt seasons. 

2. Methodology 

This section describes the case study catchment area, sampling and 
microbial water quality analysis procedure as well as the development of 
a modelling approach to describe short-term fluxes of E. coli in response 
to individual rainfall runoff and SSO discharge events. 

2.1. Study area 

The River Leam is a 300km2 sub catchment of River Severn with 
elevation ranging from 46 m to 232 m above sea level. A surface water 
abstraction site is maintained by the utility operator for potable water 
supply (Fig. 1), situated at the catchment outlet. Agriculture is the 
dominant catchment land use with predominantly clayey and loamy 
soils. Several urban, suburban and rural developments are also present 
in the catchment, totalling 12.83 km2 of built-up area (Ordnance Sur-
vey, 2023), with predominantly combined urban drainage systems also 
maintained by the utility operator alongside a number of associated SSO 
outfalls. A UK Environment Agency (EA) flow gauging station is situated 
at the outlet of the catchment to monitor abstraction license restrictions. 
The normal flow depth of the River Leam at the gauging station ranges 
between 0.24 m and 1.16 m with an average flow of 1.55 m3/s (Q70; 
0.319 m3/s, Q50; 0.441 m3/s, Q10; 3.573 m3/s) and mean annual 
catchment rainfall of 649 mm (NRFA, 2023). The catchment has pre-
viously been used to develop a rainfall runoff model to forecast the 
arrival of pesticides at the abstraction point caused by field runoff 
(Asfaw et al., 2018). Based on long term routine monitoring at the 
abstraction site, the utility operator has identified faecal pollution after 
rainfall events as a further water quality concern. 
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2.2. Development of E. coli modelling approach 

Based on the available catchment information, the major sources of 
acute rainfall driven FIOs in the catchment are assumed to be field runoff 
from pastoral agricultural land, and SSO spills. The proposed model 
therefore accounts for SSO loadings and agricultural runoff sources for 
given rainfall events as identified by catchment land use and asset data. 
During rainfall events travel times from sources to a monitoring point at 
the catchment outlet are based on a travel time approach utilizing an 
existing surface runoff model of the catchment presented in Asfaw et al. 
(2018). Surface runoff is calculated based on overland flow generated 
from 5 m2 grid cells in the catchment utilizing radar rainfall data. The 
travel time based surface runoff routing method estimates storm runoff 
transport from catchment grid cells to the outlet of the catchment based 
on a Geographic Information System (GIS) method. The spatially 
distributed time variant direct runoff travel time technique employed in 
the model accounts for spatial and temporal variability of runoff gen-
eration and flow routing through overland flows and stream networks 
(Melesse and Graham, 2004; Du et al., 2009) following rainfall events at 
a 1 h resolution. 

Diffuse E. coli loadings are estimated based on build-up functions 
associated with grazing animals in high risk areas (grasslands) and its 
wash-off to water courses during surface runoff processes (Oliver et al., 
2009). SSO impacts are based on level data from Storm Overflow 
monitors collected at 15 min resolution and used to estimate volumes 

and loadings entering the surface waters at each timestep from SSO sites. 
Loadings from significant SSOs and grassland areas are then routed to 
the catchment outlet. Diffuse and SSO impacts are integrated and 
combined model to enable rainfall event based prediction of E. coli 
concentrations at the catchment outlet after rainfall events. 

The underlying surface runoff, diffuse pollution and SSO modelling 
approaches are described in further detail in the following sections. 

2.3. Surface runoff modelling 

A hydrological model based on the differential form of the Soil 
Conservation Service curve number method (Mancini and Rosso (1989) 
has been previously developed and tested within the same catchment 
(Asfaw et al., 2018), and hence is not reproduced here in detail. Runoff 
routing is performed using a time varying travel time computation 
technique, based on flow pathways defined via a GIS flow direction tool 
based on the catchment digital elevation model. Output surface flow 
hydrographs at the catchment outlet are based on cumulative excess 
rainfall travel times from each grid cell, based on kinematic wave theory 
Wong (2003). Further details of the model setup and initial validation 
can be found in Asfaw et al. (2018). To ensure robustness of the 
approach for this study, the model was evaluated during three further 
wet weather events, during which the model was compared against 
monitored EA gauging station data (see Section 4.1.). Based on this 
testing, model antecedent moisture conditions were modified to be 

Fig. 1. Study catchment map showing elevation (meters above sea level) the locations of SSO’s, built up areas and grassland for livestock grazing.  
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evaluated based on the preceding 25 days of cumulative rainfall data. 

2.4. Diffuse faecal pollution loading and routing 

The diffuse modelling component estimates the build-up of E. coli 
loading on grazing land within the catchment, and subsequent wash-off 
during surface runoff events following each rainfall event . Grassland/ 
grazing areas were derived from satellite imagery, acquired from the 
Centre of Ecology and Hydrology (CEH, 2023) for the period covered in 
this work (2021–2023). The methodology is based on the approach of 
Oliver et al. (2009), who developed a method to estimate E. coli loadings 
on fields based on ‘a worst case scenario’ which represented a realistic 
upper level of stocking densities in the UK. The concentration of E. coli 
(CFU/m2) on grassland for a given Julian day (Ex) is calculated as the 
sum of the daily fresh input of E. coli (Einx) by grazing livestock and the 
previous E. coli burden, which estimated as a declining due of first-order 
die-off relationship (see Table 1): 
Ex = Einx + Ex−1 ∗ e−b (1) 

Where Einx (Colony Forming Units, CFU) are fresh E coli deposits, Ex- 
1 (CFU) is the E. coli store from the previous day, and b is the appropriate 
seasonal exponential die-off constant. The ovine and bovine die-off 
constants (Table 1) are higher for the summer (Avery et al., 2004) and 
lower for the winter months (Oliver et al., 2009). 

E. coli deposits are estimated using livestock numbers supplied by 
DEFRA at UK county level (DEFRA, 2022), multiplied by daily load of 
E. coli excreted by each livestock type during the assumed grazing period 
(based on the method of Oliver et al., 2009). The number and type of 
animals is assumed to be equally distributed over the entire grassland 
area of the catchment. The daily E. coli burden in each 5m2 cell is 
summed up for each livestock type present and used to calculate daily 
fresh deposit totals during grazing periods (Table 2). 

In addition to direct deposits, key risk times for slurry spreading in 
the catchment are in the autumn and spring. To account for slurry 
spreading contribution to E. coli store in this catchment, E. coli store on 
grassland between 31 January and 1 April is assumed to be 2.1 × 108 

CFU per m2, based on the findings of McGechan and Vinten (2003). 
E. coli detachment or washout rate from each cell at each timestep (t) 

during rainfall events is estimated based on the method of Collins and 
Rutherford (2004), applied here at hourly resolution. 

Z, t = Cp

O, t

Tr

(when O, t < Tr) (2)  

Z, t = Cp (when O, t ≥ Tr) (3) 
Where Z,t is the E. coli detachment or washout rate (E. coli/hr) during 

the timestep, O,t is the cell surface runoff rate (mm/h) during the 
timestep (from the surface runoff model) and Tr is threshold a runoff 
coefficient, taken as 1.04 mm/hour (Collins and Rutherford, 2004). Cp is 
the available E. coli store (Ex), modified by a calibration constant (K1), 
discussed further in Section 3.5. 
Cp = ExK1 (4) 

The calculated travel time from each high-risk cell is calculated 
based on the surface runoff model for each model time step. This is then 
used to route E. coli load at each hourly timestep from each cell (Z,t) to 

the outlet of the catchment. Time series of river flow based on the hy-
drological model (Q,t, m3/s) and total E. coli load in surface runoff 
(E. coli/m3) can then be used to determine concentrations water arriving 
at the outlet of the catchment from field sources. Thus, the concentration 
of E. coli from diffuse runoff field sources at each model time step 
(E. coliF, t), can be expressed as: 

E.coliF, t =

∑

(Z, t)

(Q, t)
(5)  

2.5. SSO spill volumes, loading and routing 

SSO monitoring equipment has recently been installed within the 
catchment as part of the current commitment to provide event duration 
monitoring data of all operational SSOs to the UK public (Environment 
Agency, 2023). In the study catchment, spill event durations are 
currently estimated based on monitored level data within chambers 
connected to outflow pipes (discharging to surface waters), with start 
and stop times logged as when water level exceeds the outflow weir 
crest/pipe invert level. Although monitoring systems are not designed to 
estimate volumes or pollutant loadings to receiving waters, a simple 
approach is proposed to make estimates of flow rate and loadings based 
on sensor information. 

Raw water level data (collected via ultrasonic probes) at 15 min 
resolution data is provided at each of the 20 SSO sites within the 
catchment (Fig. 1). Based on asset data (weir/pipe dimensions) and 
monitored level information for the analysis period, SSO spill volumes at 
each site are calculated every 15 mins where the water level exceeds the 
outflow weir crest or pipe invert level based on standard equations for 
hydraulic structures and pipe flows. A similar approach has been used by 
Fachs et al. (2008) to estimate flow rates from urban drainage systems 
overflows. 

At sites where the outflow is controlled by a weir, the SSO spill 
flowrate at each site (Qspill,x, m3/s), is calculated every 15 min as: 

Qspill,x =
2

3
CdwL

̅̅̅̅̅

2g
√

h
3

2 (6) 

Where Cdw is the coefficient of discharge for a weir, taken at 0.6. L is 
the effective length of weir (m), g acceleration due to gravity (m/s2) and 
h is the height of water surface above weir crest (m). For sites where the 
outflow is controlled by a pipe, two states are simulated to consider 
when the pipe is surcharged or flowing with a free surface, defined at 
each time step by the monitored water level relative to the pipe soffit 
level. When the pipe is in surcharged condition, the spill flowrate is 

Table 1 
Bovine and ovine die-off constants (b) for different seasons, from Avery et al. 
(2004) and Oliver et al. (2009).  

Season Bovine die-off constant (day−1) Ovine die-off constant (day−1) 
Autumn/ 

winter 
0.0606 0.0640 

Spring/ 
summer 

0.0909 0.0920  

Table 2 
Catchment livestock densities, total grassland area (from DEFRA County level 
data), deposit data and assumed grazing periods in the catchment (based on 
Oliver et al., 2009, Oliver et al., 2018).  

Livestock 
type 

Livestock 
Count – 

County level 

E. coli (CFU) 
contribution per 
livestock 

Einx (CFU) per 
5 m2 of 
grassland 

Grazing 
period 

Dairy cow 9682 8.99×108 85,195 1 Apr–31 
Oct 

Beef cow 17,360 2.54×109 431,602 1 Apr–31 
Oct 

Calves 23,644 2.10×1010 4,662,237 1 Apr–31 
Oct 

Sheep 151,061 7.74×108 968,452 1 Jan–14 
Apra; 
1 May–31 
Dec 

Lambs 127,827 1.01×1010 14,934,373 1 May–1 
Nov  

Grassland 
total (ha) 

51,081  

a removed for lambing. 
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calculated based on an orifice condition: 
Qspill,x = Cdoao

̅̅̅̅̅

2g
√

h (7)  

Where ao (m2) is the area of the orifice and h (m) is the height of water 
surface above the outlet. Where Cdo is the coefficient of discharge of the 
orifice, taken at 0.57. When the flow in the pipe has a free surface, the 
flow rate is based on Manning’s equation: 

Qspill,x =
1

n

A
5

3

P
2

3

S
1

2

o (8) 

Where A is the cross-sectional area of the portion of the channel 
occupied by the flow (m2), n is the Gauckler–Manning coefficient (s/ 
[m1/3]), taken as 0.014 for vitrified clay, P is the wetted perimeter of the 
channel occupied by the flow (m), S is the pipe slope (based on asset 
data). Eq. (6) assumes that the flow in the pipe is uniform, whilst un-
likely to be the case the short duration of free surface pipe flow condi-
tions in most cases means that the uncertainty arising from this 
assumption is unlikely to be significant. The total spill volume per 
hourly timestep (Vspill,x, t) at each SSO is calculated by the integration of 
the calculated flowrates. Currently there is no sampling of E. coli of 
storm overflow sites to estimate loadings within SSO spill volumes. 
Therefore for the purposes of this application E. coli concentrations of 
40,000 E. coli (CFU)/100 ml have been utilized based on the previous 
observations found in literature (Ellis and Yu, 1995; García-García et al., 
2021; Hamel et al., 2016; USEPA, 2008) to calculate the E. coli load from 
each SSO (SSOx,t). The implications of this assumption are discussed 
further in Section 4. 

As point source discharges, loadings from SSOs are subject to 
considerable dispersion effects within the receiving water (Rutherford, 
1994). To account for this, SSO loadings from each site at each timestep 
are routed to the catchment outlet using an Aggregated Dead Zone 
(ADZ) transport and mixing model (Beer and Young, 1984; Wallis et al., 
1989). The ADZ is a simple two parameter routing approach which ac-
counts for mixing processes within surface waters. Unlike the (more 
commonly used) Advection Diffusion Equation the ADZ accounts for 
skewed distributions commonly observed during mixing studies con-
ducted in surface waters (Rutherford, 1994). The ADZ model provides 
loadings at the downstream catchment outlet from each individual SSO 
site (SSODx,t) as: 
SSODx, t = −α(SSODx, t− 1) + (1+α)(SSOx, t− δ) (9) 

Where α = − e(−Δt
t−τ
) and δ = τ

Δt . The parameter t is mean trav-
eltime over the reach (s) and τ is an initial reach time delay (s). The two 
ADZ parameters (t, τ) can be expressed as the dispersive fraction (Df), as 
defined by Young and Wallis (1986), and used to scale the mixing effects 
within a reach. 

Df =
(t − τ)

t
(10) 

To deploy the ADZ model to each SSO spill, the mean reach travel 
time (t) is estimated based on the surface runoff model described in 
Section 2.3. By applying a series of uniform rainfall events (from 0.08 to 
1 mm/hr) over the catchment, travel time against catchment outlet river 
flow relationships for each SSO were extracted from the hydrological 
model. In each case a uniform rainfall intensity was applied to the 
catchment until the modelled river flow at the outlet stabilized. This 
allowed representative mean travel times (t) from each SSO to be 
determined over a range of measurable catchment flow conditions (from 
6.21 - 79.57 m3/s), based on the coordinates of each SSO as identified 
based on asset records and identified river distance (Table 3). As the 
time delay parameter (τ) cannot be directly established by the hydro-
logical model, τ is calculated for each timestep and SSO based on the 
traveltime (from above), according to Eq. (10). In this case a fixed value 
of Df = 0.2 is taken in all cases, based on the database values of 
dispersive fractions from UK rivers found in Guymer (2002). Given the 

uncertainty induced by the use of a single representative Df value, a 
sensitivity analysis of this parameter on SSO predictions was also carried 
out (see Section 4.3). Routed E. coli loadings from each SSO are summed 
for each model timestep and diluted by the calculated river flow volume 
at the catchment outlet to determine the SSO E. coli component 
(E.coliS, t) of the model (Eq. (11)). Similarly to the diffuse component, a 
calibration parameter (K2) is also applied, discussed further in Section 
3.5. 

E.coliS, t = K2

∑x=20

x=1
(SSODx, t)

(Q, t)
(11)  

3. Model input data, water quality sampling and calibration 

3.1. Rainfall and river flow 

Radar rainfall at 1km2 spatial resolution, 15 min temporal resolu-
tion, used as field runoff model input, was acquired from the UK met- 
office’s NIMROD system. Rainfall was aggregated into hourly intervals 
to be used with the runoff generation and pollutant wash-off compo-
nents of the model. A set of rainfall events was selected for validation of 
the hydrological component of the field runoff model (Table 4). Sum-
mary of the statistics for the four events used for the diffuse component 
of the E. coli model (calibration and validation) are provided in Table 6. 

River flow (m3/s) data from a flow gauging station situated at the 
outlet of the study catchment was obtained from the UK EA (NRFA 
2023). It was used as initial baseflow input for field runoff model and for 
the validation of the hydrological model. 

3.2. Land use 

UKCEH Land Cover® plus: Crop maps were used to create an E. coli 
high-risk area map. In this case, grasslands were selected due to live-
stock grazing throughout most of the year, creating E. coli stores that 
replenish and die off with time (as described in Section 2.4). Fig. 1 shows 

Table 3 
Characteristics of Leam catchment SSOs included in E. coli model, based on 
monitored period between April 2021 - March 2023. EA EDM data is the sum of 
the annual return data in 2021 and 2022.  

Name River 
distance to 
sampling 
site (km) 

Modelled 
traveltime 
under 1 mm/ 
hr unform 
rainfall (h) 

% of total 
spill 
volume in 
catchment 

EA EDM 
return 
-Total 
Duration 
’21 and ’22 
(hrs) 

Outflow 
control 
type 

SSO1 4.40 7 65.7 2857.7 Pipe 
SSO8 15.45 21 5.0 37.5 Pipe 
SSO12 21.24 29 6.0 782.1 Weir 
SSO19.1 29.14 35 9.7 3086.8 Pipe 
SSO19.2 29.14 35 3.5 371.6 Pipe  

Table 4 
Summary of rainfall events used to re-evaluate the surface runoff model. Quoted 
durations are based on presence of rainfall at any position in the catchment. 
Intensities are based on temporal and spatial averaged values. Initial and peak 
flow rates during each event based on EA gauging station data.  

Event 
No. 

Start date Duration Rainfall intensity 
(mm/hr) 

River flow data    

Average Peak Initial 
flow (m3/ 
s) 

Peak 
flow 
(m3/s) 

A1 03.12.2021 8h 1.10 2.10 5.45 19.2 
A2 03.03.2021 15h 0.72 2.33 2.02 7.72 
A3 (=

E1) 
04.12.2020 16h 0.71 1.48 0.43 5.85  
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the distribution of grasslands in the catchment during the study period. 

3.3. Storm sewer overflow data 

Monitored Storm Sewer Overflow Data (water level time series from 
20 catchment SSO’s) and asset location data was obtained from the local 
water utilities Event Duration Monitoring (EDM) analytics platform. An 
initial screening of the calculated volume from each SSO site (based on 
Eqs. 6-8) was performed. This showed that 5 out of the 20 SSOs 
contributed approximately 90 % of the total spill volume/load over the 
24 month study period (April 2021 – March 2023). Therefore, to 
simplify the model and further analysis, calculated catchment SSO 
loadings included only these 5 SSOs. Information on each of these SSO’s 
is included in Table 3, alongside nationally published EDM return data 
(Environment Agency, 2023). Calculation of traveltimes to the 
abstraction site is based on the application of the hydrological model 
and SSO location (river distance to sampling site) 

3.4. Water sampling (E. coli data) 

Water samples were taken from the River Leam at the water 
abstraction site using autosamplers during and shortly after four moni-
tored rainfall events in the catchment. This enabled the continuous 
collection of hourly/bihourly water samples during storm runoff events, 
which successfully captured the short-term fluctuations of E. coli con-
centrations at the abstraction site. The auto-samplers were manually 
triggered before the arrival of forecasted rainfall events. For each event 
sampling was carried out for a period of 1–5 days, which enabled the 
acquisition of water samples during the full surface runoff period 
following the rainfall events. During the sampling campaign a range of 
seasonal conditions and rainfall events of varying intensity and duration 
were captured over the period from September 2021to February 2023 
(Table 6). 

During each event, designated compartments within the autosam-
plers were filled with ice to keep the adjacently stored collected sample 
temperature low and stable. Samples were placed in a controlled envi-
ronment (3–5C◦) within 12 h and analysed within 24 h of collection. The 
samples were analysed using Total coliforms and E. coli- Isolation and 
Enumeration from Water by Membrane Filtration method as stated in 
The Standing Committee of Analysts (2016) based on Sartory and 
Howard (1992). The water sample is filtered through a cellulose acetate 
membrane filter upon which bacteria are entrapped. The filter is then 
placed on a selective growth medium and incubated at 30ºC ± 1.0ºC for 
4 ± 0.25 h followed by 37ºC± 1.0ºC for 17 ± 3 h. After incubation is 
complete the colonies, which are characteristic of Coliforms, and 
Escherichia coli are counted. For further details regarding the sampling 
and data quality assurance procedures see Suslovaite (2023). 

3.5. Model calibration 

Understanding E. coli loadings within surface waters is subject to 
considerable uncertainty. Whilst information concerning the arrival and 
duration of microbiological loadings into river systems can be directly 
characterized using monitoring or input data from rainfall radar or SSO 
sensors, due to a lack of direct monitoring of loadings within field runoff 
and storm overflows, the model utilizes literature values. However, it is 
known that these values can be highly variable between sites and with 
time (Madoux-Humery et al., 2015). Further to this, to maintain a simple 
model structure, processes such as E. coli decay/die off in the river 
network are neglected. To mitigate this, two calibration parameters (K1, 
K2) are introduced to scale loadings from field runoff and SSOs respec-
tively. It should be noted that these parameters are used to adjust 
magnitude of E. coli loadings and do not affect the arrival times and 
durations of E. coli events (i.e. the primary model application). Cali-
bration of the model is based on initial monitored event (E1), and then 
validated on the remaining 3 events (E2–4). The sampling events are 

distributed over the year to cover a range of seasonal and hydrological 
conditions (winter and summer, with initial to peak river flows ranging 
well over the Q70 to Q10 range over the 4 events), with rainfall dura-
tions ranging from 8 to 41 hrs. This provides some indication of the scale 
of uncertainties to be expected if the processes approximated by the 
calibration parameters are assumed to be constant throughout the year. 

4. Results and discussion 

4.1. Surface runoff model 

A set of events chosen for the validation of the hydrological 
component of field runoff model are listed in Table 4. Event A3 is also 
used to calibrate the E. coli model (event E1). Spatial distribution of 
temporally averaged rainfall for events A1 and A2 can be seen in Fig. 2, 
event A3’s rainfall can be seen in Fig. 4 under event E1. 

The results of hydrological model calibration and validation can be 
seen in Fig. 3 with the performance statistics listed in Table 5. The 
performance of the surface runoff model was evaluated over the dura-
tion of the hydrograph (T) using R-Squared (R2), Volume Conservation 
Index (VCI, Eq. 12), model efficiency coefficient (Eq. 13) and prediction 
error in the time to peak (ΔTp). 

VCI =
∑

T

t=0

Q, tmodel

/

∑

T

t=0

Q, tobserved (12)  

E = 1 −

∑T

t=0
(Q, tmodel − Q, tobserved)

2

∑T

t=0
(Q, tobserved − Q, tobserved)

2
(13) 

In Asfaw et al. (2018), VCI ranged between 0.82 and 0.99 compared 
to between 0.84 and 1.06 here. Further the ΔTp range of 1–5 hrs was 
reduced to 1–3 hrs during this validation. While the efficiency coeffi-
cient has seen a reduction (from a range of 0.83 - 0.91 to 0.63 - 0.88), 
overall the error statistics show the hydrological model to still be valid 
and suitable to use as a basis for travel time estimation. 

4.2. Measured E. coli dynamics and model performance 

The E. coli sub models (Eqn 5 and 11) were calibrated and validated 
using a set of rainfall events and the related statistics are listed in 
Table 6. Initial and peak river flow measured at the gauging station are 
also provided. For each event, the estimated rainfall depth for an equi-
livent duration 1 year return period (RP) storm has been calculated 
using the recent UKCEH FEH 22 model (UKCEH, 2023; Vesuviano, 
2022). The events used for model validation and calibration are well 
within the 1 year return period, and are therefore reasonably typical in 
terms of overall magnitude. Event E1 was used for calibration of pa-
rameters K1 and K2 with the remaining 3 events utilized for validation. 
Following calibration, a value of 0.4 was used for both K1 and K2. Fig. 4 
displays the spatial distribution of temporally averaged rainfall for each 
event. Fig. 5 presents the measured E. coli for each event, spatially 
averaged rainfall within the catchment, and the outputs of the E. coli 
models. The SSO, field and combined (i.e., summation of SSO and field 
components) model outputs are presented. 

Table 7 presents goodness of fit statistics for the combined E. coli 
forecasting model for each event. ΔA (hrs) - prediction error of first 
arrival time, ΔD (hrs) - prediction error of event duration, ΔTp (hrs) - 
prediction error of time to peak. 

Table 8 presents the calculated total E.coli load at the Leam 
abstraction point over each event from field, SSO and combined sources. 

For all events, observed and modelled E. coli exhibit large rises in the 
sampling period following rainfall. Although the forecasted peak dura-
tions are over predicted at times, these deviations are in the order of a 
few hours and are a fraction of the overall storm durations. The model 
suggests that event E1 is characterized by significant contributions from 

V. Suslovaite et al.                                                                                                                                                                                                                              



Water Research 248 (2024) 120838

7

Fig. 2. Spatial distribution of temporally averaged rainfall (mm) for the events used in hydrological model validation.  

Fig. 3. Field Runoff hydrological model validation (modelled and predicted flow, spatially averaged catchment rainfall).  
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both SSO and diffuse runoff sources. The SSO being responsible for the 
initial spike (due to the SSO spill from SSO1 relatively close by the 
abstraction site), and the tail (from 20 to 60 h after sampling 
commenced) being due to the slower diffuse runoff. The preceding 
rainfall event is moderate and of 8 hrs duration, and sufficient to cause 
approximately equivalent loadings from both SSO and field runoff 
sources. Whilst this event is used for calibration, the model structure 
correctly predicts the arrival time and duration of the event. 

The model prediction for event E2 significantly underestimates the 
arrival time of the E. coli peak concentrations; however, the end of the 
event is predicted reasonably well. In this case, the event is of lower 
intensity, but of longer duration, with a relatively high initial river flow. 
Hence, in this case predicted SSO volumes and loadings are significantly 
lower and the predicted E. coli contributions are mainly from diffuse 
runoff. The spatial distribution of rainfall intensity suggests a lower 
rainfall closer to the catchment outlet, and in this case, the model may be 
over predicting wash off from these areas leading to higher E. coli 
loadings at the start of the event than is observed. 

Event E3 is an example of a high intensity, shorter duration event 
typical of summer rainfall with a low initial and peak river flow. In this 
case the model predicts that the runoff and loadings from field areas and 
corresponding diffuse pollution impacts are relatively minor, with the 
main source of pollution from SSOs which are more likely to overflow 
during the sudden inundation from such rainfall events. In this case the 
model gives a generally good estimation of the arrival time and overall 
duration of the observed E. coli concentrations. Two peaks are observed 
in both measured and modelled E. coli values, which are a result of in-
puts from SSOs at different locations in the catchment. The model pre-
dicts a longer duration initial peak than is observed and the arrival times 
for the second peak are overestimated by approximately 5 to 6 hrs. This 
discrepancy may be caused by residual errors within the hydrological 
model when predicting a short, flashy event, a lack of calibration of the 
mixing parameters within the routing methodology, or sensing errors 
within the SSOs themselves. 

Event E4 is a prolonged and complex rainfall event resulting in 
multiple E. coli peaks and with significantly larger river flow rates than 
E1–3. Some SSO loading is present throughout the event but the ma-
jority of E. coli load supplied via diffuse sources from agricultural runoff. 
Despite the complexity of the event, the model gives a reasonable 
approximation of the arrival time of elevated E .coli levels commencing 
shortly after the initiation of sampling. Due to the length of the event, it 
is unlikely the sampling period covered the end of the event in this case. 

The overall results suggest that the sampling campaign has captured 
events with a diverse range and a variation of sources (SSOs and field 
runoff). Despite the logistical challenges in measuring E. coli at high 

resolution, this demonstrates that value of measuring events over a 
range of seasonal conditions, such that relatively short summer rainfall 
events, as well as longer rainfall events in winter are captured. Further, 
sampling over winter and summer provides evidence that the model is fit 
for purpose over a good range of hydrological conditions, which is sig-
nificant due to the influence of river travel time calculations on the 
model output. 

4.3. Sensitivity analysis 

Mixing and dispersion processes in rivers can have significant effects 
on arrival times and duration that pollutants remain over given 
thresholds (Camacho Suarez et al., 2019a). Given that the application of 
the model is to forecast arrival times and duration of E. coli peaks it is 
important to understand the uncertainty introduced into model outputs 
due to the lack of direct quantification of mixing processes, and asso-
ciated use of standard literature values of mixing parameters. Based on 
the survey of UK rivers (Guymer, 2002), dispersive fraction commonly 
falls within the range 0.05 < Df < 0.4. Fig. 6 shows results of a sensitivity 
analysis carried out on the SSO E. coli model for event E3 based on these 
values as upper and lower bounds. At this site, the analysis shows a 
relatively small change in arrival and peak timings over this range of Df, 
with a more significant effect on peak concentrations (Table 9). Given 
this result, it is likely that some improvements in model performance 
could be achieved in this case by calibration of dispersive fraction, with 
higher Df values leading to earlier arrival times which may positively 
affect performance of events 1 and 3. However, at this site the use of a 
representative Df value provides an acceptable level of model perfor-
mance. In this case it is noted the most significant SSO (SSO1) is rela-
tively close to the catchment outlet (see Table 3), which may reduce the 
significance of the mixing processes. In other catchments, with more 
spatially disrupted SSO loadings results are likely to be more sensitive to 
the Df parameter, and hence direct calibration may be required. Further 
understanding of mixing processes at sensitive sites may also be 
improved by undertaking solute tracing experiments. 

4.4. Annual simulation of E. coli over Jan - Dec 2022 

Whilst the primary objective of the work is to validate an event-based 
forecasting methodology for E.coli peaks under common rainfall events, 
it is also informative to consider the results from a yearly simulation of 
rainfall driven acute impacts and consider the relative modelled loading 
from different sources in the catchment. The full yearly record of 
spatially distributed rainfall as well as SSO water level data over the 
2022 calendar year was therefore taken as model input with resulting 
time series outputs of modelled E.coli used to derive percentile values 
and relative loadings. It is important to note that the proposed approach 
does not model E.coli during dry weather/base flow conditions. Hence, 
for the purposes of this simulation E.coli concentrations in the absence of 
modelled loadings are taken as the mean of sampled measurements 
taken in dry weather flow conditions (395 CFU/100 ml based on 36 
measurements). 

Table 10 presents 90th percentile E.coli values resulting from the 

Table 5 
Flow simulation model error statistics.  

Event R2 E VCI ΔTp (hrs) 
A1 0.90 0.88 1.06 1 
A2 0.80 0.79 0.94 2 
A3 0.68 0.63 0.84 3  

Table 6 
E. coli sampling event dates, durations, sampling frequencies, and associated catchment rainfall statistics. Estimated 1 year RP rainfall depths for each event duration 
are also provided based on the UKCEH web service. Initial and peak flow rates during each event based on EA gauging station data.  

Event 
No. 

Start date Sampling duration and frequencya 

(hrs) 
Catchment Averaged Rainfall Statistics River Flow Data    

Duration 
(hrs) 

Depth 
(mm) 

Peak intensity (mm/ 
hr) 

1 year RP depth 
(mm) 

Initial Flow 
(m3/s) 

Peak Flow 
(m3/s 

E1(A3) 03.12.21 82 (2) 8 7.3 1.9 21.8 0.43 5.85 
E2 05.02.22 114 (2) 32 10.7 1.3 31.6 0.72 2.53 
E3 16.08.22 46 (2) 9 9.2 2.5 22.6 0.25 0.39 
E4 12.03.23 68 (1) 41 11.5 1.5 33.6 0.29 2.30  
a in brackets. 
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simulation, which may be considered in the context of current UK/EU 
bathing water standards (90th percentile of 900 CFU/100 ml for the 
minimum ‘sufficient’ classification (EU, 2006)). However, it should be 
noted that such assessments are based on a low number of sampled 
measurements (commonly 12–16 per year) conducted within the bath-
ing water season only. To show relative contributions, results are pre-
sented in terms of the total E.coli as well as results from the separate field 
runoff and SSO E.coli sub models. 

Results from the simulation show that the modelled water quality 
falls short of current bathing water standard classifications. Considering 
the full calendar year, contributions from both field and SSO sources are 
significant (with field runoff being marginally higher), and contribu-
tions from either source independently are sufficient to exceed the 
minimum bathing water threshold. It is notable that current official 
assessments based on infrequent measurements are unlikely to provide 
comparable results to a model considering short term dynamics in which 
runoff/SSOs causes E.coli to rise significantly after rainfall events. 

Table 11 presents calculated total and apportioned E.coli loadings 
(CFU) over different seasons throughout 2022. To consider potential 
SSO mitigation (i.e. via the installation increased sewer storage or sur-
face runoff mitigation), a simulation in which the contribution from 
SSO1 (i.e. the most significant point source) is removed is also 
considered. 

Table 11 shows that overall modelled field loadings are larger than 
SSO loadings in this catchment, although the relative significance 
changes over the year. Winter/spring seasons are dominated by larger 
and longer rainfall events causing significant field runoff volumes, 
increasing the relative loadings from diffuse sources above those from 
SSO’s. This also corresponds to the period in which field loadings are 
assumed to be higher due to increased grazing and slurry spreading. In 
Summer/Autumn, rainfall volumes are lower with reduced field runoff. 
However, the increased proportion of low-duration high intensity rain-
fall events in summer (e.g. E3) increases the relative significance of SSO 
loadings in the catchment, as these events are still likely to cause spills 

Fig. 4. Spatial distribution of temporally averaged rainfall (mm) for the events used in E. coli model calibration (E1) and validation (E2–4). Note E4 is plotted using 
an altered scale. 
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from urban drainage networks (Shepherd et al., 2023). 
The removal of SSO1 contribution from the simulation has resulted in 

reduction of total bacterial loads throughout the year. Notably, the 
largest reduction was forecasted between the months of October to 
December. Therefore, the significance of this SSO as E. coli source in the 
catchment is further reiterated by the results of the annual simulation. 

5. Discussion 

Similar to past studies of which collected high resolution measure-
ments of FIOs in surface waters following precipitation (e.g. Hellweger 
and Masopust, 2008; Oliver et al., 2015), all four events monitored in 
this work exhibit significant (order of magnitude) increases in observed 
E. coli after moderate (< 1 year return period) rainfall events. This 
supports past work which has called for enhanced monitoring and/or 
modelling of microbial water quality for regulatory classification of 
waterbodies and/or health risk assessment (Zan et al., 2023). Current 
characterization of waterbodies for EU/UK bathing water assessments 
can be based on as few 12 samples per year (EU, 2006), such sampling is 
highly unlikely to effectively characterize the effects of rainfall driven 

Fig. 5. Results of combined model and measured (LAB) E. coli data showing the contribution from the field runoff and SSO models and spatially averaged rainfall (K1 
= 0.4, K2 = 0.4). 

Table 7 
Error statistics for combined E. coli model.  

Event ΔA (hrs) ΔD (hrs) ΔTp (hrs) 
E1 2 2 7 
E2 11 19 9 
E3 1 1 4 
E4 24 45 6  

Table 8 
Total calculated E.coli loads (CFU) over each event (combined and sub models).  

Event SSO CFU Field CFU Combined CFU 
E1 1.07×1013 2.75×1013 3.82×1013 

E2 6.61×1012 7.58×1013 8.24×1013 

E3 2.51×1012 4.20×1011 2.93×1012 

E4 3.34×1013 1.20×1014 1.53×1014  

V. Suslovaite et al.                                                                                                                                                                                                                              



Water Research 248 (2024) 120838

11

impacts which can vary significantly at sub daily timescales. 
Whilst increases in faecal pollution after rainfall events are expected, 

this study has also considered how the duration and distribution of 
elevated periods of E. coli can be better understood by the character-
ization of sources, hydrological pathways and travel times facilitated by 
the use of spatially distributed rainfall, land use and distributed moni-
toring at SSOs. For example, where field runoff combines with signifi-
cant SSO spill contributions (as suggested during event E1) multiple 
distinct peaks are observed. This supports previous evidence that at this 
spatial scale the characterization of the spatio-temporal hydrological 
response of the catchment and the associated pollutant sources, path-
ways and dilution potential is significant when aiming to model acute 
impacts (Asfaw et al., 2018; Neill et al., 2020). I.e., rainfall events with 
similar return periods, but with varying spatial and temporal 

distributions may result in significantly different pollutant responses 
due to the distribution and characteristics of source areas across the 
catchment and associated travel times, hydrological pathways as well as 
the assimilative capacity of the receiving water (dilution). For E. coli, 
this includes consideration of both the distribution and density of live-
stock (Oliver et al., 2018; Neill et al., 2020), but also the variations in 
condition and performance of sewer networks (and associated SSO’s) 
which may be affected by localized factors such as network blockages 
and sewer maintenance (Shepherd et al., 2023). In general, shorter more 
intense events (e.g. such as in E3) may tend to have more significant 
relative contributions from SSOs as the higher insensity rainfall has the 
potential to exceed the capacity of urban drainage networks. Longer, less 
intense events (e.g. E4) see higher realtive contributions from field 
runoff sources (Camacho Suarez et al., 2019b). Considering the varia-
tion in the relative contributions of different sources over the duration of 
a rainfall runoff event may also be significant for when designing future 
studies considering microbial source tracking techniques for source 
identification (e.g. Wiesner-Friedman et al., 2022). 

The proposed model developed in this work is developed with the 
intention of describing acute, rainfall driven events for forecasting ap-
plications such as short-term water resource management (Yassin et al., 
2021) or bathing water alerts (Seis et al., 2018). To enhance practical 
application, it is also desirable to minimize required data collection 
beyond existing datasets which are available to water infrastructure 
operators via remote and/or distributed sensing. As such the model 
neglects several processes more relevant to understanding longer 
term/background pollution levels such as groundwater flow, sed-
iment/water interactions and in stream microbial processes (e.g. Afo-
labi et al., 2023; Jiang et al., 2023) and utilizes literature values to 
characterize sources (which are effectively modified during model 
calibration). A key innovation of this work is the characterization of SSO 
impacts utilizing spatially distributed water level monitoring. Whilst 
traditional integrated catchment models characterize sewer impacts 
using complex sewer network models, these require extensive sewer 
asset records, detailed calibration and frequently suffer from high levels 
of predictive uncertainties in the prediction of spill volumes (Srivastava 
et al., 2018) and pollutant loads (Moreno-Rodenas et al., 2019). It is 
important to recognize the quantification of loadings by such means is 
subject to measurement errors (as well as further uncertainties associ-
ated with the calculation of flow rate, Leonhardt et al., 2014). Further 
work is required to better quantify such uncertainties as the direct 
monitoring of catchments is likely to increase in the future, with further 
potential to integrate modelling tools and live sensor data to overcome 
traditional challenges associated with modelling water quality in com-
plex catchments. 

Despite simplifications, results from the validation events suggest 
that expected peak E. coli magnitudes are predicted reasonably well by 
the proposed modelling approach. The calibrated model parameters K1 
and K2 are both lower than unity, suggesting that initial source loading 
values used in this work may overestimate the E. coli burden in this 
catchment from both field and SSO sources. It is noted that the use of 
constant calibration parameters is a relatively simplified approach to 
account for uncertainties associated with source loadings and the 
omission of a number of complex microbiological processes from the 
model structure (e.g. in stream E. coli die-off). However, in this 300km2 

mixed use catchment, the model accuracy is adequate to provide useful 

Fig. 6. Sensitivity of SSO model to dispersion fraction (Df) parameter for 
event E3. 

Table 9 
Difference in arrival, peak times and concentrations for E3 in relation to Df = 0.2 
(assumed value).  

Dispersive 
fraction (Df) 
value 

Difference in 
arrival time 
(hrs) 

Difference in 
peaks (hrs) 

Difference in peak E. coli 
concentrations (CFU/100 
ml) 

0.05 1 0 3700 
0.1 0 1 2800 
0.15 0 0 1500 
0.2 0 0 0 
0.25 −1 0 −1300 
0.3 −1 0 −2300 
0.4 −2 0 −4100  

Table 10 
Forecasted 90th percentile concentrations over 1st Jan - 31st Dec 2022 based on 
combined (Total) and sub-models.  

Total (CFU/100 ml) Field Only (CFU/100 ml) SSOs Only (CFU/100 ml) 
7726 3679 3242  

Table 11 
Forecasted total loads over 2022 and catchment averaged rainfall depth.   

Rainfall depth (mm) Total Load (CFU) SSO Load (CFU) Field Load (CFU) Total without SSO1 (CFU) 
Jan-Mar 2022 130 2.05×1015 1.73×1014 1.87×1015 1.94×1015 

Apr-Jun 2022 116 5.03×1013 1.76×1013 3.27×1013 4.29×1013 

Jul-Sept 2022 83 2.70×1013 1.37×1013 1.32×1013 2.12×1013 

Oct-Dec 2022 219 2.68×1014 1.65×1014 1.04×1014 1.46×1014 

Full year 2022 548 2.39×1015 3.69×1014 2.02×1015 2.15×1015  
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information to the utility operator regarding likely peaks and durations 
of acute E. coli impacts arriving at the water abstraction site. As ex-
pected, some residual errors are present in the predictions, and overall 
there is a tenancy to overestimate the duration of E. coli peaks. As the 
model outputs are sensitive to travel time predictions, further refine-
ment of the underlying hydrological model has the potential to improve 
performance (specifically calculated arrival time and peak durations), 
and further enhancement to the SSO model make be achieved by a direct 
calibration of the dispersive fraction parameter. However, given typical 
uncertainties in the measurement of E. coli itself (Harmel et al., 2016), as 
well the limited number of measured events, in this case it was 
considered preferable to avoid risks associated with over parameterizing 
or over-calibrating the model (e.g. see Beven, 2006). 

Analysis of model outputs over the 2022 calendar year has demon-
strated the relative contribution of field and SSO sources, with both 
having significant contributions in this mixed-use catchment. It is 
notable that relative contributions change over the seasons due to the 
nature of the rainfall events and the changes in field source loading due 
to agricultural activity. There is therefore potential further use of the 
model to explore potential mitigation options (i.e. simulating the effects 
of reducing field runoff, or reducing SSO spill volumes). However, it is 
recommended that further validation of the model is undertaken over a 
greater range (magnitude) of storm events to provide increased confi-
dence that the size as well as duration of peaks can be predicted during 
more significant events (i.e. up to a 1 year return period). 

For transfer to larger, more complex catchments (e.g. for those with 
longer timescales, or with significant WWTW impacts), the model may 
require further development to account for these processes and addi-
tional calibration. However, in smaller catchments a relatively simple 
model structure appears sufficient given the model application. This 
reduces calibration requirements and hence costs for model setup, which 
can be a significant burden for water quality models (Tscheikner-Gratl 
et al., 2019). In more complex catchments, a potential option is to 
integrate travel time-based modelling approaches and high resolution 
measurements with microbial source tracking techniques (e.g. Zan et al., 
2023), to provide enhanced identifiability and validation of travel times 
from the variety of source areas. 

6. Conclusions 

This paper presents a novel approach to forecasting E. coli dynamics 
in surface waters under commonly occurring, acute rainfall events. To 
the best of the authors knowledge, no other validated methodologies are 
currently available in the scientific literature for the description of short 
term E. coli dynamics in mixed catchments (featuring significant diffuse 
and urban point sources) at comparable scales, utilizing equivalent input 
datasets. The methodology is based on the determination of travel times 
from source areas based on hydrological routing, radar rainfall and the 
novel use of distributed SSO water level monitoring and as such does not 
require the setup and calibration of a detailed high order hydrodynamic 
model of the river system or sewer networks. As the primary application 
is the forecasting of arrival times and durations of periods of elevated 
E. coli levels, understanding travel/arrival times is of primary impor-
tance, with factors that control the overall magnitude of E. coli peaks of 
secondary importance. As such, in the absence of monitoring data 
characterizing catchment source loadings, the methodology is based on 
assumed concentrations which are calibrated based on model outputs. 
Despite simplifications, the model provides a reasonably good repre-
sentation of E. coli dynamics in most cases, with calibration parameters 
not varying significantly over the study period. This suggests the value 
in accounting for the temporal and spatial variability of sources (diffuse 
and SSO) when accounting for E. coli dynamics, particularly over short 
time periods in the order of hours. Further, the work provides a new 
demonstration of how distributed sewer monitoring and rainfall data 
can be utilized for water resource and surface water management. As the 
approach is not dependant on complex integrated hydrodynamic 

modelling and/or direct measurement of source loadings, it has poten-
tial to be deployed to water resource management applications such as 
water abstraction management and bathing water quality forecasting in 
real time. 

The results from the monitoring campaign show significant differ-
ences in E. coli dynamics between the four monitored events as a func-
tion of spatial and temporal rainfall variability causing mobilization of 
different sources. This finding demonstrates the value of source char-
acterization using remote sensing and spatially disturbed sensors and 
the significance of spatially distributed runoff. The proposed modelling 
approach can also be used as a source apportionment tool as it allows the 
effects of different sources to be disaggregated. Further work may 
consider identifying the significance of individual SSOs or field areas on 
high E. coli periods over longer timescales. 

There is significant scope for development to identify and reduce 
modelling uncertainties, in particular, in larger more complex catch-
ments it is likely that the model complexity will need to be increased to 
account for additional processes which are less significant in this case (e. 
g. E. coli die off). However, this effort would likely increase the number 
of datasets required for robust model calibration to overcome parameter 
identifiability issues. In this initial application, a simple model structure 
is preferred given the proposed application. 
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