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Tropical deforestation is associated with 
considerable heat-related mortality
 

C. L. Reddington    1  , C. Smith    1, E. W. Butt    1, J. C. A. Baker    1, 
B. F. A. Oliveira    2, E. I. Yamba    3 & D. V. Spracklen    1

Tropical deforestation induces local warming and is a potential human 
health risk, having been linked to elevated human heat stress and reduced 
safe outdoor working hours. Here we show deforestation-induced local 
warming is associated with 28,000 (95% confidence interval: 23,610–33,560) 
heat-related deaths per year using a pan-tropical assessment. Analysis of 
satellite data shows tropical deforestation during 2001–2020 exposed 
345 million people to local warming with population-weighted daytime 
land surface warming of 0.27 °C. Estimated heat-related mortality rates are 
greatest in Southeast Asia (8–11 deaths for every 100,000 people living in 
deforested areas) followed by tropical regions of Africa and the Americas. 
In regions of forest loss, local warming from deforestation could account 
for over one third of total climate heat-related mortality, highlighting the 
important contribution of tropical deforestation to ongoing warming and 
heat-related health risks within the context of climate change.

Over recent decades, tropical forests have faced extensive deforesta-
tion and degradation1,2, driven primarily by agricultural expansion 
and logging3. The impacts of tropical forest loss are profound, affect-
ing biodiversity4, global climate5,6 the hydrological cycle7 and human 
communities8–12. Previous studies have demonstrated a strong associa-
tion between tropical forest loss and increases in surface temperature 
on both local6,12–19 and regional20,21 scales. The local warming associated 
with deforestation can be immediate and of substantial magnitude22, 
equivalent to or larger than that projected from a century of global 
climate change under a high emissions scenario12,20.

Human exposure to elevated temperatures presents a major 
potential health risk. Heat stress can negatively affect mood and 
mental health23, impair physical performance24 and reduce labour 
productivity25,26. Furthermore, exposure to heat is associated with an 
increased risk of morbidity and mortality from cardiovascular diseases 
and other causes27,28. Considerable heat-related mortality has been 
attributed to recent climate change29.

The effects of climate change on human health are compounded 
by socioeconomic and demographic factors30. Population vulnerability 
to climate change is linked to health expenditure and proportions of 

obese and elderly populations31. Along with these factors, heat-related 
human health effects can be modulated by the degree of technological 
adaptation32, which can be strongly linked to socioeconomic status33. In 
lower-income countries with limited adaptive capacity, including many 
countries in the tropics, heat-stress-related labour capacity losses may 
have substantial economic consequences34 and increase poverty35.

Tropical deforestation is associated with increases in human 
heat exposure12,22,36. In field experiments, deforestation-induced heat 
exposure has been demonstrated to reduce cognitive performance37 
and labour productivity26. Across the tropics, local warming from 
deforestation between 2003 and 2018 was associated with losses in 
safe thermal working conditions for 2.8 million outdoor workers12. 
Little is known about the potential for deforestation-induced warm-
ing to lead to additional deaths at the pan-tropical scale. Wolff et al.10 
showed that in Berau Regency in Indonesia, the combination of global 
climate change and deforestation between 2002 and 2018 increased 
population-weighted mean temperatures by 0.86 °C, accounting for an 
estimated 7.3–8.5% of all-cause mortality (or 101–118 additional deaths 
per year). Wider assessments of the population-weighted warming due 
to deforestation or the potential impacts on health and mortality are 
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regional annual mean warming (ΔT) of +0.34 °C in Tropical Central and 
South America, +0.10 °C in Tropical Africa and +0.72 °C in Southeast Asia. 
Areas of forest loss coincide with areas of strong positive ΔT across many 
regions of the tropics (Fig. 1). We defined 1 km2 pixels that experienced at 
least two percentage points of forest loss during 2001–2020 as pixels that 
experienced deforestation (Methods). A total of 60% of pixels with warm-
ing of greater than four standard deviations from the mean (4.4 °C) expe-
rienced deforestation during 2001–2020, while deforested pixels make 
up only 17% of pixels in the tropics. The average ΔT in deforested locations 
across the tropics (+0.70 °C) exceeds warming that has occurred over 
areas that have maintained forest cover (+0.20 °C) (Table 1). Regionally, 
average ΔT in deforested locations (+0.73 °C in Tropical Central and 
South America, +0.75 °C in Tropical Africa and +0.61 °C in Southeast 
Asia) are 2–9× the average ΔT in locations that maintained forest cover 
(+0.30 °C in Tropical Central and South America, +0.08 °C in Tropical 
Africa and +0.31 °C in Southeast Asia). Similar to previous studies10,12,17, we 
assess the warming due to deforestation using land surface temperature 
data because near-surface air temperature data are not available at suf-
ficiently high spatial resolution in the tropics. We compared land surface 
temperature and near-surface air temperature from the European Centre 
for Medium-Range Weather Forecasts Reanalysis v5 (ERA5 (ref. 41)) over 
the same period and find they agree to within 2% (Extended Data Table 1), 
confirming our approach is justified (Methods).

Deforestation-induced ΔT and human heat 
exposure
To estimate the ΔT due to deforestation only, excluding the contri-
bution of global climate change and regional climate variability, we 

lacking but are urgently needed to inform land use policy and climate 
adaptation strategies.

Here, we make the first pan-tropical assessment of the 
population-weighted warming due to tropical deforestation and the 
associated heat-related mortality burden. We focus our analysis on 
tropical deforestation that occurred from 2001 to 2020. We use spa-
tially explicit satellite datasets of annual tree cover change1 to identify 
forest loss at a ~1 km2 spatial scale. We use satellite datasets of land 
surface temperature38 to quantify surface warming that has occurred 
over this period. Through comparing land surface temperature change 
over locations of forest loss to neighbouring locations without forest 
loss, we isolate the warming due to deforestation. We then use human 
population distribution data39 to map population-weighted exposure 
to this warming. Finally, we use data on non-accidental mortality40 com-
bined with relationships between heat exposure and excess mortality 
from the literature31 to estimate the heat-attributable excess mortality 
due to nearby tropical deforestation. Our analysis provides important 
evidence of the negative potential human health impacts of tropical 
deforestation at local, regional and national scales.

Forest cover loss and local temperature changes
During 2001–2020, a total of 1.6 million km2 of forest area (with greater 
than 10% forest canopy cover) was lost across the tropics. The great-
est forest loss occurred across Tropical Central and South America 
(~760,000 km2), with extensive forest loss also occurring across South-
east Asia (~490,000 km2) and Tropical Africa (~340,000 km2). Surface 
temperatures in the tropics have generally increased over this time period 
due to a combination of global climate change and deforestation, with 
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Fig. 1 | Forest loss, surface warming and population distribution across the tropics. a, The percentage-point change in forest cover from 2001 to 2020. b, The change 
in annual mean land surface temperature (ΔT) between the 2001–2003 mean and the 2018–2020 mean. c, The spatial distribution of population count in 2020.
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compared ΔT over locations of forest loss with neighbouring locations 
without forest loss. Over 2001–2020, deforestation is associated with 
0.45 °C of warming on average across deforested areas of the tropics 
(Table 1). The regional mean deforestation-induced ΔT is greatest in 
Tropical Central and South America (+0.53 °C), with slightly lower 
ΔT in Tropical Africa (+0.39 °C) and Southeast Asia (+0.37 °C). This 
means that deforestation accounts for over half of the regional aver-
age warming in deforested areas of the tropics (and ~70% in Tropical 
Central and South America). In general, the regions with the greatest 
deforestation-induced warming correspond to the regions with the 
greatest forest loss (Fig. 2), particularly in the Arc of Deforestation 
in the southern Amazon and Sumatra and Kalimantan in Indonesia. 
Strong deforestation-induced warming is also visible in other areas that 
have experienced extensive forest loss1, including in Central America 
(Guatemala and Nicaragua), southern West Africa (Cote d’Ivoire, Ghana 
and Nigeria), Central and Eastern Africa (Democratic Republic of the 
Congo, Uganda and Tanzania) and Mainland Southeast Asia (Cambodia 
and Vietnam).

This local warming associated with deforestation has important 
implications for large populations that live across tropical forest 
regions (Fig. 1c). The tropics (25° S – 25° N) are home to over 3.5 bil-
lion people, with 13% (452 million people) living in regions that have 
experienced forest loss during the 2001–2020 period. We estimate that 
345 million people were exposed to warming due to deforestation dur-
ing 2001–2020 (Table 2), with substantial numbers of people exposed 
to deforestation-induced ΔT of greater than +1 °C (33 million people), 
+2 °C (8.0 million people) and +3 °C (2.6 million people). Across the 
tropics, 76% of people living in regions of tropical forest loss were 
exposed to deforestation-induced warming, with a similar proportion 
in the different tropical regions (74–80%). In Tropical Africa, 148 million 
people were exposed to warming from deforestation, compared with 
122 million people in Southeast Asia and 67 million people in Tropical 
Central and South America.

Over 2001–2020, the populations in areas of tropical forest loss 
were exposed to a mean ΔT of +0.27 °C due to deforestation (Table 1). 
Regional population-weighted mean ΔT is greatest in Tropical Africa 
(+0.32 °C), where deforestation-induced warming overlaps with more 
heavily populated areas, and lowest in Tropical Central and South Amer-
ica (+0.22 °C), where deforested areas with strong warming are more 
sparsely populated (Fig. 1). Across all regions, population-weighted 
warming due to deforestation is less than area-weighted warming 
(Table 1) due to lower population densities in rural areas, which typically 
experience greater forest loss (Extended Data Figs. 1–3).

Deforestation-associated heat-attributable 
mortality
We estimated the heat-related excess mortality burden associated with 
deforestation by combining our estimates of deforestation-induced 
ΔT with region-specific heat vulnerability indices31 and non-accidental 
mortality rates (including mortality from all causes apart from exter-
nal causes)40. In general, areas with the greatest mortality burden 
correspond to regions with moderate to high levels of forest loss 

and deforestation-induced warming (Fig. 3). However, because the 
mortality estimates also depend on other factors (population count 
(Fig. 1c), non-accidental mortality rates and population heat vulner-
ability (Extended Data Table 2)), the spatial pattern differs from that 
of the deforestation-induced ΔT (Fig. 2). The spatial distribution of the 
deforestation-associated heat-related mortality rate (that is, deaths 
per 100,000 people) (Extended Data Fig. 4) is more consistent with 
deforestation-induced ΔT (Fig. 2), demonstrating that the heat-related 
mortality burden is strongly dependent on the magnitude of the popu-
lation within areas of forest loss.

Overall, we estimate that warming due to deforestation over 
2001–2020 is associated with an additional 28,330 (95% confidence 
interval (CI): 23,610–33,560) non-accidental deaths per year (Table 2). 
The estimated deforestation-associated heat-related mortality burden 
is greatest in Southeast Asia (15,680 (95% CI: 13,000–18,470) annual 
excess deaths) due to a relatively large exposed population, predomi-
nantly in Indonesia, with greater heat vulnerability. In Tropical Africa 
we estimate 9,890 (95% CI: 8,250–11,850) annual excess deaths associ-
ated with deforestation. This is lower than in Southeast Asia, despite 
greater population exposure to deforestation-induced warming and 
higher underlying non-accidental mortality rates, because of the lower 
heat vulnerability that we have assumed for populations in this region 
(Methods). Although areas of forest loss in Tropical Central and South 
America experience some of the largest deforestation-induced warm-
ing in the tropics, populations in these areas are relatively low, leading 
to lower population exposure and heat-related mortality (2,520 (95% CI: 
2,160–2,950) annual excess deaths) than in the other tropical regions.

Discussion
Tropical forest regions have warmed substantially over the last two 
decades due to a combination of climate change and land-use change. 
We show that over the period 2001–2020, tropical deforestation has 
caused annual mean land surface warming of 0.7 °C, in line with pre-
vious assessments12–18. In our analysis, deforestation-induced warm-
ing accounts for 64% of the total warming experienced over regions 
with tropical forest loss (Table 1), demonstrating that deforestation 
is a major driver of local warming. Deforestation caused 39% of the 
population-weighted warming experienced over regions with tropical 
forest loss (Table 1).

Our findings suggest that warming from tropical deforestation 
impacts large numbers of people and could result in a substantial health 
burden. We estimate that 345 million people were exposed to local 
warming from forest loss during 2001–2020. We estimate this warming 
is associated with an annual heat-related mortality burden of 28,330 
(95% CI: 23,610–33,560), equivalent to 39% of the total heat-related 
mortality (from global climate change and deforestation combined) 
over locations of forest loss (Table 2). The Global Burden of Disease 
(GBD) Study42 estimated annual excess deaths attributable to high tem-
perature in 2019 to be 14,400 (95% CI: 10,800–18,300) in Latin America 
and the Caribbean, 50,800 (95% CI: 36,400–66,300) in Sub-Saharan 
Africa and 41,200 (95% CI: 34,600–49,300) in Southeast Asia. We esti-
mate the total annual heat-related excess deaths (associated with 

Table 1 | Changes in annual mean land surface temperature (ΔT) in areas of the tropics that maintained (‘non-deforested’) 
and lost (‘deforested’) forest cover during 2001–2020

Region ΔT in non-deforested locations (°C) ΔT in deforested locations (°C) Deforestation-induced local ΔT (°C)

Area-wgtd Pop-wgtd Area-wgtd Pop-wgtd Area-wgtd Pop-wgtd

Tropical Central and South America 0.30 −0.12 0.73 0.40 0.53 0.22

Tropical Africa 0.08 0.12 0.75 0.97 0.39 0.32

Southeast Asia 0.31 0.36 0.61 0.56 0.37 0.26

Tropics (25° S to 25° N) 0.20 0.19 0.70 0.70 0.45 0.27

The estimated local ΔT due to forest loss between 2001 and 2020 (excluding the contribution of global climate change) is also shown (Methods). The area-weighted mean (‘area-wgtd’) and 
population-weighted mean (‘pop-wgtd’) ΔTs are shown for each region. All regions are bounded by latitudes of 25° S and 25° N.
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warming from both global climate change and deforestation during 
2001–2020) for forest loss regions to be 5,800 (95% CI: 5,000–6,700) in 
Tropical Central and South America, 28,000 (95% CI: 23,300–33,800) in 
Tropical Africa and 37,000 (95% CI: 30,700–43,600) in Southeast Asia. 
Calculating these mortality burdens for the total population, our esti-
mates are comparable with those from the GBD for Latin America and 
the Caribbean and Sub-Saharan Africa but notably higher for Southeast 
Asia. However, large differences in methodology, timescale, spatial 
resolution and temperature datasets complicate direct comparison. 
Notably, GBD estimates rely on ERA5 (ref. 41) near-surface air tempera-
ture, which lacks recent and dynamic land cover data (using a monthly 
climatological vegetation map for the years 2000–200843). Therefore, 
in regions with sparse weather station coverage, ERA5 does not account 
for land cover change impacts on local temperature and does not cap-
ture increases in temperature with increasing deforestation44.

Heat-related mortality from deforestation accounts for 1.1% of 
non-accidental mortality over regions of tropical forest loss, increas-
ing to 1.6% over Southeast Asia (Table 2). Wolff et al.10 estimated that 

warming from the combination of global climate change and deforesta-
tion during 2002–2018 accounted for 7.3–8.5% of all-cause mortality 
in the Berau Regency in East Kalimantan, Indonesia. In comparison, 
we estimate warming from global climate change and deforestation 
during 2001–2020 accounts for 6.7% of all-cause mortality in Berau 
Regency and 8.0% for populations in locations of forest loss (Extended 
Data Table 3). We estimate greater population-weighted ΔT, due to the 
inclusion of more years of surface temperature data, but we apply a 
lower heat vulnerability index to be conservative and to be consistent 
with the regional average value for Southeast Asia from Lee et al.31. We 
estimate that warming from deforestation during 2001–2020 accounts 
for 2.0% of all-cause mortality in areas of forest loss in Berau Regency 
and 34.5% of the total heat-attributable mortality (from global climate 
change and deforestation combined).

We find that 42% of the tropics-wide heat-related mortality burden 
associated with deforestation occurs in regions which had greater than 
50% forest canopy cover in 2001 compared with 58% in regions of inter-
mediate canopy cover (10–50%) (Extended Data Table 4). Most forest 
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Fig. 2 | Change in local annual mean surface temperature (ΔT) due to 
deforestation during 2001–2020. a–f, The maps show regions of Tropical 
Central and South America (a and b), Tropical Africa (c and d), and Southeast 
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loss occurs in regions that have already been partially deforested such 
as the Arc of Deforestation (Fig. 1a), which also overlap regions with 
greater population density (Fig. 1c) and heat-related mortality (Fig. 3). 
In Africa, forest loss in areas of intermediate canopy cover accounts for 
70% of the heat-related mortality burden associated with forest loss. 
This highlights the impact of forest loss within regions of naturally 
occurring intermediate canopy cover such as the miombo woodlands 
of Africa and the Cerrado and Chaco in South America. Our work high-
lights the importance of sustainable management of these biomes to 
reduce potential negative health impacts on local populations.

To contextualize the heat-related mortality burden, it is important 
to consider other health risks associated with tropical deforestation. 
Smoke pollution from deforestation-related fires can degrade regional 
air quality45,46 leading to adverse health impacts47,48. In 2015, peatland 
fires in Indonesia resulted in exposure of 69 million people in Equato-
rial Asia to unhealthy air quality conditions49. Long-term exposure 
to particulate air pollution from forest and vegetation fires is esti-
mated to cause ~3,000–16,800 premature deaths annually in South 
America50–52, ~6,000–59,000 in Southeast Asia49,53,54 and ~43,000 in 
Africa55. Our estimates of the heat-related mortality burden associated 
with deforestation-induced warming are comparable with the lower 
end of estimates of these fire-related mortality estimates.

Tropical deforestation is also linked to increased malaria risk in 
some contexts11,56, with evidence suggesting it is an important driver of 
childhood malaria risk in poor households57. With deforestation-driven 
malaria incidence estimates only available for the Brazilian Amazon11, 
we compare our results to national-level malaria mortality estimates 
from the GBD42, noting that these may underestimate the burden 
in deforested areas. In 2019, malaria accounted for 0.04% (95% CI: 
0.02–0.07%) of total deaths in Latin America and Caribbean, 7.98% 
(95% CI: 3.24–15.17%) in Sub-Saharan Africa, and 0.04% (95% CI: 

0.01–0.16%) in Southeast Asia42. We estimate that heat-related mor-
tality associated with deforestation during 2001–2020 accounts for 
a smaller proportion of total deaths than malaria in Tropical Africa 
(0.13%) but greater proportions in Tropical Central and South America 
(0.08%) and Southeast Asia (0.23%). These results suggest that the 
deforestation-associated heat-related mortality burden is comparable 
with other major health burdens linked to tropical deforestation in the 
Americas and Southeast Asia.

There are no country-specific heat vulnerability indices available 
for African countries due to lack of data31, and so we have used the 
continental-average heat vulnerability index for South America. Lee 
et al.31 report that the heat vulnerability index shows a large negative 
dependence on the total health expenditure per capita and a large 
positive dependence on proportions of obese and elderly populations. 
A comparison of the key factors that affect heat vulnerability31 for 
Sub-Saharan Africa and other regions and countries (Extended Data 
Table 5) suggests that using the South American heat vulnerability 
index for African countries may be conservative. Increasing the heat 
vulnerability index used for African countries from the South American 
index (2.34%p °C−1) to the Southeast Asian index (5.29%p °C−1) more 
than doubles the deforestation-associated heat-attributable mortality 
burden estimate for Tropical Africa. Our analysis highlights the critical 
need for increased climate and health data to improve understanding 
of heat-health relationships in tropical African countries and other 
understudied tropical regions.

Our study focused on the local biophysical warming impacts of 
deforestation (that is, warming within the same 1 km2 pixel as the for-
est loss). Butt et al.21 demonstrated that deforestation of the Amazon 
caused strong warming at distances up to 100 km away from the forest 
loss. We do not include potential health effects of associated regional 
temperature changes on populations located outside deforested 

Table 2 | Population exposure to local warming from deforestation between 2001 and 2020 and the associated heat-related 
non-accidental mortality burden

Region/ country Population in 
locations of 
forest loss

Population exposed to 
deforestation-induced 
warming

Annual 
deforestation-associated 
heat-related mortality

Annual 
deforestation-associated 
heat-related mortality 
rate (deaths per 100,000 
people)

Percentage of 
total heat-related 
mortality

Percentage 
of total 
non-accidental 
mortality

Tropics (25° S to 
25° N)

452 million 345 million (76%) 28,330 (23,610–33,560) 6 (5–7) 39.1% 1.06%

Tropical Central 
and South America

89.8 million 66.9 million (74%) 2,520 (2,160–2,950) 3 (2–3) 43.5% 0.55%

Tropical Africa 185 million 148 million (80%) 9,890 (8,250–11,850) 5 (4–6) 35.2% 0.85%

Southeast Asia 165 million 122 million (74%) 15,680 (13,000–18,470) 10 (8–11) 42.4% 1.60%

Indonesia 62.9 million 48.9 million (78%) 6,730 (5,540–7,930) 14 (11–16) 46.4% 0.41%

Malaysia 17.5 million 15.3 million (88%) 2,100 (1,680–2,550) 14 (11–17) 37.3% 1.26%

Vietnam 10.9 million 6.95 million (64%) 2,020 (1,730–2,310) 29 (25–33) 52.0% 0.35%

Democratic 
Republic of the 
Congo

51.0 million 42.0 million (82%) 1,840 (1,530–2,190) 4 (4–5) 34.0% 0.31%

Philippines 16.9 million 13.9 million (82%) 1,740 (1,490–2,010) 13 (11–14) 30.9% 0.31%

Nigeria 21.0 million 17.2 million (82%) 1,310 (1,090–1,570) 8 (6–9) 23.1% 0.09%

Mozambique 8.98 million 8.03 million (89%) 1,020 (870–1,230) 13 (11–14) 50.3% 0.47%

Brazil 30.7 million 21.6 million (70%) 990 (890–1,100) 5 (4–5) 38.6% 0.09%

Tanzania 9.35 million 8.03 million (86%) 800 (670–930) 10 (9–12) 107.0% 0.23%

Uganda 11.5 million 9.17 million (80%) 650 (560–770) 7 (6–8) 37.0% 0.27%

The results are shown for populations located in areas of forest loss only, aggregated for the whole tropics, for the three main tropical forest regions and for the ten countries with the greatest 
deforestation-associated heat-related mortality burdens. All regions are bounded by latitudes of 25° S and 25° N. Populations are only counted in forest loss pixels with valid ΔT data and a net 
forest extent increase of <50%-point. Mortality burdens are shown to the nearest ten for the total mortality and nearest whole number for the mortality rate. The uncertainty ranges are shown 
in parentheses and are estimated using the 95% CI from the non-accidental mortality rates40. Note that deforestation-associated heat-related deaths in a region can exceed the number of total 
heat-related deaths in that region where surrounding non-deforested areas experience an overall cooling (Methods).
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regions, suggesting we may have underestimated the impacts on human 
health. Tropical deforestation also releases CO2 that contributes to 
global warming. During 2014–2023, deforestation released 1.7 GtC yr−1, 
accounting for 15% of total anthropogenic CO2 emissions58. The global 
warming from release of CO2 is not included in our study, meaning that 
our estimates of heat-related mortality associated with deforestation 
are likely to be conservative. We estimate that non-deforested regions 
of the tropics have warmed by 0.2 °C over 2001–2020 (Table 1). Based 
on the contribution to global emissions, CO2 from tropical deforesta-
tion may have accounted for 0.03 °C (15%) of this warming, which is 
substantially less than the biophysical warming (0.45 °C) in regions of 
tropical deforestation. Nevertheless, the warming from CO2 emissions 
acts globally and the contribution of tropical deforestation to the global 
burden of heat-related mortality29 may be substantial. This highlights 
the strong potential for reducing tropical deforestation to contribute 
to reduced warming at both local and global scales.

Future global climate change is projected to increase heat-related 
mortality in the tropics31,59 and severely impact outdoor worker 

wellbeing and health60. Tropical deforestation and its associated local 
warming are likely to amplify these impacts. Climate model simula-
tions indicate that cropland expansion into tropical forests could 
elevate local near-surface air temperature and increase heat stress in 
low-latitude regions61. In deforested areas of the tropics, future global 
climate change is projected to decrease safe outdoor working hours for 
millions of people12. In the Amazon region, scenarios of future climate 
warming and deforestation project substantial increases in heat stress 
and reductions in work capacity62. Furthermore, compound climate 
extremes including drought-heatwave episodes, which may be associ-
ated with enhanced fire activity and heat-related mortality in Brazil63, 
are increasing in a warming world64. In 2023 and 2024, critical episodes 
of prolonged drought occurred in the Brazilian Amazon, illustrating 
how climate change intensifies health threats through direct impacts, 
such as heatwaves and water scarcity, and indirect impacts, such as air 
pollution from fires.

Lower-income populations in the tropics are already experi-
encing a greater increase in the frequency of extreme temperatures 
compared with higher income populations65 and are projected to be 
disproportionately impacted under future global warming66. Tropi-
cal nations have particularly high heat vulnerability indices, suggest-
ing their populations may be at higher mortality risk due to climate 
change31. This higher heat vulnerability is linked to lower per-capita 
health expenditure31, reflecting persistent socioeconomic disparities 
in healthcare access67. Vulnerable populations, particularly traditional 
and indigenous communities, often live near deforested areas and face 
limited access to resources and infrastructure needed to cope with the 
combination of rising temperatures and environmental changes caused 
by deforestation and climate change62. Our findings suggest that for 
populations in areas of tropical forest loss, deforestation-driven warm-
ing may exacerbate the heat-related health effects of global climate 
change, with critical implications for outdoor labour10,12. Furthermore, 
these populations may also suffer from disproportionate exposure 
to other deforestation-related health risks, such as malaria57 and 
fire-sourced air pollution54.

Our results underscore the role of deforestation in intensifying 
local warming within the broader context of climate change. Conserva-
tion of tropical forests can help mitigate local warming and strengthen 
the adaptive capacity of vulnerable populations. Future work should 
explore how protected areas function as buffers against temperature 
extremes, particularly for surrounding populations. Overall, our find-
ings highlight the urgent need for targeted policy interventions to 
reduce tropical forest loss, alongside improved adaptation strategies 
and access to healthcare, to protect vulnerable populations in the trop-
ics from the health risks associated with deforestation.
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Methods
Temperature datasets
As in previous work17,21, we used land surface temperature (LST) data 
from NASA MODIS, specifically the MOD11A2 8-d LST data (here using 
the latest version 6.1)38 at 0.01° × 0.01° spatial resolution. We excluded 
data where the estimated emissivity error was greater than 0.02 and 
where the LST error was greater than 1 K, following Li et al.13. We used 
MODIS data from the Terra satellite (10:30 local overpass time) because 
of its longer sampling period compared with the Aqua satellite (Febru-
ary 2000 onwards versus July 2002 onwards) (13:30 overpass time) and 
due to lower cloud cover in the morning.

We first aggregated the 8-day LST data by month ignoring any 
8-day period where data were missing due to clouds or because of the 
quality screening process. We then calculated 3-year means for two 
periods at the start (2001–2003) and end (2018–2020) of the study 
period. Using 3-year averages reduces the influences of climate vari-
ability. The LST dataset was regridded using bilinear interpolation 
(using Python package xESMF68) to match the finer resolution of the 
population data grid (30 arc-seconds). The ΔT in multiannual mean LST 
was then calculated by subtracting the 2001–2003 mean LST from the 
2018–2020 mean LST. Our final ΔT dataset comprised over 64 million 
pixels (~1 km2 in extent) over the tropics (25° S to 25° N).

To assess the impacts of using morning LST data in place of daily 
mean air temperature data (as used by Lee et al.31 to derive the heat vul-
nerability indices), we used 2-m temperature (t2m) and LST data from 
the ERA5 (ref. 41) at 0.25° × 0.25° spatial resolution. We downloaded the 
hourly Analysis-Ready, Cloud Optimized (ARCO) ERA5 data from the 
Google Cloud Public Dataset Program69 for the years 2001–2003 and 
2018–2020. First, we calculated daily mean t2m and extracted the ERA5 
LST data at 10:00–11:00 local time. Second, we aggregated both variables 
by month and calculated 6-year means, regridding to match the popula-
tion data grid (30 arc-seconds). Third, we calculated the relationship 
between ERA5 LST and ERA5 t2m over tropical forest pixels (using 2001 
forest cover) of the main tropical forest regions (Extended Data Table 1).

Forest cover datasets
Forest cover data were taken from the Global Forest Change (GFC) 
V1.9 dataset1 at 30 m × 30 m spatial resolution. Annual forest cover for 
the period 2000–2020 was calculated by taking tree cover in the year 
2000, defined as canopy closure for all vegetation taller than 5 m in 
height, and subjecting it to annual forest loss, defined as a disturbance 
from a forest to non-forest state. Forest cover was calculated at the 
native 30 m × 30 m spatial resolution and then converted to match the 
resolution of the population data by first calculating the forest cover 
fraction in each larger pixel (0.008° × 0.008°) and then converting 
to a 30 arc-second resolution using area-weighted regridding (using 
Python package Iris70). The percentage-point change in forest cover 
between 2001 and 2020 was calculated as the difference between the 
annual forest cover fractions (in per cent) in 2001 and 2020.

Forest cover gain can lead to cooling that can offset some of the 
warming due to forest loss71. To identify and exclude areas where for-
est regrowth has occurred, we used forest extent data at 30 m × 30 m 
spatial resolution from the Global Land Analysis and Discovery (GLAD) 
Global Land Cover and Land Use Change dataset72,73, available for the 
years 2000 and 2020. In the forest extent dataset, forest presence is 
indicated for pixels with 5 m or greater forest height. We converted 
this dataset to match the resolution of the population data using the 
same method as for the GFC data and calculated the percentage-point 
difference in forest extent between 2000 and 2020. We then removed 
any 30-arc-second pixels with greater than a 50%-point net increase in 
forest extent between 2000 and 2020 from the ΔT data.

Elevation dataset
We used elevation data from the Global Multi-resolution Terrain Eleva-
tion Data (GMTED2010)74 at 7.5-arc-second spatial resolution, which 

was regridded using bilinear interpolation to match the resolution of 
the population data.

Population and mortality datasets
Spatially explicit population data for the year 2020 was taken from 
LandScan75,39 at 30-arc-second spatial resolution representing an aver-
age population over 24 h (Fig. 1c). We used LandScan data for 2001 to 
test the sensitivity of our results to changing population density and 
distribution (‘Methodological limitations and justification’ section). 
To explore exposure of rural and urban populations, we used the Set-
tlement Model Layers data from the Global Human Settlement Layer 
(GHSL) 2023 Data Package76,77.

Annual all-cause mortality and non-accidental mortality rates 
for all ages for the year 2019 were taken from the Global Burden of 
Disease Study (GBD)40. Non-accidental mortality (or non-external 
mortality) includes mortality from all causes except external causes 
such as accidents, suicides and homicides. We used data from 2019 
instead of 2020 to exclude possible effects of coronavirus disease 2019 
on the mortality rates. We used the highest resolution data available 
from the GBD40: province/state level data for Brazil and Indonesia and 
national-level data for all other countries in the tropics. We used GBD 
non-accidental mortality rates from 2001 to test the sensitivity of 
our results to changes in the annual mortality rates (‘Methodological 
limitations and justification’ section).

To estimate total annual all-cause and non-accidental mortality 
burdens at the pixel level, we multiplied the GBD mortality rates by 
the gridded total population data (pop)

nonacc_morti = popi × nonacc_mortratecountry, (1)

where nonacc_mortratecountry is the national (or subnational) 
non-accidental mortality rate and nonacc_morti is the total annual 
non-accidental mortality burden per pixel (i).

Heat vulnerability indices
To estimate the heat-related excess mortality burden, we used country- 
or continent-specific heat vulnerability indices from Lee et al.31 follow-
ing Wolff et al.10. The heat vulnerability index is the percentage-point 
increase of regional excess mortality per 1 °C increase of regional 
temperature (%p °C−1). Lee et al.31 first estimated location-specific 
temperature-mortality relationships for 459 locations in 28 countries 
using daily mean temperature, then estimated the projected excess 
mortality attributable to temperature change over 2010–2099 using a 
calibrated multimodel mean temperature time-series under different 
scenarios. The heat vulnerability indices were obtained for each loca-
tion by applying linear regressions to the projection data31.

The heat vulnerability indices were estimated by Lee et al.31 for 
10 continental regions and 28 countries; those used in this study are 
shown in Extended Data Table 2. Where country-specific indices were 
not available, we applied a continent-specific value. Following Lee 
et al.31, for countries located in Central and South Asia, we applied the 
heat vulnerability index from Iran; for countries located in Central 
America, we applied the index from Mexico. Lee et al.31 were unable 
to derive indices for African countries due to a lack of data; therefore, 
we have applied the lowest continental-average index (from South 
America) for the whole of the Tropical Africa.

Estimating deforestation-induced temperature change
We estimated the local ΔT due to forest loss between 2001 and 2020 at 
the 30-arc-second (~1 km2) pixel level across the tropics (25° S to 25° N). 
To remove the influence of global climate change over the study period 
on ΔT, we used a moving-window nearest-neighbour approach7,17.

In our analysis we used all 30-arc-second pixels within the trop-
ics (25° S to 25° N) with 10% or greater forest cover fraction in 2001. 
Pixels with less than 0.5%-point forest cover loss between 2001 and 
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2020 were classified as ‘non-deforested’ pixels. Pixels with 2%-point 
or greater forest cover loss between 2001 and 2020 were classified 
as ‘deforested’ pixels. Our final ΔT dataset comprised ~16.8 million 
non-deforested pixels and ~11.3 million deforested pixels across the 
tropics (25° S to 25° N).

For each deforested pixel, we selected all surrounding pixels that 
maintained forest cover (‘non-deforested’ pixels) within a circle of 
0.25° radius (~27 km at the equator) and within an elevation of ±50 m. 
If no surrounding non-deforested pixels were available within the 
0.25° radius circle (3% of pixels), the radius of the circle was extended 
to 0.50°, with the same elevation constraints of within ±50 m. We used 
0.25° and 0.5° radius circles similar to those used in previous work (for 
example, refs. 13,14,16). These previous studies—and ours—assume 
the background climate to be uniform over this distance. We calcu-
lated the mean ΔT over all selected non-deforested (‘control’) pixels 
and subtracted this from the ΔT of the central deforested pixel to get 
the deforestation-induced ΔT. A total of 0.58% of deforested pixels 
across the tropics were without surrounding non-deforested pixels 
within the specified spatial circle and elevation range; these pixels 
were retained in the data array but stored with a missing data indicator. 
We then divided the resulting deforestation-induced ΔT data array by 
the percentage-point change in forest cover to calculate the change in 
temperature per percentage-point forest cover loss.

At low levels of forest cover loss (<10%-point), the variability in 
ΔT per percentage-point forest cover loss exceeds the range in values 
found at greater levels of forest cover loss. To reduce this variability, 
we used a moving average smoothing approach. For each deforested 
pixel, we calculated the mean ΔT per percentage-point forest cover 
loss over all surrounding deforested pixels within a 0.10° rolling circle, 
excluding any pixel with less than 5%-point forest cover loss or with 
a z-score greater than 3 from the mean. For deforested pixels with-
out surrounding deforested pixels with ≥5%-point forest cover loss 
within the 0.10° spatial circle (0.4% of all deforested pixels across the 
tropics), we used a regional mean value for ΔT per percentage-point 
forest cover loss. Finally, we multiplied the ‘smoothed’ pixel-level 
ΔT-per-percentage-point-forest-cover-loss values by the pixel-level 
percentage-point change in forest cover to obtain a more robust esti-
mate of the pixel-level deforestation-induced ΔT.

Estimating deforestation-associated heat-related mortality
To estimate heat-related excess mortality, we followed the approach 
of Wolff et al.10, using the relationships between heat-attributable 
excess mortality and temperature estimated by Lee et al.31. Wolff et al.10 
estimated heat-related mortality due to global climate change and 
deforestation combined. In this study, we estimated the heat-related 
mortality due specifically to local deforestation-induced warming.

First, we calculated the pixel-level deforestation-induced ΔT over 
2001–2020 in all deforested pixels across the tropics (as described 
above). Second, to estimate the percentage-point increase in 
heat-attributable excess mortality (%pincrease_mort) per deforested 
pixel (i), we multiplied the country/continent-specific heat vulner-
ability indices (HVI) by the pixel-level ΔT in all deforested pixels with 
a positive temperature change (79% of all deforested pixels across the 
tropics) (ΔTdefor)

%pincrease_morti = ΔTdefori ×HVIcountry. (2)

The mortality impact of the 2001–2020 deforestation-induced 
warming will already be included in the non-accidental mortality bur-
den data from 2019 (‘Population and mortality datasets’ section). 
Thus, following Wolff et al.10, we next calculated the corrected coun-
terfactual mortality burden (CF_mort) (that is, without the excess 
mortality associated with the deforestation-induced ΔT that would 
already be included in the total non-accidental mortality burden) per 
deforested pixel (i)

CF_morti =
nonacc_morti

(1 + %pincrease_morti)
. (3)

Lastly, we calculated the mortality attributable to warming from 
deforestation for each deforested pixel, as the difference between 
the counterfactual non-accidental mortality and total non-accidental 
mortality

heat_morti = nonacc_morti − CF_morti. (4)

The results are estimated using annual non-accidental mortal-
ity rates and therefore represent an annual excess mortality burden 
associated with exposure to a ~20-year temperature change. Following 
Wolff et al.10, we refer to the heat-health impact results as an annual 
excess heat-attributable mortality burden. The uncertainty range in 
the heat-attributable mortality estimates was calculated based on the 
uncertainty range (the 95% CI) of the GBD all-cause/non-accidental 
mortality rates40.

For comparison, we also estimated the total heat-related mortality 
attributable to warming over 2001–2020 from global climate change 
and deforestation combined. This was done using the same method 
as above but replacing the deforestation-induced ΔT with the total 
ΔT. We note that where a deforested pixel experiences warming but 
surrounding non-deforested (‘control’) pixels experience an overall 
cooling, the deforestation-induced ΔT will be greater than the total ΔT, 
and the number of deforestation-associated heat-related deaths will 
exceed the number of total heat-related deaths in that pixel.

Methodological limitations and justification
We defined forested locations in the tropics as pixels with 10% forest 
canopy cover of vegetation taller than 5 m in height, which is con-
sistent with the definition from the Food and Agriculture Organiza-
tion of the United Nations78. We defined deforestation to be a net loss 
in forest cover of 2%-points or greater between 2001 and 2020. We 
accounted for dynamics of forest cover change within the given time 
period, by using the GLAD forest extent dataset to remove pixels with 
a >50%-point net increase in forest extent between 2000 and 2020. 
We tested the sensitivity to these assumptions. Defining deforesta-
tion as net forest loss greater than 1%-point, increased the number of 
data pixels and population included in our analysis, increasing our 
estimated mortality burden by 9% (Extended Data Table 4), but remains 
within our cited uncertainty range. Applying a lower threshold to 
the net increase in forest extent (20%-point) reduced the population 
exposed to deforestation-associated warming by only 1% (Extended 
Data Table 4).

We analysed the change in forest cover and LST between 2001 and 
2020. The years of data included in the analysis were selected to maxi-
mize the study period with the available data, while also avoiding strong 
ENSO years in our 3-year averages of the LST data (2001–2003 and 
2018–2020). We note that our analysis method attempts to remove the 
impact of climate variability through comparing temperature change 
over regions of forest loss with nearby regions with no forest loss. For 
example, during El Nino periods, both regions of forest loss and regions 
of no forest loss will experience a warming due to the impacts of El Nino. 
Our analysis pulls out the impact of forest loss during the El Nino by 
subtracting the temperature of surrounding forested pixels. We tested 
the sensitivity to the selected years of LST data by recalculating for a 
different 3-year period (from 2003–2005 to 2018–2020), 5-year peri-
ods (from 2001–2005 to 2016–2020) and for single years (2001–2019 
and 2001–2020). Estimated deforestation-associated heat-related 
mortality burdens for these different time periods lie within our 95% 
CIs (varying by −13% to +15%) (Extended Data Table 4), showing that our 
method is robust to these assumptions. Averaging the forest loss data to 
match the same years as the LST data (from 2001–2003 to 2018–2020) 
reduces the heat-related mortality burden associated with deforesta-
tion by only 2% (Extended Data Table 4).
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We used LST data to estimate human exposure and heat-related 
health impacts of deforestation-induced warming rather than 
near-surface air temperature, because air temperature data are not 
available at sufficiently high spatial resolution and coverage for the 
study time period. The use of LST data for exploring fine-scale tempera-
ture changes under tropical forest loss has been discussed and justified 
in previous studies10,12,17. For tropical forest regions, there is a particu-
larly uneven and sparse distribution of ground-based meteorological 
stations79,80, which means that air temperature measurements from 
these stations (or datasets that spatially interpolate these measure-
ments) are not appropriate for a tropics-wide assessment of fine-scale 
deforestation-induced temperature changes. Where meteorological 
stations exist, previous studies have shown a tight connection between 
LST and near-surface air temperature14,81–83. Estimates of near-surface 
air temperature from climate reanalyses, such as the ERA5 (ref. 41), have 
been used extensively to estimate human exposure to extreme heat 
and the associated health impacts40,84–86. While the relatively coarse 
resolution of ERA5 data make it unsuitable for examining fine-scale 
temperature changes driven by deforestation, it is reported to well 
capture changes in air temperature where meteorological station 
density is high79. To assess the impacts of using LST data in place of air 
temperature data, we used the relationship between ERA5 daily mean 
t2m and ERA5 10:00–11:00 local time LST (Extended Data Table 1) to 
adjust MODIS LST to daily mean 2-m air temperature. We then recal-
culated the impacts of forest loss using this adjusted ‘air temperature 
data’, which reduces the deforestation-associated heat-attributable 
mortality burden by only 1% (Extended Data Table 4).

We used morning measurements of LST from MODIS-Terra for 
its greater data availability compared with MODIS-Aqua (an over-
pass of 13:30 local time). Furthermore, MODIS-Terra tends to sense 
a cooler land surface than MODIS-Aqua and is therefore more repre-
sentative of the daily mean temperature data used to derive the heat 
vulnerability indices by Lee et al.31. Using afternoon LST data from 
MODIS-Aqua (for 2003–2005 mean to 2018–2020 mean) increased 
the population-weighted warming associated with deforestation 
to +0.29 °C and increased the estimated deforestation-associated 
heat-attributable mortality burden to 30,590 (95% CI: 25,520–36,230) 
(Extended Data Table 4). This mortality burden is 19% greater than with 
MODIS-Terra LST for the same period and within our stated 95% CI.

In this work, we have not assessed the potential impact of defor-
estation on humidity. In situ measurements87,88 and reanalysis data89 
show a general reduction in humidity in cleared areas of the tropics 
compared with forested areas, although this difference can be season-
ally dependent. Results of a modelling study suggest that changes 
in humidity under simulated cropland expansion into low-latitude 
forested areas could moderate combined impacts on moist heat and 
heat stress61. However, Masuda et al.26 and Parsons et al.12 show that 
despite potential deforestation-induced changes in humidity, humid 
heat exposure increases substantially in areas of tropical forest loss 
compared with nearby forested areas, negatively impacting outdoor 
workers. There is a strong need for field measurements of humidity in 
tropical forest areas to enable further research into impacts of defor-
estation on humidity and the associated health impacts

Following Wolff et al.10, we have not included an estimation of the 
change in cold-related mortality under higher temperatures. For tropi-
cal countries, the reduction in cold-related mortality under increasing 
temperatures is small and is outweighed by the associated increase in 
heat-related mortality31.

The heat vulnerability indices were developed by Lee et al.31 
using either non-accidental or all-cause mortality rates (Extended 
Data Table 2), depending on the data available for each country. For 
simplicity we report results estimated using non-accidental mortality 
rates. Using all-cause mortality rates in all locations increases the total 
deforestation-associated heat-attributable mortality burden across 
the tropics by ~8% (with a 15% increase in Tropical Central and South 

America where differences between non-accidental and all-cause 
mortality rates are greatest).

We report heat-related mortality estimates that are relevant for 
a near-present-day population, using population count and spatial 
distribution for 2020 and non-accidental (or all-cause) mortality rates 
for 2019. During 2001–2020, population count has increased across 
the tropics, while changes in non-accidental mortality rates are mixed. 
Using population count and spatial distribution and non-accidental 
mortality rates for the start of the study period (2001) reduces the 
total deforestation-associated heat-attributable mortality burden 
across the tropics by ~10%.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in the analyses for this study are freely available 
to download from the following locations: MODIS land surface tem-
perature data at https://www.earthdata.nasa.gov/; European Centre for 
Medium-Range Weather Forecasts Reanalysis v5 (ERA5) Analysis-Ready, 
Cloud Optimized (ARCO) dataset on GitHub at https://github.com/
google-research/arco-era5; Global Forest Change (GFC) dataset at 
https://storage.googleapis.com/earthenginepartners-hansen/
GFC-2023-v1.11/download.html; Global Land Analysis and Discovery 
(GLAD) Global Land Cover and Land Use Change dataset at https://
glad.umd.edu/dataset/GLCLUC2020; Global Multi-resolution Ter-
rain Elevation Data (GMTED2010) at https://earthexplorer.usgs.gov/; 
LandScan population data at https://landscan.ornl.gov/; Global Human 
Settlement Layer dataset at https://human-settlement.emergency.
copernicus.eu/ghs_smod2023.php; GBD Study cause-specific mortality 
rates at https://gbd2019.healthdata.org/gbd-results/ or https://vizhub.
healthdata.org/gbd-results/; and digital geospatial data for plotting 
administrative boundaries from Database of Global Administrative 
Boundaries (GADM) at https://gadm.org/index.html. The processed 
data files produced and used in the analyses of this study are available 
through Code Ocean90.

Code availability
The data were analysed using open-source Python packages (including 
xESMF68, Iris70, xarray91, NumPy92, Matplotlib93, Pandas94 and Cartopy95) 
that are freely available online. The Python code used to produce the 
central results of this study is available as a Compute Capsule through 
Code Ocean90. Any other Python code used is available upon request 
from the corresponding author.
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Extended Data Table 1 | Comparison of ERA5 2-m air temperature (t2m) with MODIS land surface temperature (LST) and 
ERA5 LST

Region (25S-25N) ERA5_t2m_daily / MODIS_LST 
(2001 tropical forest pixels)

ERA5_t2m_daily / 
ERA5_LST_daily

ERA5_t2m_daily / 
ERA5_LST_10–11amLT

ERA5_t2m_daily / ERA5_LST_10-
11amLT (2001 tropical forest pixels)

Tropical C & S America 0.9835 0.9989 0.9854 0.9887

Tropical Africa 0.9652 0.9960 0.9755 0.9835

Tropical Central Asia 0.9655 0.9974 0.9801 0.9837

Southeast Asia 0.9757 0.9969 0.9840 0.9906

Values shown are ratios between daily-mean ERA5 t2m and either MODIS-Terra LST (at ~10:30am local time (LT)), daily mean ERA5 LST, or hourly ERA5 LST at 10:00–11:00 am LT. Ratios are 
calculated at the ~1-km-pixel-level between 6-year (2001–2003 and 2018–2020) regional means. Ratios for MODIS LST at ERA5 LST at 10:00–11:00 am LT are calculated over tropical forest 
pixels only (using 2001 forest cover fraction).
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Extended Data Table 2 | Heat vulnerability indices estimated by Lee et al.31

Country / continent Data period Number of locations Heat Vulnerability (%p °C−1) Mortality causes

Mexico 1998–2014 10 1.83 All

Central America 10 1.83 −

Argentina 2005–2015 3 2.07 Non-external

Brazil 1997–2011 18 2.57 Non-external

Chile 2004–2014 2 2.49 All

Colombia 1998–2013 5 1.62 [Not provided]

South America 28 2.34 −

Iran 2004–2013 1 2.93 Non-external

Central Asia 1 2.93 −

Philippines 2006–2010 4 9.15 All

Taiwan 1994–2007 3 2.83 Non-external

Thailand 1999–2008 56 4.39 Non-external

Vietnam 2009–2013 2 11.82 Non-external

Southeast Asia 65 5.29 −

Australia 1988–2009 3 1.02 Non-external

China 1996–2008 16 1.46 Non-external

Data used to estimate the indices were taken from the database collected through the Multi-City Multi-Country (MCC) Collaborative Research Network. Relevant information on the data is 
included in the table; additional information on the MCC dataset can be found in Gasparrini et al.96. Causes of mortality considered depend on available data (either all-cause or non-external/
non-accidental mortality).

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-025-02411-0

Extended Data Table 3 | Comparison of results and methods from this study to Wolff et al.10

Reference Wolff et al.10 This study (sensitivity experiments) This study 
(main results)

LST data Afternoon LST 
(MODIS-Aqua)

Morning LST (MODIS-Terra)

Population data & 
year (Population 
of Berau)

Berau Census 
2018 & 
LandScan 2017 
(232,528)

LandScan 2020 (206,331)

LST time period 2002 to 2018 2001–2003 to 2017–2019 2001–2003 to 2018–2020

Forest loss 
threshold in "kept 
forest" pixel

0%p 0%p <0.5%p 0%p <0.5%p <0.5%p <0.5%p <0.5%p

Mean ΔT in forest 
loss pixels (°C)

1.03 0.80 0.80 1.05 1.05 1.05 1.05 1.05

Mean ΔT in kept 
forest pixels (°C)

0.08 0.10 0.18 0.36 0.43 0.43 0.43 0.43

Δpop-wgtd T (°C) 0.86 1.61 1.61 1.36 1.36 1.36 1.36 1.36

Heat vulnerability 
index (%p °C−1)

9.15 9.15 9.15 9.15 9.15 9.15 5.29 5.29

Mortality cause 
(deaths per 
100,000 in 
Berau)

All-cause (596) All-cause (532) All-cause (532) All-cause (532) All-cause (532) Non-accidental 
(495)

All-cause (532) Non-accidental 
(495)

Increase in 
heat-related 
deaths in Berau 
(heat-attributable 
increase in total 
mortality)

101 (7.3%) 141 (12.9%) 141 (12.9%) 121 (11.0%) 121 (11.0%) 113 (11.0%) 73 (6.7%) 68 (6.7%)

Pop-wgtd mean 
ΔTa (°C)

1.53 1.53 1.68 1.68 1.68 1.68 1.68

Increase in 
heat-related 
deathsa 
(heat-attributable 
increase in total 
mortalitya)

93 (11.9%) 93 (11.9%) 101 (12.9%) 101 (12.9%) 94 (12.9%) 63 (8.0%) 58 (8.0%)

Deforestation-associated values:

Pop-wgtd  
mean ΔTa (°C)

0.60 0.54 0.58 0.55 0.55 0.55 0.55

Increase in 
heat-related 
deathsa 
(heat-attributable 
increase in total 
mortalitya)

39 (3.6%) 35 (3.2%) 38 (3.5%) 36 (3.3%) 34 (3.3%) 22 (2.0%) 20 (2.0%)

Contribution 
to total 
heat-attributable 
mortalitya

42.3% 38.1% 37.8% 35.7% 35.7% 34.5% 34.5%

Sensitivity tests varied methodological assumptions to more closely match those of Wolff et al.10, including i) the time period of Land Surface Temperature (LST) data used, ii) the ‘kept forest’ 
(or ‘non-deforested’) pixel definition applied, iii) the heat vulnerability index used, and iv) the mortality cause considered. Differences in some assumptions remain, for example, in the forest 
cover definition ( >50% in 2000 in Wolff et al.10 and ≥10% in 2001 in this study) and ‘deforested pixel’ definition ( >0%p forest loss in Wolff et al.10 and ≥2%p forest loss in this study). The methods 
and results in the final column are those presented in the main text of this study. aIn forest loss pixels only.
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Extended Data Table 4 | Comparison of deforestation-associated heat-related mortality results for different time-periods 
and forest-cover-related thresholds

ΔT data period T data Forest 
cover 
fraction  
(in 2001)

Net increase 
in forest 
extent 
threshold

Forest 
cover loss in 
‘deforested’ 
pixels

Pop in 
locations of 
forest loss 
(millions)

Pop exposed to 
deforestation- 
induced 
warming 
(millions)

Annual 
deforestation- 
associated  
heat-related 
mortality

Annual deforestation- 
associated 
heat-related mortality 
rate (deaths / 100,000 
people)

2001–2003 to 
2018–2020

MODIS-Terra LST ≥10% >50%p ≥2%p 452 345 (76%) 28,330 
(23,610–33,560)

6 (5–7)

2001–2003 to 
2018–2020

MODIS-Terra LST ≥10% >50%p ≥10%p 147 119 (84%) 13,830 
(8,480–16,400)

9 (6–11)

2001–2003 to 
2018–2020

MODIS-Terra LST ≥10% >50%p ≥1%p 602 456 (76%) 30,790 
(15,670–36,460)

5 (4–6)

2001–2003 to 
2018–2020

MODIS-Terra LST ≥50% >50%p ≥2%p 169 128 (76%) 11,840 
(9,820–14,030)

7 (6–8)

2001–2003 to 
2018–2020

MODIS-Terra LST ≥10% >20%p ≥2%p 448 341 (76%) 27,570 
(22,980–32,650)

6 (5–7)

2001 to 2019 MODIS-Terra LST ≥10% >50%p ≥2%p 446 319 (71%) 32,200 
(26,830–38,110)

7 (6–9)

2001 to 2020 MODIS-Terra LST ≥10% >50%p ≥2%p 445 322 (72%) 32,600 
(27,170–38,620)

7 (6–9)

2001–2003 to 
2018–2020 (LST 
& forest cover)

MODIS-Terra LST ≥10% >50%p ≥2%p 429 331 (76%) 27,670 
(23,050–32,770)

6 (5–8)

2001–2005 to 
2016–2020

MODIS-Terra LST ≥10% >50%p ≥2%p 453 344 (76%) 24,720 
(20,610–29,270)

7 (6–8)

2003–2005 to 
2018–2020

MODIS-Terra LST ≥10% >50%p ≥2%p 452 328 (73%) 25,670 
(21,390–30,410)

6 (5–7)

2003–2005 to 
2018–2020

MODIS-Aqua LST ≥10% >50%p ≥2%p 445 323 (73%) 30,590 
(25,520–36,230)

7 (6–8)

2001–2003 to 
2018–2020

MODIS-Terra LST 
scaled by ERA5

≥10% >50%p ≥2%p 452 345 (76%) 28,000 
(23,340–33,170)

6 (5–7)

Changing time-periods and threshold assumptions can change the number of pixels classed as tropical forest and ‘deforested’ in our analysis and therefore the magnitude of the population in 
pixels of forest loss. Note in this work, populations in forest loss pixels are only counted where the net forest extent increase is below the selected threshold and land surface temperature (LST) 
data pixels are valid.
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Extended Data Table 5 | Data on key factors affecting the heat vulnerability indices31

Region/country Current health expenditure per 
capita (current US$) (2020)97

Prevalence of overweight 
(% of adults) (2016)98

Population ages 65 and above (% of 
total population) (2020)99

Sub-Saharan Africa 74.6 28.9 3.1

Latin America & Caribbean 598.0 59.4 8.8

Latin America & Caribbean (excluding high income) 584.6 59.1 8.6

East Asia & Pacific 792.8 31.2 12.1

East Asia & Pacific (excluding high income) 448.0 31.0 10.9

Argentina 895.1 62.7 11.7

Australia 5958.8 64.5 16.2

Brazil 705.0 56.5 9.3

Chile 1280.6 63.1 12.4

China 583.4 32.3 12.6

Colombia 462.2 59.0 8.5

Iran, Islamic Rep. 338.2 61.6 7.1

Mexico 538.5 64.9 8.0

Philippines 166.0 27.6 5.2

Thailand 305.1 32.6 13.9

Viet Nam 154.2 18.3 8.4

Values are shown for three broad tropical regions and for the individual countries with heat vulnerability indices available. Values highlighted in bold are those closest to the values for 
Sub-Saharan Africa.
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Extended Data Fig. 1 | Population as a function of tropical forest loss. Population count in 2020 versus percentage-point forest cover loss between 2001 and 2020. 
Green points show data for Tropical Central and South America, red points show data for Tropical Africa, and blue points show data for Southeast Asia.
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Extended Data Fig. 2 | Deforestation-induced ΔT over 2001 to 2020 as a function of area and population. Results are shown for populations in locations of forest 
loss (see Methods) in a. Tropical Central and South America, b. Tropical Africa, and c. Southeast Asia. Dashed vertical lines show the area- and population-weighted 
mean deforestation-induced ΔT for each region.
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Extended Data Fig. 3 | Deforestation-induced ΔT over 2001 to 2020 as a function of rural and urban populations. Results are shown for populations in locations of 
forest loss in a. Tropical Central and South America, b. Tropical Africa, and c. Southeast Asia. Dashed vertical lines show the population-weighted mean deforestation-
induced ΔT for each region.
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Extended Data Fig. 4 | Heat-related non-accidental mortality rate associated 
with deforestation-induced warming. The maps show regions of Tropical 
Central and South America (a), Tropical Africa (b), and Southeast Asia (c). 
Colours show number of deaths per year per 100,000 people located in areas 

of forest loss (central estimate), aggregated by second-level administration 
divisions. Boundaries for second-level administration divisions are from GADM 
(https://gadm.org/index.html).
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