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A B S T R A C T

Owing to the recent ban on the sales of new petrol and diesel cars in the United Kingdom (UK) by 2030,
combined with the UK’s commitment to net-zero emission of greenhouse gases by 2050, a projected increase
in the growth rate of electric vehicles (EVs) is inevitable. In recent years, there has been an increase in the
adoption of EVs, but not at a rate sufficient to meet net-zero targets. Although benefits do exist for current
EV owners, barriers such as the availability of charging infrastructure, total cost of ownership, battery costs,
amongst others still present a challenge for the required adoption rate. In this work, we therefore aim to
address some of these barriers, specifically the total cost of ownership and battery costs, by exploring the value
a range of EVs on the market give to domestic end-users with different usage classes. Using a techno-economic-
environmental mixed integer linear optimisation model which considers local energy demands, retail electricity
tariffs, local renewable energy generation and battery degradation, potential benefits for EVs adopters are
analysed from a cost or Carbon dioxide (CO2) minimisation objective. This model adopted considered a range
of vehicle types – EVs and non-EVs – and properties, installed PV sizes, and user travel behaviour classes, and
results showed that although EVs have a relatively higher purchase costs, total cost values are comparable,
in some cases cheaper, when compared with conventional non-EVs. EV users further gain from environmental
benefits through a reduction in the CO2 emitted irrespective of the user’s desired goal. A dominance analysis
was also carried out to determine the order of importance of key input variables to the optimisation model in
predicting costs and CO2 emission quantities. The results obtained are helpful to end-users in prioritising EV
features during purchase based on personal goals of cost or carbon emissions reduction.

1. Introduction

The potential impacts and associated risks of climate change, and
the role greenhouse gas (GHG) emissions play, have been acknowl-
edged in most parts of the world. Eleven countries (the United King-
dom, UK, being the first major economy in the world) have thus set a
net-zero GHG emissions target by 2050 (Committee on Climate Change,
2019). Amongst sectors in the UK, the transport sector has been identi-
fied as the largest contributor to GHG emissions (Fig. 1). As such, one
of the scenarios outlined by the UK government to achieve net-zero
targets involves extensive electrification, particularly of transportation
and heating (Committee on Climate Change, 2019; Küfeoğlu and Khah
Kok Hong, 2020). This directly involves a transition to electric-powered
surface transport vehicles.

Prior to this policy publication by the UK government, there has
been a growing adoption (and still is) of Electric Vehicles (EVs) (Fig. 2).
Amongst the currently available EV types – Battery Electric Vehicle
(BEV), Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Ve-
hicle (PHEV) – there has been a minimum growth rate of 28% year
on year between 2014–2019. This has been attributed to benefits
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from capital subsidies, lower fuel and vehicle taxation as well as the
increasing cost-competitiveness of EVs in comparison with traditional
internal combustion engine-type (ICE) vehicles. In addition to this,
the announcement in November, 2020 by the UK government, of the
ban on the sales of new petrol and diesel cars and vans after 2030,
and hybrid car sales after 2035 (Department for Business Energy &
Industrial Strategy, 2020b), is projected to cause an increased growth
rate in the coming years, especially for BEVs, amongst other factors (Lee
and Brown, 2021a).

This projected growth has its impact on the power grid. Unregulated
connections of EVs can result in a substantial increase in aggregate
demand, impact power quality, or cause an outright destabilisation of
the grid (Ahmadian et al., 2020; Xiong et al., 2017). However, benefits
do exist to the grid as well as to the vehicle owners. EVs can act
as additional energy storage devices providing energy via vehicle-to-X
(where X is home (H), building (B) or grid (G)) technologies (Tcha-
gang and Yoo, 2020). This allows for peak load shaving, reduction
in household/building energy costs, ancillary service provision and
backup power supply during outages. What then becomes important is
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Abbreviations/Acronyms

The abbreviations and symbols used are defined as follows:
2WP Two-way power

ABM Agent based model

AF Availability fraction

BEV Battery electric vehicle

DIE Diesel engine vehicle

EV Electric vehicle

ICE Internal combustion engine

Li-ion Lithium ion

PbA Lead acid

PET Petrol engine vehicle

PV Photovoltaic cell

SOC State of charge

UK United Kingdom

the availability of an optimal scheduling strategy to ensure that these
benefits are leveraged whilst minimising the negative impacts to the
grid.

To this end, several studies have focused on leveraging such benefits
from the grid point of view using a collection of optimisation tech-
niques. Optimisation techniques are used as they determine (through
proven mathematical theory) the best decisions that can be taken for
any defined system. By setting a system goal (called an objective) and
defining the system through mathematical equations with known limits
(called constraints), the solution to the mathematical equations can
be obtained through proven techniques which yield the best course
of action towards achieving the pre-defined goal. Das et al. (2020)
used such technique when they proposed a multi-objective techno-
economic-environmental optimisation strategy for EV scheduling. Some
of the system goals (objectives) considered were the minimisation of
electricity cost, battery degradation, grid interaction and CO2 emissions
in a home-micro-grid context, with provision of frequency regulation
services. The resulting mathematical model was applied to a single
household and a UK district network using projected assumptions of
photovoltaic cell (PV) and EV penetrations in 2040 under different
scenarios. This method was further improved on by Das et al. (2021)
to account for real-time operations of decentralised EVs. The multi-
objective model was solved via dynamic programming as opposed to
a hierarchical process adopted previously to obtain real-time optimal
schedules for the EV with fixed availability periods.

Wang et al. (2020) looked into the economic benefits of EVs versus
stationary energy storage devices for PV systems. EV availabilities of
90% and 100% were assumed under PV cell sizes ranging from 1–6
kWp studied in three locations in the UK. Amongst their findings, the
study showed that the time in which an EV is available has an impact
on the benefits realisable especially when paired with a PV generating
system. Economic benefits were also found to vary with location.

Merhy et al. (2021) proposed a multi-objective optimisation ap-
proach which focused on the charging process for electric vehicles
providing X-to-vehicle (X2V) services. The objectives included maxi-
mum the battery’s life cycle, minimising battery costs, load levelling
and fulfilling the energetic needs of the EV related to infrastructure. The
model was solved using a genetic algorithm under different scenarios
with set preferences for each objective. Tchagang and Yoo (2020)
also proposed a multi-objective optimisation approach for EVs in a
V2G system used for peak-shaving and frequency regulation. Objectives
considered were to minimise building owners energy costs as well as
the battery degradation whilst providing V2G services at particular
times in a day. Fixed EVs battery capacity sizes were also used with
a fixed usage profile under different SOC ranges. Results showed that
EVs reduced the overall electricity bill especially in the state of charge

(SOC) range of 30%–90%. In Alilou et al. (2020)’s study, the proposed
multi-objective algorithm was applied to a residential smart micro-grid
with objectives to minimise the community’s electricity bill and peak
demands. Real-time tariffs, as opposed to wholesale prices in previous
studies, were used with the option of the smart home selling electricity
back to the grid. A smart home here refers to home consisting of
appliances, renewable distributed generation and EV, all controllable
by a home energy management system. With a case of 20-smart homes,
each with a fixed EV type and property as well as a fixed PV system
size, results showed that both the energy bill and peak demand of
the community were reduced. The stochastic nature of PV generation
and EV availability and use were modelled using a combination of
Latin Hypercube Sampling (LHS) and K-means clustering to generate
PV generation and EV availability profiles. Lu et al. (2020) adopted a
Monte Carlo simulation instead for EV demand profiles for a similar
study.

In each of these studies, a fixed EV type and property (battery
capacity, power, etc.) are mostly assumed with a fixed vehicle avail-
ability profile. As there are a range of EVs currently on the market
with each user having different travel behaviours, relating results to
most vehicle users becomes difficult. A great deal of emphasis has also
been on the grid’s perspective – provision of ancillary services and/or
with access to the wholesale market prices – which individual users
have little or no control of or access to. There has also been studies
on the potential benefits to individual users with access to the retailer
electricity market. Amongst others, Aguilar-Dominguez et al. (2020)
used a techno-economic optimisation model to assess the potential eco-
nomic benefits EVs had on minimising an individual user’s electricity
bill. Two EVs were used as a case study with a single user travel profile.
Results showed that under all electricity tariffs considered, EVs using
V2H technologies provided additional savings to the household. EV, PV
and/or battery costs were however not considered in the optimisation
model. As with most other studies, bi-directional charging (i.e. two-way
power, 2WP, feature) was assumed for EVs, which currently is not the
case for most BEVs and PHEVs on the market.

A study has already shown that the current adoption rates of BEVs
is insufficient for the UK transport sector to achieve the 4th to 7th
carbon budgets (Küfeoğlu and Khah Kok Hong, 2020). The carbon
budgets are a result of a Climate Change Act in the UK which guides the
government in achieving the 2050 carbon emissions reduction target
over a five-yearly period. By this act, the UK is required to achieve a
51% reduction (for 2023–2027; 4th carbon budget) and 68% reduction
(for 2038–2042; 7th carbon budget) from 1990 emission levels in order
to achieve 2050 net-zero goals. Kumar and Alok (2020) published a
review identifying key motivators and barriers towards EV adoption.
Key motivators included the potential environmental benefits, avail-
ability of incentives and advantageous government regulations, and the
symbolic attributes amongst others. Barriers included the availability
of charging infrastructure, the total cost of ownership, battery cost and
technology, vehicles design and features, range anxiety, etc. Kumar and
Alok (2020). Lee and Brown (2021a) also presented an agent based
model (ABM) to simulate the uptake of EVs considering socio-economic
motivators. However, it becomes important to use the range of techno-
economic-environmental tools available to study the potential benefits
these EVs can provide based on their type and the users’ travel be-
haviour/profiles in order to address some of these adoption barriers
for potential domestics EV adopters.

To this end, we intend to study a range of EVs on the market
matched with differing user travel profiles to present results on the
economic and environmental benefits in a format that a range of UK
users can relate to. This study addresses the barrier of total cost of own-
ership to EV ownership whilst emphasising the potential environmental
benefits. This study is not aimed at predicting future behavioural
trends for EV adopters as investigated by other researchers (Lee and
Brown, 2021b). In a previous study (Aguilar-Dominguez et al., 2021),
we proposed a machine learning model to predict the location and
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Fig. 1. UK greenhouse gas emissions; 1990–2019 (Department for Business Energy & Industrial Strategy, 2020a).

Fig. 2. UK EV adoption; 2014–2019 (Department for Transport, 2020b).

distance travelled of an EV over a period of time based on the UK
National Travel Survey (NTS). There, we considered a specific electric
vehicle providing V2H services with a fixed PV cell size over a range
of user travel profile groups classified according to the ratio of vehicle
availability over a period. In this study, we expand on that work
considering a range of vehicle types and models having different prop-
erties, PV sizes, and the inclusion of degradation constraints to better
represent battery performance for a user within a longer time period.
Using a techno-enviro-economic optimisation model, we present results
obtained for a range of vehicle use cases, vehicle types (EVs and con-
ventional ICE vehicles), installed PV array sizes, and electricity tariffs,
to compare the economic and environmental benefits. An optimisation
model is adopted to deterministically obtain the best set of decisions
for the system in question.

The main goal of this work is to identify and quantify the benefits
(economic and environmental) EVs can render to domestic end-users,
whilst identifying the key factors that affect the level of such benefits.
This we achieve through the following contributions:

• the presentation of a techno-enviro-economic optimisation model
for the optimal scheduling of electric vehicle charging/discharging
considering battery degradation, local renewable energy genera-
tion, vehicle travel patterns, and a set of electricity tariffs;

• to show the benefits – economic and environmental – that users

can/cannot derive from different system configurations based on

individual combinations of:

– vehicle types — BEV, Petrol-based (PET) and Diesel-based

(DIE) conventional vehicles;

– installed PV system sizes;
– vehicle availability profiles.

• compare the economic and environmental benefits BEVs with and

without 2WP features provide to individual users under different

installed PV system sizes and infer optimal configurations per user

class;

• to identify the key properties that significantly contribute to total

cost, electricity cost and CO2 emissions.

The rest of this paper is structured as follows. In Section 2 we

present a case study having a diverse range of vehicle types, EV

use profiles, PV cell sizes, and domestic user goals (minimal cost or

CO2 emissions). The results from our analysis of the case study are

also discussed. The analysis involved solving the optimisation model

proposed in Appendix for the optimal operation of EVs and processing

its results. A summary of our findings are given in Section 3.
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Fig. 3. Monthly vehicle cost distribution.

Fig. 4. Vehicle availability fraction.

2. Case study

The proposed optimisation model (described in detail in Appendix)
was applied to study the potential benefits for a range of vehicle types,
user travel behaviour profiles, electricity tariffs and PV cell sizes for
a domestic UK customer under two different objectives — obtain the
least cost (Cost minimisation objective) or least overall environmental
footprint (CO2 minimisation objective) for the user.

Thirty-eight vehicles of different types — BEV, DIE, PET, currently
available on the market were analysed, with known properties such
as the purchase cost, maintenance cost, fuel consumption, range, CO2
emission, tank size; and battery capacity, energy consumption during
travel and output power if an EV. In some cases, and based on actual
vehicle features from the manufacturer, EV have the two-way (2WP)
feature. This enables the EV to participate in Vehicle-to-Home/Grid
(V2H/V2G) services, providing electricity back to home/grid thus act-
ing as an energy storage device. CO2 emissions are calculated as the
net contribution of grid-imported power (based on the generation mix

at the time of electricity use) and the tail-pipe CO2 based on the vehicle
model considered. Fig. 3 shows the purchase cost distribution of each
vehicle considered per type.

Using data from the UK National Travel Survey (UK Government
Department of Transport, 2018), a set of user travel data over a period
of a month were obtained. UK National Travel Survey analysed when,
where and why vehicles user’s travel over a period of time. A total of
30 travel data sets were selected for use for this case study including
users who travel short and long distances. Fig. 4 shows the total travel
distance in miles and the availability fraction (AF) for each vehicle. The
AF is defined as the fraction of the total time in which the vehicle is
located at home.

Local electricity load profile for a typical domestic household was
generated using the ELEXON profile class 1 10-year average (ELEXON,
2018). This corresponds to the profile class for domestic unrestricted
customers in the UK, and represents their pattern of electricity con-
sumption. Random noise based on a uniform distribution was added
to the load profile averages to obtained a unique load profile for
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Fig. 5. BEV: Monthly electricity cost vs vehicle usage; No PV.

the month of January, 2019. Two electricity tariff options were also
made available to the optimisation model — a flat and a time-of-use
based tariff. The flat tariff had a standing charge of 20.39p/day and
variable charge of 14.53p/kWh. For the time-of-use tariff, the Octopus
GO tariff (Octopus Energy, 2020) for EV owners was adopted with a
standing charge of 25p/day, an export price of 5.5p/kWh, peak charge
of 14p/kWh and an off-peak (00:30–4:30) charge of 5p/kWh.

Solar generation was obtained from the PVGis platform (Joint Re-
search Centre, 2020) for a location in Finningley, Doncaster, UK for
installed PV cells of ratings 1 kWp, 2 kWp, 3 kWp, and 4 kWp.

Using the datasets described above, the proposed optimisation
model was solved for each vehicle type, user travel profile, installed
PV cell size and model objective (min. Cost and min. CO2 emis-
sions), totalling 11,400 cases. These were all implemented using Pyomo
5.6.8 (Bynum et al., 2021; Hart et al., 2011) and solved with Gurobi 9.0
solver (Gurobi Optimization, LLC, 2021) to global optimality using an
Intel Xeon E-2146G with 32 GB and 12 threads running Windows 10.
Each run solved with a minimum, average and maximum CPU time of
1.4 s, 2.8 s and 20.1 s respectively and the results obtained are analysed
below.

2.1. Cost minimisation objective

2.1.1. Electricity cost
Fig. 5 shows a plot of the net electricity cost (in £) of the household

for different BEVs under a range of user profiles, ordered by their
availability fractions for a case with no installed PV. A noticeable
difference in electricity cost is observed for BEV with the 2WP feature,
with as much as a 48% reduction when compared with those without
this feature. This is as EVs with the 2WP feature enabled, may also serve
as an energy source at periods of high electricity prices and demand,
reducing the overall electricity costs.

The blue line indicates the base electricity cost. This corresponds to
the minimum cost obtained by the household when strictly satisfying
the household energy demand alone (without an EV). Irrespective of the
frequency of travel by BEVs with 2WP, a reduced electricity cost was
realised for all vehicles considered. This meant that for all BEVs with
2WP considered, the domestic user always realised an electricity cost
saving no matter how frequently the user travelled. As expected, BEVs
without the 2WP feature increased the overall electricity cost owing

to an increased overall energy demand for travel. The additional cost
for use cases with low AFs was somewhat comparable with the base
household electricity cost.

A somewhat linear negatively-correlated trend is observed between
electricity cost and AF for BEVs without 2WP, with a clearer spread
between different vehicles when they are less available at home. This
correlation is not as smooth for BEVs with 2WP, as in quite a number
of cases, usage profiles with lower AFs cost less than their adjacent
higher neighbours. This may be attributed to the fact that EVs with 2WP
also act as an energy source and therefore the final electricity costs are
affected not just by how frequently the vehicle is available at home,
but also by the period it is. Hence, from an electricity cost perspective,
the benefits realised from an EV with 2WP may be increased by further
taking note of its particular times of availability.

An additional observation from Fig. 5 is on the relationship between
vehicle cost and electricity costs. Generally, BEVs with a lower capital
cost (shaded green) tended to have lower electricity costs, but the
reverse is not the case for more expensive vehicles, and points to the
fact that vehicle capital cost is not a key metric in predicting electricity
cost savings for an EV owner.

Fig. 6 shows the electricity cost savings obtained by users under
different installed PV cell sizes and availability fractions. The electricity
cost savings are calculated with respected to the case with no installed
PV. Fig. 6(a) shows the results for BEV without the 2WP feature for a
1–4 kWp PV. In each of the cases, the relative electricity cost savings
were constant irrespective of AF of the vehicle usage profile. However,
a diminishing electricity cost saving is observed per additional kWp of
installed PV - £3.8, £3.7, £3.7 and £3.2 additional savings for a 1 kWp,
2 kWp, 3 kWp and 4 kWp PV cell respectively. This is because, for
the 1–3 kWp PV systems, little (3 kWp PV) or no energy is sold back
to the grid, but is instead used to reduce the local energy demands of
the household. For the 4 kWp PV system, after local energy demands
have been met, the excess renewable energy generated is exported to
the grid at 5.5p/kWh (as the GO tariff was selected as optimal) - a rate
much lower than prevailing import rates. Although these results were
obtained for a PV system installed in Finningley, relocating the study
to an area with higher solar irradiance will increase the cost savings,
in a similar way to how increasing the PV array size was shown to do.
Hence, given the current system setup, it is not beneficial for a domestic
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Fig. 6. BEV: Monthly electricity cost savings.

Fig. 7. ICE: Monthly electricity cost vs AF.

user to purchase a PV system with ratings greater than the household’s
peak energy demand unless a higher export tariff is offered.

Additional savings may be realised for BEVs without 2WP when
solving strictly for a minimum electricity cost objective, but as the
total cost was minimised, results show that a proportionate increase
in electricity cost savings is not realised for each kWp increase in PV
installed above the peak local demand. Although the net electricity
costs for BEVs with 2WP are much lower than without 2WP, results still
show that bigger sized PV cells are more beneficial (per kWp increase)
to BEVs without 2WP from an electricity cost perspective.

A similar trend can be observed for BEVs with 2WP (Fig. 6(b)),
although with a lower electricity cost savings. Uncorrelated cost savings
values are also observed per AF, still pointing to the fact that the time in
which a BEV is available at home affects the cost for the user. Although
the electricity cost savings for BEV with 2WP are smaller, it should still
be noted that the net electricity costs are much lower when compared
to BEVs without 2WP (refer to Fig. 5). Fig. 6 also shows that having a
BEV with 2WP does not lead to a greater reduction in a user’s electricity
bill with larger-sized PV cells as compared to those without 2WP, with
a total cost minimisation goal.

The electricity costs for non-BEV (DIE and PET) vehicles for dif-
ferent AFs are shown in Fig. 7. None of these vehicles require/supply

electrical energy from/to the household, as such changes in vehicle use
(AFs) had no effect on the electricity cost of the household. The values
thus represent the minimum electricity cost realisable by the household
without any storage device for the total cost objective. Values in
turquoise blue correspond to the case in which no PV system was
installed with a cost of £99.01. This is comparable with the electricity
cost values of a BEV without 2WP and a high AF (low usage), but much
higher than a BEV with 2WP for all considered usage cases as stated
previously.

2.1.2. Total cost
Fig. 8 shows the results of the total cost for each AF and vehicle

grouped by type. The total cost is calculated as the sum of the net
electricity cost, purchase and maintenance cost of the vehicle, fuel
cost (for PET and DIE type vehicles), and the purchase of the installed
PV cell for the period of consideration. Fig. 8(a) shows the result for
BEVs and Fig. 8(b) for conventional ICE-type vehicles. One thing easily
observed from both figures is the degree of elasticity of total cost to AF
each vehicle type shows — PET being the most elastic and BEV being
the least.

An implication of this can be seen from observing the values at the
bottom of each graph. Based on the vehicle cost distribution shown in
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Fig. 8. Monthly total cost vs vehicle usage; No PV.

Fig. 3, it is correct to assert that the vehicle purchase cost contributes
the most to total cost values, with the exception of the two cheapest
vehicles (which are both PET vehicles). This can also be observed in
Fig. 8. However, as the AF decreases, comparable total cost values
are observed between PET and BEV vehicles from AF=90%, with the
BEV becoming cheaper further down despite having a purchase cost
which is double that of the PET (Fig. 3). This is also observed across
other similarly-costing ICE–BEV pairs in the figure. Hence, BEV, though
currently considered relatively expensive, in terms of purchase costs,
are quite comparable in total cost values (and cheaper in some cases
with increased vehicle use) to conventional ICE vehicles. However,
much cheaper BEV vehicles will go a longer way in ensuring the same
observation across all vehicle usage types, and encourage greater EV
adoption.

It should also be noted that the two data clusters for the BEV shown
in Fig. 8(a) do not correspond to BEVs with and without 2WP, as a mix
of both types occur in each data cluster.

2.1.3. CO2 emissions
Additional benefits realised from BEVs can also be seen from their

total CO2 emission results. Fig. 9 shows the results of the total CO2
emissions for both BEVs (Fig. 9(a)) and ICE-type (Fig. 9(b)) vehicles
in kilogrammes (kg) across different AFs. The total CO2 emitted was
the sum of CO2 equivalent of the energy imported from the grid and
that emitted during travel by the car. Quite clearly, for ICE vehicles, a
linear trend is seen as the AF (and total distance travelled) increased as
expected. The increase in CO2 for BEV with AF decrease is attributed to
the increase in electricity import owing to car charging requirements.
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Fig. 9. Monthly CO2 emissions vs vehicle usage; No PV.

2.2. CO2 emissions minimisation objective

All cases were solved again with a different goal for the domestic

user. In the results presented below, the optimisation model was solved

in order to realise minimal CO2 emissions by the domestic user. Both

model objectives were solved separately, instead of using a multi-

objective approach as sometimes seen in the literature, to present

findings on the extremes of use cases. As ICE-type vehicles (PET and

DIE) cannot contribute to electricity reduction/increase or use such

energy form directly, the results for the CO2 minimisation objective are

the same as those obtained for the cost minimisation objective.

2.2.1. Electricity cost
Fig. 10 shows the plot of the electricity cost versus AF for BEVs

when no PV is installed locally. It is apparent that it costs much
more to achieve a reduced CO2 emission for the BEV. The figure
shows that only BEVs with the 2WP feature and little or no travel
achieved minimum CO2 levels without additional electricity costs when
compared to the base electricity cost without any form of storage (blue
line). This occurrence at a high AF is similar to a case with a stationary
energy storage device. There is a greater change in electricity costs
for BEVs with 2WP as AF reduces. As the objective was to minimise
total CO2, the BEVs with 2WP acted to store energy at periods of low
CO2 equivalent emission from grid-imported power, and discharging
at periods of high equivalent emissions irrespective of electricity price.
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Fig. 10. BEV: Monthly electricity cost vs vehicle usage; No PV (CO2 objective).

This translated to a reduced CO2 emissions values by as much as 90kg
for some vehicles.

2.2.2. CO2 emissions
Fig. 11 shows the CO2 emissions per AF for BEVs 11(a) and regular

ICE vehicles 11(b). The two groups of data points shown in Fig. 11(a)
also correspond to BEVs with 2WP (bottom half) and those without,
showing that BEVs with 2WP clearly achieve a greater CO2 reduction
for the cases considered. Combined with the plot in Fig. 10 for cases
with a high AF, the results also point to the fact that reduced CO2
emissions can be achieved by a household with energy storage without
a penalty on electricity costs.

2.2.3. Total cost
Total cost plots are also presented in Fig. 12 to understand the

cost implication of a CO2 minimisation objective. As stated earlier,
the results for ICE-type vehicles are still the same from Section 2.1.
These show that although total cost values for BEV increased, they still
compare with conventional ICE vehicles especially with cases of high
vehicle use (low AFs). Hence, BEVs, especially those with 2WP, present
a cost competitive case irrespective of the vehicle owners desired goal
— minimise cost or reduce overall carbon footprint.

2.3. Dominance analysis

Although it has been previously mentioned that the vehicle pur-
chase cost contributes significantly to the total cost, it has also been
observed that a range of other factors are quite important. To better
understand which properties significantly contribute to costs (total
and electricity) and/or CO2 emissions, a dominance analysis (Budescu,
1993; Azen and Budescu, 2003) was carried out on the results obtained
from the solution of the optimisation model for the case study analysed.
Dominance analysis seeks to find the relative importance of predictor
(independent) variables by examining their additional contributions (in
our case, their incremental 𝑅2) in all possible subset regression models
for specified target (dependent) variables (Azen and Budescu, 2003).
BEV properties including the vehicle capital cost, its maintenance cost,
battery capacity, power and efficiency (km/kWh); the AF of the BEV
as well as the size of the PV cell installed were analysed to determine

their relative importance with respect to the total cost, electricity cost
or CO2 results obtained from the optimisation models. For the total cost
and electricity cost, the minimum cost optimisation model results were
used, and the minimum CO2 optimisation model results were used for
CO2 dominance analysis.

Fig. 13 shows the relative importance (%) results from the domi-
nance analysis differentiated by target variables (total cost, electricity
cost and CO2) and the 2WP feature. The data was split based on the
2WP feature owing to the marked differences in the results observed in
previous sections. A clear observance across-the-board is the difference
in the order of relative importance of predictor variables for each target
variable. As expected, the vehicle capital cost was the most important
variable when considering total costs for all BEVs. The AF, which di-
rectly translates to how frequently the vehicle is driven, is not amongst
the top 5 variables and points to the fact that the BEV’s properties —
battery power, capacity and travel efficiency, are much more important
when bearing total costs in mind. As users may be constrained to a
choice of vehicles (and thus its capital and maintenance cost) owing
to a number of social factors (Lee and Brown, 2021a), results show
that the BEV’s battery capacity and travel efficiency are the next most
important factors to consider when such vehicle has the 2WP feature.
For those without 2WP, battery power dominates both its capacity and
efficiency.

For the electricity cost, the AF and size of the installed PV cell
were the most important considerations for all BEVs though at varying
degrees. The AF is much more important for the BEV with 2WP,
over PV size, as it influences its energy demand and availability for
charge/discharge events. As observed in previous sections, the vehicle
costs (capital and maintenance) had little or no influence on the elec-
tricity cost. In all cases, it was more important to consider the BEV’s
travel efficiency (km/kWh) and its capacity (BEVs with 2WP) than its
capital/maintenance cost. A similar trend is observed when the goal is
the total CO2 emissions rather than cost. A difference is that the BEV’s
travel efficiency is the third most important factor for vehicles without
2WP as it directly influences how much electricity it consumes (which
may be imported from the grid leading to an increase equivalent CO2).
For BEV’s with 2WP, a larger battery capacity can compensate owing to
its increased ability to time-shift electricity use. Given that the AF may
be somewhat fixed for a user, aside from obtaining renewable energy
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Fig. 11. Monthly CO2 emissions vs vehicle usage; No PV (CO2 objective).

sources, additional CO2 benefits may be realised by first considering
the BEV’s battery capacity above other properties.

3. Conclusion and policy implications

In this work we sought to address some of the cost-related barriers
to EV adoption experienced by domestic end-users. Using an optimisa-
tion model, the economic and environmental benefits for domestic EV
owners were evaluated and compared with conventional non-EVs. This
was carried out for a number of vehicle types with varying purchase
and maintenance costs, vehicle properties such as the fuel/energy con-
sumption rate, installed battery capacity, power, and range, all based
on actual vehicles on the market. Variations in installed PV system
sizes, user travel behaviour profiles, and retail electricity tariffs were
also analysed.

A number of conclusions were drawn from this study. BEVs still
present a cost-competitive case for vehicle owners despite having a
higher up-front capital cost when compared to prevailing conventional
ICE vehicles. Electricity cost savings were realised for BEVs with 2WP
when compared with non-EVs for a total cost minimisation objec-
tive. Electricity costs for users of BEVs without the 2WP feature was
comparable with non-EVs with a low frequency of use, but higher as
the availability fraction (AF) reduced. Despite these, and even for a
total cost minimisation objective, all BEVs still had a lower emission
level. Furthermore, the total cost values for BEVs were similar to those
for conventional ICE-type vehicles despite the latter being half the
purchase price of the former, especially with higher vehicle use. BEVs
were also less responsive, in terms of total cost, to changes in the degree
of vehicle use than their conventional ICE counterparts. For a CO2
emissions minimisation objective, much higher electricity costs were
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Fig. 12. Monthly total cost vs vehicle usage; No PV (CO2 objective).

realised by BEVs with those with 2WP still achieving electricity cost
savings at higher AFs. Total cost values, however, were still comparable
with ICE vehicles, but much still needs to be done in terms of the
affordability of EVs to ensure increased adoption by new users.

A dominance analysis was also carried out on the optimisation
models results to ascertain the relative importance of specific variables
in predicting the total cost, electricity cost or CO2 emissions. For
total cost predictions, aside from the obvious importance of the BEV’s
capital and maintenance cost, results showed that the battery power or
capacity was the next most important variable to consider by a user
depending on whether the vehicle has the 2WP feature or not. In all
cases, the AF of the BEV was of little significance. Electricity cost and
CO2 emission predictions showed similar trends with the AF and size

of the installed PV dominating all other variables in that order, but in
varying degrees depending on the 2WP feature availability.

These results further confirm that the electrification of transport is
a right step towards achieving net-zero goals. However, policies that
incentivise EV purchase, e.g., capital cost subsidies, will encourage EV
adoption by domestic end-users. It is also widely cited that lack of
knowledge is a significant barrier to energy efficiency (Chen et al.,
2022), and by implication costs. In order to help people make more
efficient and economic decisions related to EV use and adoption, ed-
ucation relating to efficient EV charge scheduling as obtainable from
our proposed optimisation model is important. User-friendly mobile
tools with integrated optimisation models can be applied to products on
market to allow users realise cost savings unique to their lifestyle. The
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Fig. 13. BEV: Relative importance results for different predictor variables & target variables.

results also show the importance EV battery power and capacity has
on cost calculations. Thus, the encouragement (e.g., through funding)
of technology innovations focused on the enhancement of these battery
properties for EVs will be a step in the right direction.

Additional areas need to be further explored. This work was based
on a fixed location in the UK and studies have shown that location has
an impact on the viability of stationary energy storage devices, and the
driving patterns of users. Locational difference may also be taken into
consideration not just for storage considerations but for domestic EV
users as well. Further work on the impact of these findings on how
domestic user may act is also important — charging patterns, driving
patterns, and ultimately EV adoption.
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Appendix. Mathematical formulation

Nomenclature

Indices

𝑒 electricity tariff
𝑘̂ piecewise linearisation points for 𝐶̂𝑠𝑡

variables
𝑠 vehicle
𝑡.𝑡′ time/period
Set

𝑆 set of vehicles
𝑆̂ subset of electric vehicles
𝑇 set of time/period over scheduling

horizon
Parameters

𝛿𝑉
𝑡

total distance travel by vehicle at time 𝑡

in Miles
𝛥 time step expressed as a fraction of an

hour
𝜂𝐶
𝑠

charging efficiency of energy storage
device in vehicle 𝑠

𝜂𝐷
𝑠

discharging efficiency of energy storage
device in vehicle 𝑠

𝜆𝑠 0,1 indicator if vehicle 𝑠 can participate
in V2H services ie. has the 2WP feature;

𝜈𝑠𝑡 availability of vehicle 𝑠 at time 𝑡; {0,1}
𝜌𝐶
𝑠

purchase cost for vehicle 𝑠 in £/year
𝜌𝐸
𝑒𝑡

electricity sell price for tariff 𝑒 at time 𝑡

in £/kWh
𝜌𝐹
𝑠

fuel cost for vehicle 𝑠 in £/MILE
𝜌𝐼
𝑒𝑡

electricity purchase price for tariff 𝑒 at
time 𝑡 in £/kWh

𝜌𝑀
𝑠

maintenance cost for vehicle 𝑠 in £/year
𝜌𝑆 PV purchase cost in £/year
𝛶𝐺
𝑡

CO2 intensity of imported power at time 𝑡

𝛶 𝑉
𝑠

CO2 emitted by vehicle 𝑠 per MILE of
travel

𝐶𝑠 capacity of energy storage device in
vehicle 𝑠 in kWh

𝐷𝐵
𝑡

building/household load/energy demand
at time 𝑡 in kWh
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𝐷𝑉
𝑠𝑡

energy consumption of electric vehicle 𝑠

during travel at time 𝑡 in kWh
𝐺𝑡 solar generation of installed PV systems

at time 𝑡

𝑀 a big number
𝑃𝑚𝑎𝑥
𝑠

rated power output of energy storage
device in vehicle 𝑠

𝑆𝑂𝐶0
𝑠

initial state of charge of energy storage
device in vehicle 𝑠 in %

𝑆𝑂𝐶𝑚𝑎𝑥
𝑠

maximum allowable state of charge of
energy storage device in vehicle 𝑠 in %

𝑆𝑂𝐶𝑚𝑖𝑛
𝑠

minimum allowable state of charge of
energy storage device in vehicle 𝑠 in %

Binary variables

𝐵𝐶
𝑠𝑡

1 if energy storage device in vehicle 𝑠 is
charging at time 𝑡 at home; 0 otherwise

𝐵𝐷
𝑠𝑡

1 if energy storage device in vehicle 𝑠 is
discharging at time 𝑡 at home; 0
otherwise

𝐵𝐸
𝑒

1 if electricity tariff 𝑒 is selected; 0
otherwise

𝐵𝑁
𝑡

1 if power is exported at time 𝑡; 0
otherwise

𝐵𝑆
𝑠

1 if vehicle 𝑠 is selected for use; 0
otherwise

Continuous variables

𝜉𝑠𝑡 slack variable for vehicle 𝑠 at time 𝑡

 𝐶
𝑠

total capital cost over considered time
horizon for vehicle 𝑠

 𝑀
𝑠

total maintenance cost over considered
time horizon for vehicle 𝑠

𝛶𝑠 total equivalent CO2 emitted at time 𝑡

𝐶̂𝑠𝑡 fraction of total battery capacity
degraded in vehicle 𝑠 at time 𝑡

𝐷𝑠𝑡 net energy demand of energy storage
device in vehicle 𝑠 at time 𝑡

𝐷+
𝑠𝑡

energy demand of energy storage device
in vehicle 𝑠 at time 𝑡 whilst charging

𝐷−
𝑠𝑡

energy output of energy storage device in
vehicle 𝑠 at time 𝑡 whilst discharging

𝐿𝑡 net load of energy system at time 𝑡

𝐿+
𝑡
, 𝐿−

𝑡
load of energy system at time 𝑡 in deficit
or surplus states respectively

𝑃𝑡 net load of energy system at time 𝑡

𝑃 𝐼
𝑡
, 𝑃𝐸

𝑡
power imported, exported by system at
time 𝑡 respectively

𝑃 𝐼
𝑒𝑡
, 𝑃𝐸

𝑒𝑡
power imported, exported under tariff 𝑒
by system at time 𝑡 respectively

𝑃 𝑠+
𝑠𝑡

, 𝑃 𝑠−
𝑠𝑡

power demand/output of energy storage
device in vehicle 𝑠 at time 𝑡 respectively

𝑆𝑂𝐶𝑠𝑡 state of charge of energy storage device 𝑠

at time 𝑡 in kWh

The proposed techno-economic-environmental mathematical model
used for this study is described below. It solves the optimisation prob-
lem posed as follows:

Given:

• a set of vehicles with known type — BEV, PET, or DIE, prop-
erty — fuel/energy consumption, CO2 equivalent emission (tail-
pipe CO2), and two-way power feature, and cost information —
purchase cost, maintenance cost;

• a set of retail electricity tariffs;
• the electricity load profile and travel behaviour of a user over a
candidate time period;

• an installed photovoltaic (PV) cell peak power rating, output
profile and purchase cost over a candidate time period;

• the properties of the battery within a vehicle – capacity, power,
minimum/maximum SOC, round-trip efficiency, type – if an EV;

• the CO2 equivalent emission for power imported from the grid;

determine:

• the optimal choice of vehicle;
• the optimal charging profile of the vehicle if an EV, and its
dispatch profile where the two-way power feature is present;

so as to: minimise:

• the total cost of electricity purchased from the grid, purchase and
maintenance of the vehicle, and purchase of the PV cell when
installed; OR

• the total CO2 emission from electricity used from the grid and
vehicle during travel.

The following assumptions hold in the proposed model:

• internal modes of battery charging within BEVs e.g. regenerative
braking are not considered;

• only BEV can be charged through an external power source, and
may have bi-directional power (2WP) feature if specified by the
manufacturer;

• for non-EVs, the SOC, battery capacity, power and round-trip
efficiency are assigned a zero value;

• all EVs with installed batteries are of the Lithium ion (Li-ion) type
and calendar degradation is not considered;

• all EVs charge at home only. When trips, in accordance with
the user travel behaviour, require energy greater than the EV’s
capacity, the vehicle is assumed to return home at its minimum
allowable charge level;

• the lifetime of all vehicles considered is 12 years. This falls within
the year range reported by Department for Transport (2020a)
having the highest percentage of registered vehicles in the UK
over the past 6 years;

Eq. (A.1) defines the bounds on the capacity for the battery within
the vehicle. For the first time period, an initial SOC, 𝑆𝑂𝐶0

𝑠
(Eq. (A.2)),

is assumed for all EVs (𝑠 ∈ 𝑆̂) with subsequent time periods taking
reference from the previous time’s battery level (Eq. (A.3)).

𝑆𝑂𝐶𝑚𝑖𝑛
𝑠

𝐶𝑠𝐵
𝑆
𝑠
≤ 𝑆𝑂𝐶𝑠𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝑠
𝐶𝑠𝐵

𝑆
𝑠

∀ 𝑠, 𝑡 (A.1)

𝑆𝑂𝐶𝑠𝑡 = 𝑆𝑂𝐶0
𝑠
+ 𝛥 ⋅ (𝜂𝐶

𝑠
𝑃 𝑠+
𝑠𝑡

−
𝑃 𝑠−
𝑠𝑡

𝜂𝐷
𝑠

) ∀ 𝑠 ∈ 𝑆̂, 𝑡 = 1 (A.2)

𝑆𝑂𝐶𝑠𝑡 = 𝑆𝑂𝐶𝑠,𝑡−1 + 𝛥 ⋅ (𝜂𝐶
𝑠
𝑃 𝑠+
𝑠𝑡

−
𝑃 𝑠−
𝑠𝑡

𝜂𝐷
𝑠

) −𝐷𝑉
𝑠𝑡
𝐵𝑆
𝑠
+ 𝜉𝑠𝑡 ∀ 𝑠 ∈ 𝑆̂, 𝑡

(A.3)

Where 𝐷𝑉
𝑠𝑡
is the energy consumption of the EV 𝑠 during travel at time

𝑡 in kWh. An additional positive variable 𝜉𝑠𝑡 is included in Eq. (A.3) to
prevent model infeasibilities should the battery capacity be insufficient
for a particular trip’s range. The variable is then included in a penalty
term in the objective function. Where this occurs, the EV then returns
home at the end of its trip at its minimum allowable SOC.

The net power, 𝑃𝑡, required by the home is given by Eq. (A.4) as
the difference between the power imported, 𝑃 𝐼

𝑡
, and exported, 𝑃𝐸

𝑡
, at

a particular time period.

𝑃𝑡 = 𝑃 𝐼
𝑡
− 𝑃𝐸

𝑡
∀ 𝑡 (A.4)

The total power imported and exported is given as the sum of the power
demanded locally and the net power supplied by the vehicle (if an EV),
less the amount supplied by the installed PV cell.

𝑃 𝐼
𝑡
− 𝑃𝐸

𝑡
=

𝐷𝐵
𝑡

𝛥
+
∑
𝑠

(𝑃 𝑠+
𝑠𝑡

− 𝑃 𝑠−
𝑠𝑡

) −
𝐺𝑡

𝛥
∀ 𝑡 (A.5)
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Fig. A.14. Fractional capacity degradation vs SOC swing for Li-ion & PbA batteries.

As power imports and exports cannot occur simultaneously, Eqs. (A.6)
and (A.7) are introduced.

𝑃 𝐼
𝑡
≤ 𝑀 ⋅ (1 − 𝐵𝑁

𝑡
) ∀ 𝑡 (A.6)

𝑃𝐸
𝑡

≤ 𝑀 ⋅ 𝐵𝑁
𝑡

∀ 𝑡 (A.7)

Where 𝑀 is a big number. Given a set of vehicles, for the purpose of
this work, only one vehicle may be selected (Eq. (A.8)):
∑
𝑠

𝐵𝑆
𝑠
= 1 (A.8)

𝑃 𝑠+
𝑠𝑡

≤ 𝑃𝑚𝑎𝑥
𝑠

𝐵𝑆
𝑠

∀ 𝑠, 𝑡 (A.9)

𝑃 𝑠−
𝑠𝑡

≤ 𝑃𝑚𝑎𝑥
𝑠

𝜈𝑠𝑡𝐵
𝑆
𝑠

∀ 𝑠, 𝑡 (A.10)

When a vehicle is selected, the charging/discharging power must be
less than its rated power (Eqs. (A.9) and (A.10)).

Binary variables 𝐵𝐶
𝑡
and 𝐵𝐷

𝑡
are introduced denoting time peri-

ods during which the battery within a vehicle is charging and dis-
charging respectively (Eqs. (A.11) and (A.12)). The battery may only
charge/discharge from/to the home when they are located at home
(Eq. (A.13)), and may only discharge to the home if they are selected
and have the 2WP feature (Eq. (A.14)).
∑
𝑠

𝑃 𝑠+
𝑠𝑡

≤ 𝑀 ⋅ 𝐵𝐶
𝑡

∀ 𝑡 (A.11)

∑
𝑠

𝑃 𝑠−
𝑠𝑡

≤ 𝑀 ⋅ 𝐵𝐷
𝑡

∀ 𝑡 (A.12)

𝐵𝐶
𝑡
+ 𝐵𝐷

𝑡
≤ 𝜈𝑠𝑡 ∀ 𝑡 (A.13)

𝐵𝐷
𝑡
≤ 𝜆𝑠𝐵

𝑆
𝑠

∀ 𝑡 (A.14)

The total CO2 emitted at time 𝑡 is given by Eq. (A.15) as the sum
of the CO2 equivalent of the imported power (𝑃

𝐼
𝑡
) and that emitted

from driving the selected vehicle over a distance, 𝛿𝑉
𝑡
, based on its stated

ratings.

𝛶𝑡 = 𝛥 ⋅ 𝛶𝐺
𝑡
𝑃 𝐼
𝑡
+
∑
𝑠∈𝑆̂

𝛿𝑉
𝑡
𝛶 𝑉
𝑠
𝐵𝑆
𝑠

∀ 𝑡 (A.15)

The capital cost over the considered time horizon is evaluated by
Eq. (A.16) as the sum of the purchase cost of the selected vehicle,
installed PV cell, and the fuel cost during travel. The maintenance cost
is also evaluated using Eq. (A.17)

 𝐶
𝑠

=
(
𝛥|𝑇 | ⋅ 𝜌𝐶

𝑠
+ 𝜌𝑆

24 ∗ 365
+
∑
𝑠

(𝜌𝐹
𝑠
𝛿𝑉
𝑡
)
)
𝐵𝑆
𝑠

∀ 𝑠 (A.16)

 𝑀
𝑠

= 𝛥|𝑇 | ⋅ 𝜌𝑀
𝑠
𝐵𝑆
𝑠

24 ∗ 365
∀ 𝑠 (A.17)

Given a set of electricity tariffs, only one may be selected (Eq. (A.18)).
To avoid non-linear terms resulting from evaluating the electricity
import/export costs for a selected tariff, 𝑃 𝐼

𝑒𝑡
and 𝑃𝐸

𝑒𝑡
variables are intro-

duced representing the power imported/exported for each tariff. Both
variables take non-zero values only if a tariff is selected (Eqs. (A.19)
and (A.20))
∑
𝑒

𝐵𝐸
𝑒
= 1 (A.18)

𝑃 𝐼
𝑒𝑡
≥ 𝑃 𝐼

𝑡
−𝑀 ⋅ (1 − 𝐵𝐸

𝑒
) ∀ 𝑒, 𝑡 (A.19)

𝑃𝐸
𝑒𝑡

≤ 𝑃𝐸
𝑡

−𝑀 ⋅ 𝐵𝐸
𝑒

∀ 𝑒, 𝑡 (A.20)

Battery degradation is modelled according to the power law re-
lationship given by Ciez and Whitacre (2016). Eq. (A.21) gives the
expression for Li-ion and PbA batteries, where 𝐶̂𝑡 represents the fraction
of the total capacity degraded at time 𝑡 by reason of the SOC swing
(𝑆𝑂𝐶𝑠𝑤

𝑡
) from battery actions in the previous time periods. The SOC

swing is determined as the actual depth of discharge over the past 24 h
of battery operation.

𝐶̂𝑠𝑡 =

⎧
⎪⎨⎪⎩

(
𝑆𝑂𝐶𝑠𝑤

𝑠𝑡

1307.4

)0.95

, 𝑡𝑦𝑝𝑒(𝑠) ∈ {Li-ion}
(
𝑆𝑂𝐶𝑠𝑤

𝑠𝑡

12.838

)1.838

, 𝑡𝑦𝑝𝑒(𝑠) ∈ {PbA}
∀ 𝑡 (A.21)

Eq. (A.21) is a non-linear expression that is linearised using a piece-
wise linear approximation as follows (D’Ambrosio et al., 2010). First,
two positive variables 𝑆𝑂𝐶𝑠𝑙

𝑡
and 𝑆𝑂𝐶𝑠ℎ

𝑡
are introduced to represent

the minimum and maximum SOC of the battery at 24-hour intervals
respectively. These are evaluated using Eqs. (A.22) and (A.23):

𝑆𝑂𝐶𝑠𝑙
𝑠𝑡

≤
𝑆𝑂𝐶𝑠,𝑡−𝑡′

𝐶𝑠

∀ 𝑠 ∈ 𝑆̂, 𝑡%(
24

𝛥
) = 0, 𝑡′ ≤ (

24

𝛥
) (A.22)

𝑆𝑂𝐶𝑠ℎ
𝑠𝑡

≥
𝑆𝑂𝐶𝑠,𝑡−𝑡′

𝐶𝑠

∀ 𝑠 ∈ 𝑆̂, 𝑡%(
24

𝛥
) = 0, 𝑡′ ≤ (

24

𝛥
) (A.23)

The SOC swing is then given by Eq. (A.24).

𝑆𝑂𝐶𝑠𝑤
𝑠𝑡

= 𝑆𝑂𝐶𝑠ℎ
𝑠𝑡

− 𝑆𝑂𝐶𝑠𝑙
𝑠𝑡

∀ 𝑠 ∈ 𝑆̂, 𝑡 (A.24)

The fraction of the total capacity degraded at time 𝑡, 𝐶̂𝑠𝑡, is then
evaluated as follows. 11 equidistant sample points, 𝑘̂ are taken for
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𝑆𝑂𝐶𝑠𝑤
𝑠𝑡
between 0 and 1 (𝑆𝑂𝐶𝑠𝑤′

𝑠𝑡𝑘̂
) and the corresponding values of 𝐶̂𝑠𝑡

(𝐶̂ ′

𝑠𝑡𝑘̂
) calculated. A special ordered set of type 2 (SOS2) variable (𝜙𝑠𝑡)

is introduced and Eq. (A.21) re-written as:

𝐶̂𝑠𝑡 =
∑
𝑘̂

𝐶̂ ′

𝑠𝑡𝑘̂
𝜙𝑠𝑡 ∀ 𝑠 ∈ 𝑆̂, 𝑡 (A.25)

𝑆𝑂𝐶𝑠𝑤
𝑠𝑡

=
∑
𝑘̂

𝑆𝑂𝐶𝑠𝑤′

𝑠𝑡𝑘̂
𝜙𝑠𝑡 ∀ 𝑠 ∈ 𝑆̂, 𝑡 (A.26)

Fig. A.14 shows a good fit of the actual vs piecewise linear ap-
proximation for the SOC swing for both Li-ion and PbA batteries. The
maximum SOC of the battery is then corrected for degradations owing
to use with Eq. (A.27).

𝑆𝑂𝐶𝑠𝑡 ≤ (𝑆𝑂𝐶𝑚𝑎𝑥
𝑠

𝐵𝑆
𝑠
− 𝐶̂ ′

𝑠𝑡
)𝐶𝑠 ∀ 𝑠 ∈ 𝑆̂, 𝑡 (A.27)

The scheduling model cost-minimisation objective function is de-
fined according to Eq. (A.28). It minimises the sum of the electricity
import and export cost, vehicle purchase and maintenance cost, and
the purchase cost of the PV system.

𝑚𝑖𝑛
∑
𝑒,𝑡

𝛥
(
𝜌𝐼
𝑡
⋅ 𝑃 𝐼

𝑒𝑡
− 𝜌𝐸

𝑡
⋅ 𝑃𝐸

𝑒𝑡

)
+
∑
𝑠

(
 𝐶
𝑠

+  𝑀
𝑠

)
+
∑
𝑠,𝑡

𝑀 ⋅ 𝜉𝑠𝑡 (A.28)

subject to Eqs. (A.1)–(A.20), (A.22)–(A.27).
Where the end-user’s concerns are less about cost and more about

emissions reduction, a CO2 minimisation objective (Eq. (A.29)) can be
adopted.

𝑚𝑖𝑛
∑
𝑠,𝑡

𝛶𝑡 +𝑀 ⋅ 𝜉𝑠𝑡 (A.29)

subject to Eqs. (A.1)–(A.20), (A.22)–(A.27).
When each of the models are applied to non-EVs (𝑠 ∉ 𝑆̂), the models

then solve a minimisation problem for a household without energy
storage.
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