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MEAN-FIELD APPROXIMATION OF DYNAMICS ON NETWORKS⇤1

JONATHAN A. WARD† , GÁBOR TIMÁR† , AND PÉTER L. SIMON‡2

Abstract. Many real-world phenomena can be modelled as dynamical processes on networks, a3
prominent example being the spread of infectious diseases such as COVID-19. Mean-field approxima-4
tions are a widely used tool to analyse such dynamical processes on networks, but these are typically5
derived using plausible probabilistic reasoning, introducing uncontrolled errors that may lead to in-6
valid mathematical conclusions. In this paper we present a rigorous approach to derive mean-field7
approximations from the exact description of Markov chain dynamics on networks through a process8
of averaging called approximate lumping. We consider a general class of Markov chain dynamics9
on networks in which each vertex can adopt a finite number of “vertex-states” (e.g. susceptible,10
infected, recovered etc.), and transition rates depend on the number of neighbours of each type. Our11
approximate lumping is based on counting the number of each type of vertex-state in subsets of12
vertices, and this results in a density dependent population process. In the large graph limit, this13
reduces to a low dimensional system of ordinary differential equations, special cases of which are well14
known mean-field approximations. Our approach provides a general framework for the derivation of15
mean-field approximations of dynamics on networks that unifies previously disconnected approaches16
and highlights the sources of error.17

Key words. Complex systems, network science, dynamical systems, Markov chains.18

MSC codes. 37N99, 60J28, 91C99, 92D25, 92D30, 05C82.19

1. Introduction. Dynamical processes on networks are important and widely20

studied [1, 26, 30, 23]. They have been used to study real-world phenomena, such21

as epidemics [23, 27], opinion dynamics [13, 32, 33], and spin systems with critical22

phenomena [9, 24, 8]. Many such models can be described mathematically as Markov23

chains [31, 36, 37], but often their state-space is so large it is impossible to use mathe-24

matical tools from the theory of Markov chains. Instead it is standard to make use of25

“mean-field” approximations [35, 28, 23, 15, 12, 25, 6, 19], in which aspects of network26

structure and dynamical correlations are ignored [17].27

A class of mean-field approximations, usually referred to as dynamical mean-28

field, concerns dynamics on networks encoded in the form of sets of Langevin-type29

or deterministic equations, where the disorder (in either network structure or inter-30

action strengths) is generally averaged out using path-integral methods [25, 6, 7].31

Most mean-field approximations that attempt to provide a low-dimensional descrip-32

tion of stochastic dynamics starting from the original Markov chain, however, tend to33

be based on plausible probabilistic reasoning, thus lacking a rigorous mathematical34

foundation [35, 28, 23, 15, 12]. Such approximations have the potential to introduce35

uncontrolled errors that limit the potential for mathematical analysis, since the mean-36

field approximation is not faithful to the original process. For example, controversy37

concerning the critical epidemic threshold in scale-free networks stemmed from the38

use of mean-field approximations [28, 18, 5, 2]. Moreover, the assumptions that un-39

derpin mean-field approximations—the absence of clustering, modularity/community40

structure, dynamical correlations—are routinely violated by dynamical processes on41

real-world complex networks [17]. Thus it is difficult to know when a mean-field ap-42
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2 J. A. WARD, G. TIMÁR, P. SIMON

proximation will be accurate or how the error depends on the network structure or43

the dynamic [38]. Consequently, the quantification of approximation error has been44

recognised as a key challenge for network epidemic modellers [29].45

In this paper, we develop a mathematical foundation for mean-field approxima-46

tion that starts with the exact Markov chain description of a broad class of dynamical47

processes on networks where interactions are governed by vertices’ local neighbour-48

hoods. We use a technique called approximate lumping to derive a “density dependent49

population process” that in the large network limit converges to a relatively small set50

of differential equations. There are three significant advances on previous work [38].51

Firstly, by basing the approximate lumping on a partition of vertices, we are able to in-52

corporate network structure into the mean-field approximation in a very flexible way.53

Secondly, we combine two key techniques—approximate lumping and convergence of54

density dependent population processes—to connect the exponentially-large but exact55

micro-scale Markov chain, through to a highly reduced system of ordinary differential56

equations. Thirdly, we show that both degree-based and individual-based mean-field57

approximations can be captured in a unified way through our general framework.58

Crucially, our approach is rigorous, elucidates the averaging process and highlights59

sources of error.60

We start by describing Markov chain dynamics on networks in Section 2 and61

approximate lumping in Section 3. In Section 4 we describe how we use a parti-62

tion of vertices to define an approximate lumping. The combinatorics to derive our63

mean-field approximation is involved, so in Section 5 we describe the process for the64

case where the vertices are partitioned into two sets, before we generalise this to an65

arbitrary finite number of partitions in Section 6. Furthermore, we present a sim-66

ple example in the corresponding sections of the paper’s Supplementary Materials.67

Readers interested in the working details of our approach may find it helpful to read68

Sections SM2–SM5 of the Supplementary Materials as they read the corresponding69

sections of the main paper. We treat some special cases of our density dependent70

population process in Section 7, then derive the large network limit mean-field equa-71

tions in Section 8. In Sections 9 and 10 we are then able to derive degree-based72

and individual-based mean-field approximations respectively, and we consider degree-73

based mean-field approximation of the configuration model in Section 11. Finally we74

discuss our findings in Section 12.75

2. Mathematical background. Let G = (V,E) denote a graph or network76

with vertex set V and edge set E ⇢ V ⇥ V , where the number of vertices is N =77

|V |. Unless otherwise stated, we consider dynamical processes on finite simple net-78

works (i.e. undirected, unweighted with no self-loops or multiple edges) described by79

continuous-time Markov chains where each vertex can be in one of a finite number M80

of vertex-states and the set of possible vertex-states is W = {W1,W2, . . . ,WM}.81

2.1. State-space. The state-space of the Markov chain is the set of all per-82

mutations of N vertex-states chosen from W with repetition. This is equivalent to83

S = WV , i.e. the set of all functions from V to W, and so if the network is in state84

S 2 S then the vertex-state of vertex v 2 V is S(v). From here onwards we will refer85

to the states S 2 S as microstates, to clearly distinguish them from vertex-states86

and lumped states, which will be introduced in Section 3. The number of microstates87

in S is MN , where N is the number of vertices, which is extremely large for even88

moderate N . However, since S is finite we can enumerate the microstates so that89

S = {S[1], S[2], . . . , S[MN ]}.90
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MEAN-FIELD APPROXIMATION OF DYNAMICS ON NETWORKS 3

2.2. Transitions. We assume that changes in microstate correspond to a single91

vertex v 2 V changing its vertex-state, and the rate that this occurs is a function92

of only the number of v’s neighbours in each of the vertex-states. We also assume93

that this rate function is the same for all vertices. Thus we assume model dynamics94

are driven by local interactions captured via a collection of functions between vertex-95

states. Note that a more general class of models would allow for behaviours in which96

multiple vertices change vertex-states at once, for example if a vertex exports its97

vertex-state to its neighbours [36]. We will now give a precise definition of the network98

dynamics that we consider.99

Definition 2.1. For a finite non-empty set of vertex-states W and A,B 2 W,
let

RA,B : ZM
�0 ! R�0.

A vertex-state transition matrix (VSTM) R is the collection of functions RA,B for100

each A,B 2 W.101

In the models we consider, RA,B(n1, n2, . . . , nM ) � 0 gives the rate that a vertex in102

vertex-state A changes to vertex-state B if it has n1 neighbours in vertex-state W1,103

n2 neighbours in vertex-state W2, etc. If transitions between a pair of vertex-states104

A,B 2 W do not occur in a particular model, then the rate RA,B is identically zero.105

Definition 2.2. A homogeneous Single-Vertex Transition model (SVT) is a pair106

(W ,R).107

We think of an SVT M = (W,R) as a directed graph over vertex-states where a108

directed edge goes from vertex-state A to B if RA,B is not identically zero. In this109

paper, our main focus will be on models whose VSTMs are affine functions, so110

(2.1) RA,B(n1, n2, . . . , nM ) = ⇣
A,B
0 +

M
X

m=1

⇣A,B
m nm,111

where all of the constants ⇣A,B
m are non-negative. We will refer to SVTs with affine112

VSTMs as affine SVTs. Most SVTs have VSTMs of this form [37], although no-113

table exceptions include the non-zero temperature Ising-Glauber dynamics [14], the114

nonlinear q-voter model [4] and threshold models [39].115

2.3. Kolmogorov equations: infinitesimal generator. Given the network G
and modelM, we need to define the corresponding continuous-time Markov chain. Let
X(t) = (X1(t), X2(t), . . . , XMN (t))T be the time-dependent Markov chain probability
distribution over S, where Xi(t) is the probability of being in microstate S[i] at time
t. The evolution of X(t) is then given by the forward Kolmogorov or master equation
[22],

Ẋ = QTX,

where Q is the infinitesimal generator, an MN by MN matrix in which each off-116

diagonal component Qkl gives the transition rate from S[k] to S[l], and the diagonal117

components ensure that rows sum to zero so that probability is conserved. We assume118

that a vertex changes vertex-state instantaneously, thus transitions only occur between119

pairs of microstates that differ in exactly one vertex-state.120

Definition 2.3. A pair of states S[k], S[l] 2 S forms a transition pair with121

transition vertex v, denoted S[k] v
⇠ S[l], if S[k](v) 6= S[l](v) and S[k](u) = S[l](u) for122

all u 6= v.123
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4 J. A. WARD, G. TIMÁR, P. SIMON

For vertex v and microstate S[k] let n[k](v) = (n
[k]
1 (v), n

[k]
2 (v), . . . , n

[k]
M (v)), where n

[k]
m124

is the number of neighbours of v with vertex-state Wm 2 W in microstate S[k]. Thus125

for S[k], S[l] 2 S and S[k] 6= S[l], the transition rate from S[k] to S[l] in an SVT is126

given by127

Qkl =

⇢

RS[k](v),S[l](v)(n
[k](v)) if S[k] v

⇠ S[l]

0 otherwise
,128

where vertex v is the transition vertex (if the states S[k] and S[l] form a transition129

pair) that goes from vertex-state S[k](v) to S[l](v).130

3. Coarse-graining via lumping: theoretical foundation. We consider
lumping of Markov chains [20]. Let ΠS = {S1,S2, . . . ,Sn} be a partition of microstate-
space, so Si \Sj = ; for each i 6= j, and [iSi = S. An exact lumping is a partition of
microstate-space ΠS that preserves the Markov property, a necessary and sufficient
condition for which is that the sum of transition rates from microstate S[k] 2 Si to
microstates in the cell Sj , i.e.

X

S[l]2Sj

Qkl,

is the same for all microstates S[k] in the cell Si. In matrix notation [37], this is131

equivalent to the existence of an n⇥ n matrix q such that132

(3.1) QC = Cq,133

where C 2 {0, 1}M
N⇥n is the collector matrix [3] whose kjth component is134

(3.2) Ckj =

⇢

1 if S[k] 2 Sj ,
0 otherwise.

135

The collector matrix collects those microstates in a column that belong to the same136

cell, or in other words the same “lumped state”, in the partition.137

We call (3.1) the lumpability condition. Note that q can be given explicitly for138

an exact lumping by introducing the distributor matrix [3] D 2 R
n⇥MN

, whose ilth139

component is140

(3.3) Dil =

⇢

1
|Si|

if S[l] 2 Si,

0 otherwise.
141

Specifically, ΠS satisfies the lumpability condition when Q commutes with CD [37].142

Note that DC = I, the identity matrix, hence multiplying (3.1) by D we get the143

generator q of the lumped system explicitly as144

(3.4) q = DQC.145

We use x(t) = (x1(t), . . . , xn(t))
T to denote the time dependent Markov chain146

probability distribution over ΠS , where xi(t) is the probability of being in the lumping147

partition cell Si. For this reason, we will refer to Si as a lumped state. When the148

lumpability condition is satisfied, the evolution of x(t) is determined by the lumped149

master equation150

(3.5) ẋ = qTx,151
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and if x(0) = CTX(0) then we have x(t) = CTX(t) for all t. In other words, for each152

Si 2 ΠS , the sum of the probabilities of being in each microstate in Si at time t is153

equal to xi(t).154

A lumping that does not satisfy the lumpability condition is an approximate lump-155

ing [3]. Given a partition ΠS of microstate-space that does not satisfy the lumpability156

condition (3.1), our approach is to still use the set of lumped states ΠS and the corre-157

sponding generator q = DQC, then solve the lumped master equation (3.5) for x(t).158

Note that while this defines a Markov chain, it does not directly correspond to the159

SVT that it has been derived from, so we do not expect x(t) to equal CTX(t) for all160

t. We will however assume that the initial condition of the approximate lumping can161

be chosen so that x(0) = CTX(0). Using the definition of C (3.2), we have162

(3.6) (QC)kj =
MN

X

l=1

QklClj =
X

S[l]2Sj

Qkl,163

i.e. (QC)kj is the sum of the rates out of the microstate S[k] into the jth lumped state164

when S[k] 62 Sj and minus the sum of rates out of microstate S[k] when S[k] 2 Sj .165

Then using the definition of the distributor matrix (3.3) we have166

(3.7)

qij = (DQC)ij =

MN

X

k=1

Dik(QC)kj =

MN

X

k=1

Dik

X

S[l]2Sj

Qkl =
1

|Si|

X

S[k]2Si

X

S[l]2Sj

Qkl.167

Thus qij is the average of the sum of rates out of microstates in the ith lumped state168

and into the jth lumped state.169

Summarising, we can say that starting from the full infinitesimal generator, Q,170

and choosing a partition of the state-space, equation (3.7) yields the infinitesimal171

generator q of the lumped (coarse-grained) system. Note that the partition of the172

microstate-space is encoded in the collector and distributor matrices, C and D re-173

spectively.174

4. Lumping based on vertex set partitions. In the previous section we175

introduced the notion of lumping in general, however we have not yet described how176

we will determine the partition of microstate-space, on which the lumping is based.177

This will be dealt with in this section.178

4.1. Motivating example. As a simple example, consider an SIS epidemic179

on a graph with three nodes. Before we consider specific graphs, we first define180

some notation. We will use B (for blue) to denote susceptible vertices and R (for181

red) to denote infected vertices, and we will represent a microstate with three such182

letters. An important property of a useful lumping is that two microstates in the183

same partition cell should have the same number of infected nodes. This ensures that184

the total number of infected nodes (i.e. the prevalence) can be determined from the185

lumped system as well. The simplest lumping that preserves this property contains186

the following four lumping classes: S1 = {BBB}, S2 = {BBR,BRB,RBB}, S3 =187

{BRR,RBR,RRB}, S4 = {RRR}. Generalizing this idea to arbitrary dynamics,188

it has been shown that approximate lumping based on partitions of microstate-space189

into sets of microstates with the same number of vertices in each vertex-state result190

in mean-field birth-death processes for M = 2 and mean-field population models for191

M > 2 [38].192
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6 J. A. WARD, G. TIMÁR, P. SIMON

Returning to the example above, one can realise that the lumping does not take
into account the graph structure at all. For example, having a path graph with three
nodes, the degree of the central node is two, while that of the nodes at the left and
right end is only one, which could be reflected by the lumping. A natural choice of
lumping with a finer partition is the following: S1 = {BBB}, S2 = {BBR,RBB},
S3 = {BRB}, S4 = {BRR,RRB}, S5 = {RBR}, S6 = {RRR}. In this lumping
partition, the central node plays a different role than the end nodes. This will be
interpreted as follows: the nodes are divided into two groups, the central node and
the end nodes. The lumping is based on the number of infected nodes in these groups.
The number of infected nodes in the first group can be 0 or 1 while in the second group
it can be 0, 1 or 2. Thus the lumping classes above can be encoded by the number
of infected nodes in the two groups as follows: S1 by s[1] = (0, 0), S2 by s[2] = (0, 1),
S3 by s[3] = (1, 0), S4 by s[4] = (1, 1), S5 by s[5] = (0, 2) and S6 by s[6] = (1, 2).
(Note that our notation distinguishes between subsets of microstates in a lumping
class, such as S1, and the encoding of that lumping class according to the number of
infected vertices in each group, such as s[1].) This encoding can be extended by the
number of susceptible nodes, which in this example is redundant information, so that
for example

s[5] =

✓

1 0
0 2

◆

,

where the first row of the matrix shows the number of susceptible nodes in the two193

groups, while the second row contains the number of infected nodes. The other lumped194

states can be similarly encoded by 2 ⇥ 2 matrices. This notation will be used below195

for the general case.196

4.2. Microstate-space partition based on a vertex set partition. Now we197

generalise the above approach by considering partitions of the vertex set, where the198

lumped states are based on partitions of microstate-space into sets of microstates with199

the same number of vertices in each vertex-state within each of the cells of the vertex200

partition. This defines the lumped states that we consider, and so in the remainder of201

the paper we will primarily refer to lumped states in terms of these counts, rather than202

cells in the partition of microstate-space ΠS (like Si, which are subsets of microstates).203

Let ΠV = {V1, . . . , VP } be a partition of the vertex set V , such that Vp \ Vq = ;204

for p 6= q and [pVp = V . We now define the lumped macrostate-space and the205

corresponding partition of microstate-space precisely.206

Definition 4.1. For a network G = (V,E), with N = |V |, and an SVT M =207

(W ,R), with M = |W|, let ΠV be a vertex-partition, where P = |ΠV | and Np = |Vp|208

for each Vp 2 ΠV . The corresponding vertex-partition macrostate-space is the set of209

non-negative, integer valued matrices s 2 Z
M⇥P
�0 such that210

(4.1)
M
X

m=1

sm,p = Np.211

212

Note that since
PP

p=1 Np = N , we have
PP

p=1

PM

m=1 sm,p = N.213

Definition 4.2. Let (s[1], s[2], . . . , s[n]) be an enumeration of a vertex-partition214

macrostate-space. A vertex-partition lumping is a partition of microstates ΠS =215

{S1,S2, . . . ,Sn} such that for Si 2 ΠS , the number of vertices in vertex-state Wm 2 W216

in vertex-partition cell Vp 2 ΠV is s
[i]
m,p.217
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5. The lumped generator for two cell vertex-partitions. We now describe218

the approximate lumping approach using two vertex-partition cells for finite graphs219

and homogeneous SVTs. The fully general case with a finite number of vertex-220

partitions cells will be presented in Section 6. Let us consider the case P = 2 in221

Definition 4.1, i.e. denote the vertex partition by ΠV = {V1, V2}, where V1 \ V2 = ;222

and V1 [ V2 = V ; also N1 = |V1| and N2 = |V2|. For finite M and P = 2, a lumped223

state will be denoted by a matrix s 2 Z
M⇥P
�0 whosem, pth entry, sm,p, is the number of224

vertices in vertex-state Wm in the vertex partition cell Vp. Thus summing the entries225

in the pth column of s yields Np, as in (4.1), and summing all entries yields N . A226

lumped state corresponds to choosing N1 vertices from the M possible vertex-states227

with repetition in the first partition and N2 vertices from the M possible vertex-states228

with repetition in the second partition. Thus the total number of lumped states is229

(5.1) n =

✓

N1 +M � 1

N1

◆✓

N2 +M � 1

N2

◆

.230

Consequently we can number the lumped states as s[1], s[2], . . . , s[n], and the lumping
partition is then ΠS = {S1,S2, . . . ,Sn}, where

Si =

8

<

:

S[j] 2 S

�

�

�

�

�

�

X

v2Vp

�S[j](v),Wm
= s[i]mp, Wm 2 W, Vp 2 ΠV

9

=

;

,

and �A,B is the Kronecker delta function. Note that for a given microstate S[j], this231

simply counts the number of vertices in each vertex-state and in each vertex partition232

cell, and checks whether these match the corresponding values in s[i]; if they do, then233

microstate S[j] is assigned to partition cell Si. We use sp = (s1,p, s2,p, . . . , sM,p)
T to234

denote the pth column of s. We will only use a single subscript on s when referring235

to this vector.236

5.1. The lumped generator for an arbitrary two cell vertex-partition.237

We will start by considering the transition rate from an arbitrary lumped state s[i] to238

another arbitrary lumped state s[j] 6= s[i]. In Section 3, we saw that in general this is239

given by240

(5.2) qij =
1

|Si|

X

S[k]2Si

X

S[l]2Sj

Qkl,241

but it turns out that rather than summing over microstates, as (5.2) suggests, it is242

easier to consider the possible transitions of individual vertices and sum their rates.243

First note that the number of arrangements of vertex-states over vertices in the

pth cell that correspond to s
[i]
p is the multinomial

✓

Np

s
[i]
p

◆

:=

✓

Np

s
[i]
1,p s

[i]
2,p · · · s

[i]
M,p

◆

,

so the total number of microstates in the lumping partition cell Si (which corresponds
to the lumped state s[i]) is

|Si| =

✓

N

s[i]

◆

:=

P
Y

p=1

✓

Np

s
[i]
p

◆

.
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8 J. A. WARD, G. TIMÁR, P. SIMON

Note we will always have a scalar on the top part of our generalised multinomial244

notation. When we have a vector on the bottom part, the notation corresponds to a245

multinomial over the entries in the vector, and when we have a matrix on the bottom,246

it will correspond to the product of the multinomials of each of the columns of the247

matrix. We will also assume the typical convention that if any of the terms in the248

multinomial are negative, or if the sum of the terms on the bottom of the multinomial249

are not equal to the top, then the value of the multinomial is zero.250

Without loss of generality we assume that the transition rate qij from the lumped251

state s[i] to the lumped state s[j] corresponds to a vertex in vertex-partition q 2 {1, 2}252

transitioning from vertex-state A 2 W to B 2 W, where A 6= B. To understand why,253

suppose that S[k] 2 Si, then for there to be a non-zero rate from s[i] to s[j] there254

must be a microstate S[l] 2 Sj such that S[k] and S[l] form a transition pair, whose255

transition vertex is v say. We are free to use Vq to label which vertex-partition cell v256

belongs to, and we may also use the labels A,B 2 W to indicate what vertex-states v257

changes from and to respectively. Moreover, any other non-zero transition rate from258

s[i] to s[j] must also correspond to a vertex in Vq changing from A to B, otherwise it259

would result in different counts of vertices of each type of vertex-state in each vertex-260

partition cell, i.e. a lumped state different to s[j]. To compute (5.2), for each v 2 Vq261

we can construct all possible microstates where v has vertex-state A. If in this process262

we specify the vertex-states of the neighbours of v, then we can determine the rate263

at which v changes from A to B. Summing this contribution from all possible cases264

yields qij . A proof of this will be given in Section 6. In the following paragraphs we265

will build up the components of this sum.266

First we define some notation related to the neighbourhoods of vertices. Let dvp267

denote the number of neighbours of vertex v in the pth vertex-partition cell. The268

degree of vertex v is269

(5.3) dv :=

P
X

p=1

dvp.270

We represent the neighbourhood of v using a non-negative, integer-valued matrix271

nv 2 Z
M⇥P
�0 , which we call a neighbourhood count.272

Definition 5.1. For a vertex v 2 V , a neighbourhood count is a matrix nv 2
Z
M⇥P
�0 such that

M
X

m=1

nv
m,p = dvp,

for 0  p  P .273

Note that it follows from (5.3) that
PP

p=1

PM

m=1 n
v
m,p = dv. We will use a single274

index on this matrix to indicate a column, i.e. nv
p 2 Z

M
�0 is the pth column of nv. The275

component nv
m,p of a neighbourhood count is the number of neighbours of vertex v in276

the mth vertex-state and in the pth vertex-partition cell.277

The number of ways that we can arrange the vertex-states of the neighbours of v278

in vertex-partition cell p 6= q according to some nv
p, as well as the vertex-states of the279

other vertices in vertex-partition cell p 6= q according to sp is280

(5.4) A(sp,n
v
p) :=

✓

dvp
nv
p

◆✓

Np � dvp
sp � nv

p

◆

.281
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Recall that a vector in the bottom of the multinomial coefficient notation indicates282

that the elements of the vector should be in the denominator of the multinomial283

coefficient. While in (5.4) we have used dvp and Np in the top of the multinomial284

coefficients, we will assume that these values are actually determined from summing285

the vectors in the bottom. We will also assume the standard convention that a286

multinomial coefficient is zero if any entry is negative.287

For the vertex-partition cell q, which contains v, the number of ways that we can288

arrange the neighbours of v according to nv
q is289

A(sq � eA,n
v
q) =

✓

dvq
nv
q

◆✓

Nq � 1� dvq
sq � eA � nv

q

◆

,290

where eA is a vector of length M with a one in the entry corresponding to vertex-state291

A and zeros elsewhere. This is to account for the fact that we assumed vertex v is in292

vertex-state A, so there is one less A vertex in sq.293

For a given nv and p 6= q, using (5.4) there are294

(5.5) A(s[i]q � eA,n
v
q)A(s[i]p ,nv

p)295

microstates in Si in which vertex v in vertex partition cell q is in vertex-state A, its
neighbours’ vertex-states correspond to nv, and the total number of vertices in each
vertex-state and in each vertex-partition cell corresponds to s[i]. We also need to
know the rate that vertex v will change from vertex-state A to B. For SVTs with
affine VSTM given by (2.1), if vertex v is in vertex-state A and the number of its
neighbours in each of the vertex-states in each of the vertex-partition cells is given by
nv, then it will transition from A to B with rate

⇣
A,B
0 +

M
X

m=1

P
X

r=1

⇣A,B
m nv

m,r.

Recall that we assumed, without loss of generality, that qij corresponds to a296

vertex in vertex-partition cell Vq changing from vertex-state A 2 W to B 2 W. We297

can now compute qij by summing over all feasible realisations of the matrix nv and298

vertices in Vq, which yields299

(5.6)

qij =
1
�

N
s[i]

�

X

v2Vq

X

nv
1 |d

v
1

X

nv
2 |d

v
2

 

⇣
A,B
0 +

M
X

m=1

P
X

r=1

⇣A,B
m nv

m,r

!

A(s[i]q � eA,n
v
q)A(s

[i]
p ,nv

p).300

In this equation, the sums over nv
1|d

v
1 and nv

2|d
v
2 specify the P = 2 columns of nv.301

It seems that we have swapped one difficult sum, (5.2), for another, (5.6). How-302

ever, it turns out that the sum over vertex neighbourhoods can be simplified, and we303

will illustrate how this can be done in the next section.304

5.2. Simplified form of the lumped generator. Our next step is to simplify305

(5.6). Crucial to achieving this is a generalisation of the Vandermonde identity and306

what we call the “sum-product property”, which for arbitrary v can be used to obtain307

(5.7)

✓

N

s

◆

=
X

nv
1 |d

v
1

X

nv
2 |d

v
2

A(s1,n
v
1)A(s2,n

v
2).308

A generalisation of this will be presented in Section 6 and further details can be found309

in the Supplementary Materials. First consider the ⇣A,B
0 term in (5.6), then using (5.7)310
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10 J. A. WARD, G. TIMÁR, P. SIMON

we find311

1
�

N
s[i]

�

X

v2Vq

X

nv
1 |d

v
1

X

nv
2 |d

v
2

⇣
A,B
0 A(s[i]q � eA,n

v
q)A(s

[i]
p ,nv

p)312

=
1
�

N
s[i]

�

X

v2Vq

⇣
A,B
0

✓

Nq � 1

s
[i]
q � eA

◆✓

Np

s
[i]
p

◆

=
X

v2Vq

⇣
A,B
0

s
[i]
A,q

Nq

= ⇣
A,B
0 s

[i]
A,q,313

314

where we have used A as an index in W. This is what we might have expected: each315

microstate in s[i] has s
[i]
A,q vertices in vertex partition cell q in vertex-state A, so there316

will be a factor of ⇣A,B
0 for each of these.317

Now consider the ⇣A,B
m terms in (5.6). The sums over m and r in (5.6) do not318

depend on any of the others sums, so we can move these to the outside. Note that319

nv
m,pA(sp,n

v
p) = nv

m,p

✓

dvp
nv
p

◆✓

Np � dvp
sp � nv

p

◆

320

= dvp

✓

dvp � 1

nv
p � em

◆✓

Np � 1� (dvp � 1)

sp � em � (nv
p � em)

◆

321

= dvpA(sp � em,nv
p � em).322323

For the case where r = q, it follows that324
X

nv
1 |d

v
1

X

nv
2 |d

v
2

⇣A,B
m nv

m,qA(s
[i]
q � eA,n

v
q)A(s[i]p ,nv

p)325

= ⇣A,B
m dvq

X

nv
1 |d

v
1

X

nv
2 |d

v
2

A(s[i]q � eA � em,nv
q � em)A(s[i]p ,nv

p)326

= ⇣A,B
m dvq

✓

Nq � 2

s
[i]
q � eA � em

◆✓

Np

s
[i]
p

◆

327

328329

where we have used (5.7) to obtain the third line. Similarly, for the case r = p we330

have331

X

nv
1 |d

v
1

X

nv
2 |d

v
2

⇣A,B
m nv

m,pA(s[i]q � eA,n
v
q)A(s[i]p ,nv

p) = ⇣A,B
m dvp

✓

Nq � 1

s
[i]
q � eA

◆✓

Np � 1

s
[i]
p � em

◆

.332

333

Thus for the ⇣A,B
m terms in (5.6) we can cancel multinomial terms to get334

1
�

N
s[i]

�

X

v2Vq

M
X

m=1

⇣A,B
m



dvq

✓

Nq � 2

s
[i]
q � eA � em

◆✓

Np

s
[i]
p

◆

+ dvp

✓

Nq � 1

s
[i]
q � eA

◆✓

Np � 1

s
[i]
p � em

◆�

335

=
X

v2Vq

M
X

m=1

⇣A,B
m

2

4dvq

s
[i]
A,q

⇣

s
[i]
m,q � �A,Wm

⌘

Nq(Nq � 1)
+ dvp

s
[i]
A,qs

[i]
m,p

NqNp

3

5 ,336

337

where recall that �A,B is the Kronecker delta function. Using these simplifications,338

the expression for qij becomes339

qij = s
[i]
A,q

8

<

:

⇣
A,B
0 +

1

Nq

X

v2Vq

M
X

m=1

⇣A,B
m

2

4dvq

⇣

s
[i]
m,q � �A,Wm

⌘

(Nq � 1)
+ dvp

s
[i]
m,p

Np

3

5

9

=

;

.340

341

Note that this formula enables us to compute q without direct reference to Q.342
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6. The lumped generator for arbitrary finite vertex-partitions. We can
now generalise relatively easily to arbitrary vertex partitions. We consider a vertex
partition Π = {V1, . . . , VP } with Vp \ Vq = ; for p 6= q and [pVp = V . We then have
s 2 Z

M⇥P
�0 , whose m, pth entry, sm,p, is the number of vertices in vertex-state Wm in

the vertex-partition cell Vp. The total number of microstates is

MN =
X

s

✓

N

s

◆

:=
X

s1|N1

X

s2|N2

· · ·
X

sP |NP

P
Y

p=1

✓

Np

sp

◆

,

which can be obtained from application of the multinomial theorem and interchanging343

the product of sums with a sum of products (see the Supplementary Information for344

further details). The number of lumped states is345

(6.1) n =

P
Y

p=1

✓

Np +M � 1

Np

◆

.346

Again we assume, without loss of generality, that a transition from the lumped state347

s[i] to the lumped state s[j] 6= s[i] corresponds to a vertex in vertex-partition cell Vq348

transitioning from vertex-state A to B.349

Our initial goal is to write (5.2) in terms of a sum over vertices and possible350

neighbourhood counts. In order to prove this, we must first consider some properties351

of neighbourhood counts. Since we sum over neighbourhood counts, we need to be352

clear about which correspond to arrangements of vertex-states in microstates in the353

correct lumped partition cell, and that only these contribute non-zero values to the354

summation. To this end, we say a neighbourhood count nv is realisable if there is at355

least one microstate in which the number of neighbours of vertex v in each vertex-356

partition corresponds to nv.357

Definition 6.1. A neighbourhood count nv is realisable in Si ⇢ S if there is a358

microstate S[k] 2 Si in which the number of neighbours of vertex v in vertex-state359

Wm 2 W and vertex-partition cell Vp 2 ΠV is nv
m,p.360

There is a simple condition that ensures a neighbourhood count is realisable.361

Lemma 6.2. For v 2 V , a neighbourhood count nv is realisable in Si ⇢ S if and362

only if nv
m,p  s

[i]
m,p for all m, p.363

Proof. Suppose that nv is realisable in Si ⇢ S, then there is a microstate S[k] 2 Si364

such that the number of neighbours of vertex v in vertex-state Wm 2 W and vertex-365

partition cell Vp 2 ΠV is nv
m,p. Since s

[i]
m,p is the number of vertices in vertex-state366

Wm 2 W and vertex-partition cell Vp 2 ΠV , we must have nv
m,p  s

[i]
m,p for all m, p.367

Suppose that nv
m,p  s

[i]
m,p for all m, p. Then for each partition p, we can assign a368

vertex-state to each of the neighbours of v such that the total number of neighbours369

of v in vertex-state Wm 2 W and vertex-partition cell Vp 2 ΠV is nv
m,p. Similarly370

we can assign vertex-states to each of the remaining vertices (including v) in each371

vertex-partition cell such that the number of them in vertex-state Wm 2 W and372

vertex-partition cell Vp 2 ΠV is s
[i]
m,p � nv

m,p � 0. Thus the total number of vertices373

in vertex-state Wm 2 W and vertex-partition cell Vp 2 ΠV is s
[i]
m,p, and hence this374

assignment of vertex-states corresponds to a microstate in Si.375

Importantly, when we sum over neighbourhood counts, only those that are real-376

isable contribute to the sum.377
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12 J. A. WARD, G. TIMÁR, P. SIMON

Corollary 6.3. For v 2 V , a neighbourhood count nv is realisable in Si ⇢ S if378

and only if379

(6.2)

P
Y

p=1

A(s[i]p ,nv
p) > 0.380

381

Proof. Suppose that for v 2 V , a neighbourhood count nv is realisable in Si ⇢ S,382

then by Lemma 6.2 s
[i]
m,p � nv

m,p � 0 for all m, p and hence (6.2) is true. Conversely,383

if (6.2) is true then each term in the product is positive and hence nv
m,p  s

[i]
m,p for384

all m, p. Then by Lemma 6.2 nv is realisable in Si ⇢ S.385

We may now prove that lumped rate (5.2) can be written in terms of a sum over386

vertices and possible neighbourhood counts. In the following lemma, we use 1P to387

denote a column vector with P entries, each 1.388

Lemma 6.4. Let S be the microstate-space of a homogeneous SVT with affine389

VSTM on a network with vertex set V and let ΠV = {V1, V2, . . . , VP } be a par-390

tition of V . Suppose that the corresponding vertex-partition lumping macrostate-391

space is (s[1], s[2], . . . , s[n]) (Definition 4.1) and the partition of microstates is ΠS =392

{S1,S2, . . . ,Sn} (Definition 4.2). If a transition from s[i] to s[j] corresponds to a393

vertex v 2 Vq changing from vertex-state A to vertex-state B, then394

(6.3)
X

S[k]2Si

X

S[l]2Sj

Qkl =
X

v2Vq

X

nv|dv

RA,B(n
v1P )

P
Y

p=1

A(s[i]p � �p,qeA,n
v
p)395

396

Proof. We construct a surjective map from transition pairs on the left of (6.3) to397

feasible neighbourhood counts nv on the right of (6.3), and show that the multinomial398

terms on the right account for the many-to-one multiplicity of the mapping. For399

S[k] 2 Si and S[l] 2 Sj , Qkl can only be non-zero if S[k] v
⇠ S[l], which identifies400

a unique vertex v and by assumption v 2 Vq. Then Qkl = RS[k](v),S[l](v)(n
[k](v)).401

Furthermore, the microstate S[k] corresponds to a unique neighbourhood count nv,402

which is evidently realisable. Since n[k](v) is derived from S[k], we have n[k](v) =403

nv1P . It is assumed that a transition from s[i] to s[j] corresponds to a vertex v 2404

Vq changing from vertex-state A to vertex-state B, thus we have S[k](v) = A and405

S[l](v) = B. Consequently, each transition pair in the summation on the left of406

(6.3) corresponds to a unique pair v 2 Vq and nv|dv in the summation on the right407

with rate RA,B(n
v1P ). Since nv is realisable and the vertex-state of v 2 Vq is A,408

QP

p=1 A(s
[i]
p � �p,qeA,n

v
p) > 0.409

For a given v 2 Vq and neighbourhood count nv
p, when p 6= q there are410

A(s[i]p ,nv
p) =

✓

dvp
nv
p

◆✓

Np � dvp

s
[i]
p � nv

p

◆

411

ways of arranging the vertex-states of the neighbours of v in vertex-partition cell p412

according to nv
p, as well as the vertex-states of the other vertices in vertex-partition413

cell p according to s
[i]
p . Similarly, for the case p = q we have414

A(s[i]p � eA,n
v
p) =

✓

dvp
nv
p

◆✓

Np � 1� dvp

s
[i]
p � eA � nv

p

◆

.415
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Thus using Corollary 6.3, there are416

(6.4)

P
Y

p=1

A(s[i]p � �p,qeA,n
v
p)417

microstates in Si in which the vertex-state of v is A and its neighbourhood count418

is nv. These microstates form transition pairs with the corresponding states in Sj419

in which the vertex-state of v is B. Thus the number of transition pairs on the left420

of (6.3) associated with each v 2 Vq and realisable neighbourhood count nv in the421

summation on the right is given by (6.4).422

We saw in Section 5.2 that we needed a generalisation of the Vandermonde iden-423

tity. This can be stated as424

Lemma 6.5. Let s be a lumped state and nv a neighbourhood count of a vertex425

v 2 V , then426

(6.5)

✓

N

s

◆

=
X

nv|dv

P
Y

p=1

A(sp,n
v
p).427

428

A detailed proof can be found in the Supplementary Materials.429

We now present the main result of the paper.430

Theorem 6.6. Let S be the state-space of a homogeneous SVT with affine VSTM431

on a network with vertex set V and let ΠV = {Π1,Π2, . . . ,ΠP } be a partition of V .432

Suppose that q = DQC is the lumped infinitesimal generator corresponding to the433

vertex-partition lumping with macrostate-space (s[1], s[2], . . . , s[n]). If a transition from434

s[i] to s[j] corresponds to a vertex v 2 Vq changing from vertex-state A to vertex-state435

B, then436

qij = s
[i]
A,q

(

⇣
A,B
0 +

1

Nq

P
X

r=1

 
P

v2Vq
dvr

Nr � �q,r

!"

M
X

m=1

⇣A,B
m

⇣

s[i]m,r � �A,Wm
�q,r

⌘

#)

.(6.6)437

438
439

Proof. From (5.2) we have

qij =
1
�

N
s[i]

�

X

S[k]2Πi

X

S[l]2Πj

Qkm,

since the number of states in Πi is |Πi| =
�

N
s[i]

�

. Using Lemma 6.4 and (2.1) it follows440

that441

(6.7) qij =
1
�

N
s[i]

�

X

v2Vq

X

nv|dv

 

⇣
A,B
0 +

M
X

m=1

P
X

r=1

⇣A,B
m nv

m,r

!

P
Y

p=1

A(s[i]p � �p,qeA,n
v
p)442

We will deal with the ⇣
A,B
0 and ⇣A,B

m nm terms separately. From Lemma 6.5, the443

sums around the constant term ⇣
A,B
0 are444

1
�

N
s[i]

�

X

v2Vq

X

nv|dv

⇣
A,B
0

P
Y

p=1

A(s[i]p � �p,qeA,n
v
p) =

1
�

N
s[i]

�

X

v2Vq

⇣
A,B
0

P
Y

p=1

✓

Np � �p,q

s
[i]
p � �p,qeA

◆

,445

= ⇣
A,B
0 s

[i]
A,q.(6.8)446

447
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In (6.7) we are able to do the sums over m and r after we sum over v and nv|dv, since448

they do not determine nv. Thus we can focus on an individual term ⇣A,B
m nm,r; using449

Lemma 6.5 we have450

X

nv|dv

nv
m,r

P
Y

p=1

A(s[i]p � �p,qeA,n
v
p) = dvr

P
Y

p=1

✓

Np � �p,q � �p,r

s
[i]
p � �p,qeA � �p,rem

◆

.451

452

We then find453

1
�

N
s[i]

�

X

v2Vq

X

nv|dv

M
X

m=1

P
X

r=1

⇣A,B
m nv

m,r

P
Y

p=1

A(s[i]p � �p,qeA,nv
p)454

=
1
�

N
s[i]

�

X

v2Vq

M
X

m=1

P
X

r=1

⇣A,B
m dvr

P
Y

p=1

✓

Np � �p,q � �p,r

s
[i]
p � �p,qeA � �p,rem

◆

455

=
X

v2Vq

M
X

m=1

P
X

r=1

⇣A,B
m dvr

s
[i]
A,q(s

[i]
m,r � �A,Wm

�q,r)

Nq(Nr � �q,r)
.(6.9)456

457

Substituting (6.8) and (6.9) into (6.7), after some rearranging yields (6.6).458

7. Applications of Theorem 6.6. We now describe two special cases of The-459

orem 6.6 and illustrate its application on a bipartite network.460

7.1. Recovering the infinitesimal generator. In the case where each vertex
is in its own partition, we expect to recover the full infinitesimal generator Q. Recall
that (6.6) corresponds to a vertex v in vertex partition cell q changing from vertex-
state A to B. For each p we have Np = 1, and since we have assumed the network is
simple, i.e. there are no self-loops or multiple edges, it follows that dvq = 0. We also
have dvp = 1 if vertex v and the vertex in cell p are neighbours, and dvp = 0 if they
are not. Since vertex v is the only vertex in cell q and it is in vertex-state A, we have

s
[i]
A,q = 1. We also have

X

p 6=q

0

@

X

v2Vq

dvp
Np

1

A

"

M
X

m=1

⇣A,B
m s[i]m,p

#

=
M
X

m=1

⇣A,B
m nv

m,

where nv
m is the number of neighbours of v that are in vertex-state Wm. This follows

from the fact that the sum over p is effectively a sum over neighbours, since dvp is zero

otherwise, and s
[i]
m,p = 1 if the neighbouring vertex in cell p is in vertex-state Wm and

zero otherwise. Thus when each vertex is in its own partition, (6.6) reduces to

qij = ⇣
A,B
0 +

M
X

m=1

⇣A,B
m nv

m,

i.e. our definition of Qij .461

7.2. Single vertex partition: population model. In the case P = 1, The-
orem 6.6 reduces to our result published in [38]. In this case, the lumped state can
be represented by a vector, i.e. the number of vertices in each of the possible vertex-
states, and so we will not use a bold font to represent lumped states. In the P = 1
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case, (6.6) becomes

qij = s
[i]
A

(

⇣
A,B
0 +

z

N � 1

"

M
X

m=1

⇣A,B
m

⇣

s[i]m � �A,Wm

⌘

#)

,

where z =
P

v2V dv/N is the mean degree of the network and s
[i]
m (s

[i]
A ) is the number462

of vertices in lumped state i that are in vertex-state Wm (A). This corresponds to463

the population model equation derived in [38].464

7.3. SIS epidemic on a complete bipartite graph. For the case of SIS
dynamics, the lumped states s are matrices of size 2⇥P , where m = 1 corresponds to
susceptible vertices and m = 2 corresponds to infected vertices. For the SIS model,
we have ⇣

1,2
2 = �, ⇣2,10 = � and all other ⇣A,B

m = 0. Thus if the transition from s[i] to
s[j] corresponds to an infection in the qth partition, then

qij = �
s
[i]
1,q

Nq

8

<

:

0

@

X

v2Vq

dvq
Nq � 1

1

A s
[i]
2,q +

X

p 6=q

0

@

X

v2Vq

dvp
Np

1

A s
[i]
2,p

9

=

;

.

Similarly, if the transition from s[i] to s[j] corresponds to a recovery in the qth parti-465

tion, then466

(7.1) qij = �s
[i]
2,q.467

Note that this is the exact recovery rate for state s[i], regardless of the choice of468

vertex-partition, since there are s
[i]
2,q infected vertices in s[i].469

We’ll now use this to write out the lumped Markov chain equations for the SIS
model on a complete bipartite graph, where the vertex-partition corresponds to the
bipartite partition. For N1 6= N2, the automorphism group of a complete bipartite
graph is SN1

⇥SN2
, i.e. all possible pairs of permutations consisting of a permutation

of the vertices in V1 and a permutation of the vertices in V2. Thus the microstates in
the exact lumping correspond to all possible counts of the number of infected vertices
in each of the vertex partition cells, which is exactly what the approximate lumping
uses. Consequently, we expect the approximate lumping formula to recover the exact
lumping. We have P = 2, so the lumped states s are two-by-two matrices. For v 2 V1

we have dv1 = 0 and dv2 = N2; similarly for v 2 V2 we have dv1 = N1 and dv2 = 0. Note
that

X

v2Vq

dvq = 0, and
X

v2Vq

dvp = NqNp,

where p is the alternative partition to q. Thus if the transition from s[i] to s[j]

corresponds to an infection in the qth partition, then

qij = �s
[i]
1,qs

[i]
2,p.

In state s[i], there are s
[i]
1,q susceptible vertices in Vq and each of these has s

[i]
2,p infected470

neighbours, thus we obtain the exact lumped transition rate. The recovery rates (7.1)471

are also exact.472

We can also write out the lumped master equation for this case. Note that for473

the lumped state s, we have s1,1+ s2,1 = N1 and s1,2+ s2,2 = N2, thus we can write s474

in terms of just two numbers, k1 = s2,1 and k2 = s2,2, so kp is the number of infected475
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16 J. A. WARD, G. TIMÁR, P. SIMON

vertices in the pth partition. Thus we write the probability of being in the lumped476

state s as xk1,k2
, i.e. the probability of there being k1 infected nodes in partition477

cell 1 and k2 infected nodes in partition cell 2. There are four possible transitions,478

corresponding to an infection or a recovery in each of the two vertex-partition cells.479

Consequently, if we assume that xk1,k2 = 0 for k1, k2 < 0 and k1, k2 > N then480

summing over the four possible transitions yields481

ẋk1,k2
=�(N1 � k1 + 1)k2xk1�1,k2

+ �k1(N2 � k2 + 1)xk1,k2�1482

+ �(k1 + 1)xk1+1,k2
+ �(k2 + 1)xk1,k2+1483

� [�(N1 � k1)k2 + �k1(N2 � k2) + �(k1 + k2)]xk1,k2
.484485

We can simplify the bipartite graph case further and assume that N2 = 1 (hence486

N1 = N � 1), which corresponds to a star graph. In this case, k2 can only be 0 or 1,487

so we have488

ẋk1,0 =�(k1 + 1)xk1+1,0 + �xk1,1 � [�k1 + �k1)]xk1,0,489

ẋk1,1 =�(N � k1)xk1�1,1 + �k1xk1,0 + �(k1 + 1)xk1+1,1490

� [�(N � 1� k1) + �(k1 + 1)]xk1,1.491492

7.4. General procedure for applying Theorem 6.6. Now, we briefly present493

the wide applicability of Theorem 6.6, explaining the procedure by which it can be494

applied to a broad range of node dynamics and an arbitrary choice of the vertex-set495

partition. Concerning node dynamics, the following processes can be handled among496

many others.497

• Beyond the widely used SIS and SIR dynamics one can use SEIR dynamic498

when the exposed compartment E is also taken into account, as well as all499

other similar variants. For example, introducing a vaccination state V and500

applying a contact tracing state T lead to SIVS, SITR etc. Considering the501

parallel propagation of two infectious diseases, more complicated models also502

fall within our framework.503

• Information spread on networks leads to many different node-dynamics. One504

of them is rumour spreading when node states are ignorant (I), spreader (S)505

and stifler (R), which resembles SIR epidemic but where the transition from506

S to R depends also on the number of neighbours in the S and R states.507

Information spread is also modelled by using the node states: “Unknown”,508

the individual has not yet come into contact with the information, “Known”,509

the individual has received the information, but is not willing to propagate510

it, “Accepted”, the individual accepts the information and then propagates511

it, and “Exhausted”, after propagating the information to their neighbours,512

the individual will lose his interests in it. The concurrent propagation of513

two types of information is modelled by the node states S, I1 and I2, where514

the effect of one information to the other can also be accounted for by the515

appropriate choice of the rate functions.516

• The concurrent spread of epidemic and information can be described by the517

node states susceptible and aware (Sa), susceptible and not aware (Sna),518

infected and aware (Ia), infected and not aware (Ina). This can also be519

extended with a treatment class (T ).520

• Propagation of neuronal activity can be modelled by the node states quiescent521

(Q) and active (A) with both excitatory and inhibitory neurons. The effect522

of different neurons to each other can be described by the rate functions.523

This manuscript is for review purposes only.



MEAN-FIELD APPROXIMATION OF DYNAMICS ON NETWORKS 17

See [16, 30, 23, 36, 37] for more information about, and examples of, models within524

our framework. To translate such examples into our framework, it is necessary to525

associate the corresponding model rate constants with the set of functions that con-526

stitute the VSTM in 2.1. Typical models have far fewer vertex-state transitions and527

rate constants than the general case, simplifying what needs to be considered.528

Concerning the network structure one can specify a vertex partition, for which529

we list a few possibilities below.530

• If the nodes play a similar role in the network, then choosing a single partition531

(P = 1) is a reasonable choice and corresponds to the ‘well mixed’ case where532

network structure is essentially ignored, with the rates scaled by the network533

density. This case was derived in Section 7.2.534

• In some cases, nodes can be divided into two groups, for example highly and535

weakly connected nodes, then choosing two partitions, P = 2, is natural.536

• If the network is given by a bipartite graph, then the two node groups lead537

again to P = 2.538

• The case of k-partite graphs can be handled with P = k partitions. We note539

that in the case of complete k-partite graphs the lumping is exact.540

• A natural choice for vertex partitions is based on the node degrees, i.e. two541

nodes are in the same vertex partition if their degree is equal.542

Once the node dynamics is specified through the rate functions (2.1) and the543

vertex partitions are given according to Definitions 4.1 and 4.2, one can determine544

the generator (6.6) as follows. The macro-states s[i] are M ⇥ P matrices defined in545

Definition 4.2 by specifying the number of vertices in a given state being in a given546

partition. The coefficients ⇣A,B
m are determined by the transition functions given547

in (2.1). Considering only the few examples of node-dynamics and partitions listed548

above, several dozens of models can be derived based on our main Theorem 6.6 since549

each node dynamics can be combined with each partition.550

Note that the generator in (6.6) is an n⇥n matrix, where n is given in (6.1). For551

example, when we have only one partition, P = 1 and two node-states, M = 2, then552

n = N + 1 which is significantly smaller than the full system size 2N . In the case of553

M = 3 node-states we have n = O(N2) which can be large but still much smaller than554

the full system size 3N . In the case of P = 2 partitions and M = 2 node-states one555

has n = O(N2), while for M = 3 node-states it is n = O(N4). Thus the size of the556

lumped system is polynomial in N compared to exponential for the full system. We557

will get a further significant decrease in system size in the next section. Note however558

that using the generator (6.6) provides information about the probability distribution559

over macrostate-space, and in systems with absorbing states, one can estimate the560

probability of and time to absorption [37].561

8. Large N limit of density dependent population processes. The ap-562

proximate lumping process derived in Section 6 significantly reduces the number of563

equations that need to be considered, while introducing some approximation error.564

However, the number of equations will often still be very large, see the calculations565

at the end of the previous section. However, our approximation (6.6) is a “density-566

dependent population process” [11], which in the large N limit converges to a smaller567

system of M ⇥ P differential equations. We will now describe this in more detail.568

8.1. Mean-field limit of a general density dependent process. For posi-
tive integer N , ⇠ 2 Z

d, E ⇢ R
d, and a collection of non-negative functions �ξ : E !

R�0, let
EN = E \ {k/N | k 2 Z

d},
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18 J. A. WARD, G. TIMÁR, P. SIMON

and assume that y 2 EN and �ξ(y) > 0 imply that y + ⇠/N 2 EN . Then a density
dependent family corresponding to �ξ is a sequence {YN} of Markov jump processes
such that YN has state-space EN and transition intensities

q(N)
x,y = N



�N(y�x)(x) +O

✓

1

N

◆�

, x, y 2 EN .

Let
F (y) =

X

ξ2Zd

⇠�ξ(y),

then provided that for each compact K ⇢ E,
X

ξ2Zd

|⇠| sup
y2K

�ξ(y) < 1,

and there exists an MK > 0 such that

|F (x)� F (y)|  MK |x� y|, x, y 2 K,

then in the limit N ! 1 there is almost sure convergence between the Markov
chain jump process YN (t) and y(t), where y(t) is the solution to system of differential
equations

ẏ = F (y).

A more precise statement can be found in Ethier and Kurtz’s book [11].569

As a simple example of a density dependent family, consider the SIS model with
population N . Suppose that if there are i susceptible individuals and j = N � i
infected individuals then the infection rate is

q(i,j)(i�1,j+1) = N�
i

N

j

N
,

and the recovery rate is

q(i,j)(i+1,j�1) = N�
j

N
.

This corresponds to the standard SIS stochastic compartmental model birth-death570

process. The possible values of ⇠ are (�1,+1) and (+1,�1), so for y = (y1, y2) we571

have �(�1,+1)(y) = �y1y2 and �(+1,�1)(y) = �y2. Consequently572

F (y) =
X

ξ

⇠�ξ(y) = (��y1y2 + �y2,+�y1y2 � �y2).573

574

Thus the familiar compartmental SIS model ODEs are the large N limit of the cor-575

responding stochastic birth-death process.576

8.2. Limiting equations of vertex-partition lumping. To connect the ap-577

proach presented in the previous subsection to vertex-partition lumping, we first in-578

troduce some notation. Let e(Wm, p) 2 {0, 1}M⇥P be a matrix whose m, pth entry is579

1, and all other entries are zero. Let ⇠A,B
q = e(B, q)� e(A, q), so a transition from s580

to s + ⇠A,B
q corresponds to a vertex in partition Vq changing from vertex-state A to581

B. Then we can write the transition rate (6.6) as582

q
s,s+ξ

A,B
q

= N
s
[i]
A,q

N

8

<

:

⇣
A,B
0 +

N

Nq

P
X

p=1

 
P

v2Vq
dvp

Nr � �q,p

!

2

4

M
X

m=1

⇣A,B
m

⇣

s
[i]
m,p � �A,Wm

�q,p

⌘

N

3

5

9

=

;

.

(8.1)

583

584
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We consider the density y = s/N and we assume that585

(8.2) lim
N!1

Np

N
= ✓p > 0 and lim

N!1

X

v2Vq

dvp
Np

= zp,q � 0,586

with ✓p and zp,q finite. Note that ✓p is the fraction of vertices in partition p, so for this587

to be finite in the large N limit, all vertex partitions must scale with N . Also, zp,q588

is the average number of edges between partitions p and q, averaged over the number589

of vertices in vertex partition p. We also have590

X

v2Vq

dvp
Nq � 1

=

0

@

X

v2Vq

dvp
Nq

1

A

Nq

Nq � 1
=

0

@

X

v2Vq

dvp
Nq

1

A

0

@1 +
1

N
h

Nq

N
� 1

N

i

1

A .591

592

Thus we can write (8.1) as593

q
s,s+ξ

A,B
q

= N



�
ξ
A,B
q

⇣ s

N

⌘

+O

✓

1

N

◆�

,594

where595

(8.3) �
ξ
A,B
q

(y) = yA,q

 

⇣
A,B
0 +

P
X

p=1

zp,q
✓q

M
X

m=1

⇣A,B
m ym,p

!

.596

Note that �
ξ
A,B
q

returns a scalar but ⇠A,B
q is a matrix and it identifies the A,B 2 W597

and 0  q  P used in (8.3). In the large N limit, we have a system of matrix598

differential equations for y, given by599

(8.4) ẏ =
X

A2W

X

B 6=A

P
X

q=1

⇠A,B
q �

ξ
A,B
q

(y).600

8.3. Application of the mean-field-limit approach. Here we present the601

applicability of the mean-field limit derivation shown in the previous subsection. Using602

our approach one can derive the mean-field limit equation (8.4) for each node-dynamic603

and vertex partition listed in Section 7.4. The model dynamics specify the transitions604

⇠A,B
q and the corresponding transition rates ⇣A,B

m . The vertex-set partition can also605

be chosen quite generally, subject to the conditions (8.2), which assume that as N606

tends to infinity, the proportion of vertices in each partition, ✓p, and the proportion607

of edges between partitions, zp,q, tend to constant values. Once these constants have608

been determined, one can formulate transition functions �
ξ
A,B
q

for each transition609

⇠A,B
q using (8.3). The dependent variable in the mean-field equations (8.4) is the time-610

dependent matrix y, which is the scaled version of the lumped variables, i.e. y = s/N ,611

meaning that ym,p is the proportion of vertices in vertex-state Wm and in partition612

cell Vp. Thus the number of differential equations in (8.4) is M ⇥ P . Considering613

only the few examples of node-dynamics and partitions listed in Section 7.4, several614

dozens of mean-field equations can be derived based on our approach since each node615

dynamic can be combined with each partition.616

9. Degree-based mean-field. We now relate the large N limit of our vertex-
partition lumping to the well known degree-based mean-field. Consider the vertex
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partition where for each k > 0, we have that Vk is the set of vertices with degree k.
Thus Nk is the number of vertices with degree k and pk = Nk/N is the fraction of
vertices with degree k, i.e. the degree distribution. We assume that pk > 0 for all k
(although the same approach could be applied to cases where there are k such that
pk = 0) and that there is a maximum degree kmax, so that the vertex-set is partitioned
into a finite number of cells. We will call a partition based on vertex degree “degree-
based mean-field” and we will derive the ODEs for the SIS model. Let W1 correspond
to susceptible nodes and W2 correspond to infected nodes. Recall that for the SIS
model we have ⇣

1,2
2 = � and ⇣

2,1
0 = �, and all other ⇣A,B

m = 0. Since y1,k + y2,k = pk,
we will refer to the fraction of infected nodes as yk = y2,k, from which we can infer
y1,k = pk � yk. Thus we only need to write the differential equations for yk, and we
will write y = (y1, y2, . . . , ykmax

). Consequently we only need the second column of
the matrices ⇠A,B

q . Hence let ⇠k be a vector of zeros with a one in the kth entry, then
⇠k corresponds to an infection and �⇠k corresponds to a recovery. Using (8.3), the
large N infection rate is,

�ξk(y) = �(pk � yk)
X

k0

zk0,k

pk
yk0 ,

the large N recovery rate is
��ξk(y) = �yk,

and hence the evolution equations are617

(9.1) ẏk = ��yk + �(pk � yk)
X

k0

zk0,k

pk
yk0 .618

We will now show that (9.1) is equivalent to the Eames and Keeling [10] and
Pastor-Satorras and Vespignani [28] degree-based mean-field approximations. Eames
and Keeling use [Ik] to denote the number of infected nodes with k neighbours and
[SkIk

0

] to denote the number of partnerships between a susceptible node with k part-
ners and an infected node with k0 partners. The dynamics is then described by

d[Ik]

dt
= ��[Ik] + �

X

k0

[SkIk
0

],

and this is closed with the approximation

[SkIk
0

] ⇡
[Sk]

Nk

⇥
[Ik

0

]

Nk0

⇥ [kk0],

where [kk0] is the number of partnerships between individuals with k and k0 partners.619

Thus the Eames and Keeling degree-based mean-field is620

(9.2)
d[Ik]

dt
= ��[Ik] + �

X

k0

[Sk]

Nk

[Ik
0

]

Nk0

[kk0].621

Let yk = [Ik]/N , and noting that since [Sk] + [Ik] = Nk we have [Sk]/N = pk � yk,
then dividing (9.2) through by N yields

ẏk = ��yk + �(pk � yk)
X

k0

[kk0]

pkNk0

yk0 .
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Since [kk0] is the number of edges between degree k and degree k0 vertices, we have

[kk0] =
X

v2Vk

dvk0 ,

and consequently, using (8.2), the Eames and Keeling degree-based mean-field is622

equivalent to (9.1). It is also easy to show that the Eames and Keeling degree-623

based mean-field is equivalent to the Pastor-Satorras and Vespignani [28] degree-based624

mean-field, and we provide details of this in the Supplementary Information.625

10. Individual-based mean-field. We will now show how our approach can be626

used to derive individual-based mean-field approximations. Consider a graph with N627

vertices and Ne isomorphic copies of this graph. We will call the graph that is copied628

the base graph, and thus the collection of all copies of the base graph consists of NNe629

vertices. We will apply approximate lumping to this collection of graphs by choosing630

the partition of vertices, ΠV , so that each partition cell Vi has the corresponding631

vertex in each of the Ne copies of the graph. Thus there are P = N partition cells,632

and we can increase the total number of vertices by increasing Ne, the number of633

copies of the base graph. Applying our approximate lumping approach produces an634

ensemble average over the collection of isomorphic base graphs.635

To apply our approximate lumping approach, we need to compute the fraction636

of vertices in each vertex partition cell, ✓i, and the mean number of edges between637

vertex partition cells i and j, zi,j , as defined in (8.2). Note that our notation is slightly638

modified here, where we are taking the limit Ne ! 1 (and hence the total number639

of vertices in the collection of graphs) rather than N . Since there are Ne vertices in640

each partition cell and NNe vertices in total, we have that ✓i = 1/N . Let A be the641

adjacency matrix of the base graph, so the component Aij is one if vertices i and j are642

connected in the base graph and zero otherwise. Thus if Vi 2 ΠV , then the number643

of neighbours of vertex v 2 Vi that are in the partition cell Vj is dvj = Aij (i.e. one644

if i and j are connected in the base graph, and zero otherwise). We will assume for645

v 2 Vi that d
v
i = 0, i.e. there are no self-loops in the base graph. Consequently, since646

Ni = Ne for all Vi 2 ΠV , we have647

zi,j = lim
Ne!1

X

v2Vi

dvj
Ne

= Aij .648

649

We are now in a position to make use of (8.3), but note that following the approach650

described in Section 8, we would use the density variable y = s/(NNe), i.e. the total651

fraction of vertices in each vertex-state and vertex partition. However, individual-652

based mean-field approximations are typically based on the ‘probability’ that a vertex653

is in a given vertex-state. We can obtain a similar quantity here by instead using654

y = s/Ne, i.e. the fraction of base graphs in which each vertex is in each vertex-state.655

We again let ⇠ correspond to a vertex in Vi changing from A to B and so (8.1) becomes656

q
s,s+ξ

A,B

i

= Ne
sA,i

Ne

0

@⇣
A,B
0 +

X

j 6=i

Aij

"

M
X

m=1

⇣A,B
m

sm,j

Ne

#

+O(1/Ne)

1

A .657

Consequently, using y = s/Ne, the large Ne transition rate is

�
ξ
A,B

i

(y) = yA,i

0

@⇣
A,B
0 +

X

j 6=i

Aij

"

M
X

m=1

⇣A,B
m ym,j

#

1

A .
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From this we recognise the transition rates that appear in standard individual-based
mean-field equations, in which pairwise interaction terms are included according to
the graph’s adjacency matrix. For example, for the SIS model the evolution equation
for the ‘probability’ yi that vertex i is infected is [34, 23]

ẏi = ��yi + �(1� yi)
X

j 6=i

Aijyj .

11. The configuration model. In the previous section, we saw how our ap-658

proximate lumping approach could be applied to isomorphic copies of a given graph to659

obtain individual-based mean-field approximations. In this section we consider how660

this approach can be extended to derive mean-field approximations for dynamics on661

families of graphs, specifically configuration models.662

Suppose that the vertices V of a graph are labelled 1, 2, . . . , N , then a degree663

sequence is a sequence of integers d1, d2, . . . , dN , such that
P

i di = 2M and for each664

i, di  N � 1. A random graph can be constructed from a given degree sequence665

by allocating each node i with di ‘stubs’ and then picking pairs of stubs at random666

without replacement from the collection of all unpaired stubs to form edges in the667

graph. Such a graph may have self-edges and multi-edges. While the theory we668

have developed assumed simple networks, we conjecture that extending this approach669

to graphs with self- and multi-edges only introduces O(1/N) corrections to (6.6)670

in the large N limit. Here we consider the family of all such graphs for a given671

degree sequence, and we will refer to these as configurations (of the associated degree672

sequence). The number of configurations can be computed fairly easily by considering673

the combinations of ways that pairs of stubs can be chosen, while accounting for the674

fact that the order in which pairs of stubs are selected is not important, which yields675

NCM(M) =
1

M !

✓

2M

2

◆✓

2M � 2

2

◆

· · ·

✓

2

2

◆

=
2M !

2MM !
.676

677

Thus there are NNCM(M) vertices in the collection of configurations.678

It is also easy to show that for a pair of vertices i, j, the average number of edges
between i and j across all configurations is

didj
2M � 1

.

To see this, note that there are didj ways to match each of the di stubs to each of
the dj stubs. Having used a pair of stubs to do this, there are then 2M � 2 stubs
that remain to be matched, and there are NCM(M � 1) ways to do this. Note that
some of these remaining pairs of stubs may also lead to edges between i and j, but
this exactly accounts for all possible multi-edges between i and j. Thus

didj
NCM(M � 1)

NCM(M)
,

and cancellation leads to the result.679

To apply the vertex-partition lumping to the configuration model, we need to
consider the large N limit. Thus we suppose that for a given N , the degree sequence
is sampled at random and the degrees of the N vertices are dN1 , dN2 , . . . , dNN , where
there is an MN such that

P

i d
N
i = 2MN . Furthermore, we assume that for each

0 < k  kmax, the number of vertices of degree k is nk and

lim
N!1

nk

N
= pk,
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where pk > 0 for each k and
P

k pk = 1. Thus in the large N limit, the mean degree680

of the network will converge to z =
P

k kpk.681

We again consider a vertex-partition based on degree for the family of configura-682

tions ofN vertices. Thus for finite kmax the vertex partition isΠV = {V1, V2, . . . , Vkmax}.683

As described already, there are NNCM(MN ) vertices across the family of configura-684

tions and hence there are Nk = |Vk| = nkNCM(MN ) vertices of degree k. In order685

to apply our general formula (8.3), it remains to compute zk0,k, the average number686

of edges between vertices of degree k and vertices of degree k0, with respect to the687

number of vertices of degree k0. We have seen that the average number of edges688

between nodes with degree k and k0 is kk0/(2MN � 1), so the total number of edges689

between nodes of degree k and k0 across all configurations is this multiplied by the690

total number of vertices of degree k and the number of vertices of degree k0 in a single691

configuration. Thus it follows that692

zk0,k = lim
N!1

X

v2Vk

dvk0

Nk0

= lim
N!1

kk0

2MN � 1

Nknk0

Nk0

=
kk0pk
z

.(11.1)693

694

Focusing on the SIS model and using the notation from Section 9, we can substi-695

tute (11.1) into (9.1), which yields696

ẏk = ��yk + �(pk � yk)
X

k0

kk0

z
yk0 .697

Furthermore, substituting yk = ⇢kpk, rearranging and rescaling recovers the uncorre-698

lated degree-based mean-field [28].699

12. Discussion. In this paper we have derived mean-field approximations for700

a broad class of dynamical processes on networks directly from their exact Markov701

chain description. We have done this using the method of approximate lumping,702

where macrostates are defined in terms of the number of vertices in each vertex-state703

in subsets of vertices that form a partition of the vertex set. We have proved that this704

approach results in a density dependent population process, from which the large N705

limiting behaviour can be described in terms of a relatively small number of equations,706

specifically M ⇥ P equations, where M is the number of vertex states and P is the707

size of the vertex partition. We have shown how this approach can be used to derive708

degree-based and individual-based mean-field approximations.709

Given how involved the direct calculations are, it is surprising and impressive710

that we recover exactly the well-known degree-based and individual-based mean-field711

approximations. However, we emphasise that the use of approximate lumping means712

that not only is the averaging process clear, it tells us under what circumstances713

the approximation would be exact, i.e. the Markov chain that corresponds to the714

density dependent population process. Our approach also highlights that there are715

two sources of error. The main, and uncontrolled, source of error arises from the choice716

of vertex-partition that defines the partition of microstate-space in the approximate717

lumping. The second arises from the large N limit, but this vanishes as N becomes718

large.719

Our methodology formalises the process of obtaining mean-field equations for a720

given dynamical model, eliminating the need to rely on intuitive probabilistic argu-721

ments. This approach also explicitly reveals the type of averaging represented by722

mean-field approximations on networks. Our results apply in a broad range of cases,723

allowing researchers working with new models—within the class of single-vertex tran-724
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sition models with local, affine transition functions considered here—to easily obtain725

a range of mean-field approximations, in a controlled manner.726

The mean-field approximations that we have derived using our approximate lump-727

ing approach ignore dynamical correlations between the states of neighbouring ver-728

tices. Such correlations are taken into account in higher-order, edge-based mean-field729

approximations [23], that are typically derived using moment closure arguments. In730

a follow-up paper we will show how our approach can also be adapted to derive such731

edge-based mean-field approximations, extending its generality. A high-accuracy form732

of mean-field approximation are “approximate master equations” [15, 16], which are733

based on the number of susceptible/infected nodes of degree k with m infected neigh-734

bours. While it may seem that these might be derived from our approach, we have735

been unable to do so because it is not clear how the counts change when vertices re-736

cover or become infected. In particular, it seems that one must know the degree and737

number of infected neighbours of the neighbours of a vertex that changes vertex-state.738

Our ambition is to quantify mean-field approximation error in terms of the dy-739

namics and network structure. Our approach in this paper highlights that the main740

source of error results from the choice of vertex-partition and how far the correspond-741

ing lumping is from being exact. Establishing quantitative estimates for the resulting742

error is a critical open challenge. An attempt to do this is described in [38] for the743

case of the SISa model and where vertices are not partitioned, but in this case the744

error could not be entirely unravelled from the full Markov chain. However, it may745

be that hierarchies of approximations can be constructed in which the error decays746

monotonically [21]. In this paper we have shown how our approach can be applied to747

families of graphs, and this suggests that it may be also possible to use our approach748

to derive mean-field approximations for models in which the network co-evolves with749

the vertex-state dynamic. We would also like to generalise our approach to models750

with nonlinear VSTMs.751
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[4] C. Castellano, M. A. Muñoz, and R. Pastor-Satorras, Nonlinear q-voter model, Physical760
Review E, 80 (2009), p. 041129.761

[5] S. Chatterjee and R. Durrett, Contact processes on random graphs with power law degree762
distributions have critical value 0, The Annals of Probability, 37 (2009), pp. 2332–2356.763

[6] A. Crisanti and H. Sompolinsky, Path integral approach to random neural networks, Physical764
Review E, 98 (2018), p. 062120.765

[7] E. De Giuli and C. Scalliet, Dynamical mean-field theory: from ecosystems to reaction766
networks, Journal of Physics A: Mathematical and Theoretical, 55 (2022), p. 474002.767

[8] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, Critical phenomena in complex768
networks, Reviews of Modern Physics, 80 (2008), pp. 1275–1335.769

[9] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Ising model on networks with an770
arbitrary distribution of connections, Physical Review E, 66 (2002), p. 016104.771

[10] K. T. Eames and M. J. Keeling, Modeling dynamic and network heterogeneities in the spread772
of sexually transmitted diseases, Proceedings of the National Academy of Sciences, 99773
(2002), pp. 13330–13335.774

[11] S. N. Ethier and T. G. Kurtz, Markov processes: characterization and convergence, vol. 282,775
John Wiley & Sons, 2009.776

[12] P. G. Fennell and J. P. Gleeson, Multistate dynamical processes on networks: analysis777

This manuscript is for review purposes only.



MEAN-FIELD APPROXIMATION OF DYNAMICS ON NETWORKS 25

through degree-based approximation frameworks, SIAM Review, 61 (2019), pp. 92–118.778
[13] S. Galam, Minority opinion spreading in random geometry, The European Physical Journal779

B, 25 (2002), pp. 403–406.780
[14] R. J. Glauber, Time-dependent statistics of the ising model, Journal of Mathematical Physics,781

4 (1963), pp. 294–307.782
[15] J. P. Gleeson, High-accuracy approximation of binary-state dynamics on networks, Physical783

Review Letters, 107 (2011), p. 68701.784
[16] J. P. Gleeson, Binary-state dynamics on complex networks: Pair approximation and beyond,785

Physical Review X, 3 (2013), p. 021004.786
[17] J. P. Gleeson, S. Melnik, J. A. Ward, M. A. Porter, and P. J. Mucha, Accuracy of787

mean-field theory for dynamics on real-world networks, Physical Review E, 85 (2012),788
p. 026106.789

[18] J. Gomez-Gardenes, V. Latora, Y. Moreno, and E. Profumo, Spreading of sexually trans-790
mitted diseases in heterosexual populations, Proceedings of the National Academy of Sci-791
ences, 105 (2008), pp. 1399–1404.792

[19] J. A. Hertz, Y. Roudi, and P. Sollich, Path integral methods for the dynamics of stochastic793
and disordered systems, Journal of Physics A: Mathematical and Theoretical, 50 (2016),794
p. 033001.795

[20] J. G. Kemeny, J. L. Snell, et al., Finite Markov Chains, vol. 356, van Nostrand Princeton,796
NJ, 1960.797

[21] W. R. KhudaBukhsh, A. Auddy, Y. Disser, and H. Koeppl, Approximate lumpability for798
Markovian agent-based models using local symmetries, Journal of Applied Probability, 56799
(2019), pp. 647–671.800

[22] M. Kijima, Markov processes for stochastic modeling, vol. 6, CRC Press, 1997.801
[23] I. Z. Kiss, J. C. Miller, and P. L. Simon, Mathematics of Epidemics on Networks, Springer,802

2017.803
[24] M. Leone, A. Vázquez, A. Vespignani, and R. Zecchina, Ferromagnetic ordering in graphs804

with arbitrary degree distribution, The European Physical Journal B-Condensed Matter805
and Complex Systems, 28 (2002), pp. 191–197.806

[25] F. L. Metz, Dynamical mean-field theory of complex systems on sparse directed networks,807
Physical Review Letters, 134 (2025), p. 037401.808

[26] M. Newman, Networks, Oxford University Press, 2018.809
[27] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic810

processes in complex networks, Reviews of Modern Physics, 87 (2015), p. 925.811
[28] R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical812

Review Letters, 86 (2001), p. 3200.813
[29] L. Pellis, F. Ball, S. Bansal, K. Eames, T. House, V. Isham, and P. Trapman, Eight814

challenges for network epidemic models, Epidemics, 10 (2015), pp. 58–62.815
[30] M. A. Porter and J. P. Gleeson, Dynamical systems on networks, Frontiers in Applied816

Dynamical Systems: Reviews and Tutorials, 4 (2016), p. 29.817
[31] P. L. Simon, M. Taylor, and I. Z. Kiss, Exact epidemic models on graphs using graph-818

automorphism driven lumping, Journal of Mathematical Biology, 62 (2011), pp. 479–508.819
[32] V. Sood and S. Redner, Voter model on heterogeneous graphs, Physical Review Letters, 94820

(2005), p. 178701.821
[33] K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community, International Jour-822

nal of Modern Physics C, 11 (2000), pp. 1157–1165.823
[34] P. Van Mieghem, The N-intertwined SIS epidemic network model, Computing, 93 (2011),824

pp. 147–169.825
[35] F. Vazquez and V. M. Egúıluz, Analytical solution of the voter model on uncorrelated net-826

works, New Journal of Physics, 10 (2008), p. 063011.827
[36] J. A. Ward and J. Evans, A general model of dynamics on networks with graph automor-828

phism lumping, in International Conference on Complex Networks and their Applications,829
Springer, 2018, pp. 445–456.830
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SUPPLEMENTARY MATERIALS: MEAN-FIELD APPROXIMATION1

OF DYNAMICS ON NETWORKS⇤2

JONATHAN A. WARD† , GÁBOR TIMÁR† , AND PÉTER L. SIMON‡3

SM1. Introduction. Sections SM2 to SM5 of this document are intended to4

supplement Sections 2 to 5 in the main paper with an illustrative example. The5

sections here could be read alongside those in the main paper or separately, although6

the general theory presented here is highly abbreviated.7

SM2. Mathematical background. Let G = (V,E) denote a network with ver-8

tex set V and edge set E ⇢ V ⇥ V , where the number of vertices is N = |V |. Unless9

otherwise stated, we consider dynamical processes on finite simple networks (i.e. undi-10

rected, unweighted with no self-loops or multiple edges) described by continuous-time11

Markov chains where each vertex can be in one of a finite number M of vertex-states12

and the set of possible vertex-states is W = {W1,W2, . . . ,WM}.13

SM2.1. State-space. The state-space of the Markov chain is the set of all per-14

mutations of N vertex-states chosen from W with repetition. This is equivalent to15

S = WV , i.e. the set of all functions from V to W, and so if the network is in state16

S 2 S then the vertex-state of vertex v 2 V is S(v). We refer to the states S 2 S as17

microstates and the number of microstates in S isMN . We enumerate the microstates18

as S = {S[1], S[2], . . . , S[MN ]}.19

As an illustration of the theory developed in the main paper, a simple example20

will be presented here, specifically for dynamics on a square/two-by-two lattice/four21

cycle with vertices V = {1, 2, 3, 4}, illustrated in Figure SM1. We will refer to this22

as the square example. In this example, we consider SISa dynamics in which vertices23

are either susceptible, which corresponds to W1 = B and the colour blue, or infected,24

which corresponds to W2 = R and the colour red. The total number of microstates25

is MN = 24 = 16, we number them as illustrated in Figure SM2.26

SM2.2. Transitions. We assume that changes in microstate correspond to a27

single vertex v 2 V changing its vertex-state, and the rate that this occurs is a28

function of only the number of v’s neighbours in each of the vertex-states. We also29

assume that this rate function is the same for all vertices. In the models we consider,30

RA,B(n1, n2, . . . , nM ) � 0 gives the rate that a vertex in vertex-state A changes to31

vertex-state B if it has n1 neighbours in vertex-state W1, n2 neighbours in vertex-state32

W2, etc. If transitions between a pair of vertex-states A,B 2 W do not occur in a33

particular model, then the rate RA,B is identically zero. We consider models where34

RA,B is an affine function, i.e.35

(SM2.1) RA,B(n1, n2, . . . , nM ) = ⇣
A,B
0 +

M
X

m=1

⇣A,B
m nm,36

To illustrate the transitions between microstates, consider the example of SISa
dynamics. A susceptible vertex v with n1 susceptible neighbours and n2 infected

∗Submitted to the editors DATE.
Funding: J.A. Ward and G. Timár acknowledge funding from the Leverhulme Trust Project

Grant number RPG-2023-187. P.L. Simon acknowledges support from the Hungarian Scientific
Research Fund, OTKA (grant no. 135241) and from ERC Synergy Grant No. 810115 - DYNASNET.

†University of Leeds, UK (j.a.ward@leeds.ac.uk).
‡Eotvos Lorand University, Hungary

SM1

This manuscript is for review purposes only.

mailto:j.a.ward@leeds.ac.uk


SM2 J. A. WARD, G. TIMÁR, P. SIMON

1 2

34

Fig. SM1. Four cycle with vertex labelling.

S [1] S [2] S [3] S [4]

S [5] S [6] S [7] S [8]

S [9] S [10] S [11] S [12]

S
[13]

S
[14]

S
[15]

S
[16]

Fig. SM2. Labelling of microstate-space, blue corresponds to susceptible and red to infected

vertices.

neighbours becomes infected at a rate ↵+ �n2, where ↵,� > 0, so

RB,R(n1, n2) = ↵+ �n2.

Thus ⇣
B,R
0 = ↵, ⇣B,R

1 = 0 and ⇣
B,R
2 = �. An infected vertex with n1 susceptible

neighbours and n2 infected neighbours becomes susceptible at a rate � > 0, so

RR,B(n1, n2) = �.

Thus ⇣R,B
0 = � and ⇣

R,B
1 = ⇣

R,B
2 = 0.37

SM2.3. Kolmogorov equations: infinitesimal generator. Let

X(t) = (X1(t), X2(t), . . . , XMN (t))T

be the time-dependent Markov chain probability distribution over S, where Xi(t) is
the probability of being in microstate S[i] at time t. The evolution of X(t) is then
given by the forward Kolmogorov or master equation [SM4],

Ẋ = QTX,

This manuscript is for review purposes only.



SUPPLEMENTARYMATERIALS: MEAN-FIELD APPROXIMATION OF DYNAMICS ON NETWORKSSM3

where Q is the infinitesimal generator, an MN by MN matrix in which each off-38

diagonal component Qkl gives the transition rate from S[k] to S[l], and the diagonal39

components ensure that rows sum to zero so that probability is conserved. We assume40

that a vertex changes vertex-state instantaneously, thus transitions only occur between41

pairs of microstates that differ in exactly one vertex-state.42

Considering the SISa dynamics on the square again, we can easily determine the43

entries of the matrix Q. For example, Q9,12 = ↵ + 2�, because the transition from44

S[9] to S[12] means that node 3 becomes infected. (See the numbering of nodes and45

states in Figures SM1 and SM2.) This can happen at rate ↵ spontaneously and at46

rate 2� by infection along edges from nodes 2 and 4. Calculating the rates for all47

possible transition pairs, the infinitesimal generator of the small example is a 16⇥ 1648

matrix that can be written as49

(SM2.2) Q =

0

B

B

B

B

@

∆0 A0 0 0 0
B1 ∆1 A1 0 0
0 B2 ∆2 A2 0
0 0 B3 ∆3 A3

0 0 0 B4 ∆4

1

C

C

C

C

A

50

where the matrix Ak corresponds to infection from states with k infected nodes,
matrix Bk corresponds to recovery from states with k infected nodes and the matrix
∆k is diagonal with negative entries in the diagonal, determined in such a way that
the sum of entries in a row of Q is zero. These matrices take the following form:

A0 =
�

↵ ↵ ↵ ↵
�

, A1 =

0

B

B

@

↵+ � 0 ↵ 0 0 ↵+ �

↵+ � 0 0 ↵ ↵+ � 0
0 ↵+ � 0 ↵ 0 ↵+ �

0 ↵+ � ↵ 0 ↵+ � 0

1

C

C

A

,

A2 =

0

B

B

B

B

B

B

@

0 0 ↵+ � ↵+ �

↵+ � ↵+ � 0 0
0 ↵+ 2� ↵+ 2� 0

↵+ 2� 0 0 ↵+ 2�
↵+ � 0 ↵+ � 0
0 ↵+ � 0 ↵+ �

1

C

C

C

C

C

C

A

, A3 =

0

B

B

@

↵+ 2�
↵+ 2�
↵+ 2�
↵+ 2�

1

C

C

A

,

B1 =

0

B

B

@

�

�

�

�

1

C

C

A

, B2 =

0

B

B

B

B

B

B

@

� � 0 0
0 0 � �

� 0 0 �

0 � � 0
0 � 0 �

� 0 � 0

1

C

C

C

C

C

C

A

, B3 =

0

B

B

@

0 � 0 � � 0
0 � � 0 0 �

� 0 � 0 � 0
� 0 0 � 0 �

1

C

C

A

,

B4 =
�

� � � �
�

.

SM3. Coarse-graining via lumping: theoretical foundation. We con-51

sider lumping of Markov chains [SM3]. Let ΠS = {S1,S2, . . . ,Sn} be a partition52

of microstate-space, so Si \ Sj = ; for each i 6= j, and [iSi = S. We will refer to53

Si as a lumped state. An exact lumping is a partition of microstate-space ΠS that54

preserves the Markov property, a necessary and sufficient condition for which is that55

the sum of transition rates out of a microstate S[k] 2 Si into the cell Sj is the same56
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for all microstates in the cell Si. In matrix notation [SM6], this is equivalent to the57

existence of an n⇥ n matrix q such that58

(SM3.1) QC = Cq,59

where C 2 {0, 1}M
N⇥n is the collector matrix [SM2] whose kjth component is60

(SM3.2) Ckj =

⇢

1 if S[k] 2 Sj ,
0 otherwise,

61

that is the collector matrix collects those microstates in a coloumn that belong to the62

same cell, or in other words, the same macro-state, in the partition. We call (SM3.1)63

the lumpability condition.64

Note that q can be given explicitly for an exact lumping by introducing the65

distributor matrix [SM2] D 2 R
n⇥MN

, whose ilth component is66

(SM3.3) Dil =

⇢

1
|Si|

if S[l] 2 Si,

0 otherwise.
67

Specifically, ΠS satisfies the lumpability condition when Q commutes with CD [SM6].68

Note that DC = I, the identity matrix, hence multiplying (SM3.1) by D we get the69

generator q of the lumped system explicitly as70

(SM3.4) q = DQC.71

A lumping that does not satisfy the lumpability condition is an approximate72

lumping [SM2]. Given a partition ΠS of microstate-space that does not satisfy the73

lumpability condition (SM3.1), our approach is to still use the set of lumped states74

ΠS and the corresponding generator q = DQC. Summarising, we can say that75

starting from the full infinitesimal generator, Q, and choosing a partition of the76

state-space, equation (??) yields the infinitesimal generator q of the lumped (coarse-77

grained) system. Note that the partition of the state-space is encoded in the collector78

and distributor matrices, C and D respectively.79

SM4. Lumping based on vertex set partitions. In the previous section80

we introduced the notion of lumping in general. In this section we illustrate how a81

partition of vertices is used to partition the microstate-space.82

SM4.1. State-space partition based on a vertex set partition. Given83

a partition of the vertex set, we consider lumped states based on a partition of84

microstate-space into sets of microstates with the same number of vertices in each85

vertex-state within each of the cells of the vertex partition.86

Let us consider an SISa epidemic propagating on a square graph. In this example87

we consider a two cell partition of vertices ΠV = {V1, V2}, where V1 = {1, 4} and88

V2 = {2, 3}. Crucially, this choice of vertex partition allows us to illustrate an example89

of an approximate lumping1. We use N1 = |V1| and N2 = |V2| to denote the number90

of vertices in V1 and V2 respectively, so N1 = N2 = 2, and we use P = 2 to denote the91

number of vertex-partition cells. We will keep our notation general in this example,92

e.g. by using P rather than 2, where it does not add excessive complexity. Our93

approximate lumping will be based on the number of susceptible and infected vertices94

1Note however that in this example it is possible to obtain an exact lumping by choosing vertices
in opposite corners to be in the same cell of the vertex partition.
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S1 = { }

S2 = { } S3 = { }

S4 = { } S5 = { }

S6 = { }

S7 = { } S8 = { }

S9 = { }

, ,

, ,

, , ,

Fig. SM3. Approximate lumping partition of microstate-space for the square example.

in each of the cells in the vertex-partition. We will thus use a two-by-two matrix95

to represent lumped states, where the rows correspond to vertex-states (susceptible,96

infected) and the columns correspond to the partition cells (V1 and V2). Specifically,97

lumped states will be denoted by s 2 Z
M⇥P
�0 , a two-by-two matrix of non-negative98

integers whose m, pth entry, sm,p, is the number of vertices in vertex-state Wm in the99

vertex partition cell Vp. Note that s1,p + s2,p = Np for p = 1, 2 and adding these for100

p = 1 and p = 2 we get that the sum of the entries in a matrix s is N1 +N2 = N = 4.101

SM4.2. The size of the lumped state-space and the sizes of the partition102

cells. Since there are N1 = 2 vertices in the first partition cell and M = 2 vertex103

states, the possible values for s1,1 are 0, 1 and 2. The corresponding values for s2,1104

are 2, 1 and 0 respectively, since s1,1 + s2,1 = Np = 2. These three possibilities arise105

because a lumped state corresponds to choosing N1 vertices from the M possible106

vertex-states with repetition, which is
�

N1+M�1
N1

�

. A similar argument applies to the107

second partition cell and hence the total number of lumped states is108

(SM4.1) n =

✓

N1 +M � 1

N1

◆✓

N2 +M � 1

N2

◆

=

✓

3

2

◆✓

3

2

◆

= 9,109

and we label these as follows:110

s[1] =

✓

2 2
0 0

◆

, s[2] =

✓

1 2
1 0

◆

, s[3] =

✓

2 1
0 1

◆

,111

s[4] =

✓

0 2
2 0

◆

, s[5] =

✓

2 0
0 2

◆

, s[6] =

✓

1 1
1 1

◆

,112

s[7] =

✓

1 0
1 2

◆

, s[8] =

✓

0 1
2 1

◆

, s[9] =

✓

0 0
2 2

◆

.113
114

The corresponding vertex-partition approximate lumping ΠS = {S1,S2, . . . ,S9} is115

illustrated in Figure SM3. For example, there is one microstate in S [1] (which cor-116

responds to s[1]) which has 2 susceptible (blue) vertices in both V1 (vertices on the117
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left of the square) and V2 (vertices on the right of the square), and no infected (red)118

vertices in either vertex partition cell. Similarly, microstates in S [8] have two infected119

vertices in V1 and both a susceptible and an infected vertex in V2.120

The number of microstates that correspond to s[i] is equivalent to the number of

ways to choose s
[i]
1,1 susceptible vertices in the first partition, multiplied by the number

of ways to choose s
[i]
1,2 susceptible vertices in the second partition. As a notational

short-hand, we will use

✓

N

s[i]

◆

:=

✓

N1

s
[i]
1,1

◆✓

N2

s
[i]
1,2

◆

=
N1!

s
[i]
1,1! s

[i]
2,1!

⇥
N2!

s
[i]
2,1! s

[i]
2,2!

,

thus for our square example we have121

✓

N

s[1]

◆

=

✓

2

2

◆✓

2

2

◆

= 1,

✓

N

s[2]

◆

=

✓

N

s[3]

◆

=

✓

2

1

◆✓

2

2

◆

= 2,122

✓

N

s[4]

◆

=

✓

N

s[5]

◆

=

✓

2

0

◆✓

2

2

◆

= 1,

✓

N

s[6]

◆

=

✓

2

1

◆✓

2

1

◆

= 4,123

✓

N

s[7]

◆

=

✓

N

s[8]

◆

=

✓

2

1

◆✓

2

2

◆

= 2, and

✓

N

s[9]

◆

=

✓

2

0

◆✓

2

0

◆

= 1.124
125

SM4.3. Lumped generator for the square SISa example. Now we com-126

pute the infinitesimal generator for the example with SISa epidemic on a square127

network based on equation (SM3.4).128

The collector matrix, C, for our approximate lumping of the square is a matrix of129

size 16⇥ 9, with most of the entries zeros and one entry in each row which is 1. The130

element in the k-th row is Ckj if the microstate S[k] belongs to the lumped state Sj .131

Based on the labelling of the states in Figure SM2 and those of the lumping classes132

given in Figure SM3, the non-zero entries of the collector matrix are133

C1,1,C2,2,C3,2,C4,3,C5,3,C6,4,C7,5,C8,6,C9,6,134

C10,6,C11,6,C12,7,C13,7,C14,8,C15,8,C16,9.135136

The matrix C has a block diagonal form

C =

0

B

B

B

B

@

C0 0 0 0 0
0 C1 0 0 0
0 0 C2 0 0
0 0 0 C3 0
0 0 0 0 C4

1

C

C

C

C

A

with C0 = (1) = C4 and

C1 = C3 =

0

B

B

@

1 0
1 0
0 1
0 1

1

C

C

A

, C2 =

0

B

B

B

B

B

B

@

1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

1

C

C

C

C

C

C

A

.

Note that this choice of blocks does not correspond to the lumped states, rather it137

relates to the number of infected vertices and the block tri-diagonal structure of Q138
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seen in (SM2.2). Multiplying the infinitesimal generator Q by C we get the block139

tri-diagonal form140

(SM4.2) QC =

0

B

B

B

B

@

∆0C0 A0C1 0 0 0
B1C0 ∆1C1 A1C2 0 0

0 B2C1 ∆2C2 A2C3 0
0 0 B3C2 ∆3C3 A3C4

0 0 0 B4C3 ∆4C4

1

C

C

C

C

A

141

Each block can be easily calculated, we show only

A2C3 =

0

B

B

B

B

B

B

@

0 2↵+ �

2↵+ � 0
↵+ 2� ↵+ 2�
↵+ 2� ↵+ 2�
↵+ � ↵+ �

↵+ � ↵+ �

1

C

C

C

C

C

C

A

which shows that this lumping is not exact. Namely, recall that a lumping is exact if142

the total rate from a microstate S[k] 2 Si into a lumped state Sj is the same for all143

microstates in Si. In the expression for QC above, there are two lumped transitions144

where this is not the case, namely from S6 to S7 (rows 3 to 6 in the first column of the145

matrix A2C3), and from S6 to S8 (rows 3 to 6 in the second column of this matrix).146

In both cases, there are two microstates where the rate is ↵+ 2� and two where it is147

↵+ �. This confirms that our partition of vertices is an approximate lumping.148

We will now compute the lumped transition rate. The distributor matrix has the
block diagonal form

D =

0

B

B

B

B

@

D0 0 0 0 0
0 D1 0 0 0
0 0 D2 0 0
0 0 0 D3 0
0 0 0 0 D4

1

C

C

C

C

A

with D0 = (1) = D4 and

D1 = D3 =

✓

1
2

1
2 0 0

0 0 1
2

1
2

◆

, D2 =

0

@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

4
1
4

1
4

1
4

1

A .

Again, this choice of blocks does not reflect the lumping partition. Multiplying QC,149

given in (SM4.2), by D we get q in the block tri-diagonal form150

(SM4.3)

q = DQC =

0

B

B

B

B

@

D0∆0C0 D0A0C1 0 0 0
D1B1C0 D1∆1C1 D1A1C2 0 0

0 D2B2C1 D2∆2C2 D2A2C3 0
0 0 D3B3C2 D3∆3C3 D3A3C4

0 0 0 D4B4C3 D4∆4C4

1

C

C

C

C

A

.151

Each block can be easily calculated, and hence the coarsegrained approximate lumping152
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infinitesimal generator is153

(SM4.4)

q =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 2↵ 2↵ 0 0 0 0 0 0
� �2 0 ↵+ � 0 2↵+ � 0 0 0
� 0 �3 0 ↵+ � 2↵+ � 0 0 0
0 2� 0 �4 0 0 0 2(↵+ �) 0
0 0 2� 0 �5 0 2(↵+ �) 0 0
0 � � 0 0 �6 ↵+ 3

2� ↵+ 3
2� 0

0 0 0 0 � 2� �7 0 ↵+ 2�
0 0 0 � 0 2� 0 �8 ↵+ 2�
0 0 0 0 0 0 2� 2� �9

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,154

where the lines correspond to the blocks in (SM4.3). Here �i is the negative of the155

sum of the off diagonal elements in the ith row of the matrix, so for example �2 =156

�(3↵+ 2� + �).157

SM5. Lumped generator for two cell vertex-partitions. While it was easy158

to compute q in our example using Q, C and D, this will not be the case for large159

systems of interest. Thus we need to consider how we could compute q without using160

Q, C and D directly. We will use the square example to illustrate this process. For161

finite M and P = 2, a lumped state will be denoted by a matrix s 2 Z
M⇥P
�0 whose162

m, pth entry, sm,p, is the number of vertices in vertex-state Wm in the vertex partition163

cell Vp.164

SM5.1. Lumped generator for an arbitrary two cell vertex-partition.165

We will start by considering the transition rate from an arbitrary lumped state s[i] to166

another arbitrary lumped state s[j] 6= s[i]. In general this is given by167

(SM5.1) qij =
1

|Si|

X

S[k]2Si

X

S[l]2Sj

Qkl,168

but it turns out that rather than summing over microstates, as (SM5.1) suggests, it is169

easier to consider the possible transitions of individual vertices and sum their rates.170

Let dvp denote the number of neighbours of vertex v in the pth vertex-partition171

cell. In our example, all vertices have one neighbour in their own cell and one in the172

other cell, so dv1 = dv2 = 1 for all vertices v. The degree of vertex v is173

(SM5.2) dv :=
P
X

p=1

= dvp.174

We represent the neighbourhood of v using a two-by-two, non-negative, integer-valued
matrix nv 2 Z

M⇥P
�0 , whose component nv

m,p is the number of neighbours of vertex v in
the mth vertex-state and in the pth vertex-partition cell. We call nv a neighbourhood

count and it must satisfy
M
X

m=1

nv
m,p = dvp,

for 0  p  P . Note that175

(SM5.3)

P
X

p=1

M
X

m=1

nv
m,p = dv.176
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We will use a single index on this matrix to indicate a column, i.e. nv
p 2 Z

M
�0 is the177

pth column of nv.178

For our square example, since dvp = 1 for all v and p, the only possibly neighbour-179

hoods in vertex-partition cell p are180

(SM5.4)

✓

1
0

◆

and

✓

0
1

◆

,181

i.e. either a susceptible or an infected neighbour respectively. Thus the possible182

neighbourhood counts nv are183

(SM5.5)

✓

1 1
0 0

◆

,

✓

0 1
1 0

◆

,

✓

1 0
0 1

◆

and

✓

0 0
1 1

◆

.184

The first of these matrices corresponds to having a susceptible neighbour in both par-185

titions, the second corresponds to having an infected neighbour in V1 and a susceptible186

neighbour in V2, and so on.187

Without loss of generality we assume that the transition from the lumped state188

s[i] to the lumped state s[j] corresponds to a vertex in vertex-partition q 2 {1, 2}189

transitioning from vertex-state A 2 W to B 2 W, where A 6= B. To compute (SM5.1),190

for each v 2 Vq we can construct all possible microstates where v has vertex-state A.191

If in this process we specify the vertex-states of the neighbours of v, then we can192

determine the rate at which v changes from A to B. Summing this contribution from193

all possible cases yields qij . A proof of this is given in Section 6 of the main paper.194

The number of ways that we can arrange the vertex-states of the neighbours of v195

in vertex-partition cell p 6= q according to some nv
p, as well as the vertex-states of the196

other vertices in vertex-partition cell p 6= q according to sp is197

(SM5.6) A(sp,n
v
p) :=

✓PP

p=1 nm,p

nv
p

◆✓PP

p=1 sm,p � nv
m,p

sp � nv
p

◆

.198

Note that we have used a vector in the bottom of the multinomial coefficient nota-
tion to indicate that the elements of the vector should be in the denominator of the
multinomial coefficient, i.e.

✓

dvp
nv
p

◆

:=
dvp!

nv
1,p!n

v
2,p! . . .n

v
m,p!

.

We will also assume the standard convention that a multinomial coefficient is zero if199

any entry is negative. For the vertex-partition cell q, which contains v, the number200

of ways that we can arrange the neighbours of v according to nv
q is201

A(sq � eA,n
v
q) =

✓

dvq
nv
q

◆✓

Nq � 1� dvq
sq � eA � nv

q

◆

,202

where eA is a vector of length M with a one in the entry corresponding to vertex-state203

A and zeros elsewhere. This is to account for the fact that we assumed vertex v is in204

vertex-state A, so there is one less A vertex in sq. Then for a given nv and p 6= q,205

using (SM5.6) there are206

(SM5.7) A(s[i]q � eA,n
v
q)A(s[i]p ,nv

p)207
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microstates in Si in which vertex v in vertex partition cell q is in vertex-state A, its208

neighbours’ vertex-states correspond to nv, and the total number of vertices in each209

vertex-state and in each vertex-partition cell corresponds to s[i]. Thus we get qij by210

summing over all feasible realisations of the matrix nv and vertices in Vq, which yields211

(SM5.8)

qij =
1
�

N
s
[i]

�

X

v2Vq

X

n
v
1 |d

v
1

X

n
v
2 |d

v
2

 

⇣
A,B
0 +

M
X

m=1

P
X

r=1

⇣A,B
m nv

m,r

!

A(s[i]q � eA,n
v
q)A(s

[i]
p ,nv

p).212

In this equation, the sums over nv
1|d

v
1 and nv

2|d
v
2 specify the P = 2 columns of nv.213

For our square example and the case where a transition from s[i] to s[j] corresponds214

to a susceptible vertex in vertex-partition cell V1 becoming infected, (SM5.8) becomes215

(SM5.9) qij =
1
�

N
s
[i]

�

X

v2V1

X

n
v
1 |d

v
1

X

n
v
2 |d

v
2

⇥

↵+ �
�

nv
2,1 + nv

2,2

�⇤

A(s1 � e1,n
v
1)A(s2,n

v
2).216

Here nv
1|d

v
1 corresponds to a sum over non-negative vectors nv

1 whose elements sum217

to dv1, and similarly for nv
2|d

v
2—in both cases these are the vectors listed in (SM5.4).218

The lumped states from which a susceptible vertex in V1 can become infected are S[2],219

S[3], S[5], S[6] and S[7]. We will use (SM5.9) to compute the lumped transition rate220

for two examples. First consider the rate from s[3] to s[6]. For either vertex in V1,221

expanding the sums over neighbourhoods yields222

X

n
v
1 |d

v
1

X

n
v
2 |d

v
2

⇥

↵+ �
�

nv
2,1 + nv

2,2

�⇤

A(s1 � e1,n
v
1)A(s2,n

v
2)223

=[↵+ �(0 + 0)]A

✓✓

2
0

◆

�

✓

1
0

◆

,

✓

1
0

◆◆

A

✓✓

1
1

◆

,

✓

1
0

◆◆

224

+ [↵+ �(0 + 1)]A

✓✓

2
0

◆

�

✓

1
0

◆

,

✓

1
0

◆◆

A

✓✓

1
1

◆

,

✓

0
1

◆◆

225

+ [↵+ �(1 + 0)]A

✓✓

2
0

◆

�

✓

1
0

◆

,

✓

0
1

◆◆

A

✓✓

1
1

◆

,

✓

1
0

◆◆

226

+ [↵+ �(1 + 1)]A

✓✓

2
0

◆

�

✓

1
0

◆

,

✓

0
1

◆◆

A

✓✓

1
1

◆

,

✓

0
1

◆◆

,227

=↵ · 1 · 1 + [↵+ �] · 1 · 1 + [↵+ �] · 0 · 1 + [↵+ 2�] · 0 · 1,228

=2↵+ �.229230

Since there are two vertices in V1, we get a contribution of 2↵+ � from each, but the
averaging constant is

✓

N

s[3]

◆

:=

✓

N

s
[3]
1

◆✓

N

s
[3]
2

◆

= 2,

thus we have q3,6 = 2↵ + �, which agrees with the corresponding entry in (SM4.4).231

A similar calculation for the transition from s[6] to s[8] yields232

q6,8 =
1

4
⇥ 2⇥ {[↵+ �(0 + 0)] · 0 · 1 + [↵+ �(0 + 1)] · 0 · 1233

+ [↵+ �(1 + 0)] · 1 · 1 + [↵+ �(1 + 1)] · 1 · 1} = ↵+
3

2
�,234

235

which again agrees with the corresponding entry in (SM4.4).236
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SM6. Sum-product property.237

Theorem SM6.1. The sum-product property is that

P
Y

p=1

rp
X

ip=1

apip =

r1
X

i1=1

r2
X

i2=1

· · ·

rP
X

iP=1

P
Y

p=1

apip .

Proof. We prove this by induction. This is trivially true for P = 1. We assume238

it is true for P , then for P + 1 we have239

P+1
Y

p=1

rp
X

ip=1

apip =

0

@

P
Y

p=1

rp
X

ip=1

apip

1

A

0

@

rP+1
X

iP+1=1

aP+1
iP+1

1

A ,240

=

 

r1
X

i1=1

r2
X

i2=1

· · ·

rP
X

iP=1

P
Y

p=1

apip

!

0

@

rP+1
X

iP+1=1

aP+1
iP+1

1

A ,241

=

rP+1
X

iP+1=1

aP+1
iP+1

 

r1
X

i1=1

r2
X

i2=1

· · ·

rP
X

iP=1

P
Y

p=1

apip

!

,242

=

r1
X

i1=1

r2
X

i2=1

· · ·

rP+1
X

iP+1=1

P+1
Y

p=1

apip .243

244

As a consequence of the sum-product property, for lumped state s and neighbour-245

hood count nv of a vertex v 2 V , we have246

P
Y

p=1

2

4

X

n
v
p|d

v
p

A(sp,n
v
p)

3

5 =
X

n
v
1 |d

v
1

X

n
v
2 |d

v
2

· · ·
X

n
v
P
|dv

P

P
Y

p=1

A(sp,n
v
p)247

=
X

n
v|dv

P
Y

p=1

A(sp,n
v
p).(SM6.1)248

249

SM7. Generalised Vandermonde identity. The Vandermonde identity can
be generalised to multinomials. To see this, consider the multinomial theorem,

(x1 + x2 + · · ·+ xM )N =
X

s1+s2+···+sM=N

✓

N

s1, s2, . . . , sM

◆ M
Y

m=1

xsm
m ,

where s1, s2, . . . , sM � 0. Thus for d < N we have250

(x1 + x2 + · · ·+ xM )N�d(x1 + x2 + · · ·+ xM )d251

=

"

X

l1+l2+···+lM=N�d

✓

N � d

l1, l2, . . . , lm

◆ M
Y

m=1

xlm
m

#

252

⇥

"

X

n1+n2+···+nM=d

✓

d

n1, n2, . . . , nM

◆ M
Y

m=1

xnm
m

#

,253

=
X

l1+l2+···+lM=N�d

X

n1+n2+···+nM=d

✓

d

n1, n2, . . . , nM

◆✓

N � d

l1, l2, . . . , lm

◆ M
Y

m=1

xlm+nm
m ,254

255
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where lm, nm � 0. Thus instead of summing over l1 + l2 + · · · + lM = N � d we can256

sum over s1 + s2 + · · ·+ sM = N and use lm = sm �nm with the convention that the257

multinomial coefficients are zero if sm � nm < 0 or
P

m(sm � nm) 6= N � d. Thus we258

have259

X

s1+s2+···+sM=N

✓

N

s1, s2, . . . , sM

◆ M
Y

m=1

xsm
m =260

X

s1+s2+···+sM=N

"

X

n1+n2+···+nM=d

✓

d

n1, n2, . . . , nM

◆✓

N � d

s1 � n1, s2 � n2, . . . , sM � nM

◆

#

261

⇥

M
Y

m=1

xsm
m ,262

263

and the equality of the polynomials on the two sides implies that the coefficients of
corresponding terms are identical, hence
✓

N

s1, s2, . . . , sM

◆

=
X

n1+n2+···+nM=d

✓

d

n1, n2, . . . , nM

◆✓

N � d

s1 � n1, s2 � n2, . . . , sM � nM

◆

.

Lemma SM7.1. Let s be a lumped state and nv a neighbourhood count of a vertex264

v 2 V , then265

(SM7.1)

✓

N

s

◆

=
X

n
v|dv

P
Y

p=1

A(sp,n
v
p).266

267

Proof. From the Vandermonde property of multinomials and (SM5.6), we have

✓

Np

sp

◆

=
X

n
v
p|d

v
p

A(sp,n
v
p).

Thus it follows that268

✓

N

s

◆

=
P
Y

p=1

✓

Np

sp

◆

269

=

P
Y

p=1

0

@

X

n
v
p|d

v
p

A(sp,n
v
p)

1

A .270

271

The result then follows from application of the sum product property.272

SM8. Degree-based mean-field. In this section we show that the Eames and273

Keeling degree-based mean-field is equivalent to the Pastor-Satorras and Vespignani274

[SM5] degree-based mean-field. The Eames and Keeling degree-based mean-field is275

(SM8.1)
d[Ik]

dt
= ��[Ik] + �

X

k0

[Sk]

Nk

[Ik
0

]

Nk0

[kk0],276

where [Ik] ([Sk]) denotes the number of infected (susceptible) nodes with k neighbours,
Nk is the number of nodes with degree k, [kk0] is the number of partnerships between
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individuals with k and k0 partners, � is the recovery rate and � is the infection rate.
Pastor-Satorras and Vespignani use ⇢k to denote the “average density” of infected
nodes of degree k. The average fraction of infected nodes is then

⇢ =
X

k

pk⇢k,

which suggests that ⇢k = [Ik]/Nk. The evolution of ⇢k is described by277

(SM8.2) ⇢̇k = �⇢k + �k [1� ⇢k]

P

k0 k0pk0⇢k0

z
,278

where � = �/� is the effective spreading rate, and z =
P

k kpk is the mean degree.279

Boguñá et al [SM1] extend this to account for degree correlations, where they define280

P (k0|k) to be the conditional probability that a node of degree k is connected to a281

node of degree k0. The evolution of ⇢k is then given by282

(SM8.3) ⇢̇k = �⇢k + �k [1� ⇢k]
X

k0

P (k0|k)⇢k0 .283

Now starting from the Ealing and Keemes degree-based mean field, we set ⇢k =
[Ik]/Nk, so with Nk = [Sk] + [Ik] we have (1� ⇢k) = [Sk]/Nk, then dividing (SM8.1)
through by Nk yields

⇢̇k = ��⇢k + � [1� ⇢k]
X

k0

[kk0]

Nk

⇢k0 .

Since kNk is the total number of edges connected to nodes of degree k, we define

P (k0|k) =
[kk0]

kNk

,

and hence
⇢̇k = ��⇢k + �k [1� ⇢k]

X

k0

P (k0|k)⇢k0 ,

which after time-rescaling yields (SM8.3). In the absence of degree correlations we
have

P (k0|k) =
k0Nk0

zN
=

k0pk0

z
,

and hence we obtain (SM8.2).284
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