
This is a repository copy of Simultaneous search and monitoring by multiple aerial robots.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231872/

Version: Published Version

Article:

Zhang, H. orcid.org/0000-0003-3348-7444, Veres, S. and Kolling, A. (2023) Simultaneous
search and monitoring by multiple aerial robots. Robotics and Autonomous Systems, 170.
104544. ISSN: 0921-8890

https://doi.org/10.1016/j.robot.2023.104544

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.robot.2023.104544
https://eprints.whiterose.ac.uk/id/eprint/231872/
https://eprints.whiterose.ac.uk/

Robotics and Autonomous Systems 170 (2023) 104544

Available online 6 October 2023
0921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Simultaneous search andmonitoring bymultiple aerial robots
Haoyu Zhang a,1, Sandor Veres a,∗,2, Andreas Kolling b,3
a ACSE, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
b Amazon Robotics, North Reading, USA

A R T I C L E I N F O

Keywords:
Search
Monitoring
POMDP
semi-Dec-POMDP
Multi-agent cooperation
Heuristic reactive policy planning

A B S T R A C T

This paper studies simultaneous search and monitoring (SSM) between multiple unmanned aerial vehicles
(UAVs) and multiple moving ground targets. Searching for unknown targets and monitoring known ones are
two intrinsically related problems, but they have mostly been addressed in isolation. We combine the two
tasks and exploit their interconnection as a synergy rather than a trade-off. We construct the single-robot SSM
as a partially observable Markov decision process (POMDP) and the multi-robot SSM as a semi-decentralised
POMDP (semi-Dec-POMDP). A novel heuristic reactive policy planning is proposed to solve the POMDP. It
is then extended for semi-Dec-POMDP with game-theoretical methods. In simulations and experiments, the
searchers will successfully locate unknown targets without losing known ones and cooperate by partitioning
their tasks. With theoretical proofs, simulations, and experiments, we demonstrate that our method can perform
better than conventional approaches and the state-of-the-art.

1. Introduction

1.1. Introduction of related works and SSM

Search and surveillance problems are relevant for single or multiple
robotic systems that search, detect, or capture one or more targets [1].
In practice, most of these problems are divided into two main cate-
gories: one is searching for unknown targets [2], based on likelihood
distributions of possible object locations; the other is monitoring known
targets [3,4], given specific but uncertain target positions. In both
categories, problem formulations are usually further refined by target
and searcher capabilities, the complexity of the environments, and
more detailed objectives. For example, in a search mission, the searcher
may build a fixed formation to cover the whole area statically [5],
sweep in a fixed pattern [6] [7], or explore dynamically [8] to achieve
the fastest or best chance of detection. In a monitoring mission, the
robots may track one individual target [9], cover multiple targets [10],
or traverse them in a sequence [3] to update the target locations.

Due to the stark contrast that is used in target modelling, in the
objectives, and in the approaches taken, the search and monitoring
problems are mainly studied separately. In [11], a search and track-
ing (SaT) problem is addressed. However the search and monitoring
are mostly independent since there is only one target. With multiple

∗ Corresponding author.
E-mail addresses: zhanghaoyu.buaa@gmail.com (H. Zhang), s.veres@sheffield.ac.uk (S. Veres), kollinga@amazon.com (A. Kolling).

1 Former Ph.D. student at ACSE.
2 Professor at ACSE.
3 Principal Applied Scientist at Amazon Robotics. His contributions to this work were done prior to Amazon Robotics.

targets, in order to optimally acquire and update the dynamic in-
formation that emerges in realistic applications, cooperation between
search and monitoring is necessary. A detected target should be put
under surveillance, and a target lost in monitoring should be searched
for again. To achieve such a synergy, here we address the problem
of simultaneous search and monitoring (SSM), in which a single or
multiple UAVs continuously search and monitor several ground targets.
The experimental setup of SSM is illustrated in Fig. 1.

As a result of the aforementioned divisions in problem formulations,
previous approaches to the merging of search and monitoring have
treated the combination as a trade-off and have thus formulated it as a
task assignment problem [12–14]. Such separation of tasks makes their
integration complicated in look-ahead planning. Hence, the problem is
solved by either a myopic method [13,14] or a myopic method with
limited look-ahead [12]. By exploiting the connection between search
and monitoring in our work, we join them with a united value function.
This function allows the use of complex non-myopic planning such as
a partially observable Markov decision process (POMDP).

In addition to the task assignment approach, another way of merg-
ing search and monitoring is to uniformly model target locations as
probability distributions (pd-s), with no differentiation between known
or unknown targets. Sparsity of the pd-s represents higher uncertainty,
which can be quantified by information entropy [15]. Hence search and

https://doi.org/10.1016/j.robot.2023.104544
Received 9 January 2022; Received in revised form 28 August 2023; Accepted 26 September 2023

https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:zhanghaoyu.buaa@gmail.com
mailto:s.veres@sheffield.ac.uk
mailto:kollinga@amazon.com
https://doi.org/10.1016/j.robot.2023.104544
https://doi.org/10.1016/j.robot.2023.104544
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104544&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Robotics and Autonomous Systems 170 (2023) 104544

2

H. Zhang et al.

List of Symbols

𝜍 An area discretised by grid cells

𝑐𝑖,𝑗 The cell at ith row and jth column in 𝜍

𝜆 ID of a target

𝛬 Set of all target IDs

𝛬𝑡 Set of IDs of targets known at time 𝑡

𝛾 ID of an agent

𝛤 Set of all agent IDs

𝑂𝛾 Sensor footprint of agent 𝛾

𝑂 Total sensor footprint of all agents

𝐶𝑠 Set of search cells

𝑥𝜆 Location of target 𝜆

𝑥𝛾 Location of agent 𝛾

𝑥̂𝜆 Estimated target location

𝑥̂𝛾 Planned agent location

𝑃𝑟(𝑥𝜆) Probability distribution of target 𝜆

𝑃𝑢 Total probability distribution of all un-
known targets

𝑧𝑡 Agent measurement at time t

𝑍𝑡 History of measurements up to time 𝑡

𝑝𝑓𝑝 Probability of false positive detection

𝑝𝑓𝑛 Probability of false negative detection

𝑁(𝑥) Neighbouring cells of 𝑥

𝑃 𝑟(𝑥|𝑥′) Probability if a target moves from 𝑥′ to 𝑥

in a time step

𝑝𝑠 Probability of a target not moving for a
time step

𝑠𝑡 System state at time 𝑡

𝑆 System state space

𝑏𝑡 Belief state at time 𝑡

𝛥 Belief state space

𝑎 Action of an agent

𝜃 Joint actions of all agents

𝐴 Action space

𝑇 (𝑏𝑡, 𝜃, 𝑏
′
𝑡+1

) Belief state transition function

𝐵̃𝜆 Belief probability

𝐵̃𝑙 Lower threshold of belief probability for
losing a target

𝜌(𝑏) Reward of SSM at belief state 𝑏

𝑉 Value of SSM

𝜋 Policy of an agent

𝛱 Joint policy of all agents

𝜋∗ The optimal policy

𝜋̂ An approximation of the optimal policy

𝜋̂𝑓 Policy of fixed sequence of actions

𝜋̂𝑎 Heuristic reactive policy

𝑡0, 𝑡𝑓 Initial and terminal time of planning hori-
zon

𝑇ℎ Planning horizon

𝑑𝑡 Time step

𝑏∙ Non-branching belief state

𝑏◦ Branching belief state

𝜒 Base trajectory

𝛹 Joint base trajectories

𝑓 Branching function

𝐾 Set of known targets to be monitored along
current base trajectory

𝑀(𝜒) Mutation function of base trajectory

𝐻 Entropy of target location distribution

𝐼 Mutual information of target location dis-
tribution and measurements

Fig. 1. Experiment setup for simultaneous search and monitoring between one agent
(the quadrotor) and five ground targets (the ground robots in different colours) in a
square-shaped arena.

monitoring becomes a unified information gathering task to dynami-
cally reduce the overall entropy of the pd-s. Extensive prior research
addressed the search mission with frameworks of information gather-
ing in [16–19][20,21]. The approach used in these papers can also
be applied in synergistic search and monitoring. Nonetheless, such a
formulation does not take advantage of the specific locations of known
targets in target monitoring, instead it deals with more generic entropy
distributions. As such, it is a very complex problem for look-ahead
planning [20,21]. For this reason most past publications on the entropy
reduction methods do single-step myopic planning [16–18]. In this
paper we categorise targets as known and unknown in order to utilise
known target locations to facilitate non-myopic stochastic planning. A
comparison of our work with the approach of entropy reduction is also
provided.

The methods in this paper naturally divide into two parts: the first
is strategy planning of a single robot in a stochastic and partially
observable environment. The second is an extension to multi-agent
cooperation. To solve the first problem, prior publications prefer to
bypass stochastic planning by setting a goal of collecting high-level
statistical information about the targets, such as the expected number of
detections [22], expected monitoring or service levels [23], or overall
awareness [24]. Although the environment in these approaches is
usually assumed to be stochastic, the goal is still deterministic and
predictable from a fixed plan of the searcher. Another common solution
is minimum time search [2,25,26], which reduces the likelihood of
zero detection along a plan. Such planning appears to be stochastic,
although future detections are deterministically predicted to be zero;
thus, it can also be solved by a fixed plan. However, in SSM, we
are concerned with the specific information of every target. Each
contingency, such as target detection or loss, will trigger a branching
event that may dramatically change the situation. Therefore we need a
reactive strategy for SSM. We formulate the single-robot SSM problem
as a POMDP and solve it with online policy planning. For the second
problem, prior publications have studied the cooperative robot search-
and-pursuit-evasion problem as a partially observable stochastic game

Robotics and Autonomous Systems 170 (2023) 104544

3

H. Zhang et al.

(POSG) [27] or decentralised partially observable Markov decision
process (Dec-POMDP) [28]. However, very few practical online so-
lutions are proposed for POSGs or Dec-POMDPs. Capitalising on the
derived POMDP for a single robot, we build a semi-Dec-POMDP for our
cooperative SSM to achieve feasible online planning.

The major challenge in this paper is about computational complex-
ity. It is proven in [29] that solving POMDPs is PSPACE-hard, and
in [30] Dec-POMDP is shown to be NEXP-complete. To solve POMDPs
or Dec-POMDPs, prior approaches applied offline methods, such as
value iteration [31–34][35] or policy iteration [28,36,37], to calculate
strategies to cover all situations. These approaches can produce good
policies that are fast to execute. For the multi-agent case, distributed
policies can also be planned offline in a centralised manner. However,
the offline methods take hours or days to compute and only deal
with a specific environment. Thus, they are limited to small problems
and are not adaptive to changing environments [38]. Therefore, we
first apply an online planning approach that combines heuristics and
Monte Carlo sampling to tackle POMDP in real time. We then apply
a game-theoretical approach to extend this method to multi-agent
scenarios. Early results of this research have been presented in [39],
which addressed the single-robot SSM problem. Following that, we
optimised our policy planning code to enable real-time implementation
and conducted an experimental study. The early results were extended
and investigated in the case of multi-agent SSM in this paper.

1.2. Contributions

In summary, the contributions of this paper are as follows:

(1) A SSM problem is identified and studied, which combines search
and monitoring in a single mission.

(2) The problem is formulated as a 𝜌𝑃𝑂𝑀𝐷𝑃 . We design a novel
heuristic reactive policy planning to solve this challenging prob-
lem online.

(3) Our solution to 𝜌𝑃𝑂𝑀𝐷𝑃 is combined with game-theoretical
method to tackle cooperative SSM online.

(4) With theoretical proofs, simulations, and experiments, our ap-
proaches are compared with the state-of-the-art and conven-
tional methods, and are proven to be superior in solving SSM
problem.

1.3. Structure of paper

The paper is structured as follows: the basic assumptions and models
are described in Section 2. The value function is introduced in Sec-
tion 3. The policy planning approaches for the single-robot SSM are
designed in Sections 4 and 5. The extension to multi-agent SSM can be
found in Section 6. Simulation and experimental results are shown in
Section 7. Section 8 provides the Conclusions.

2. Target and pursuer modelling

2.1. Target modelling

In a discretised arena 𝜍 = {𝑐𝑖,𝑗 |𝑖 = 1, 2,… , 𝑛𝑥, 𝑗 = 1,… , 𝑛𝑦}, where
𝑐𝑖,𝑗 denotes a grid cell, there are 𝑛 sparsely scattered ground targets
and 𝑚 aerial robots. We use the terms robot and agent interchangeably.
Assume that 𝑛 is known to the robots, and each target is distinguishable
and is assigned an ID 𝜆 ∈ 𝛬. 𝛬 is the set of all target IDs. The robots are
indexed by 𝛾 and their set is denoted by 𝛤 . The time 𝑡 is discrete, with a
fixed time step. At each time step, both the agents and the targets can
make a move between neighbouring cells, and each robot can take a
measurement within its sensor footprint. There can only be a maximum
of one target at each cell. For a robot 𝛾 at position 𝑐𝑖,𝑗 , its sensor
footprint is the area 𝑂𝛾 = {𝑐𝑖+𝑎,𝑗+𝑏|𝑎, 𝑏 ∈ {−𝑘,−𝑘 + 1,… , 0,… , 𝑘}}.
𝑂 = {𝑂𝛾 |𝛾 ∈ 𝛤 } is the total sensor footprint of all robots. Without losing

Fig. 2. Example of the environment that is partitioned into grid cells. Circles denote
the targets; the filled circles are known targets. The rectangles are the agents’ sensor
footprints. The crosses (×) are the estimated locations of known targets. The numbers
label the target IDs, and the underlined numbers label the agent IDs. The plus signs (+)
denote cells in 𝐶𝑠. The level lines indicate the probability density of unknown targets,
where the lighter colours indicate higher probability density.

generality, we assume that 𝑛𝑥 = (2𝑘+1)𝐿, 𝑛𝑦 = (2𝑘+1)𝑀 , where 𝐿 and
𝑀 can be any positive integers. Consequently, if the agents were to visit
the set of cells 𝐶𝑠 = {𝑐(2𝑘+1)𝑙−𝑘,(2𝑘+1)𝑚−𝑘|𝑙 = 1, 2,… , 𝐿, 𝑚 = 1, 2,… ,𝑀},
then the whole environment could be swept by their sensor footprint.
Cells in 𝐶𝑠 are called ‘search cells’.

We assume that agents can share information about their own
locations and the detection of targets with each other in real time.
In many practical applications it is reasonable to assume that locating
aerial teammates and exchanging information with them is not difficult
to technically arrange. It is also reasonable to assume that target
detections are rare and the communication bandwidth requirements for
sharing detection are low. Given this, we assume all agents share the
same knowledge about targets. Later on we will consider the case where
there is a maximum range of communication and each agent maintains
different knowledge.

Because of the limited ability of the robots to take measurements,
the location of a target 𝜆 at time 𝑡, denoted by 𝑥𝜆(𝑡), is estimated by
the robots as a probability map. Let 𝑃𝑟(𝑥𝜆|𝑍𝑡) be the jointly estimated
probability of target location 𝑥𝜆, given 𝑍𝑡 = {𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,… } as the
history of joint measurements by all robots. 𝑧𝑡(𝜆) = {𝑐|𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛}

denotes the joint measurement, where 𝑐 ∈ 𝑂 and 𝜆 ∈ 𝛬. It indicates
that target 𝜆 is either detected at a location 𝑐 at time 𝑡, or not detected.
An environment example is shown in Fig. 2.

We apply a Bayesian formulation for the robots to update 𝑃𝑟(𝑥𝜆|𝑍𝑡)

[8,40,41]. Let 𝑁(𝑥) be the set of cells neighbouring 𝑥. 𝑃𝑟(𝑥|𝑥′) is the
transition function representing the probability that a target moves
from 𝑥′ to 𝑥 in one time step, where

𝑃𝑟(𝑥|𝑥′) =
⎧⎪⎨⎪⎩

𝑝𝑠 if 𝑥 = 𝑥′

𝑝𝑥|𝑥′ if 𝑥 ∈ 𝑁(𝑥′)

0 else

(1)

𝑝𝑥|𝑥′ is the probability that a target moves from 𝑥′ to a neighbouring
cell 𝑥 ∈ 𝑁(𝑥′). 𝑝𝑠 is the probability that target stays in the same cell,

Robotics and Autonomous Systems 170 (2023) 104544

4

H. Zhang et al.

hence 𝑝𝑠 +
∑

𝑥∈𝑁(𝑥′) 𝑝𝑥|𝑥′ = 1. 𝑃𝑟(𝑧𝑡|𝑥) denotes the probability density
of sensing, which is defined in Eq. (2):

𝑃𝑟(𝑧𝑡|𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − 𝑝𝑓𝑝 if 𝑥 ∉ 𝑂 and 𝑧𝑡 = 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑝𝑓𝑝∕|𝑂| if 𝑥 ∉ 𝑂 and 𝑧𝑡 ≠ 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑝𝑓𝑛 if 𝑥 ∈ 𝑂 and 𝑧𝑡 = 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

1 − 𝑝𝑓𝑛 if 𝑥 ∈ 𝑂 and 𝑧𝑡 = 𝑥

0 if 𝑥 ∈ 𝑂 and 𝑧𝑡 = 𝑥′ ≠ 𝑥

(2)

where 𝑥 is the presumed target location, and |𝑂| is the size of 𝑂. 𝑝𝑓𝑛
and 𝑝𝑓𝑝 are probabilities of false negative and false positive.

Based on the above, the Bayesian updating of target estimation is
as follows [8,40,41]:

(1) Prediction. Compute the prediction using the prior probability
distribution 𝑃𝑟(𝑥(𝑡−1)|𝑍𝑡−1), the transition function (1), and the
Chapman–Kolmogorov equation

𝑃𝑟(𝑥(𝑡)|𝑍𝑡−1) =
∑
𝑥′∈𝜍

𝑃𝑟(𝑥|𝑥′)𝑃𝑟(𝑥′(𝑡 − 1)|𝑍𝑡−1) (3)

(2) Update. The prediction can be updated by current measurement
information using Bayes’ theorem:

𝑃𝑟(𝑥(𝑡)|𝑍𝑡) =
𝑃𝑟(𝑥(𝑡)|𝑍𝑡−1)𝑝(𝑧𝑡|𝑥)∑

𝑥′∈𝜍 𝑃𝑟(𝑥
′(𝑡)|𝑍𝑡−1)𝑝(𝑧𝑡|𝑥′)

(4)

To simplify planning, we categorise targets as known and unknown.
An unknown target is set to be known once being detected. x̂𝜆(𝑡) is the
estimation of target location 𝑥𝜆(𝑡). For simplicity, we set x̂𝜆(𝑡) to be the
last measured location of target 𝜆, which is defined in Eq. (5).

x̂𝜆(𝑡) =

⎧⎪⎨⎪⎩

𝑧𝑡(𝜆) if 𝑧𝑡(𝜆) ≠ 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

x̂𝜆(𝑡 − 1) if 𝑧𝑡(𝜆) = 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 and 𝜆 ∈ 𝛬𝑡

⊘ if 𝜆 ∉ 𝛬𝑡

(5)

where 𝛬𝑡 ∈ 𝛬 denotes the set of known targets at time 𝑡. If the
aggregation level of 𝑃𝑟(𝑥𝜆|𝑍𝑡) is lower than a threshold after a known
target 𝜆 having been unattended for too long, or if an agent fails to
detect 𝜆 when it traverses x̂𝜆, 𝜆 is lost and becomes unknown. The
aggregation level of 𝑃𝑟(𝑥𝜆|𝑍𝑡) will be defined in Section 3. Each known
target is said to be under monitoring until it is lost. For all the unknown
targets 𝜆 ∈ 𝛬 ⧵ 𝛬𝑡, let 𝑃𝑢(𝑥(𝑡)|𝑍𝑡) =

∑
𝜆∈𝛬⧵𝛬𝑡

𝑃𝑟(𝑥𝜆(𝑡)|𝑍𝑡) be their total
probability distribution.

2.2. Pursuer modelling

We assume that all robots move with bounded speed and arbitrarily
small turning radius. The location of robot 𝛾 at time 𝑡 is defined as 𝑥𝛾 (𝑡).

2.3. Overall model

The system state is defined as 𝑠𝑡 = {{𝑥𝜆(𝑡)|𝜆 ∈ 𝛬}, {𝑥𝛾 (𝑡)|𝛾 ∈ 𝛤 }, 𝑡} ∈

𝑆, where 𝑆 is the state space. Let 𝑎𝛾 = 𝑥𝛾 (𝑡) denote the action of
agent 𝛾, which is its movement to a neighbouring location 𝑥𝛾 (𝑡). The
robot speed and time step are both constant, however the distances
between adjacent grid cells in diagonal and non-diagonal directions are
different. Thus in later sections, we formulate the action backwards by
proposing a trajectory first, then dividing it by the fixed time step to
get a sequence of discrete locations w.r.t. time, thus the grid cell each
location falls into is the action 𝑎𝛾 = 𝑥𝛾 (𝑡). 𝐴𝛾 is the action space of 𝛾,
and 𝐴 = {𝐴𝛾 |𝛾 ∈ 𝛤 }. Let 𝜃 = {𝑎𝛾 |𝛾 ∈ 𝛤 } define the joint actions of all
the agents.

The state transition function 𝑃𝑟(𝑠𝑡+1|𝑠𝑡, 𝜃) can be determined by
the agent actions and the target transition function (Eq. (1)). Thus
the system state space is a discrete-time Markov chain. However, the
system state can only be partially observed by the agents, and the SSM
is an information gathering problem which does not directly deal with

the state. A novel 𝜌𝑃𝑂𝑀𝐷𝑃 is proposed in [34] and is further studied
in [35]. In this formulation, the problem is oriented to the belief state
rather than state, and is focused on having a better estimation of the
environment. This suits the requirements of SSM, thus we will build
our problem based on the framework of 𝜌𝑃𝑂𝑀𝐷𝑃 .

The belief state is defined as 𝑏𝑡 = {{𝑃𝑟(𝑥𝜆(𝑡)|𝑍𝑡)|𝜆 ∈ 𝛬}, {x̂𝜆(𝑡)|𝜆 ∈

𝛬𝑡}, {𝑥𝛾 (𝑡)|𝛾 ∈ 𝛤 }, 𝛬𝑡, 𝑡} ∈ 𝛥, where 𝛥 is the belief state space. The belief
state is shared among all agents. Given the state transition function
and observation functions (Eqs. (2), (3), (4), and (5)), the transi-
tion function for belief space can also be determined: 𝑇 (𝑏𝑡, 𝜃, 𝑏

′
𝑡+1

) =

𝑃𝑟(𝑏′
𝑡+1

|𝑏𝑡, 𝜃). Hence, the belief state space is also formulated as a
discrete-time Markov chain.

3. Value function

For a multi-task planning problem, the value function is constructed
to define the goal of all agents, and can also be used to set the
relationship between each task. One intuitive formulation is to build
a separate reward for each task, then combine them in a trade-off, as it
is done in task assignment problems [12–14]. Such a trade-off fails to
consider that both search and monitoring increase the up-to-date target
information in different ways. Thus there is the need for a clear and
explainable united value function that can enable complex planning for
synergistic SSM.

We set the total certainties of the known targets to be the value
of SSM. The specific locations and respective confidence of known
targets are directly useful for other requirements, such as capture or
rescue. Thus, such a value is an accurate quantification of reward.
Furthermore, to increase this reward, searching for new targets and
monitoring detected ones are both expected, and each target may have
to be addressed by both search and monitoring at different times. Hence
this reward encourages cooperative efforts rather than separate ones.

Definition 1. At belief state 𝑏, the belief probability of the estimated
location x̂𝜆 is the probability that 𝑥𝜆 is within the region 𝐹𝑘(x̂𝜆) =

{𝑐𝑖+𝑎,𝑗+𝑏|𝑎, 𝑏 ∈ {−𝑘,−𝑘+ 1,… , 0,… , 𝑘}, 𝑐𝑖,𝑗 = x̂𝜆}. The belief probability
is denoted by 𝐵̃𝜆(𝑏). 𝐹𝑘(x̂𝜆) is the sensor-footprint-shaped area that is
centred at x̂𝜆.

The rationale of 𝐵̃𝜆(𝑏𝑡) is the lower bound of the probability that
target 𝜆 will be re-detected if an agent visits x̂𝜆(𝑡) at time 𝑡. We define
𝜌(𝑏𝑡) =

∑
𝜆∈𝛬𝑡

𝐵̃𝜆(𝑏𝑡) to be the reward function for the SSM mission at
belief state 𝑏𝑡. It provides the lower bound of the expected number
of targets to be detected, if 𝑚 = |𝛬𝑡| agents are deployed to reach
the estimated location of each known target at time 𝑡. We also let
𝐵̃𝜆(𝑏𝑡) to represent the aggregation level of 𝑃𝑟(𝑥𝜆(𝑡)|𝑍𝑡). A low 𝐵̃𝜆(𝑏𝑡)

means a low belief in the estimated location of a known target. Given
a threshold 𝐵̃𝑙, if 𝐵̃𝜆(𝑏𝑡) < 𝐵̃𝑙, that target is lost.

Let 𝜋𝛾 ∶ 𝛥 → 𝐴𝛾 denote the policy of agent 𝛾, where 𝑎𝛾 = 𝜋𝛾 (𝑏).
𝛱 = {𝜋𝛾 |𝛾 ∈ 𝛤 } ∶ 𝛥 → 𝐴 is the joint policy of all the agents. By abuse
of notation, we let 𝜃 = 𝛱(𝑏). According to [42], the value function
for SSM is formulated as the expected average reward within the time
horizon:

𝑉𝛱 (𝑏) = 𝐸{

𝑡𝑓∑
𝑡=𝑡0

𝜌(𝑏𝑡)|𝑏𝑡0 = 𝑏, 𝜃𝑡 = 𝛱(𝑏𝑡)}

= 𝐸{

𝑡𝑓∑
𝑡=𝑡0

∑
𝜆∈𝛬𝑡

𝐵̃𝜆(𝑏𝑡)|𝑏𝑡0 = 𝑏, 𝜃𝑡 = 𝛱(𝑏𝑡)}

where 𝑡0 and 𝑡𝑓 are the initial and terminal time of planning horizon.

To improve 𝑉𝛱 (𝑏), the agents can either search in areas with large
𝑃𝑢(𝑥|𝑍𝑡) to get higher chance of detecting unknown targets, thus en-
larging 𝛬𝑡; or visit {x̂𝜆(𝑡)|𝜆 ∈ 𝛬𝑡} to increase each 𝐵̃𝜆(𝑏𝑡). This should
be balanced in planning.

Robotics and Autonomous Systems 170 (2023) 104544

5

H. Zhang et al.

Fig. 3. An example of a search tree (blue) and a policy tree (green). The search tree
defines the finite-horizon Markov chain of the belief state. At each belief state, there are
two available actions, 𝑎1 and 𝑎2. Each action may lead to two stochastic observations,
𝑧1 and 𝑧2, each of which results in a new belief state. A policy is a decision tree, which
is a sub-tree of the search tree. It chooses a specific action at each belief state.

4. Policy planning for a single agent

As an initial step to solve the multi-agent problem, we start with
the scenario of a single UAV, and extend the result into multi-UAV case
after this.

4.1. Concept for solving POMDP

In a single UAV scenario, the tuple ⟨𝛥,𝐴, 𝑇 (𝑏𝑡, 𝜃, 𝑏′𝑡+1), 𝜌⟩ becomes⟨𝛥,𝐴, 𝑇 (𝑏𝑡, 𝑎, 𝑏′𝑡+1), 𝜌⟩. Then the SSM problem is formulated as a finite-
horizon 𝜌𝑃𝑂𝑀𝐷𝑃 , the goal of which is to plan a pursuit policy 𝜋

to optimise the value function. Note that this formulation has al-
ready transformed the 𝜌𝑃𝑂𝑀𝐷𝑃 into a belief Markov decision process
(MDP), in which the state is the belief state rather than the actual
system state. This is to facilitate later the reactive policy design.

Lemma 4.1. For the 𝜌𝑃𝑂𝑀𝐷𝑃 defined by tuple ⟨𝛥,𝐴, 𝑇 , 𝜌⟩, there exists a
deterministic Markovian policy 𝜋∗ that can achieve the optimal value. [42]

The value 𝑉𝜋 (𝑏) can be estimated by a Bellman equation:

𝑉𝜋 (𝑏) = 𝜌(𝑏) +
∑
𝑏′∈𝛥

𝑇 (𝑏, 𝜋(𝑏), 𝑏′)𝑉𝜋 (𝑏
′) (6)

An example policy is illustrated in Fig. 3.
The optimal policy can be calculated offline or online. As mentioned

in the introduction, we do not choose offline methods such as value iter-
ation [31,33,34,43][35] or policy iteration [37,44,45]. Instead, we use
online planning [38], which focuses on local and current information
and plans a partial policy. The partial policy will be implemented until
the time horizon is reached or certain events occur, and then it will be
replanned. In our problem, for the ease of incorporating heuristics into
planning, we take an online policy improvement approach, described
as follows:

(1) Build a structure of policy 𝜋̂ that has the potential to approxi-
mate the optimal policy 𝜋∗.

(2) Find the 𝜋̂∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋̂𝑉𝜋̂ , which is the best policy to be achieved
with the structure of 𝜋̂.

(3) Implement 𝜋̂∗ until replanning.

Sections 4.2 to 4.5 will provide details on how to build the structure
of 𝜋̂. Sections 4.6 and 4.7 will describe the optimisation with the
structure of 𝜋̂.

4.2. Fixed sequence of actions vs. reactive policy

In [46], various approaches have been introduced for approximating
the optimal policy. Amongst those approaches, the fixed sequence of
actions (FSOA) is commonly used in relevant problems. It plans a
deterministic trajectory regardless of future events [4,46,47]. It has
been stated in [46] that the optimal policy of FSOA can guarantee a
lower bound of optimal reward. In addition, in [48], it has been proven
that the optimal FSOA is at least as good as an optimal open-loop
policy. The FSOA policy is illustrated in Fig. 4.

However, if we compare Figs. 4 and 3, we can see that it is almost
impossible for an FSOA policy to precisely approximate an optimal

policy. In our case, as mentioned in the introduction, the belief state
𝑏 and value function 𝑉𝜋 are very sensitive to contingencies such as new
detections or failed monitorings; thus we need a reactive policy that
includes branchings for future events. Feasible online planning requires
a compromise between efficiency and optimality. Some simplifications,
heuristics, and Monte Carlo methods will be implemented.

In addition, FSOA treats search or monitoring tasks along the action
sequence as separate subtasks with no correlation between them, which
is very similar to the formulation of task assignment problems. Hence
the FSOA policy, which is non-myopic, should also provide an upper
bound of reward for myopic task assignment methods as in [12,13],
and [14]. Therefore, in simulations and experiments, we will compare
our work with FSOA to show both the advantage of reactive policy over
FSOA and the superiority of synergistic SSM over the task assignment
method.

4.3. Simplifications

To reduce computational complexity, we make the following as-
sumptions and simplifications for planning. It should be noted that
all these simplifications only apply to planning, when the agent is
predicting future events. They do not apply to the estimation of current
information during the execution of a policy.

(1) Perfect Sensor Assumption. When doing policy planning and
estimating the environment, the robot always assumes that its
sensor is accurate with no false positive or false negative.

(2) Environment Assumption. Assume that the targets are sparsely
scattered, which can easily be outrun by the agent.

(3) Contingency Density Assumption. As the target distribution is
sparse, we assume that for each time step, only one contingency
may happen. The contingencies can be four kinds of events: 1.
detecting a new target, 2. re-detecting a known target, 3. losing
a known target, 4. other events.

(4) Contingency Type Assumption. Assume that event 2 or 3 hap-
pens only when the agent is positioned at the estimated location
of a known target. Event 1 or 4 happens only when the agent is
at other locations.

(5) Probability Distribution Update Simplification. 𝑃𝑢(𝑥(𝑡)|𝑍𝑡)

should be estimated by both target dynamics and sensing. How-
ever in policy planning, for a future time instant, we ignore the
influence of sensing on 𝑃𝑢(𝑥(𝑡)|𝑍𝑡).

(6) Location Update Simplification. In policy planning, if a known
target 𝜆 is predicted to be re-detected at time 𝑡, we assume that it
moves back to its previously estimated location instantaneously.
This means x̂𝜆(𝑡) = 𝑥𝜆(𝑡) = x̂𝜆(𝑡 − 1) if 𝜆 is re-detected at 𝑡. After
𝑡, the target moves freely until the next detection.

(7) Agent Motion Constraint. We assume that an agent can only
visit a set of cells in 𝐶𝑠

⋃
{x̂𝜆(𝑡)|𝜆 ∈ 𝛬𝑡}, which is a union of

search cells and cells at known target locations. The latter set of
cells is called monitoring cells.

Given assumption 2, we assume that event 2 and 4 are more likely to
happen along the mission, compared with event 1 and 3. Hence, based
on assumption 3, we classify the belief states with event 2 and 4 as 𝑏∙.
The other belief states are classified as 𝑏◦ (with event 1 and 3). Belief
states 𝑏◦ are called branching belief states. The sets of non-branching
and branching belief states are denoted by 𝛥∙ and 𝛥◦, respectively.
Event 1 and 3 are called branching events.

Assumption 4 indicates that there can only be two contingencies
at each time step, which are event 1 and 4, or event 2 and 3. Thus
the possible belief states at a time step are always a combination of a
branching belief state and a non-branching belief state.

With the classification of non-branching and branching events, in
Section 4.4, a sequence of non-branching belief states and reason-
able actions is defined as base trajectory. Given assumption 2, non-
branching events are more likely to happen, thus reducing the chance

Robotics and Autonomous Systems 170 (2023) 104544

6

H. Zhang et al.

Fig. 4. Policy of fixed sequence of actions (green). Compared with the generic policy in Fig. 3, in this policy, the actions at the same time step are the same, regardless of different
belief-states.

of branchings along base trajectory, making it easy for the playout
and execution of a policy. The advantage of such classification will be
further exploited in Section 4.4.

Based on assumptions 5, in a prediction, 𝑃𝑢(𝑥(𝑡)|𝑍𝑡) = 𝑃𝑢(𝑥(𝑡)|𝑍𝑡0
),

where 𝑍𝑡0
denotes the history of measurements up to the initial time

of planning 𝑡0. When formulating search tree in planning, 𝑃𝑢(𝑥(𝑡)|𝑍𝑡0
)

is used to approximate the likelihood of detection at each time step.
The induced error is compensated by not planning to do search at a
location twice within the time horizon. According to assumption 6, a re-
detected target is put straight back to where it was first found. Thus the
agent only has to visit the same location each time to monitor a known
target, which simplifies assessing a policy of FSOA in Section 4.5. This
is justified by the assumption that the main challenge posed by the
uncertain movement of a known target is the chance of losing it in
the next visit, rather than having to visit it at a different place each
time. With assumption 7, an agent can still cover all the unsearched
area and known targets, while facilitating the trajectory design in
Section 4.7. Assumptions 5, 6 and 7 simplify the transition function
𝑇 (𝑏, 𝜃, 𝑏′), pruning a large number of branchings.

4.4. Policy reconstruction

An online solution to 𝜌𝑃𝑂𝑀𝐷𝑃 is studied in [49], which is based
on Monte Carlo tree search (MCTS). In [49], a particle filter efficiently
predicts the belief state and is combined with MCTS method to build a
decision tree for a complex problem in real time. This method is demon-
strated to be very versatile to various kinds of 𝜌𝑃𝑂𝑀𝐷𝑃 problems,
and is the state-of-the-art. However, in our problem, because of the
long look-ahead horizon and complicated state space, the search tree
can be too complex to explore by even MCTS. Thus we take the fore-
mentioned policy improvement method and still receive inspiration
from MCTS. Instead of having a decision tree growing from root to leaf,
we reconstruct the decision tree with a base trajectory and a branching
function. The reconstruction is detailed as follows:

At initial belief state 𝑏𝑡0 , we propose a deterministic trajectory for
the agent: 𝜒 = {𝑥̂𝛾 (𝑡)|𝑡 = 𝑡0, 𝑡0 +1,… , 𝑡𝑓 ; 𝑥̂𝛾 (𝑡0) = 𝑥𝛾 (𝑡0)}, called the base
trajectory. 𝑥̂𝛾 (𝑡) denotes the location that the agent is planning to visit
at time 𝑡. The base trajectory starting from the initial state is called the
root base trajectory.

Assume there is a branching function 𝜒◦ = 𝑓 (𝑏◦, 𝜒) that maps a
branching belief state 𝑏◦ and current base trajectory 𝜒 to a new base
trajectory 𝜒◦ that starts from the current location 𝑥𝛾 . With such a
branching function, we define a policy structure 𝜋̂ in Algorithm 1:

Algorithm 1: 𝑎𝑡 = 𝜋̂(𝑏, 𝜒)

if 𝑏 ∈ 𝛥◦ then
𝜒 = 𝑓 (𝑏, 𝜒)

end
𝑎𝑡 = 𝑥̂𝑝(𝑡 + 1) ∈ 𝜒

The rationale of Algorithm 1 is that when no branching event
happens, the agent simply follows the base trajectory. In the case of a
branching event, the agent would find a new base trajectory to follow.

Fig. 5. Policy reconstruction. A generic policy in Fig. 3 is reconstructed in this way.
We let observation 𝑧1 correspond to non-branching events. The root base trajectory
(green) starts from the root of decision tree and goes along actions and non-branching
events. In case of branching events 𝑧2, the later sequence of actions and non-branching
events in the decision tree is a new base trajectory, which is in a different colour.
Further branchings may also occur along the new base trajectory.

Theorem 4.2. Given the assumptions made in Section 4.3, for the
𝜌𝑃𝑂𝑀𝐷𝑃 defined by tuple ⟨𝛥,𝐴, 𝑇 , 𝜌⟩, there exists a deterministic policy
𝜋̂∗(𝑏, 𝜒), which is defined in Algorithm 1, to be optimal.

Proof. See Appendix A. □

Theorem 4.2 shows that although a base trajectory is a fixed se-
quence of actions, the optimal policy 𝜋∗ can still be fully reconstructed
by a root base trajectory and a branching function, which is illustrated
in Fig. 5. It then proves that a policy with such a structure has the
potential to approximate the optimal policy, which achieves Step 1 in
Section 4.1. With such a formulation of policy, multiple simulations
called playouts can be run along the base trajectory to estimate the
value of such a policy. In a playout, each branching event triggers a
branching function, and the playout continues recursively along the
new base trajectory till the end of the planning horizon. Thus, if we
have an adequate definition of the branching function, we only need to
keep modifying the base trajectory at the root and estimate the value
through playouts until we find the optimal policy with such a structure.
This process achieves Step 2 in Section 4.1. Once an optimal policy
𝜋̂∗(𝑏, 𝜒) has been found, it can be implemented until a branching event
occurs or till the end of the planning horizon. This achieves Step 3.

The rationale for decomposing and reconstructing a policy comes in
four parts: first, a base trajectory can be interpreted as a fixed sequence
of best actions and likely events, which is intuitive and thus can be
configured with heuristic domain knowledge; second, a playout can be
done by sampling branching events along the base trajectory, which
can be much more efficient than branching on every layer of search
tree; third, the branching function can be viewed as modifying the
base trajectory in the case of exceptions, which can also incorporate
heuristic methods; last, the root base trajectory is the actual plan to be
executed until a replanning is triggered at branching events. Thus the
branching function is only used in the playout to estimate the value of
a policy, which makes it less demanding for its optimality.

In Section 4.5, we will propose a heuristic reactive branching func-
tion. In Section 4.6, playouts based on Monte Carlo simulation are
introduced. In Section 4.7, the process of modifying and optimising
the root base trajectory, which equals the policy optimisation, will
be explained. We will do a quantitative comparison with the method
proposed in [49] in Section 7.1.4.

4.5. Heuristic reactive branching

We propose a heuristic reactive branching function 𝜒◦ = 𝑓𝑎(𝑏
◦, 𝜒).

Let 𝐾𝑡 ∈ 𝛬𝑡 be the set of known targets to be monitored along 𝜒 . The

Robotics and Autonomous Systems 170 (2023) 104544

7

H. Zhang et al.

Fig. 6. Heuristic reactive branching function. a, b, c and d are four sequential moments in a playout.

vertices in 𝜒 that traverse known targets are called monitoring nodes.
At non-branching states 𝑏∙, the agent will keep following 𝜒 . Thus we
only define the reactions to two cases of branching belief states 𝑏◦:

(1) Detecting a New Target. If there is a detection of a new target
𝜆 at time 𝑡, then 𝐾𝑡 = 𝐾𝑡

⋃
𝜆. The remaining part of 𝜒 is 𝜒𝑟. We

let 𝑓𝑎(𝑏
◦, 𝜒) = 𝜒𝑟 at this branching state, which does not change

the original trajectory.
(2) Losing a Known Target. If a known target 𝜆 is lost at time 𝑡,

then 𝐾𝑡 = 𝐾𝑡 ⧵ 𝜆, and the remaining part of 𝜒 is 𝜒𝑟. 𝜒𝑟 is then
refined in three steps:

(a) Prune. We remove all the monitoring nodes from 𝜒𝑟 that
would traverse the lost target 𝜆;

(b) Straighten. The possible monitoring nodes before and after
each pruned node are connected by a straight line to
replace the original segments connecting them. Thus 𝜒𝑟

is straightened to be 𝜒𝑟𝑠;
(c) Complement. The straightening may make 𝜒𝑟𝑠 shorter than

𝜒𝑟 for a length of 𝑙𝑐 . If |𝐾𝑡| > 1, for the remaining
monitoring nodes that are not pruned, we assume that
there is a polyline 𝑃𝑙 connecting them in their original
sequence. We truncate 𝑃𝑙 to a length of 𝑙𝑐 and add it to
the end of 𝜒𝑟𝑠, which obtains 𝜒𝑟𝑠𝑐 . If |𝐾𝑡| = 1, 𝑃𝑙 only
connects the end of 𝜒𝑟𝑠 to the last remaining monitoring
node. If |𝐾𝑡| = 0, there is no complement.

𝜋̂𝑠 and 𝜋̂𝑟 are the FSOA policies for the agent to follow 𝜒𝑟𝑠𝑐 or
𝜒𝑟. The values 𝑉𝜋̂𝑠 and 𝑉𝜋̂𝑟 can be calculated deterministically.
The rationale of 𝜋̂𝑠 is to prune the monitoring nodes of the
lost target to focus on later search and monitoring, while 𝜋̂𝑟
maintains the old route, to avoid interrupting the original plan.
Let 𝜒𝑐 = 𝜒𝑟 if 𝑉𝜋̂𝑟 > 𝑉𝜋̂𝑠 , or 𝜒

𝑐 = 𝜒𝑟𝑠𝑐 if 𝑉𝜋̂𝑠 > 𝑉𝜋̂𝑟 , which

compares and chooses between two options. We let 𝑓𝑎(𝑏
◦, 𝜒) =

𝜒𝑐 at this branching state.

The heuristic reactive branching function 𝑓𝑎(𝑏
◦, 𝜒) can now be

presented in Algorithm 2.

Algorithm 2: 𝜒◦ = 𝑓𝑎(𝑏
◦, 𝜒)

𝜒◦ = 𝜒𝑟

if losing a known target then
calculate 𝜒𝑐 based on 𝜒◦

𝜒◦ = 𝜒𝑐

end
output 𝜒◦

The concept of the heuristic reactive branching function is explained
in Fig. 6. As defined in Fig. 2, the box in Fig. 6 outlines the agent sensor
footprint; the empty or solid circles denote unknown or known targets;
the crosses are the estimated location of known targets; the polyline
with arrows is the current base trajectory. In Fig. 6 a, when there is
one unknown target and two known targets, the current base trajectory
is to search for the hidden target and visit two known targets back and
forth. In b, the unknown target 1 is detected at this moment, which is
a branching event. The branching function adds target 1 in the set of
known targets to be monitored and maintains the remaining part of the
base trajectory. Up until this moment, there was no branching event
such as detection or loss of a target, thus the current base trajectory
was implemented with no branching. In c, target 2 is re-detected when
the agent is trying to visit it. The estimated location of target 2 is
updated (we did not follow assumption 6 in this illustration, for the
ease of understanding), while no branching happens because this is
also a non-branching event. In d, target 3 is lost when the agent is
visiting its estimated location. This is a branching event. Target 3 is

Robotics and Autonomous Systems 170 (2023) 104544

8

H. Zhang et al.

Fig. 7. Mutations on a trajectory. The red triangle is the current agent location. Green
vertices and polylines indicate a candidate trajectory. The numbers show the sequence
of vertices. The cells with a plus sign are search cells, and the cells with solid blue
circles are monitoring cells. For an initial trajectory, mutations can be: add a search or
monitoring cell to be a new vertex, or prune one vertex (top); swap two vertices along
the trajectory (middle); swap a vertex with a search or monitoring cell (bottom).

removed from the monitoring list (step prune). Then, the remaining
base trajectory is straightened into a shorter one along which the agent
goes back to target 2. After arriving at 2, to make up for the shortened
base trajectory and focus on monitoring the remaining set of known
targets, the agent traverses between target 1 and 2, as shown in the
graph (step complement). However, if 𝑉𝜋̂𝑠 < 𝑉𝜋̂𝑟 , the base trajectory
shown in c would be maintained.

Let 𝜋̂𝑎 denote the heuristic reactive policy that is of the structure
defined in Algorithm 1 and contains branching function 𝑓𝑎(𝑏

◦, 𝜒) de-
fined in Algorithm 2. We will then prove the advantage of this policy
formulation over the FSOA policy. In our application, the FSOA policy
is the policy 𝑎𝑡 = 𝜋̂𝑓 (𝑏) = 𝑥̂𝑝(𝑡 + 1) ∈ 𝜒 that continues to move to the
next position 𝑥̂𝑝(𝑡 + 1) along a fixed 𝜒 regardless of any contingencies.

Theorem 4.3. The optimal heuristic reactive policy, 𝜋̂∗
𝑎
= 𝑎𝑟𝑔𝑚𝑎𝑥𝜋̂𝑎𝑉𝜋̂𝑎 ,

has a estimated value greater than or equal to that of the optimal FSOA
policy, 𝜋̂∗

𝑓
.

Proof. See Appendix B. □

Theorem 4.3 shows that the heuristic reactive policy 𝜋̂𝑎 can better
approximate the optimal policy, compared with FSOA. Therefore, we
let heuristic reactive policy 𝜋̂∗

𝑎
be the solution of our 𝜌𝑃𝑂𝑀𝐷𝑃 .

For any root base trajectory 𝜒 combined with 𝑓𝑎(𝑏
◦, 𝜒), we can esti-

mate the value of policy 𝜋̂𝑎 through playouts, which will be introduced
in Section 4.6. The final step to work out 𝜋̂∗

𝑎
, through optimising the

root base trajectory 𝜒 , will be described in Section 4.7.

4.6. Monte Carlo estimation of value

We do 𝑚 samples of playouts. In each sample, the agent applies the
policy 𝜋̂𝑎, and we simulate the defined stochastic environment. In each
sample 𝑖 = 1,… , 𝑚, the achieved hindsight value 𝑉 𝑖

𝜋̂𝑎
can be computed

based on the corresponding events that occurred. Thus, 𝑉𝜋̂𝑎 can be
approximated by:

𝑉𝜋̂𝑎 =
∑

𝑖∈[1,𝑚]

𝑉 𝑖∕𝑚 (7)

4.7. Optimisation of root base trajectory

With the Monte Carlo estimation designed in Section 4.6, we have
obtained a mapping from a root base trajectory 𝜒 to the value of policy

𝜋̂𝑎. Then the policy planning 𝜋̂∗
𝑎

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜋̂𝑎𝑉𝜋̂𝑎(𝑏,𝜒) is transformed
into finding 𝜒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜒𝑉𝜋̂𝑎(𝑏,𝜒), which is a trajectory planning
problem. To achieve the online policy improvement approach, we
adopted a simulated-annealing-based algorithm for the planning of 𝜒 ,
which consists of a candidate mutation function and an optimisation
algorithm.

4.7.1. Candidate trajectory mutation
According to assumption 7 in Section 4.3, the optimal base trajec-

tory 𝜒∗ can be approximated by a trajectory traversing between search
cells and monitoring cells. Let 𝜒̂ = 𝑀(𝜒) be the mutation function
for a trajectory, which includes four kinds of mutations as inspired
by [50]: 1. Add: at one position of 𝜒 , add a new vertex. 2. Prune: prune
one vertex from 𝜒 . 3. Swap: swap the position of two vertices in 𝜒 or
swap one vertex in 𝜒 with a new location. 4. Null: keep 𝜒 unchanged.
Mutations are shown in Fig. 7.

The mutation function guarantees that an initial guess of 𝜒 can be
modified incrementally towards 𝜒∗ through a sequence of mutations.

4.7.2. Optimisation algorithm based on simulated annealing
Our approach for trajectory optimisation is based on simulated

annealing. Simulated annealing is widely used in trajectory planning
and can effectively avoid local minima [51]. We have an initial guess of
𝜒 that can be a static trajectory in which the agent does not move. Then
we impose the mutation function 𝜒̂ = 𝑀(𝜒) to obtain a neighbouring
candidate solution from an initial 𝜒 . The reward of such a candidate
solution can be acquired from the Monte Carlo simulation. A candidate
solution would be accepted as the new solution if it shows a better
reward than the initial one, or it may be accepted with a probability if
it shows a worse reward. The same process repeats iteratively on the
new candidate until the end of the iteration, then the probability of
accepting a worse candidate drops in the next round of iterations. The
detailed formulation of the optimisation algorithm based on simulated
annealing is given in Algorithm 3.

Algorithm 3: Simulated Annealing Algorithm

initialization;
𝜒 ,𝑇𝑒 = 𝑇𝑒0,𝑘𝐵 = 𝑐𝑜𝑛𝑠𝑡,𝑉𝑐 = 0

while 𝑇𝑒 ≥ 𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡 do
𝜒̂ = 𝑀(𝜒). 𝑉𝑝 = −𝑉𝜒̂ , 𝐸 = |𝑉𝑝 − 𝑉𝑐 |
if 𝑉𝑝 > 𝑉𝑐 then

𝑝 = 𝑒𝑥𝑝(−𝐸∕𝑘𝐵𝑇𝑒)

if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) ≤ 𝑝 then
accept = true

else
accept = false

end

else
accept = true

end
if accept = true then

𝑉𝑐 = 𝑉𝑝, 𝜒 = 𝜒̂

end
Lower the temperature 𝑇𝑒

end
Output 𝜒

Note that the simulated annealing algorithm here is an independent
component that can be achieved by any suitable algorithm. Thus, it is
not our main focus.

4.8. Closed form of heuristic reactive policy planning

Now, the steps of policy planning of SSM can be shown below in a
closed form.

Robotics and Autonomous Systems 170 (2023) 104544

9

H. Zhang et al.

(1) Propose an initial root base trajectory 𝜒 .
(2) Construct a candidate heuristic reactive policy 𝜋̂𝑎 based on Algo-

rithm 1, with a branching function 𝑓𝑎(𝑏
◦, 𝜒) defined in Algorithm

2.
(3) Do Monte Carlo simulations and obtain 𝑉𝜋̂𝑎 , which is basically

𝑉𝜒 .

(4) Mutate 𝜒 with 𝜒 = 𝑀(𝜒).
(5) Go back to Step 2 and repeat the whole process in a simulated-

annealing manner.
(6) Find the optimal 𝜒∗ with the highest 𝑉𝜒 , then the optimal policy

𝜋̂∗
𝑎
(𝑏, 𝜒∗) is obtained.

In a real application, revising and replanning will be introduced to
better adapt to future contingencies. If a known target is updated, 𝜒 will
be revised to cover the new target location. If a new target is detected
or a known one is lost, the 𝜋̂𝑎 will be re-planned to adapt.

In addition, when a known target is lost, if its probability distri-
bution is still very certain, it may soon be recovered by the re-planned
policy. However this is not considered in the above branching function.
To compensate, when estimating the chance of detecting a known
target, we expand the potential sensor footprint to 𝑂̃ = {𝑐𝑖+𝑎,𝑗+𝑏|𝑎, 𝑏 ∈

{−𝑘− 1,−𝑘,… , 0,… , 𝑘+ 1}}. This can encourage monitoring, with less
fear of losing a known target.

5. Planning with entropy reduction method

As mentioned in the introduction, information gathering can be
an alternative way of formulating relevant problems. Let 𝑂𝑔𝑡(𝑐, 𝜆) =

{𝑡𝑎𝑟𝑔𝑒𝑡|𝑛𝑜 𝑡𝑎𝑟𝑔𝑒𝑡} denote the location distributions of all targets at time
𝑡, where 𝑐 ∈ 𝜍 and 𝜆 ∈ 𝛬. It indicates whether a certain target is at
a location. Then 𝐻(𝑂𝑔𝑡) is the total entropy of 𝑂𝑔𝑡, which is defined
in Eq. (8) [15]:

𝐻(𝑂𝑔𝑡) = −
∑
𝜆∈𝛬

∑
𝑥𝜆∈𝜍

(𝑃𝑟(𝑥𝜆|𝑍𝑡)𝑙𝑜𝑔𝑃 𝑟(𝑥𝜆|𝑍𝑡)+

(1 − 𝑃𝑟(𝑥𝜆|𝑍𝑡))𝑙𝑜𝑔(1 − 𝑃𝑟(𝑥𝜆|𝑍𝑡)))

(8)

The expected future total entropy can be updated by [15]:

𝐻(𝑂𝑔𝑡|𝑧𝑡+1) = 𝐻(𝑂𝑔𝑡) − 𝐼(𝑂𝑔𝑡; 𝑧𝑡+1)

𝐼(𝑂𝑔𝑡; 𝑧𝑡+1) = 𝐻(𝑧𝑡+1) −𝐻(𝑧𝑡+1|𝑂𝑔𝑡)
(9)

where 𝐼(𝑂𝑔𝑡; 𝑧𝑡+1) denotes the mutual information of 𝑂𝑔𝑡 and potential
measurement 𝑧𝑡+1. As𝐻(𝑂𝑔𝑡|𝑧𝑡+1) describes the expected uncertainty of
target location distributions, reducing 𝐻(𝑂𝑔𝑡|𝑧𝑡+1) can also be used in
SSM. As mentioned in the introduction, the entropy reduction problem
is difficult to solve with look-ahead planning and has generally been
addressed using myopic methods [16–18].

From Eq. (9), it can be seen that to reduce the immediate
𝐻(𝑂𝑔𝑡|𝑧𝑡+1), the agents should maximise 𝐼(𝑂𝑔𝑡; 𝑧𝑡+1). Because a perfect
sensor assumption has been made in Section 4.3, we can find that
𝐻(𝑧𝑡+1|𝑂𝑔𝑡) = 0. Then, the policy is to maximise 𝐻(𝑧𝑡+1), which is the
entropy of immediate measurement. Also, with the perfect sensor as-
sumption, 𝐻(𝑧𝑡+1) equalises the entropy of target location distributions
within its immediate sensor footprint. Therefore, we design a greedy
policy for the agent: it always flies to the immediate vicinity where the
target uncertainty is the highest. We will compare this policy with our
proposed heuristic reactive policy through simulation.

6. Cooperative policy planning for multiple agents

When there are multiple robots, cooperation is necessary to enable
synergy between agents and avoid redundant efforts. In order to have
a more scalable and robust system, many previous works formulate
this problem as POSG or Dec-POMDP, and strive to achieve multi-robot
collaboration in a decentralised way with little or no communication.
One major challenge for an agent to plan a distributed policy is eval-
uating other agents’ estimation about the environment and estimating

their knowledge of each other’s knowledge. The latter can be recursive
infinitely, which is intractable.

Some works solves Dec-POMDP or POSG with offline planning [28,
32,52]. Offline planning for each agent can be done in a centralised
way, thus circumventing the difficulty of explicitly estimating each
other’s knowledge. However, as mentioned in Section 4.1, an offline
solution is not practical for our problem, yet very few online solutions
without strict assumptions exist [27]. Therefore, we first solve the
problem under the assumption of full communication, where all agents
share the same knowledge, then extend the method to cases with
limited communication.

Although perfect communication has been assumed, we do not want
a centralised planner to plan a joint strategy and assign it to each
agent [53]. Since sharing the joint policy transfers more information
and happens more frequently than only sharing the detection of targets,
centralised policy planning will demand higher bandwidth communi-
cation and is less feasible and reliable in a non-ideal environment.
In [54], a decentralised Monte-Carlo tree search (Dec-MCTS) approach
has been applied on multi-robot information gathering problem. The
collaboration has been considered in local policy planning of each
agent, by sharing local search trees between robots. This method is
also challenging on communication capability. Thus instead, we rely
more on game-theoretical methods to achieve multi-robot cooperation,
without sharing local plans.

In [52], the local policy of each agent is built as a deterministic
finite state controller (FSC), and the best local policy is obtained
through finding the Nash equilibrium among FSCs. Although it is solved
offline, we can apply the concept of Nash equilibrium to online local
policy planning.

6.1. Cooperative policy planning based on Nash equilibrium

To simplify the problem, we take the concept of partial open-
loop feedback control [48], in which we assume that when doing
planning, each agent considers the information and possible strategies
of other agents, but the planned local policy will only react to its local
observation and will ignore the future locations and measurements
of other agents. With such an assumption in the policy planning, we
can disentangle the coupling between the contingency reaction of each
agent, but the coordination between robots can still be considered.

Assign 𝜋𝛾 as the local policy for agent 𝛾. We let 𝛱−𝛾 denote the joint
strategies of all agents except for 𝛾. Thus for robot 𝛾, its policy planning
becomes

𝜋∗
𝛾
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝜋𝛾

𝑉{𝛱−𝛾 ,𝜋𝛾 }
(10)

This equation works symmetrically for every agent.
For the solution of the cooperative SSM, the key concept is to find

a Nash equilibrium among the strategies of all agents [27,28]. In the
cooperative case, such equilibrium should also be the optimal joint
solution. We take the same approach, by letting each agent find a joint
policy 𝛱∗ for all agents that can ensure the highest 𝑉𝛱∗ , and take
𝜋𝛾 ∈ 𝛱∗ as its local policy. Because the information is shared among
agents, we assume that the calculated optimal joint policy is the same
for each agent, except for instances in which multiple equilibriums
exist, i.e. when some agents are very close or the situation around them
is symmetric. Therefore the overall optimal value can be achieved in
most cases.

6.2. Local policy reconstruction

Since a local policy 𝜋𝛾 only reacts to local observations, it is of
the same structure as the policy for single-agent SSM. According to
Section 4.4 and Appendix A, such local policy can also be fully recon-
structed with a base trajectory 𝜒𝛾 and a branching rule. We let 𝜋𝛾 apply
the same heuristic branching rule 𝑓𝑎 as in Section 4.5. Then a local

Robotics and Autonomous Systems 170 (2023) 104544

10

H. Zhang et al.

Fig. 8. Joint mutation on trajectories. Two base trajectories (green and pink polylines)
can swap segments.

policy 𝜋𝛾 can be represented by a local root base trajectory 𝜒𝛾 . Hence,
Eq. (10) can be rewritten as

𝜒∗
𝛾
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝜒𝛾

𝑉{𝛹−𝛾 ,𝜒𝛾 }
(11)

where 𝛹−𝛾 is the joint root base trajectory of all agents except for 𝛾.
We let 𝛹∗ = {𝛹−𝛾 , 𝜒𝛾} be the optimal joint base trajectory. Before

designing the detailed planning of 𝛹∗, we first prove that the coopera-
tion is achieved advantageously, compared with no cooperation. Let 𝛹𝑜

be the joint base trajectory if each agent plans its own policy without
any cooperation, in the same way as in single-agent SSM.

Theorem 6.1. The optimal joint base trajectory 𝛹∗ obtained through
Eq. (11) can achieve an overall value greater than or equal to that of the
non-cooperative joint base trajectory 𝛹𝑜.

Proof. Eq. (11) implies that 𝛹∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛹𝑉𝛹 ; thus, 𝑉𝛹∗ ≥ 𝑉𝛹𝑜
. □

Theorem 6.1 demonstrates the advantage of having a distributed
coordination for multi-agent SSM.

Since the agents share the same information, 𝑉{𝛹−𝛾 ,𝜒𝛾 }
can be esti-

mated by each robot through Monte Carlo sampling in the same way
as in the single robot scenario. Thus, we have obtained a mapping
from a joint base trajectory 𝛹 to the overall value 𝑉{𝛹−𝛾 ,𝜒𝛾 }

. Then, the
computation of the Nash equilibrium has become a problem of finding
an optimal joint base trajectory 𝛹∗.

6.3. Joint root base trajectory planning

To find an optimal joint base trajectory 𝛹 , we extended the mu-
tation function 𝜒̂ = 𝑀(𝜒) defined in Section 4.7.1 to the multiple
trajectories case. We define a joint mutation function 𝛹̂ = 𝑀(𝛹).
𝛹̂ = 𝑀(𝛹) includes the four independent mutations on an individual
𝜒 ∈ 𝛹 that are defined in Section 4.7.1. 𝛹̂ = 𝑀(𝛹) also has a fifth joint
mutation: 5. Segment Swap: two base trajectories 𝜒𝛾1

, 𝜒𝛾2
∈ 𝛹 swap

segments, shown in Fig. 8.
After obtaining the extended mutation function 𝛹̂ = 𝑀(𝛹), the

simulated annealing algorithm can also be applied to find the best 𝛹 .

6.4. Closed form of cooperative policy planning

In summary, the steps for an agent to do cooperative policy planning
is presented below.

(1) Propose an initial joint root base trajectory 𝛹 for all agents.
(2) Construct a candidate local heuristic reactive policy 𝜋̂ ∈ 𝛱̂ for

each agent based on Algorithm 1, with a branching function 𝑓𝑎
defined in Algorithm 2.

(3) Do Monte Carlo simulations and obtain 𝑉𝛱̂ , which is basically
𝑉𝛹 .

(4) Mutate 𝛹 with 𝛹 = 𝑀(𝛹).
(5) Go back to Step 2 and repeat the whole process in a simulated-

annealing manner.
(6) Find 𝛱̂∗ with the highest 𝑉𝛱̂ , which is the optimal joint policy.

(7) 𝜋̂∗
𝛾
∈ 𝛱̂∗ is the optimal local policy of agent 𝛾

In this way, an agent can plan its local optimal policy and imple-
ment it until replanning.

6.5. Limited communication range

Even though the cooperative planning is done locally on each
agent, communication with unlimited range is still required, and all
fellow agents must be planned for when an agent is finding the Nash
equilibrium. Therefore, the above approach is still not fully distributed.
We can impose a range limit of communication, only within which an
agent can be aware of the existence of fellow agents and receive their
current measurements, while the belief states or past observations will
not be shared. An agent maintains and updates its own belief state
based on its measurements and the observations it receives.

This range may either be the result of physical limitations or simply
an artificial threshold. It limits the number of fellow agents to be
considered in the Nash equilibrium. Therefore, as long as the agents are
sparsely scattered, we expect an upper bound on the computational cost
for each agent. We call this cooperative planning semi-Dec-POMDP. Its
computational efficiency is guaranteed indirectly.

In [55], a Dec-POMDP with communication constraints is studied.
In this work, Dec-POMDP is formulated with distributed value func-
tions (DVFs). With DVF, an agent approximates the influence of other
agents on its own reward, then plans a local policy independently. The
cooperation is achieved in an indirect and decoupled way. Thus even
when the communication breaks, an agent does not need to explicitly
estimates other agents’ knowledge, which is robust and efficient.

In our problem, however, collaboration is intensive thus knowledge
of each other’s knowledge is necessary. The divergence of belief states
between each agent is inevitable. We therefore take the following
approach: each agent only considers the neighbouring robots with
which it is in communication; It assumes that these agents have the
same belief state as itself. Under this assumption, a robot still tries to
find a Nash equilibrium with the robots within communication range.
The local policy can then be planned by each agent in the same way as
in Section 6.4.

Not considering the difference of information held by neighbouring
robots should cause a decrease in performance, compared with com-
prehensively estimating the knowledge of other agents. We take it as
a trade-off between scalability and performance, and will evaluate it
through simulation.

7. Simulation & experiment

7.1. Simulation of single pursuer SSM

7.1.1. Case study
Consider a 100 m × 100 m square environment 𝜍 that is discretised

into 25 × 25 cells. The agent sensor can cover 5 × 5 cells. There are five
unknown targets and one robot scattered in the environment. For each
time step 𝑑𝑡 = 0.2 s, there will be 𝑝𝑠 = 80% probability that a target
will stay within the current location. The robot can move at speed
𝑉 = 20 m∕s. The agent will plan and execute the proposed heuristic
reactive policy 𝜋𝑎 for the SSM task, with a time horizon 𝑇ℎ = 10 s. When
a contingency belief state 𝑏◦ is reached, or when it has been more than
𝑇𝑝 time since the last planning, a replanning will be triggered. We set
𝑇𝑝 = 5𝑠 < 𝑇ℎ to make the planning more adaptive to environmental
changes. 𝐵̃𝑙 = 30% is the lower threshold of belief probability for losing
a known target. The initial target probability distribution 𝑃𝑟(𝑥𝜆|𝑍𝑡) is
uniform within the environment, and targets are randomly scattered.

Figs. 9–11 are the snapshots of one simulation.
The polylines with arrows are the planned root base trajectories. As

defined in Section 4.4, the root base trajectory is the default trajectory
plan to be executed until a branching event happens. Thus, we use
such a fixed trajectory to represent the reactive policy behind it. We
can see from Fig. 9 that when there are areas with a high probability
distribution of unknown targets, the agent will sweep across these areas
to find them. Fig. 10 shows that when some known targets are close,

Robotics and Autonomous Systems 170 (2023) 104544

11

H. Zhang et al.

Fig. 9. Searching for unknown targets. As shown by the contour, there are two regions
with high confidence of unknown target presence, where targets 1 and 3 exist. The
agent chooses to sweep over the two regions to find them.

Fig. 10. Combined search and monitoring. In this case, targets 3 and 5 are known and
nearby. There is also high probability distribution of unknown targets in the vicinity.
The agent thus plans a route to intermittently traverse the unknown area while visiting
targets 3 and 5 back and forth.

together with hidden targets possibly in the neighbouring area, the de-
fault plan is to explore the surrounding unknown area and traverse the
nearby known targets recurringly, thus merging search and monitoring
in the same trajectory. Fig. 11 shows that when the monitoring effort is
saturated, which happens when some known targets are within reach,
but all other targets are far away, the agent would focus on traversing
nearby known targets back and forth. In this case, a greedier effort to
reach the farther area may lose what is currently being monitored.

Fig. 12 illustrates the belief probability of each target, 𝐵̃𝜆, and the
overall reward of the SSM mission 𝜌 =

∑
𝜆∈𝛬 𝐵̃𝜆, at each time step of

a case study. The belief probability of a target increases to 1 when it is
detected and drops to 0 when it is lost. The belief probability degrades
gradually when the target is not measured. In the graph, when a known
target is lost, its belief probability can be lower than 𝐵̃𝑙 = 30%. This

Fig. 11. Monitoring known targets. Two known targets are nearby. However, other
known targets and possible areas with unknown targets are far away. In such a case,
the agent focuses on monitoring neighbouring known targets by traversing between
them.

Fig. 12. Belief probability maintenance in simulation, with one robot. 𝑝𝑠 = 80%. 𝐵̃𝜆

denotes the belief probability of target 𝜆. 𝜌 is the total belief probability, which is the
reward of SSM at each time step. 𝐵̃𝜆 = 0 when target 𝜆 is unknown, and 𝐵̃𝜆 = 1 when it
is currently being measured. This graph shows the development of the belief probability
of each target during one simulation of 200 s.

is because the potential sensor footprint for detecting a known target
has been expanded, as mentioned in Section 4.8, making the estimated
chance of detection higher than the actual belief probability. It can be
seen that every target can be detected during the simulation. Most of
them can be maintained at a high belief probability for several non-
continuous periods and can be re-detected intermittently after being

Robotics and Autonomous Systems 170 (2023) 104544

12

H. Zhang et al.

Fig. 13. Reactive policy vs. fixed sequence of actions vs. entropy reduction vs. Monte
Carlo Tree Search. The lines in different style and colour show the average reward
achieved by the heuristic reactive policy, the FSOA policy, the greedy policy of entropy
reduction, and MCTS, through simulation in different scenarios. The solid and empty
diamonds show the one-scenario experimental results of the heuristic reactive policy
and the FSOA policy.

unattended. The negative spikes show that the targets may be lost when
the agent tries to re-detect them, but they will soon be retrieved. The
overall reward is increased shortly after the simulation starts and is kept
above a certain level with fluctuations. It appears that the total reward
is increasing over time after 𝑡 > 100 s. However, after studying large
quantities of simulations, we have found that there is no fixed pattern
for the development of total reward, since it is highly dependency on
the environment, which is dynamic and uncertain.

The case study qualitatively shows that, after search and monitoring
are dynamically combined, the agent can efficiently search for hidden
targets and preserve the belief probability of as many targets as possible.
The search and monitoring efforts on each target are well scheduled.

7.1.2. Comparison with FSOA
We ran a quantitative study of the SSM and compared the perfor-

mance of the proposed heuristic reactive policy planning with the FSOA
policy. Scenarios with n = 2, 3, 5 and 7 targets were studied, and with
𝑝𝑠 = 0, 10, 20, 30, 40, 50, 60, 70, 80%. For each scenario, we did 100 cases
of simulation for 200 s each, with 𝑇𝑝 = 1 s. In each case, the initial
locations of the agent and targets are randomly scattered. The reward
of a scenario is the average reward of every time step in every case,
and the average computation time of each planning is recorded as well.
We also consider the cases with imperfect sensors, where at each time
step, for the sensing of each target, there would be a 0.05% chance of
a false positive or a 1% chance of a false negative. Fig. 13 shows the
performances in each scenario. Each simulation is done by one core of
the E5 2650V2 processor (2.6 GHz).

In most scenarios, the reward of heuristic reactive policy is better
than that of the FSOA policy. It proves that if the future contingencies
and corresponding reactions are considered during planning, the agent
can make a better decision about future actions, which is consistent
with Theorem 4.3. Given the end of Section 4.2, this comparison also
proves that our synergistic SSM can achieve higher performance than
conventional task assignment methods. When 𝑝𝑠 ⩽ 20%, the target
motion is very uncertain, thus affecting assumption 2 and 6. Therefore
in these scenarios, the heuristic reactive policy may not out-perform
the policy of FSOA, which sets the boundary of our method.

Besides the average reward, in Fig. 14, we also show the standard
deviation value of reward. In comparison with the differences of aver-
age reward between policies, the differences in the standard deviation

Fig. 14. Standard deviation value of reward (per target) in each scenario.

values are much smaller. This suggests that all polices show similar
consistency when solving this uncertain problem.

We studied the following case to explain the advantage of the
heuristic reactive policy. In a situation where there are only two known
targets, and 𝑝𝑠 = 80%, we planned the policy using both proposed
heuristic reactive policy planning and the FSOA policy. The root base
trajectories planned by both methods are shown in Fig. 15

In this case, the FSOA policy directs the robot to follow only one
target, with an estimated value of 1.70. In contrast, the heuristic
reactive policy planning drives the robot to go back and forth between
two known targets, with a better value of 1.92. The FSOA policy does
not choose the back-and-forth route because it assumes that the agent
would still go back and forth if one target is lost, and the remaining
target would always have a chance to escape between each visit.
However, if the policy is reactive, the planner would know that the
agent would focus on monitoring the remaining target if the other one
is lost, which is a more reasonable strategy. Thus, while the FSOA
policy tends to be conservative when there is a risk, the heuristic
reactive policy allows the agent to make more sensible decisions.

Fig. 13 also shows that, in the case of an imperfect sensor, there
will be a decrease in the performance of both approaches. However, this
decreased performance can be mitigated by introducing sensor filtering
to reduce the influence of false measurements.

According to the simulation, each planning of heuristic reactive
policy takes 0.2 s on average. It is much slower than the FSOA policy,
which takes 0.01 s on average. Nevertheless, the speed of heuristic
reactive policy planning is still practical for real-time implementation.

7.1.3. Comparison with entropy reduction
Besides FSOA, we also compared our approach with the greedy

entropy reduction method mentioned in Section 5. The result is also
shown in Fig. 13. It can be seen that, although being almost in-
stantaneous in planning speed, the performance of greedy entropy
reduction is still suboptimal compared with the heuristic reactive pol-
icy. This proves that our POMDP formulation, although complicated,
can achieve better performance in the SSM problem than the myopic
entropy reduction approach.

7.1.4. Comparison with Monte Carlo tree search
In [49], one major challenge is to design a particle filter to predict

the belief state throughout the progression of decision tree. In our prob-
lem, with the assumptions made in Section 4.3, the progression of belief
state can be predicted straightforwardly with little computational cost.

Robotics and Autonomous Systems 170 (2023) 104544

13

H. Zhang et al.

Fig. 15. A snapshot of root base trajectory planned in the same situation, by the FSOA policy (left) or heuristic reactive policy (right). There are only two targets in the situation,
both known with the same location and belief.

Thus we applied the MCTS-based 𝜌𝑃𝑂𝑀𝐶𝑃 algorithm in [49] to SSM
without using particle filters. The result is also shown in Fig. 13. After
finding a good balance between exploration and exploitation, the aver-
age planning time for MCTS is 0.5 s (compared with 0.2 s for heuristic
reactive policy planning), however the performance is still suboptimal
to reactive heuristic policy in almost every scenario. Although state-of-
the-art MCTS-based approaches are versatile and promising, this SSM
is still too large to be solved online fast enough through conventional
tree search. When there are 7 targets and the planning horizon is 10 s,
even if we do 1-second macro-steps in rough planning and only consider
detection/no detection in measurement, there can be at most 9 actions
and 27 = 128 observations at each step, with 10 steps maximum. Thus
the worst case number of terminal leaf nodes in the search tree can
be approximated as: (9 × 128)10 = 4.11 × 1030, which appears to be a
formidable size of a search tree.

The simulation comparison proves that, for the problem of SSM with
a deep search tree and large branching factors, the heuristic reactive
policy can explore the search tree more efficiently and develop a better
policy.

7.2. Experiment with a single pursuer SSM

We also did an experimental study of the single-robot SSM, as
illustrated in Fig. 1. We studied the scenario with n = 5 and 𝑝𝑠 =

70%. We did 50 samples of experiments for both the heuristic reactive
policy and the FSOA policy. The development of the belief probabilities
in one experiment of heuristic reactive policy is shown in Fig. 16. It
can be seen that the belief probabilities maintenance behaviour in the
experiment is similar to that in the simulations. The average rewards
of the two methods are included in Fig. 13. There is a decrease in
performance compared with the simulations. This decrease is caused
by the robot dynamics that incurs a delay in following the flight
command. However, it still shows that the heuristic reactive policy has
a dramatic advantage over FSOA in the tested scenario, which supports
our major claims. In Fig. 14, the standard deviation values of rewards
of two polices are almost identical, showing similar consistency against
uncertainties.

7.3. Simulation of multiple pursuer SSM

7.3.1. Case study
We then did a case study with the same setup of the environment

and the same robot and target properties. Instead of having only one
agent, three agents cooperate in the SSM, each planning and applying
the local policy 𝜋𝛾 ∈ 𝛱 . The replanning is triggered at the same
conditions as in the single robot scenario, and replanning happens for
all robots simultaneously.

Fig. 16. Belief probability maintenance in experiment, with one robot. 𝑝𝑠 = 70%.

Figs. 17 and 18 are two snapshots of the case simulation.
In Fig. 17, only one target is known. The agent currently covering

the target chooses to focus on monitoring and searches in the nearby
area in the meantime. The other two agents divide the unknown areas
and plan non-overlapping trajectories for search. In Fig. 18, when all
targets have been detected, each agent goes back and forth to monitor
nearby targets, and there is no redundant effort between the robots.
Note that the collaboration of SSM is achieved in a distributed way,
without any communication about plans. The case study shows that,
with exchanging only sensing data, the agents can partition the tasks
without overlap and do the SSM cooperatively.

Fig. 19 shows the development of the belief probability and the
overall reward of the SSM mission at each time step of a case study. We
can see that all targets can be detected soon after the beginning and can
be maintained at a high belief probability for most of the times. Some
sporadic negative spikes show that although sometimes the targets may
be lost in monitoring, they will still be found right after. The overall

Robotics and Autonomous Systems 170 (2023) 104544

14

H. Zhang et al.

Fig. 17. Cooperative search. When three agents are available, and only one target has
been found, two agents divide the unknown area to search, while the remaining agent
plans to search the vicinity then return to check the known target.

Fig. 18. Cooperative monitoring. When all targets have been detected, they are
partitioned by three agents to be monitored.

award is increased quickly initially and is kept right under the highest
level for most of the simulation. A comparison with Fig. 12 shows that
having multiple agents brings substantial performance improvement.

7.3.2. Comparison with unlimited range of communication
We also ran a quantitative study, as in the single-agent case, to

compare the performance of our proposed cooperative SSM with the
non-cooperative SSM. In non-cooperative SSM, the measurements are
received and belief states are maintained in the same way as coop-
erative SSM. However an agent plans its own policy while ignoring
other agents, as in single-agent SSM. For the non-cooperative SSM and
the following cooperative SSM with limited communication, we assume
that there is a master agent that does nothing except for receiving full
measurements from all other agents. The master agent updates its belief
state based on the joint measurements, and the reward of SSM is based
on this belief state.

Fig. 19. Belief probability maintenance in simulation, with three robots. 𝑝𝑠 = 80%.

Table 1
Computation time for cooperative policy planning with unlimited communication.

Number of agents Number of targets

2 3 5 7

2 agents 0.41 s 0.55 s 0.70 s 0.72 s
3 agents – 0.86 s 1.21 s 1.30 s
5 agents – – 2.22 s 2.80 s

We maintained our assumption of an unlimited range of communi-
cation in this section. Scenarios with n = 2, 3, 5 and 7 targets were
studied, with 𝑝𝑠 = 60, 70, 80%, and with m = 2, 3 and 5 robots. Each
scenario was simulated for the same number of cases and length of
time as in the single robot simulation. Fig. 20 shows the performances
in each scenario.

Fig. 20 shows that in every scenario, there is a dramatic perfor-
mance improvement after cooperation is considered. It proves that,
in our distributed cooperative strategy planning, with only commu-
nication of measurement, each agent can independently plan its own
strategy that considers the cooperation with other agents and can thus
achieve a better overall reward compared with non-cooperative SSM.
This validates Theorem 6.1.

The computation time for each scenario is shown in Table 1. It
can be seen that, even though the planning is local, the computation
time still grows with the number of agents. With more robots in the
cooperation, more agents need to be planned for in the computation of
the Nash equilibrium.

7.3.3. Comparison with limited range of communication
To make our method more scalable in bigger and more complex

problems, we impose the range limit of communication, as mentioned
in Section 6.5. We investigate the cases with communication ranges 𝐿𝑐

= 50 m and 30 m. The performances are shown in Figs. 21 and 22.
Figs. 21 and 22 show that a reduced communication range does un-

dermine the performance of cooperative SSM. However, the advantage
of collaboration is still maintained. The computation time for scenarios
with limited communication is in Tables 2 and 3. Comparing these
tables with Table 1, it shows that the range limit largely reduces the

Robotics and Autonomous Systems 170 (2023) 104544

15

H. Zhang et al.

Fig. 20. Cooperative vs. non-cooperative. The solid and dashed lines are the reward achieved through simulation in different scenarios, by cooperative SSM and non-cooperative
SSM.

Fig. 21. Cooperative vs. non-cooperative when 𝐿𝑐 = 50 m.

Fig. 22. Cooperative vs. non-cooperative when 𝐿𝑐 = 30 m.

Robotics and Autonomous Systems 170 (2023) 104544

16

H. Zhang et al.

Table 2
Computation time for cooperative policy planning when 𝐿𝑐 = 50 m.

Number of agents Number of targets

2 3 5 7

2 agents 0.27 s 0.44 s 0.43 s 0.55 s
3 agents – 0.48 s 0.62 s 0.77 s
5 agents – – 1.11 s 1.50 s

Table 3
Computation time for cooperative policy planning when 𝐿𝑐 = 30 m.

Number of agents Number of targets

2 3 5 7

2 agents 0.23 s 0.30 s 0.38 s 0.38 s
3 agents – 0.46 s 0.55 s 0.61 s
5 agents – – 0.87 s 1.00 s

Fig. 23. Reactive policy vs. fixed sequence of actions, with a single agent. The sizes
of arenas are 140 m × 140 m and 180 m × 180 m.

Table 4
Computation time for heuristic reactive policy planning, with a single agent.

140 m × 140 m 180 m × 180 m

Computational time per planning 0.51 s 0.42 s

computation cost. Although the planning efficiency still degrades with
the number of agents, the communication range imposed should help
with the scalability of semi-Dec-POMDP, as long as the agents are not
densely deployed.

7.4. Study of scalability

To further study the scalability of our approaches, we look into SSM
with bigger size of environment. Simulations with arenas in a size of
140 m×140 m and 180 m×180 m are conducted. Fig. 23 shows the study
on single-agent SSM. In Figs. 24 and 25, multi-agent SSM with 30 m of
communication range are also studied. Tables 4 to 6 are the average
computational time for the above scenarios.

From Figs. 23 to 25, it shows that the reward in every scenario
decreases with the size of environment. This is very natural. In a bigger
arena, the targets are more sparsely scattered, making it more difficult
for the agent to acquire and maintain target information, thus the drop
of reward is inevitable.

Comparing Table 4 and the 0.2 s average computational time in the
original arena. The time cost more than doubled when the size of arena
= 140 m×140 m, then dropped slightly when the size of arena = 180 m×

180 m. When the size expands, with the same planning horizon, time

Table 5
Computation time for cooperative policy planning when 𝐿𝑐 = 30 m. The size of arena
is 140 m × 140 m.

Number of agents Number of targets

2 3 5 7

2 agents 0.32 s 0.35 s 0.42 s 0.45 s
3 agents – 0.52 s 0.59 s 0.64 s
5 agents – – 0.99 s 1.03 s

Table 6
Computation time for cooperative policy planning when 𝐿𝑐 = 30 m. The size of arena
is 180 m × 180 m.

Number of agents Number of targets

2 3 5 7

2 agents 0.29 s 0.31 s 0.34 s 0.38 s
3 agents – 0.46 s 0.50 s 0.54 s
5 agents – – 0.82 s 0.85 s

step, and number of targets, the increase of possible player motions
makes the planning more complex. However the number of targets
that an agent can cover decreases, making the planning easier. This
counteraction between two factors may explain why the time cost first
increased then dropped.

Comparing Tables 3, 5 and 6, the increase of time cost is much
smaller when the size of arena = 140 m×140 m, compared with that of
single-agent SSM. The time cost also dropped when the size of arena
= 180 m × 180 m. Nonetheless, we can still observe the time cost
increasing with the number of agents or targets.

According to the above results, the computational cost may increase
with the size of environment or the number of targets and agents.
Fortunately, the planning time reduces after a certain size of arena,
and a smaller communication range can also reduce time cost. Thus one
possible direction of future study is trying to find a theoretical upper
bound of planning time, given a range limit of communication and a
maximum density of players, therefore guaranteeing the conditional
scalability of our approach.

8. Conclusion

A novel and essential simultaneous search and monitoring problem
is proposed and studied in this work. Compared with methods of task
assignment that are conventional and intuitive, or entropy reduction,
which is simpler, we combine the search and monitoring as a united
mission in a synergistic solution and strive for look-ahead planning.
Scenarios with both single and multiple agents are addressed. The
complex interconnection between search and monitoring makes the
combined problem a 𝜌𝑃𝑂𝑀𝐷𝑃 or Dec-POMDP for single or multiple
agents.

A united value function was first proposed to solve the 𝜌𝑃𝑂𝑀𝐷𝑃

for a single robot. It sets synergistic search and monitoring instead of a
simplistic trade-off. The concept of policy improvement is then applied
to allow for real-time online planning.

An original policy reconstruction method is designed to build a
structure to approximate the optimal policy. We have proved that any
optimal policy can be fully reconstructed in such a way. Compared
with conventional tree search approaches, it not only makes it easy
to formulate a good candidate policy but also makes it more efficient
to do playout and policy improvement in each iteration. As part of
policy reconstruction, we then designed a heuristic reactive branching
function. We have proved that such a heuristic reactive policy is better
than the conventional FSOA policy. With the policy reconstruction, the
policy planning is transformed into finding the best root base trajectory,
which is solved by the simulated annealing method.

We then extend the heuristic reactive policy planning to scenarios
with multiple robots. The planning for a single agent is combined with
the concept of a Nash equilibrium. A cooperative SSM strategy can thus

Robotics and Autonomous Systems 170 (2023) 104544

17

H. Zhang et al.

Fig. 24. Cooperative vs. non-cooperative when 𝐿𝑐 = 30 m. The size of arena is 140 m × 140 m.

Fig. 25. Cooperative vs. non-cooperative when 𝐿𝑐 = 30 m. The size of arena is 180 m × 180 m.

be planned and executed locally by each agent. We also proved that the
cooperative SSM has better performance than the non-cooperative SSM.

The simulations and experiments show that our proposed heuristic
reactive policy can effectively search for hidden targets in an initially
unknown environment and maintain their surveillance with moderate
computational cost. Whenever the monitoring capability is not satu-
rated, the agent will try to find more targets without losing current
known ones. In the multi-agent case, the robots can divide the tasks
with no overlap, thus cooperating without redundant effort. In the
comparative studies, we validated that the proposed heuristic reactive
policy works better than the conventional method of FSOA and that
the cooperation between agents is advantageously achieved. The supe-
riority of the heuristic reactive policy over FSOA also proves that the
concept of synergistic search and monitoring is more suitable for SSM
than a task assignment approach. When compared with the strategy
of entropy reduction, our approach showed higher performance in
most scenarios. This further proves that, in this problem, look-ahead
stochastic planning has better potential than a simple entropy reduction
method. The comparative study with the MCTS-based state-of-the-art
well demonstrates the contribution of this work, proving that for a
problem like SSM, the presented concept of policy reconstruction can
help build a better reactive policy more efficiently than basic MCTS.

The density of players and range of communication can both help to
improve scalability of our approach. However, finding an upper bound
of computational cost is still open for future study.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

For the purpose of open access, the authors have applied a Cre-
ative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

Appendix A. Proof of Theorem 4.2

Proof. Assume that there is an arbitrary deterministic policy 𝜋(𝑏𝑡).
Applying such a policy from the initial belief state 𝑏𝑡0 until the terminal
time 𝑡𝑓 , if no branching event happened, which is when {𝑏𝑡|𝑡 = 𝑡0 +

1,… , 𝑡𝑓 } ∈ 𝛥∙, let {𝑎∙
𝑡
|𝑡 = 𝑡0,… , 𝑡𝑓 , 𝑎

∙
𝑡
= 𝜋(𝑏𝑡)} denote the corresponding

sequence of actions in such a case. Given known policy 𝜋(𝑏𝑡), the

Robotics and Autonomous Systems 170 (2023) 104544

18

H. Zhang et al.

Fig. 26. Example of branching tree. 𝑏𝑥
𝑘−1

or 𝑏𝑘 denotes the 𝑘th branching belief state in
the history along the branching tree. 𝜒𝑥

𝑘−1
or 𝜒𝑘 denotes the respective base trajectory

after the 𝑘th branching.

sequences {𝑏𝑡|𝑡 = 𝑡0 + 1,… , 𝑡𝑓 } ∈ 𝛥∙ and {𝑎∙
𝑡
|𝑡 = 𝑡0,… , 𝑡𝑓 , 𝑎

∙
𝑡
= 𝜋(𝑏𝑡)}

can be determined. Let 𝜒 = {𝑎∙
𝑡0
,… , 𝑎∙

𝑡𝑓
}.

If, during the execution of policy 𝜋(𝑏𝑡), a branching event hap-
pened at time 𝑡1, then the immediate action taken is 𝑎

◦
𝑡1

= 𝜋(𝑏𝑡1). Let
{𝑎′′

𝑡
|𝑡 = 𝑡1 + 1,… , 𝑡𝑓 , 𝑎

′′
𝑡

= 𝜋(𝑏𝑡)} denote the corresponding sequence
of actions for a later sequence of non-branching states. Let 𝜒◦ =

{𝑎◦
𝑡1
, 𝑎′′

𝑡1+1
,… , 𝑎′′

𝑡𝑓
}.

It can be seen that after iteratively applying this process, all the
possible states and the corresponding actions in the policy tree can
be reconstructed by the combination of 𝜒 and all 𝜒◦s, which means
that 𝜋(𝑏𝑡) can be fully reconstructed by 𝜋̂(𝑏𝑡, 𝜒) defined in Algorithm 1.
According to Lemma 4.1, there exists an optimal policy 𝜋∗(𝑏𝑡); thus, it
can be reconstructed by 𝜋̂∗(𝑏𝑡, 𝜒), which is also optimal. □

Appendix B. Proof of Theorem 4.3

Proof. Assume that there is an optimal policy of FSOA 𝜋̂∗
𝑓
(𝑏𝑡, 𝜒𝑓). We

build a heuristic reactive policy 𝜋̂𝑎(𝑏𝑡, 𝜒𝑓), which takes 𝜒𝑓 as the initial
base trajectory.

For an agent applying policy 𝜋̂𝑎, branchings may be triggered re-
cursively. We let 𝑏𝑘 be the 𝑘th branching belief state in the history
of one playout and let 𝜒𝑘 denote the respective base trajectory after
the 𝑘th branching. 𝑡𝑘 is the timing for 𝑏𝑘. Without loss of generality,
the backtrace history before 𝜒𝑘, 𝑏𝑘 and 𝑡𝑘 is omitted from the notation.
Assume that there can only be at most 𝑀 ≤ 𝑇ℎ∕𝑑𝑡 layers of branchings
within the time horizon. Thus, 0 ⩽ 𝑘 ⩽ 𝑀 . Along 𝜒𝑘, assume that 𝑁𝑘

possible branching events can happen. The structure of the branching
tree is illustrated in Fig. 26.

Let 𝑡𝑥
𝑘
and 𝑝𝑥

𝑘
denote the time instant and probability of the 𝑥th

possible branching event to occur along 𝜒𝑘, and 𝑏𝑥
𝑘
is the corresponding

branching belief state, where 0 ⩽ 𝑥 ⩽ 𝑁𝑘. 𝑝
0
𝑘
denotes the probability

that no branching event happens along 𝜒𝑘. Let 𝑉ℎ(𝑡𝑎, 𝑡𝑏|𝜒𝑘) denote the
hindsight value from time 𝑡𝑎 to 𝑡𝑏, given no branching event happens
along 𝜒𝑘. Let 𝑉

𝑓
𝜒𝑓
(𝑏𝑡0) = 𝑉𝜋̂∗

𝑓
(𝑏,𝜒𝑓)

(𝑏𝑡0) be the value of applying policy

𝜋̂∗
𝑓
from the initial belief state 𝑏𝑡0 until the finishing time 𝑡𝑓 , and let

𝑉 𝑎
𝜒𝑓
(𝑏𝑡0) = 𝑉𝜋̂𝑎(𝑏,𝜒𝑓)(𝑏𝑡0) be the value of applying heuristic reactive policy

𝜋̂𝑎. Then 𝑉 𝑎
𝜒𝑓
(𝑏𝑡0) can be constructed recursively in the following way.

𝑉 𝑎
𝜒𝑓
(𝑏0) = 𝑝0

0
𝑉ℎ(𝑡0, 𝑡𝑓 |𝜒𝑓) + 𝑝1

0
(𝛿1

0
𝑉ℎ(𝑡0, 𝑡

1
0
|𝜒𝑓)

+ (1 − 𝛿1
0
)𝑉 𝑎

𝜒1
0

(𝑏1
0
)) +⋯ + 𝑝

𝑁0

0
(𝛿

𝑁0

0
𝑉ℎ(𝑡0, 𝑡

𝑁0

0
|𝜒𝑓)

+ (1 − 𝛿
𝑁0

0
)𝑉 𝑎

𝜒
𝑁0
0

(𝑏
𝑁0

0
));

...

𝑉 𝑎
𝜒1
(𝑏1) = 𝑝0

1
𝑉ℎ(𝑡1, 𝑡𝑓 |𝜒1) + 𝑝1

1
(𝛿1

1
𝑉ℎ(𝑡1, 𝑡

1
1
|𝜒1)

+ (1 − 𝛿1
1
)𝑉 𝑎

𝜒1
1

(𝑏1
1
)) +⋯ + 𝑝

𝑁1

1
(𝛿

𝑁1

1
𝑉ℎ(𝑡1, 𝑡

𝑁1

1
|𝜒1)

+ (1 − 𝛿
𝑁1

1
)𝑉 𝑎

𝜒
𝑁1
1

(𝑏
𝑁1

1
));

...

𝑉 𝑎
𝜒𝑘
(𝑏𝑘) = 𝑝0

𝑘
𝑉ℎ(𝑡𝑘, 𝑡𝑓 |𝜒𝑘) + 𝑝1

𝑘
(𝛿1

𝑘

𝑉ℎ(𝑡𝑘, 𝑡
1
𝑘
|𝜒𝑘) + (1 − 𝛿1

𝑘
)𝑉 𝑎

𝜒1
𝑘

(𝑏1
𝑘
)) +⋯ + 𝑝

𝑁𝑘

𝑘

(𝛿
𝑁𝑘

𝑘
𝑉ℎ(𝑡𝑘, 𝑡

𝑁𝑘

𝑘
|𝜒𝑘) + (1 − 𝛿

𝑁𝑘

𝑘
)𝑉 𝑎

𝜒
𝑁𝑘
𝑘

(𝑏
𝑁𝑘

𝑘
));

...𝑘 ∈ [1,𝑀 − 1]

where 𝛿𝑥
𝑘
= (𝑡𝑥

𝑘
− 𝑡𝑘)∕(𝑡𝑓 − 𝑡𝑘). 𝜒

𝑥
𝑘
= 𝑓𝑎(𝑏

𝑥
𝑘
, 𝜒𝑘), which is the new base

trajectory after the 𝑥th branching along 𝜒𝑘. By abuse of notation, we
let 𝑏𝑘+1 = 𝑏𝑥

𝑘
and 𝜒𝑘+1 = 𝜒𝑥

𝑘
, which also omits the backtrace history.

Because there will be no more branching after 𝑏𝑀 , then 𝑉 𝑎
𝜒𝑀

(𝑏𝑀) =

𝑉 𝑎
𝜒𝑥
𝑀−1

(𝑏𝑥
𝑀−1

) = 𝑉
𝑓

𝜒𝑥
𝑀−1

(𝑏𝑥
𝑀−1

) = 𝑉
𝑓
𝜒𝑀

(𝑏𝑀). Based on the definition of

𝑓𝑎(𝑏, 𝜒), 𝑉
𝑎
𝜒𝑀

(𝑏𝑀) = 𝑉
𝑓

𝜒𝑥
𝑀−1

(𝑏𝑥
𝑀−1

) ≥ 𝑉
𝑓
𝜒𝑀−1

(𝑏𝑥
𝑀−1

). Thus,

𝑉 𝑎
𝜒𝑀−1

(𝑏𝑀−1) = 𝑝0
𝑀−1

𝑉ℎ(𝑡𝑀−1, 𝑡𝑓 |𝜒𝑀−1) + 𝑝1
𝑀−1

(𝛿1
𝑀−1

𝑉ℎ(𝑡𝑀−1, 𝑡
1
𝑀−1

|𝜒𝑀−1) + (1 − 𝛿1
𝑀−1

)𝑉 𝑎

𝜒1
𝑀−1

(𝑏1
𝑀−1

))+

... + 𝑝
𝑁𝑀−1

𝑀−1
(𝛿

𝑁𝑀−1

𝑀−1
𝑉ℎ(𝑡𝑀−1, 𝑡

𝑁𝑀−1

𝑀−1
|𝜒𝑀−1)+

(1 − 𝛿
𝑁𝑀−1

𝑀−1
)𝑉 𝑎

𝜒
𝑁𝑀−1
𝑀−1

(𝑏
𝑁𝑀−1

𝑀−1
))

≥ 𝑝0
𝑀−1

𝑉ℎ(𝑡𝑀−1, 𝑡𝑓 |𝜒𝑀−1) + 𝑝1
𝑀−1

(𝛿1
𝑀−1

𝑉ℎ(𝑡𝑀−1, 𝑡
1
𝑀−1

|𝜒𝑀−1)

+ (1 − 𝛿1
𝑀−1

)𝑉 𝑓
𝜒𝑀−1

(𝑏1
𝑀−1

)) +⋯+

𝑝
𝑁𝑀−1

𝑀−1
(𝛿

𝑁𝑀−1

𝑀−1
𝑉ℎ(𝑡𝑀−1, 𝑡

𝑁𝑀−1

𝑀−1
|𝜒𝑀−1)+

(1 − 𝛿
𝑁𝑀−1

𝑀−1
)𝑉 𝑓

𝜒𝑀−1
(𝑏

𝑁𝑀−1

𝑀−1
)) = 𝑉 𝑓

𝜒𝑀−1
(𝑏𝑀−1)

= 𝑉
𝑓

𝜒𝑥
𝑀−2

(𝑏𝑥
𝑀−2

) ≥ 𝑉 𝑓
𝜒𝑀−2

(𝑏𝑥
𝑀−2

)

Applying the same process iteratively, it can be seen that

𝑉 𝑎
𝜒𝑘
(𝑏𝑘) ≥ 𝑉 𝑓

𝜒𝑘
(𝑏𝑘) ≥ 𝑉 𝑓

𝜒𝑘−1
(𝑏𝑥

𝑘−1
)

...

𝑉 𝑎
𝜒𝑓
(𝑏𝑡0) ≥ 𝑉 𝑓

𝜒𝑓
(𝑏𝑡0)

Thus, given an optimal FSOA policy 𝜋̂∗
𝑓
(𝑏𝑡, 𝜒𝑓), there will always be a

heuristic reactive policy 𝜋̂𝑎(𝑏𝑡, 𝜒𝑓) to achieve a higher or at least equal
value, which proves the theorem. □

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2023.104544.

References

[1] Timothy H. Chung, Geoffrey A. Hollinger, Volkan Isler, Search and
pursuit-evasion in mobile robotics, Auton. Robots 31 (4) (2011) 299–316.

[2] Lawrence D. Stone, Johannes O. Royset, Alan R. Washburn, Optimal search for
moving targets.

[3] Zhijun Tang, Umit Ozguner, Motion planning for multitarget surveillance with
mobile sensor agents, IEEE Trans. Robot. 21 (5) (2005) 898–908.

[4] Scott A. Miller, Zachary A. Harris, Edwin K.P. Chong, A POMDP framework for
coordinated guidance of autonomous UAVs for multitarget tracking, EURASIP J.
Adv. Signal Process. 2009 (1) (2009) 1–17.

[5] Mac Schwager, Daniela Rus, Jean-Jacques Slotine, Decentralized, adaptive
coverage control for networked robots, Int. J. Robot. Res. 28 (3) (2009) 357–375.

[6] Timothy G. McGee, J. Karl Hedrick, Guaranteed strategies to search for mobile
evaders in the plane, in: American Control Conference, 2006, IEEE, 2006, pp.
6–pp.

[7] Junfei Xie, Luis Rodolfo Garcia Carrillo, Lei Jin, Path planning for UAV to
cover multiple separated convex polygonal regions, IEEE Access 8 (2020)
51770–51785.

[8] Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, Shankar Sastry,
Probabilistic pursuit-evasion games: theory, implementation, and experimental
evaluation, IEEE Trans. Robot. Autom. 18 (5) (2002) 662–669.

[9] Sonia Martínez, Francesco Bullo, Optimal sensor placement and motion
coordination for target tracking, Automatica 42 (4) (2006) 661–668.

[10] Andreas Kolling, Stefano Carpin, Cooperative observation of multiple moving
targets: an algorithm and its formalization, Int. J. Robot. Res. 26 (9) (2007)
935–953.

[11] Sara Bernardini, Maria Fox, Derek Long, Combining temporal planning with
probabilistic reasoning for autonomous surveillance missions, Auton. Robots 41
(2017) 181–203.

[12] Yan Jin, Yan Liao, Ali A. Minai, Marios M. Polycarpou, Balancing search and
target response in cooperative unmanned aerial vehicle (UAV) teams, IEEE Trans.
Syst. Man Cybern. B 36 (3) (2005) 571–587.

https://doi.org/10.1016/j.robot.2023.104544
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb12

Robotics and Autonomous Systems 170 (2023) 104544

19

H. Zhang et al.

[13] Eric W. Frew, Jack Elston, Target assignment for integrated search and tracking
by active robot networks, in: 2008 IEEE International Conference on Robotics
and Automation, IEEE, 2008, pp. 2354–2359.

[14] Jack Elston, Eric W. Frew, Hierarchical distributed control for search and
tracking by heterogeneous aerial robot networks, in: 2008 IEEE International
Conference on Robotics and Automation, IEEE, 2008, pp. 170–175.

[15] Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, John Wiley
& Sons, 2012.

[16] Gabriel Hoffmann, Steven Waslander, Claire Tomlin, Distributed cooperative
search using information-theoretic costs for particle filters, with quadrotor
applications, in: AIAA Guidance, Navigation, and Control Conference and Exhibit,
2006, p. 6576.

[17] Louis K. Dressel, Mykel J. Kochenderfer, Efficient and low-cost localization of
radio signals with a multirotor UAV, in: 2018 AIAA Guidance, Navigation, and
Control Conference, 2018, p. 1845.

[18] Ben Grocholsky, James Keller, Vijay Kumar, George Pappas, Cooperative air and
ground surveillance, Robot. Autom. Mag. IEEE 13 (3) (2006) 16–25.

[19] Cindy Leung, Shoudong Huang, Ngai Kwok, Gamini Dissanayake, Planning under
uncertainty using model predictive control for information gathering, Robot.
Auton. Syst. 54 (11) (2006) 898–910.

[20] Louis Dressel, Mykel J. Kochenderfer, Efficient decision-theoretic target localiza-
tion, in: Twenty-Seventh International Conference on Automated Planning and
Scheduling, 2017.

[21] James N. Eagle, The optimal search for a moving target when the search path
is constrained, Oper. Res. 32 (5) (1984) 1107–1115.

[22] Hiroyuki Sato, Johannes O. Royset, Path optimization for the resource-
constrained searcher, Nav. Res. Logist. 57 (5) (2010) 422–440.

[23] Dimitris J. Bertsimas, Garrett Van Ryzin, A stochastic and dynamic vehicle
routing problem in the Euclidean plane, Oper. Res. 39 (4) (1991) 601–615.

[24] Cheng Song, Lu Liu, Gang Feng, Yong Wang, Qing Gao, Persistent aware-
ness coverage control for mobile sensor networks, Automatica 49 (6) (2013)
1867–1873.

[25] Pablo Lanillos, Eva Besada-Portas, Gonzalo Pajares, José J Ruz, Minimum time
search for lost targets using cross entropy optimization, in: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2012, pp.
602–609.

[26] Sara Bernardini, Maria Fox, Derek Long, Chiara Piacentini, Deterministic versus
probabilistic methods for searching for an evasive target, in: Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[27] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, Sebastian Thrun,
Approximate solutions for partially observable stochastic games with common
payoffs, in: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 1, IEEE Computer Society,
2004, pp. 136–143.

[28] Iadine Chades, Bruno Scherrer, François Charpillet, A heuristic approach for
solving decentralized-pomdp: Assessment on the pursuit problem, in: Proceedings
of the 2002 ACM Symposium on Applied Computing, ACM, 2002, pp. 57–62.

[29] Christos H. Papadimitriou, John N. Tsitsiklis, The complexity of Markov decision
processes, Math. Oper. Res. 12 (3) (1987) 441–450.

[30] Daniel S Bernstein, Robert Givan, Neil Immerman, Shlomo Zilberstein, The
complexity of decentralized control of Markov decision processes, Math. Oper.
Res. 27 (4) (2002) 819–840.

[31] Richard D. Smallwood, Edward J. Sondik, The optimal control of partially
observable Markov processes over a finite horizon, Oper. Res. 21 (5) (1973)
1071–1088.

[32] Eric A. Hansen, Daniel S. Bernstein, Shlomo Zilberstein, Dynamic programming
for partially observable stochastic games, in: AAAI, Vol. 4, 2004, pp. 709–715.

[33] E. Walraven, Mtj Spaan, Point-based value iteration for finite-horizon POMDPs,
J. Artificial Intelligence Res. (2019).

[34] Mauricio Araya, Olivier Buffet, Vincent Thomas, Françcois Charpillet, A POMDP
extension with belief-dependent rewards, Adv. Neural Inf. Process. Syst. 23
(2010).

[35] Yash Satsangi, Shimon Whiteson, Frans A Oliehoek, Matthijs TJ Spaan, Exploiting
submodular value functions for scaling up active perception, Auton. Robots 42
(2) (2018) 209–233.

[36] Hyeong Soo Chang, Robert Givan, Edwin K.P. Chong, Parallel rollout for online
solution of partially observable Markov decision processes, Discrete Event Dyn.
Syst. 14 (3) (2004) 309–341.

[37] M. Ahmadi, U. Rosolia, MD Ingham, R.M. Murray, A.D. Ames, Risk-averse
decision making under uncertainty, 2021.

[38] Stéphane Ross, Joëlle Pineau, Sébastien Paquet, Brahim Chaib-draa, Online
planning algorithms for POMDPs, J. Artificial Intelligence Res. 32 (2008)
663–704.

[39] Haoyu Zhang, Sandor Veres, Andreas Kolling, Simultaneous search and moni-
toring by unmanned aerial vehicles, in: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), IEEE, 2017, pp. 903–910.

[40] Kamil Dedecius, Diffusion estimation of state-space models: Bayesian formulation,
in: Machine Learning for Signal Processing (MLSP), 2014 IEEE International
Workshop on, IEEE, 2014, pp. 1–6.

[41] Zhijun Tang, Ümit Özgüner, Sensor fusion for target track maintenance with
multiple UAVs based on Bayesian filtering method and hospitability map, in:
Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, Vol. 1, IEEE,
2003, pp. 19–24.

[42] Martin L. Puterman, Markov decision processes. Discrete stochastic dynamic
programming MVspa, 2005.

[43] Matthijs T.J. Spaan, Tiago S. Veiga, Pedro U. Lima, Decision-theoretic planning
under uncertainty with information rewards for active cooperative perception,
Auton. Agents Multi-Agent Syst. 29 (6) (2014) 1157–1185.

[44] Eric A. Hansen, Solving POMDPs by searching in policy space, in: Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann Publishers Inc., 1998, pp. 211–219.

[45] Pascal Poupart, Craig Boutilier, VDCBPI: an approximate scalable algorithm for
large POMDPs, in: Advances in Neural Information Processing Systems, 2005,
pp. 1081–1088.

[46] E.K.P. Chong, C. Kreucher, A.O. Hero III, POMDP approximation methods based
on heuristics and simulation, Found. Appl. Sensor Manage. 8 (2007) 95–120.

[47] W. Ding, L. Zhang, J. Chen, S. Shen, EPSILON: An efficient planning system for
automated vehicles in highly interactive environments, IEEE Trans. Robot.: Publ.
IEEE Robot. Autom. Soc. (2) (2022) 38.

[48] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1, Athena
Scientific Belmont, MA, 1995.

[49] Vincent Thomas, Gérémy Hutin, Olivier Buffet, Monte Carlo information-oriented
planning, 2021, arXiv preprint arXiv:2103.11345.

[50] Songhwai Oh, Shankar Sastry, Luca Schenato, A hierarchical multiple-target
tracking algorithm for sensor networks, in: Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, IEEE, 2005, pp.
2197–2202.

[51] P.J. van Laarhoven, E.H. Aarts, Simulated Annealing: Theory and Applications,
Vol. 37, Springer Science & Business Media, 2013.

[52] Yang You, Vincent Thomas, Francis Colas, Olivier Buffet, Solving infinite-horizon
dec-POMDPs using finite state controllers within JESP, in: 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2021,
pp. 427–434.

[53] Ebtehal Turki Alotaibi, Shahad Saleh Alqefari, Anis Koubaa, LSAR: Multi-UAV
collaboration for search and rescue missions, IEEE Access 7 (2019) 55817–55832,
http://dx.doi.org/10.1109/ACCESS.2019.2912306.

[54] Graeme Best, Oliver M Cliff, Timothy Patten, Ramgopal R Mettu, Robert Fitch,
Dec-MCTS: Decentralized planning for multi-robot active perception, Int. J.
Robot. Res. 38 (2–3) (2019) 316–337.

[55] Laëtitia Matignon, Laurent Jeanpierre, Abdel-Illah Mouaddib, Coordinated multi-
robot exploration under communication constraints using decentralized markov
decision processes, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 26, 2012, pp. 2017–2023.

Haoyu Zhang is a former Ph.D. Student at the Depart-
ment of Automatic Control and Systems Engineering at the
University of Sheffield. His research interests include robot
search and pursuit evasion, planning and decision making,
and flight dynamics and control. After receiving his Ph.D.
degree, he is currently working in the field of autonomous
driving of commercial road vehicles.

Sandor M. Veres had been Professor of Autonomous Con-
trol Systems at the Department of Automatic Control and
Systems Engineering at the University of Sheffield, UK,
where he had been the director of the Autonomous Systems
and Robotics Group until his retiremment in 2022. In the
past four decades he published in a variety of research areas
such as information theory, system identification, adaptive
control, active sound and vibration control, satellite forma-
tion flying, verification of decision systems on underwater
vehicles and drones, methods of reconfigurable autonomy,
decision making among distributed agents, verifiable soft-
ware architectures for autonomous robots and recently on
human robot interactions with building of trust, overall in
about 300 refereed papers and 6 books.

Andreas Kolling is a principal applied scientist at Ama-
zon Robotics working on autonomous mobility. Previously,
Andreas Kolling worked as a senior principal scientist for
iRobot, developing technologies for planning, navigation,
and mapping for the Roomba i7+, which received numerous
awards as the most advanced consumer robot. Prior to
this, he was an assistant professor at the University of
Sheffield, England, and a postdoctoral research fellow at
the Robotics Institute at Carnegie Mellon University. His
research interests include planning, mapping, AI, machine
learning, multi-robot systems, human–robot interaction and
robot software. He has published more than sixty peer-
reviewed articles, served as general co-chair for DARS 2016,
and as associate editor for ICRA and IROS since 2014.

http://refhub.elsevier.com/S0921-8890(23)00183-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb31
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb42
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb47
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb48
http://arxiv.org/abs/2103.11345
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb50
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb51
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb52
http://dx.doi.org/10.1109/ACCESS.2019.2912306
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb54
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55
http://refhub.elsevier.com/S0921-8890(23)00183-5/sb55

	Simultaneous search and monitoring by multiple aerial robots
	Introduction
	Introduction of Related Works and SSM
	Contributions
	Structure of Paper

	Target and Pursuer Modelling
	Target Modelling
	Pursuer Modelling
	Overall Model

	Value Function
	Policy Planning for a Single Agent
	Concept for Solving POMDP
	Fixed Sequence of Actions vs. Reactive Policy
	Simplifications
	Policy Reconstruction
	Heuristic Reactive Branching
	Monte Carlo Estimation of Value
	Optimisation of Root Base Trajectory
	Candidate Trajectory Mutation
	Optimisation Algorithm Based on Simulated Annealing

	Closed Form of Heuristic Reactive Policy Planning

	Planning With Entropy Reduction Method
	Cooperative Policy Planning for Multiple Agents
	Cooperative Policy Planning Based on Nash Equilibrium
	Local Policy Reconstruction
	Joint Root Base Trajectory Planning
	Closed Form of Cooperative Policy Planning
	Limited Communication Range

	Simulation & Experiment
	Simulation of Single Pursuer SSM
	Case Study
	Comparison with FSOA
	Comparison with Entropy Reduction
	Comparison with Monte Carlo Tree Search

	Experiment with a Single Pursuer SSM
	Simulation of Multiple Pursuer SSM
	Case Study
	Comparison with Unlimited Range of Communication
	Comparison with Limited Range of Communication

	Study of Scalability

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A. Proof of Theorem 4.2
	Appendix B. Proof of Theorem 4.3
	Appendix C. Supplementary data
	References

