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Learning Fairer Representations with FairVIC

Charmaine Barker 1 Daniel Bethell 1 Dimitar Kazakov 1

Abstract

Mitigating bias in automated decision-making

systems, particularly in deep learning models, is

a critical challenge due to nuanced definitions of

fairness, dataset-specific biases, and the inherent

trade-off between fairness and accuracy. To ad-

dress these issues, we introduce FairVIC, an in-

novative approach that enhances fairness in neu-

ral networks by integrating variance, invariance,

and covariance terms into the loss function dur-

ing training. Unlike methods that rely on prede-

fined fairness criteria, FairVIC abstracts fairness

concepts to minimise dependency on protected

characteristics. We evaluate FairVIC against

comparable bias mitigation techniques on bench-

mark datasets, considering both group and indi-

vidual fairness, and conduct an ablation study on

the accuracy-fairness trade-off. FairVIC demon-

strates significant improvements (≈ 70%) in fair-

ness across all tested metrics without compro-

mising accuracy, thus offering a robust, gener-

alisable solution for fair deep learning across di-

verse tasks and datasets.

1. Introduction

With the ever-increasing utilisation of Artificial Intelli-

gence (AI) in everyday applications, neural networks have

emerged as pivotal tools for automated decision making

systems in sectors such as healthcare (Esteva et al., 2017),

finance (Dixon et al., 2017), and recruitment (Vardarlier

and Zafer, 2020). However, bias in the data– stemming

from historical inequalities, imbalanced distributions, or

flawed feature representations–are often learned by these

models, posing significant challenges to fairness. Such

bias can lead to adverse decisions affecting real lives. For

instance, several studies have shown how bias in facial

recognition technologies disproportionately misidentifies

individuals of certain ethnic backgrounds (Birhane, 2022;

1Department of Computer Science, University of York, York,
United Kingdom. Correspondence to: Charmaine Barker <char-
maine.barker@york.ac.uk>.

Cavazos et al., 2020), leading to potential discrimination in

law enforcement and hiring practices.

Real-world consequences exemplify the urgent need to ad-

dress these challenges at the core of AI development. En-

suring fairness in deep learning models presents complex

challenges, primarily due to the black-box nature of these

models, which often complicates understanding and in-

terpreting decisions. Moreover, the dynamic and high-

dimensional nature of the data involved, combined with

nuances in fairness definitions, further complicates the de-

tection and correction of bias. This complexity necessitates

the development of more sophisticated, inherently fair al-

gorithms.

Previous mitigation strategies dealing with algorithmic bias

– whether through pre-processing, in-processing, or post-

processing – have significant limitations. Pre-processing

techniques, which attempt to cleanse biased data, are

labour-intensive, dependent on expert intervention (Salimi

et al., 2019), and only eliminate considered biases. Current

in-processing methods frequently lead to unstable models

and often rely upon arbitrary definitions of fairness (Caton

and Haas, 2020). Post-processing techniques, which adjust

model predictions directly, ignore deeper issues without ad-

dressing the underlying biases in the data and model. These

approaches lack stability, generalisability, and the ability to

ensure fairness across multiple metrics (Berk et al., 2017).

In this paper, we introduce FairVIC (Fairness through

Variance, Invariance, and Covariance), a novel approach

that embeds fairness directly into neural networks by opti-

mising a custom loss function. This function is designed to

minimise the correlation between decisions and protected

characteristics while maximising overall prediction perfor-

mance. FairVIC integrates fairness through the concepts

of variance, invariance, and covariance during the train-

ing process, making it more principled and intuitive, and

universally applicable to diverse datasets. Unlike previous

methods that often optimise to a chosen fairness metric,

FairVIC offers a robust, generalisable solution that intro-

duces an abstract concept of fairness to significantly reduce

bias. Our experimental evaluations demonstrate FairVIC’s

ability to significantly improve performance in all fairness

metrics tested without compromising prediction accuracy.

We compare our proposed method against comparable in-
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Learning Fairer Representations with FairVIC

processing bias mitigation techniques, such as regularisa-

tion and constraint approaches, and highlight the improved,

robust performance of our FairVIC model.

Our contributions in this paper are multi-fold:

• A novel, generalisable in-processing bias mitigation

technique for neural networks.

• A comprehensive experimental evaluation, using a

multitude of comparable methods on a variety of met-

rics across several datasets, including different modal-

ities such as tabular and text.

• An extended analysis of our proposed method to ex-

amine its robustness, including a full ablation study on

the lambda weight terms within our loss function.

This paper is structured as follows: Section 2 discusses cur-

rent approaches to mitigating bias throughout each process-

ing stage. Section 3 describes any preliminary details for

this work, including the fairness metrics used in the evalu-

ation. Section 4 outlines our method, including how each

term in our loss function is calculated and an algorithm de-

tailing how these terms are applied. Section 5 describes the

experiments carried out, Section 6 outlines the results with

discussion, and Section 7 concludes this work. Extra infor-

mation, including the dataset metadata and more extensive

experiments, is to be found in the Appendix.

2. Related Work

There exist three broad categories of mitigation strategies

for algorithmic bias: pre-processing, in-processing, and

post-processing. Each aims to increase fairness differently

by acting upon either the training data, the model itself, or

the predictions outputted by the model, respectively.

Pre-processing methods aim to fix the data before train-

ing, recognising that bias is primarily an issue with the

data itself (Caton and Haas, 2020). In practice, this can

be done a number of different ways, such as representative

sampling, or re-sampling the data to reflect the full popula-

tion (Shekhar et al., 2021; Ustun et al., 2019), reweighing

the data such that different groups influence the model in a

representative way (Calders and Žliobaitė, 2013; Kamiran

and Calders, 2012), or generating synthetic data to balance

out the representation of each group (Jang et al., 2021).

Another set of approaches utilises causal methods to delin-

eate relationships between sensitive attributes and the target

variables within the data (Chiappa and Isaac, 2019; Kusner

et al., 2017; Russell et al., 2017). Such techniques as these

are labour-intensive and do not generalise well, requiring

an expert with knowledge of the data to manually process

each case of a new dataset (Salimi et al., 2019). They also

cannot provide assurances that all bias has been removed –

a model may draw upon non-linear/ complex relationships

between features that lead to bias, which are hard for the

expert/method to spot.

In-processing methods aim to train models to make fairer

predictions, even upon biased data. There are a plethora of

ways in which this has been done. For example, Celis et al.

(2019) and Agarwal et al. (2018) utilise a chosen fairness

metric and perform constraint optimisation during training.

This has the effect that a single fairness metric needs to be

chosen, introducing human bias (Caton and Haas, 2020),

and this metric must perfectly capture the bias within the

data to effectively mitigate it. Therefore, fairness cannot be

achieved across multiple definitions in this way (Caton and

Haas, 2020). Another approach involves incorporating an

adversarial component during model training that penalises

the model if protected characteristics can be predicted from

its outputs (Zhang et al., 2018; Wadsworth et al., 2018; Xu

et al., 2019). These methods are often effective but their

main shortcoming is seen in their instability. Finally, the

most relevant comparisons from previous work to our pro-

posed method are regularisation-based techniques that in-

corporate fairness constraints or penalties directly into the

model’s loss function during training. There are a num-

ber of ways that this has been done, such as through data

augmentation strategies to promote less sensitive decision

boundaries (Chuang and Mroueh, 2021) or by incorporat-

ing fairness adjustments into the boosting process (Cruz

et al., 2023). The performance of these models differs from

approach to approach, and those that work by constraining

the model by a fairness metric directly suffer from the is-

sue of human bias and misrepresenting the bias within the

data/model.

Post-processing techniques involve adjusting model pre-

dictions or decision rules after training to ensure fair out-

comes. In practice, decision thresholds have been adjusted

for different groups to achieve equal outcomes in a partic-

ular metric (Hardt et al., 2016). Alternatively, labels near

the decision boundary can be altered to favour less biased

outcomes (Kamiran et al., 2012; 2018). Calibration (Kim

et al., 2018; Noriega-Campero et al., 2019) adjusts the pre-

dictions of the model directly so that the proportion of pos-

itive instances is equal across each sub-group. This cat-

egory of methods can oversimplify fairness, and they do

not fix the underlying issue within the model. For those

techniques that require the specification of a single fairness

metric, the same issue applies surrounding this choice as

before.

To summarise, there currently lies a number of issues

which have not yet been solved in parallel within one tech-

nique. These are: stability, generalisability, equal improve-

ments to fairness across metrics (Berk et al., 2017), and

built without requirements for user-induced definitions of

fairness. In this paper, we solve all these requirements

for an effective, generalisable approach to mitigate bias
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through FairVIC.

3. Preliminaries

3.1. VICReg

Variance-Invariance-Covariance Regularization (VI-

CReg) (Bardes et al., 2021) has previously been used in

self-supervised learning to tackle feature collapse and

redundancy. It maximises variance across features to

ensure the model produces diverse outputs for different

inputs, minimises invariance between augmented represen-

tations of the same input to enhance stability, and reduces

covariance among features to capture a broader range of in-

formation. VICReg is confined to this specific context and

objective, and the application of these principles outside

of self-supervised methods remains largely unexplored. In

contrast, FairVIC extends these principles to supervised

learning for bias mitigation. This adaptation addresses

the challenges of fairness in decision-making systems,

expanding the application of VIC principles beyond their

original scope and offering a novel, generalisable solution

to fairness in supervised learning models.

3.2. Group Fairness Metrics

In this section, we introduce notation and state the fairness

measures that we use to quantify bias.

Equalized Odds Difference requires that both the True

Positive Rate (TPR) and False Positive Rate (FPR)

are the same across groups defined by the protected

attribute, where TPR = TP
TP+FN

and FPR =
FP

FP+TN
(Hardt et al., 2016). Therefore, we calcu-

late max (|FPRu − FPRp| , |TPRu − TPRp|), where u

represents the unprivileged groups and p the privileged

group and 0 signifies perfect fairness.

Average Absolute Odds Difference averages the absolute

differences in the false positive rates and true positive rates

between groups, defined as 1
2 (|FPRu−FPRp|+|TPRu−

TPRp|), where u represents the unprivileged groups and p

the privileged group, with 0 signifying perfect fairness.

Statistical Parity Difference evaluates the difference in

the probability of a positive prediction between groups,

aiming for 0 to signify perfect fairness. Formally, DP =
|P (Ŷ = 1|u) − P (Ŷ = 1|p)|, where u represents the un-

privileged groups, p the privileged group, and Ŷ = 1 a

positive prediction (Dwork et al., 2012).

Disparate Impact compares the proportion of positive out-

comes for the unprivileged group to that of the privileged

group, with a ratio of 1 indicating no disparate impact, and

therefore perfect fairness. Denoted as DI = P (Ŷ=1|u)

P (Ŷ=1|p)
,

where u represents the unprivileged groups, p the privi-

leged group, and Ŷ = 1 a positive prediction (Feldman

et al., 2015).

3.3. Individual Fairness

While FairVIC aims to increase group fairness, the invari-

ance term promotes direct improvements in individual fair-

ness. This can be observed in our evaluations through

counterfactual fairness (Kusner et al., 2017). Counterfac-

tual fairness ensures that decisions made by an algorithm

are fair even when considering hypothetical (counterfac-

tual) scenarios. For each individual, the sensitive attribute

is switched to assess the model’s ability to perform equally

in both the original and counterfactual scenarios.

Formally, if u denotes the unprivileged group, p the privi-

leged group and Ŷ is the decision outcome, then the model

is considered counterfactually fair if Ŷu = Ŷp for differ-

ent groups u and p of the sensitive attribute while all non-

sensitive features remain the same.

4. Approach

We propose FairVIC (Fairness through Variance,

Invariance, and Covariance), a novel loss function that

enables a model’s ability to learn fairness in a robust

manner. FairVIC is comprised of three terms: variance,

invariance, and covariance. Optimising for these three

terms encourages the model to be stable and consistent

across protected characteristics, thereby reducing bias

during training. By adopting this broad, generalised

approach to defining bias, FairVIC significantly improves

performance across a range of fairness metrics. This makes

it an effective strategy for reducing bias across various

applications, ensuring more equitable outcomes in diverse

settings.

4.1. FairVIC Training

To understand how FairVIC operates, it is crucial to define

variance, invariance, and covariance within the context of

fairness:

Variance: This term promotes diversity in the latent repre-

sentations by penalizing low variance in the bottleneck em-

beddings of the neural network. It ensures the embeddings

capture sufficient information, not relying upon a trivial re-

lationship such as the protected characteristic in order to

find a solution.

Lvar =
1

N

N
∑

i=1

max(0, γ − σ(z)) (1)

where σ(z) represents the standard deviation of the em-

beddings, γ is a margin parameter that controls the desired

variability, and N is the number of samples.

3



Learning Fairer Representations with FairVIC

Algorithm 1 FairVIC Loss Function

1: Input: Model M , Epochs E, Batch size B, Data D,

Protected attribute P , Weights (λacc, λvar, λinv, λcov)

2: Output: Trained Model M

3: Initialise M

4: for e ∈ {1, . . . , E} do

5: Shuffle data D

6: for each batch {(X,Y )} ∈ D with size B do

7: Ŷ ←M(X)
8: Z ← BottleneckLayer(X)
9: Calculate FairVIC Loss:

10: Lacc ← AccuracyLoss(Y, Ŷ )
11: Lvar ← VarianceLoss(Z)
12: Linv ← InvarianceLoss(Ŷ ,M(Flip(X,P )))
13: Lcov ← CovarianceLoss(Ŷ , P )
14: Ltotal ← λaccLacc + λvarLvar + λinvLinv+
15: λcovLcov

16: Compute gradients∇Ltotal ←
∂Ltotal

∂M

17: Update model parameters M ←M − α∇Ltotal

18: end for

19: end for

Invariance: This term ensures the model’s predictions re-

main consistent when the protected attribute is flipped, pro-

moting individual/counterfactual fairness.

Linv =
1

N

N
∑

i=1

(ŷi − ŷ∗i )
2

(2)

where ŷi is the prediction for the original input, ŷ∗i is

the prediction for the input with the protected attribute P

flipped to its complement, and N is the number of samples.

Covariance: This component seeks to reduce the model’s

reliance on protected attributes when making predictions,

ensuring that decisions are made independently of these at-

tributes. By doing so, it promotes group fairness. The loss

function is designed to minimize this covariance, as defined

by the following equation:

Lcov =

√

∑N
i=1

(

(ŷi − E[ŷ])
⊤
· Pi

)2

N
(3)

where ŷ is the model’s prediction, P is the protected at-

tribute, and N is the number of samples.

During the training of a deep learning model, the model it-

erates over epochs E. Data is shuffled into batches, upon

which the model predicts to produce a set of predictions

Ŷ . Typically, the true labels Y and predictions Ŷ are then

passed into a suitable accuracy loss function (e.g., binary

cross-entropy, hinge loss, Huber loss, etc.) and the result-

ing loss attempts to be minimised by an optimiser.

In the case of FairVIC, in addition to computing a suitable

accuracy loss Lacc, we also calculate our three novel terms

Lvar, Linv, and Lcov using Equations 1, 2, and 3 respectively.

Each of these individual loss terms is then multiplied by its

respective weighting factor λ and summed to form the total

loss Ltotal. Subsequently, gradients are computed, and the

optimiser adjusts the model parameters with respect to this

combined loss. Further details are provided in Algorithm 1.

The multipliers λ enable users to balance the trade-off be-

tween fairness and predictive performance, which is typical

in bias mitigation techniques. Assigning a higher weight to

λacc directs the model to prioritise accuracy while increas-

ing the weights of (λvar, λinv, λcov) shifts the focus towards

enhancing fairness in the model’s predictions. In our im-

plementation, the lambda coefficients (λacc, λvar, λinv, λcov)
are constrained such that their sum equals one. In other

words, λacc = 1−λvar−λinv−λcov. This normalisation en-

sures the optimisation will not produce multiple solutions

in the form {k.λacc, k.λvar, k.λinv, k.λcov}, k ∈ R.

5. Experiments

In our experimental evaluation, we assess the performance

of FairVIC1 against a set of comparable in-processing bias

mitigation methods on a series of datasets known for their

bias. Here, we describe the datasets used and the methods

we compare against.

5.1. Datasets

We evaluate FairVIC on five datasets that are used as

benchmarks in bias mitigation evaluation due to their

known biases towards certain subgroups of people within

their sample population. These datasets allow for highlight-

ing the generalisable capabilities of FairVIC across differ-

ent demographic disparities.

Tabular datasets. The main body of evaluation is done us-

ing three tabular datasets: Adult Income (Becker and Ko-

havi, 1996), COMPAS (Angwin et al., 2022), and German

Credit (Hofmann, 1994), all of which are binary classifi-

cation tasks. Adult Income aims to predict whether an in-

dividual’s income is over $50K or not. It is known for its

gender and racial biases in economic disparity. The Cor-

rectional Offender Management Profiling for Alternative

Sanctions (COMPAS) dataset is frequently used for eval-

uating debiasing techniques. It has a classification goal of

predicting recidivism risks and is infamous for its racial bi-

ases. Finally, the German Credit dataset was used to assess

creditworthiness by classifying individuals as either good

or bad credit risks, with known biases related to age and

1The code for our FairVIC implementation is avail-
able at: https://anonymous.4open.science/r/

FairVIC-BEE7
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gender (Kamiran and Calders, 2009).

Language datasets. To show the ability of FairVIC

to work for different data modalities, we also utilise

CivilComments-WILDS (Koh et al., 2021) and Bias-

Bios (De-Arteaga et al., 2019) – natural language datasets.

We collected a stratified sample of 50,000 text instances

from each dataset, ensuring equal representation of both

binary classification outcomes. CivilComments-WILDS is

comprised of a collection of comments on the Civil Com-

ments platform, with a binary classification goal to label

each comment as toxic or non-toxic. We take ethnicity

as the protected characteristic where comments are marked

as white or non-white. BiasBios is a collection of profes-

sional biographies, with gender as the protected character-

istic. We take a set of privileged and unprivileged profes-

sions, typically associated with a certain gender, as our bi-

nary classification goal.

Detailed metadata for each dataset, including our selections

for protected groups and classification goals, can be found

in Appendix A.1.

5.2. Comparable Techniques

To highlight the performance of FairVIC, we evalu-

ate against five comparable in-processing bias mitigation

methods. These are:

Adversarial Debiasing. This method leverages an adver-

sarial network that aims to predict protected characteris-

tics based on the predictions of the main model. The

primary model seeks to maximise its own prediction ac-

curacy while minimising the adversary’s prediction accu-

racy (Zhang et al., 2018).

Exponentiated Gradient Reduction. This technique re-

duces fair classification to a sequence of cost-sensitive clas-

sification problems, returning a randomised classifier with

the lowest empirical error subject to a chosen fairness con-

straint (Agarwal et al., 2018).

Meta Fair Classifier. This classifier allows a fairness met-

ric as an input and optimises the model with respect to regu-

lar performance and the chosen fairness metric (Celis et al.,

2019).

Fair MixUp. This technique generates synthetic sam-

ples by linearly interpolating between pairs of training data

points by protected attribute to smooth decision bound-

aries. The loss function is then further constrained by a

fairness metric (Chuang and Mroueh, 2021).

FairGBM. This method uses a gradient-boosting decision

tree model that integrates fairness constraints directly into

the boosting process by adjusting the loss function to ac-

count for fairness metrics (Cruz et al., 2023).

Alongside these comparisons, a baseline neural network

model using only binary cross-entropy loss was imple-

mented, which exhibits the biases present in the datasets

used. Details on the neural network architecture/ hyperpa-

rameters used for both the baseline model and the FairVIC

model can be found in Appendix A.2.

6. Evaluation

6.1. Core Results Analysis

To assess the prediction and fairness performance of Fair-

VIC2 and state-of-the-art approaches, we test all methods

across each tabular dataset to enable a fair comparison. Ta-

ble 1 shows these results. We have also provided Figure 1,

which visualises the absolute difference from the ideal

value of each metric, highlighting how far each method de-

viates from perfect accuracy and fairness on each tabular

dataset.

Across all three datasets, the baseline performs poorly in

fairness but obtains higher performance scores, which is

expected. For example, in the Adult Income dataset, the

baseline model shows a relatively high accuracy (0.8444),

while exhibiting poor fairness with regard to Disparate Im-

pact (0.2853). The baseline highlights the need for a bias

mitigation approach that works across all metrics simul-

taneously, as the lower bias in terms of Equalised Odds

(0.1330) and Absolute Odds (0.1172) alone could mislead-

ingly suggest that the model is fair, when in reality, the bias

may only become evident when captured through a differ-

ent perspective. This means that approaches relying on a

single fairness constraint, such as Exponentiated Gradient

Reduction, often fail to address significant bias present in

the data.

Overall, FairVIC outperforms all other comparable meth-

ods by demonstrating consistent improvements in both fair-

ness and accuracy retention. As seen in Figure 1a, our

FairVIC model achieves the lowest cumulative absolute er-

ror from perfect accuracy and fairness in the Adult Income

dataset, effectively balancing the fairness-accuracy trade-

off. The trend is also consistent across the COMPAS and

German Credit datasets as seen in Figures 1b and 1c. This

again exemplifies the ability of FairVIC’s approach to gen-

eralise across datasets, making it a more versatile solution.

Other comparable methods are generally not as effective

as FairVIC, each exhibiting different shortcomings. For

instance, MetaFair often struggles to improve even upon

the baseline in cumulative absolute difference from the

ideal value, and many techniques struggle to balance the

improvements across all fairness metrics, often prioritis-

ing Equalised and Absolute Odds over Disparate Impact,

particularly in the Adult Income dataset. Similarly, Fair-

2FairVIC weights Lacc = 0.2, Lvar, inv = 0.1, and Lcov =

0.6 for the Adult Income dataset, and Lacc, var, inv = 0.1, and
Lcov = 0.7 for the COMPAS and German Credit datasets, see
Appendix B.3 for discussion on these selections.
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Table 1. FairVIC accuracy and fairness results, compared with the baseline model, and five other comparable methods for bias mitigation

in-processing for each of the three tabular datasets.

Dataset Model Accuracy F1 Score Equalized Odds Absolute Odds Statistical Parity Disparate Impact

Baseline (Biased) 0.8444 ± 0.0065 0.6685 ± 0.0118 0.1330 ± 0.0317 0.1172 ± 0.0289 -0.2173 ± 0.0291 0.2853 ± 0.0329

Adversarial Debiasing 0.8065 ± 0.0048 0.4773 ± 0.0708 0.2127 ± 0.0828 0.1172 ± 0.0443 -0.0405 ± 0.0679 0.7874 ± 0.2185

Exponentiated Gradient Reduction 0.8027 ± 0.0026 0.4056 ± 0.0052 0.0238 ± 0.0115 0.0167 ± 0.0061 -0.0601 ± 0.0026 0.4602 ± 0.0237

Meta Fair Classifier 0.5171 ± 0.0602 0.4744 ± 0.0219 0.4826 ± 0.0894 0.2935 ± 0.0497 -0.2098 ± 0.0542 0.7140 ± 0.0812

Fair MixUp 0.7785 ± 0.0069 0.3815 ± 0.0521 0.1137 ± 0.0928 0.0786 ± 0.0649 -0.0859 ± 0.0591 0.4830 ± 0.2174

FairGBM 0.8731 ± 0.0026 0.7122 ± 0.0079 0.0658 ± 0.0131 0.0583 ± 0.0092 -0.1707 ± 0.0044 0.3363 ± 0.0151

Adult

Income

FairVIC 0.8284 ± 0.0088 0.5314 ± 0.0509 0.2993 ± 0.0683 0.1637 ± 0.0371 -0.0088 ± 0.0249 0.9803 ± 0.2220

Baseline (Biased) 0.6622 ± 0.0150 0.6118 ± 0.0252 0.3281 ± 0.0574 0.2635 ± 0.0452 -0.2941 ± 0.0459 0.6223 ± 0.0504

Adversarial Debiasing 0.6581 ± 0.0185 0.6253 ± 0.0124 0.1707 ± 0.0694 0.1363 ± 0.0504 -0.0902 ± 0.1367 0.8982 ± 0.2614

Exponentiated Gradient Reduction 0.5574 ± 0.0169 0.2981 ± 0.0407 0.0630 ± 0.0333 0.0432 ± 0.0231 -0.0393 ± 0.0257 0.9545 ± 0.0293

Meta Fair Classifier 0.3471 ± 0.0147 0.4312 ± 0.0380 0.2951 ± 0.1038 0.2257 ± 0.1095 0.2526 ± 0.1070 2.5876 ± 0.6627

Fair MixUp 0.6122 ± 0.0191 0.5356 ± 0.0437 0.1180 ± 0.0774 0.0871 ± 0.0597 -0.0496 ± 0.0998 0.9427 ± 0.1470

FairGBM 0.6440 ± 0.0151 0.6254 ± 0.0153 0.2015 ± 0.1128 0.1466 ± 0.0961 0.0881 ± 0.1225 1.2828 ± 0.4058

COMPAS

FairVIC 0.6501 ± 0.0173 0.5934 ± 0.0357 0.0976 ± 0.0375 0.0719 ± 0.0305 -0.0602 ± 0.0678 0.9139 ± 0.1135

Baseline (Biased) 0.7255 ± 0.0284 0.8077 ± 0.0275 0.2234 ± 0.0974 0.1641 ± 0.0936 -0.2218 ± 0.0901 0.7140 ± 0.1203

Adversarial Debiasing 0.5815 ± 0.1513 0.6302 ± 0.2581 0.1020 ± 0.0418 0.0737 ± 0.0404 -0.0657 ± 0.0335 0.8084 ± 0.2130

Exponentiated Gradient Reduction 0.7465 ± 0.0300 0.8321 ± 0.0208 0.1232 ± 0.0631 0.0796 ± 0.0348 -0.1084 ± 0.0746 0.8692 ± 0.0896

Meta Fair Classifier 0.7575 ± 0.0260 0.8291 ± 0.0229 0.2215 ± 0.1112 0.1444 ± 0.0810 -0.1052 ± 0.1315 0.8601 ± 0.1755

Fair MixUp 0.6925 ± 0.0225 0.7837 ± 0.0208 0.0661 ± 0.0389 0.0465 ± 0.0252 -0.0461 ± 0.0446 0.9347 ± 0.0629

FairGBM 0.7460 ± 0.0348 0.8255 ± 0.0283 0.1922 ± 0.0906 0.1345 ± 0.0756 -0.1539 ± 0.0773 0.8081 ± 0.0915

German

Credit

FairVIC 0.7250 ± 0.0239 0.8108 ± 0.0237 0.1443 ± 0.0796 0.1017 ± 0.0464 0.0016 ± 0.0604 1.0037 ± 0.0764

MixUp, though initially promising and achieving second

place after FairVIC in the COMPAS and German Credit

datasets, fails to maintain its performance on the Adult In-

come dataset, where its results only just beat the baseline.

In many cases, such as FairMixUp on the COMPAS and

German Credit datasets, comparable techniques improve

fairness but at the cost of accuracy, failing to achieve a bal-

anced tradeoff.

Overall, FairVIC’s ability to consistently balance the

trade-off between fairness and accuracy, adapt to various

datasets, and handle all fairness metrics comprehensively

makes it the most effective method. Its consistent perfor-

mance across different datasets, as evidenced by the lowest

cumulative absolute error in performance and fairness, so-

lidifies its superiority over other comparable methods.

6.2. Individual Fairness Analysis

To emphasise further FairVIC’s ability to perform well

across all fairness metrics, we also evaluate upon individ-

ual fairness by outputting the results of the counterfactual

model, as described in Section 3.3. The full results, along-

side the absolute difference in averages for each metric

across the regular and counterfactual models, are seen in

Table 5 in Appendix B.2.

The FairVIC model shows considerable promise in enhanc-

ing individual fairness across different datasets when com-

pared with the baseline models. The counterfactual results

from the FairVIC model with invariance term weighted

heavily (FairVIC Invariance) exhibits lower absolute dif-

ferences in metrics across all datasets. For example, in

the German Credit dataset, the mean absolute difference

across all six metrics between the regular and the coun-

terfactual baseline model is ≈ 0.0277, while for FairVIC

Invariance’s regular and counterfactual models it is lower

at ≈ 0.0108. This suggests a more stable and fair per-

formance under counterfactual conditions. This capability

highlights FairVIC’s strength in not only addressing group

fairness but also ensuring that individual decisions remain

consistent and fair when hypothetical scenarios are consid-

ered. In the FairVIC model with recommended lambdas,

we prioritise group fairness so invariance is weighted less.

Even with this lower invariance weighting, FairVIC still

achieved improved individual fairness.

6.3. Lambda Ablation Study Analysis

The FairVIC loss terms are combined with binary cross en-

tropy for training the neural network to enable optimisa-

tion of both accuracy and fairness, minimising the trade-

off. The effect of FairVIC on the overall loss function can

be increased and decreased by changing the weight λ for

each FairVIC term. To evaluate this effect, we train a num-

ber of neural networks with the architecture described in

Appendix A.2, with a different λacc weighting each time.

In this experiment, we evaluate the effect of weighting the

FairVIC loss terms equally, so that λvar = λinv = λcov =
(1−λacc)

3 , where 0 < λacc < 1. The performance and fair-

ness measures for each model are listed in Table 6 in Ap-

pendix C, and visualisations for the absolute difference in

performance and fairness from ideal values for each run are
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(a) Adult Income dataset.

(b) COMPAS dataset.

(c) German Credit dataset.

Figure 1. Absolute differences from the ideal value (e.g., perfect accuracy and fairness) in performance (left) and fairness (right) metrics

of comparable techniques, sorted in ascending order on all three tabular datasets.

visualised in Figure 6 in Appendix C.

In Figure 6 (Appendix C), the trade-off between accuracy

and fairness is evident. As λacc increases, predictive per-

formance improves, but the fairness metrics deviate further

from the ideal value. In contrast, when λacc is lower, fair-

ness improves, but this time with only a negligible drop

in accuracy. This suggests that lower λacc values pro-

vide a better overall performance balance. This trend is

much more prevalent for the larger Adult dataset, where

more complex relationships could lead to a larger accuracy-

fairness trade-off. In the COMPAS and German Credit

datasets, this trade-off, while still following the same pat-

tern, is much smaller.

To evaluate upon the effect of each individual VIC term

7
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Table 2. FairVIC and baseline comparison results of both performance and fairness for the CivilComments-WILDS and BiasBios

datasets, including FairVIC’s counterfactual (CF) model results and the absolute differences (ADs) between each model.

Dataset Model Accuracy F1 Score Equalized Odds Absolute Odds Statistical Parity Disparate Impact

Baseline 0.7624 ± 0.0055 0.7566 ± 0.0091 0.3095 ± 0.0297 0.1832 ± 0.0236 0.2639 ± 0.0212 1.9390 ± 0.1135

Baseline CF 0.7608 ± 0.0031 0.7608 ± 0.0069 0.3104 ± 0.0296 0.1848 ± 0.0222 -0.2648 ± 0.0199 0.4940 ± 0.0400

Baseline AD 0.0016 ± 0.0041 0.0041 ± 0.0081 0.0009 ± 0.0110 0.0016 ± 0.0091 0.5287 ± 0.0348 1.4449 ± 0.1360

FairVIC 0.7243 ± 0.0755 0.6613 ± 0.1954 0.1457 ± 0.0661 0.1030 ± 0.0429 0.0562 ± 0.0517 1.1344 ± 0.1452

FairVIC CF 0.6323 ± 0.1057 0.5722 ± 0.2128 0.1316 ± 0.0846 0.0953 ± 0.0819 0.0233 ± 0.1006 1.0687 ± 0.2324

CivilComments-WILDS

FairVIC AD 0.0921 ± 0.0907 0.0892 ± 0.2381 0.0141 ± 0.0711 0.0077 ± 0.0751 0.0329 ± 0.0648 0.0657 ± 0.1844

BiasBios

Baseline 0.8818 ± 0.0034 0.8811 ± 0.0044 0.0558 ± 0.0103 0.0456 ± 0.0083 -0.2489 ± 0.0098 0.6038 ± 0.0159

Baesline CF 0.8794 ± 0.0041 0.8797 ± 0.0032 0.0563 ± 0.0153 0.0461 ± 0.0120 0.2481 ± 0.0119 1.6401 ± 0.0292

Baseline AD 0.0041 ± 0.0029 0.0037 ± 0.0024 0.0123 ± 0.0093 0.0066 ± 0.0042 0.4970 ± 0.0206 1.0363 ± 0.0421

FairVIC 0.8653 ± 0.0070 0.8646 ± 0.0059 0.0992 ± 0.0258 0.0830 ± 0.0147 -0.1217 ± 0.0158 0.7817 ± 0.0352

FairVIC CF 0.8587 ± 0.0071 0.8580 ± 0.0074 0.1472 ± 0.0304 0.1193 ± 0.0186 0.0844 ± 0.0194 1.1890 ± 0.0568

FairVIC AD 0.0066 ± 0.0066 0.0066 ± 0.0062 0.0480 ± 0.0392 0.0363 ± 0.0193 0.2061 ± 0.0276 0.4074 ± 0.0735

within the loss function, we can suppress the lambda terms

from two out of three of variance, invariance, and covari-

ance to leave only one remaining. We keep λacc = 0.1 since

the previous lambda experiment showed this to be most

effective and revealing in terms of the effect on fairness,

while the chosen FairVIC loss term is assigned a weighting

of 0.9. Similarly, we can also suppress a single term at a

time, assigning two out of the three VIC terms a weight-

ing of 0.45. The performance and fairness results for each

experiment with different weightings are listed in Table 7.

It can be concluded that each term has a different effect.

The variance term is shown to have the lowest standard de-

viation across all metrics and all tabular data in Table 7,

offering stability to FairVIC. The covariance term makes

the greatest contribution to group fairness, as seen in Ta-

ble 7. The invariance term aims to give similar outputs to

similar inputs, regardless of the protected attribute; there-

fore, it should have more of an effect towards individual

fairness. Table 5 corroborates this hypothesis, as the Fair-

VIC Invariance model (FairVIC with the invariance loss

term weighted to 0.9, and accuracy loss of 0.1) consistently

has a lower absolute difference than the baseline between

the regular and counterfactual models across all metrics

and tabular datasets, signalling greater individual fairness.

Therefore, we conclude that the combination of all three

terms would aim to improve both group and individual fair-

ness, and increase stability.

6.4. Language Dataset Results

To show FairVIC’s versatility across data modalities, our

approach was applied to the CivilComments-WILDS and

BiasBios datasets. The results are shown in Table 2, where

FairVIC uses the lambdas Lacc, var, inv = 0.1, and Lcov = 0.7
for the CivilComments-WILDS dataset and Lacc, var, inv =
0.05, and Lcov = 0.85 for the BiasBios dataset.

From Table 2, the same trend can be seen as in the tabular

dataset results, where FairVIC gives fairer results across

all tested fairness metrics, the most notable being the im-

provement to disparate impact from 1.9390 to 1.1344 in

the CivilComments-WILDS and 0.6038 to 0.7817 in the

BiasBios datasets. In terms of individual fairness, the

CivilComments-WILDS’ baseline model has a mean ab-

solute difference across every metric between the regular

and counterfactual model of ≈ 0.3303 and ≈ 0.0503 for

FairVIC. For the BiasBios dataset, the baseline model has

a mean absolute difference across every metric between

the regular and counterfactual model of ≈ 0.2563 and

≈ 0.1185 for our FairVIC model. Therefore, FairVIC is

not confined to one modality, due to its ability to effec-

tively reduce both individual and group fairness, while not

seeing a drop of more than 3.81% and 1.87% in accuracy

for the CivilComments-WILDS and BiasBios datasets re-

spectively. The use of a different model architecture also

proves FairVIC’s adaptability to be utilised within differ-

ent neural networks.

7. Conclusion and Future Work

In this paper, we introduced FairVIC, an in-processing bias

mitigation technique that introduces three new terms into

the loss function of a neural network- variance, invari-

ance, and covariance. Across our experimental evaluation,

FairVIC significantly improves scores for all fairness met-

rics, with minimal drop in accuracy, compared to previous

comparable methods which typically aim to improve only

upon a single metric. This balance showcases FairVIC’s

strength in providing a robust and effective solution appli-

cable across various tasks and datasets. Future work would

look to extend FairVIC to consider multiple protected char-

acteristics simultaneously and expand its utility to image

datasets.
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8. Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none of which we feel must be

specifically highlighted here.
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A. Experiment Details

A.1. Dataset Metadata

Detailed metadata for each dataset, including our selection of privileged group, can be found in Table 3. Note that for the

language datasets, the number of features is obtained by combining the protected characteristic and the toxicity label with

the 50 tokenised text features. For BiasBios, we take architect, attorney, dentist, physician, professor, software engineer,

surgeon as the favourable professions, and interior designer, journalist, model, nurse, poet, teacher, and yoga teacher as the

unfavourable professions for our binary classification task.

Table 3. Metadata on all four experimental datasets.

Dataset Adult Income COMPAS German Credit CivilComments-WILDS BiasBios

Data modality Tabular Tabular Tabular Text Text

No. of Features 11 8 20 52 52

No. of Rows 48,842 5,278 1,000 50,000 50,000

Target Variable income two year recid credit toxicity profession

Favourable Label >50K (1) False (0) Good (1) Non-Toxic (0) Favourable (1)

Unfavourable Label <=50K (0) True (1) Bad (0) Toxic (1) Unfavourable (0)

Protected Characteristic sex race age race gender

Privileged Group male (1) Caucasian (1) >25 (1) white (1) Male (0)

Unprivileged Group female (0) African-American (0) <=25 (0) non-white (0) Female (1)

A.2. Neural Network Configuration

The configurations for the neural networks utilised for both the tabular and language data can be seen in Table 4. To obtain

results, each model was run 10 times over random seeds, with a randomised train/test split each time. The averages and

standard deviations were then outputted from across all 10 of the runs.

Table 4. Experimental model setup and parameters.

Parameter Tabular Datasets Language Datasets

Neural Network Architecture Dense(128, 64, 32, 2, 32, 64, 128) BiLSTM(64,32), Dense(64, 2, 64)

No. of Epochs 200 50

Batch Size 256 256

Optimiser Adam AdamW

Learning Rate 5e-2 5e-5

Dropout Rate 0.25 0.50

Regularisation L1(1e-4)L2(1e-3) L1(1e-4)L2(1e-3)

A visualisation for our neural network architecture for tabular data is seen in Figure 2, alongside our loss terms to illustrate

where FairVIC components are applied.

All models were run with minimal and consistent data preprocessing. While some models, such as MetaFair, may underper-

form due to their reliance on specific sampling techniques, all comparable methods are treated uniformly as in-processing

techniques. This allows them to be applied to any dataset, ensuring a fair evaluation across models.

B. Full Training Results

In addition to the results and analysis presented in Section 6, this section provides supplementary experiments and figures.
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Figure 2. Network architecture for tabular data, with FairVIC loss components applied at relevant stages.

B.1. Feature Importances

Figure 3 shows the feature importance of the baseline and FairVIC models across the three tabular datasets. In all baseline

models, the protected attributes show some importance to the decision-making process, such as in the COMPAS dataset,

where race is a dominant feature. Combined with the results presented in Section 6.1, this suggests that the baseline

models are prone to using the protected attribute to propagate bias. Additionally, proxy variables (highlighted with their

importance in black), which are strongly correlated with the protected attributes, further show how bias can be perpetuated

in the baseline model. For example, in the Adult Income dataset, relationship has a mean feature importance of 0.0124.

This indicates that even though the model appears to have limited reliance on the protected attribute sex (which is among

the least used features), it may still propagate bias through proxies such as relationship.

In contrast, the FairVIC models for all three datasets demonstrate a strong reduction in the mean importance of protected

attributes and proxy variables. This reduction is due to the three additional terms used in FairVIC- variance, invariance, and

covariance. We can see that the covariance term exactly minimises the model’s dependency on the protected characteristic,

which, in combination with results in Section 6.1, suggests a fairer decision-making process. The reduction in proxy

variables should also be noted. Not only does FairVIC successfully reduce the reliance on the protected attribute, but

it can also reduce the reliance on any features strongly correlated to the protected attribute. For example, in the Adult

Income dataset, sex and relationship have a strong negative correlation (−0.58) meaning a model cannot only propagate

bias through the use of sex but also through the use of relationship which we see the baseline model rely upon. The FairVIC

model sees the mean feature importance of relationship drop by approximately a third and the importance of sex drop by

half. This shows FairVIC’s ability to mitigate both direct and indirect biases, leading to more equitable outcomes.

B.2. Individual Fairness Results

Following the analysis found in Section 6.2, Table 5 shows the individual fairness on both the baseline and FairVIC with

our recommended lambdas, and FairVIC Invariance (λacc = 0.1, λinv = 0.9, λvar, cov = 0.0) models using their absolute

differences to their counterfactual model results. In the Adult Income dataset, the mean absolute difference across all six

metrics combined for the baseline model is≈ 0.0094, while for FairVIC invariance it is≈ 0.0055. In the COMPAS dataset,

the mean absolute difference for the baseline model is ≈ 0.0285, while for FairVIC Invariance it is ≈ 0.0050. Finally, for

the German Credit dataset the mean absolute difference for the baseline model is ≈ 0.0277, while for FairVIC Invariance

it is ≈ 0.0108. FairVIC’s invariance term, designed to enhance individual fairness, proves to be effective. The FairVIC

invariance model consistently achieves significantly absolute differences, demonstrating the success of the approach. In

our selection of FairVIC terms, we prioritize group fairness by weighting invariance lower, yet the model still maintains

low counterfactual absolute differences.

For discussion on the FairVIC Invariance model individual fairness results, see Section 6.2.

B.3. Hyperparameter Recommendations

The weights for the loss terms in FairVIC (λacc, λvar, λinv, λcov) were chosen based on insights from our ablation studies.
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(a) Adult Income dataset.

(b) COMPAS dataset.

(c) German Credit dataset.

Figure 3. Mean feature importances for the baseline and FairVIC models across three tabular datasets. The protected attribute (green)

and strong proxy variables to the protected attribute (black) are annotated for their exact feature importance.

For the COMPAS and German Credit datasets, the weights were set to λacc, var, inv = 0.1 and λcov = 0.7. The decision to

use a relatively low weight for accuracy (λacc = 0.1) stems from the equal ablation study results, which demonstrated that

this value achieves the best fairness-accuracy trade-off for these datasets. Group fairness is given significant emphasis, as

shown by the higher weight assigned to the covariance term (λcov = 0.7), which plays a key role in minimizing disparities

across protected groups. Meanwhile, the variance (λvar) and invariance (λinv) terms were assigned a weight of 0.1, as this

value still allowed for their individual fairness aims to be achieved effectively, thus balancing all fairness and accuracy

objectives. Therefore, our default lambda recommendations would be λacc = 0.1, λvar = 0.1, λinv = 0.1, and λcov = 0.7.

These weights were also found to be effective for the CivilComments-Wilds dataset, and thus were utilised here as well.

For the Adult Income dataset, the weights were set to λacc = 0.2, λvar = 0.1, λinv = 0.1, and λcov = 0.6. A slightly

13
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Table 5. Counterfactual (CF) model results and absolute differences (ADs) for the baseline, FairVIC (λacc, var, inv = 0.1, λcov = 0.7), and

FairVIC Invariance (λacc = 0.1, λinv = 0.9, λvar, cov = 0.0) models.

Dataset Model Accuracy F1 Score Equalized Odds Absolute Odds Statistical Parity Disparate Impact

Baseline 0.8444 ± 0.0065 0.6685 ± 0.0118 0.1330 ± 0.0317 0.1172 ± 0.0289 -0.2173 ± 0.0291 0.2853 ± 0.0329

Baseline CF 0.8444 ± 0.0059 0.6649 ± 0.0114 0.1208 ± 0.0286 0.1026 ± 0.0285 -0.2069 ± 0.0290 0.3006 ± 0.0347

Baseline AD 0.0000 ± 0.0032 0.0036 ± 0.0089 0.0123 ± 0.0329 0.0147 ± 0.0211 0.0104 ± 0.0147 0.0152 ± 0.0193

FairVIC Invariance 0.8150 ± 0.0053 0.4281 ± 0.0938 0.0437 ± 0.0363 0.0342 ± 0.0330 -0.0811 ± 0.0516 0.3199 ± 0.0383

FairVIC Invariance CF 0.8147 ± 0.0067 0.4242 ± 0.0954 0.0438 ± 0.0332 0.0303 ± 0.0286 -0.0752 ± 0.0479 0.3388 ± 0.0541

FairVIC Invariance AD 0.0003 ± 0.0039 0.0039 ± 0.0472 0.0002 ± 0.0169 0.0040 ± 0.0145 0.0059 ± 0.0228 0.0189 ± 0.0445

FairVIC 0.8284 ± 0.0088 0.5314 ± 0.0509 0.2993 ± 0.0683 0.1637 ± 0.0371 -0.0088 ± 0.0249 0.9803 ± 0.2220

FairVIC CF 0.8310 ± 0.0075 0.5430 ± 0.0382 0.2793 ± 0.0563 0.1524 ± 0.0326 -0.0166 ± 0.0235 0.9015 ± 0.1450

Adult

Income

FairVIC AD 0.0007 ± 0.0055 0.0243 ± 0.0368 0.0240 ± 0.0397 0.0152 ± 0.0243 0.0022 ± 0.0130 0.0313 ± 0.1266

Baseline 0.6622 ± 0.0150 0.6118 ± 0.0252 0.3281 ± 0.0574 0.2635 ± 0.0452 -0.2941 ± 0.0459 0.6223 ± 0.0504

Baseline CF 0.6651 ± 0.0183 0.6285 ± 0.0389 0.2707 ± 0.0599 0.2237 ± 0.0608 -0.2588 ± 0.0585 0.6415 ± 0.0763

Baseline AD 0.0028 ± 0.0054 0.0167 ± 0.0190 0.0575 ± 0.0516 0.0398 ± 0.0334 0.0353 ± 0.0309 0.0192 ± 0.0329

FairVIC Invariance 0.6571 ± 0.0121 0.6232 ± 0.0384 0.2618 ± 0.0412 0.2101 ± 0.0266 -0.2435 ± 0.0264 0.6530 ± 0.0551

FairVIC Invariance CF 0.6564 ± 0.0109 0.6130 ± 0.0366 0.2689 ± 0.0341 0.2117 ± 0.0333 -0.2438 ± 0.0324 0.6633 ± 0.0642

FairVIC Invariance AD 0.0007 ± 0.0072 0.0102 ± 0.0232 0.0071 ± 0.0332 0.0016 ± 0.0166 0.0003 ± 0.0159 0.0103 ± 0.0256

FairVIC 0.6501 ± 0.0173 0.5934 ± 0.0357 0.0976 ± 0.0375 0.0719 ± 0.0305 -0.0602 ± 0.0678 0.9139 ± 0.1135

FairVIC CF 0.6295 ± 0.0392 0.5154 ± 0.1767 0.0771 ± 0.0532 0.0506 ± 0.0353 -0.0394 ± 0.0609 0.9489 ± 0.1057

COMPAS

FairVIC AD 0.0205 ± 0.0419 0.0780 ± 0.1874 0.0204 ± 0.0368 0.0213 ± 0.0336 0.0209 ± 0.0450 0.0350 ± 0.0723

Baseline 0.7255 ± 0.0284 0.8077 ± 0.0275 0.2234 ± 0.0974 0.1641 ± 0.0936 -0.2218 ± 0.0901 0.7140 ± 0.1203

Baseline CF 0.7010 ± 0.0371 0.7889 ± 0.0388 0.2222 ± 0.0979 0.1677 ± 0.0830 -0.1678 ± 0.1171 0.7782 ± 0.1495

Baseline AD 0.0245 ± 0.0294 0.0189 ± 0.0257 0.0012 ± 0.0576 0.0036 ± 0.0454 0.0540 ± 0.0520 0.0641 ± 0.0700

FairVIC Invariance 0.7165 ± 0.0356 0.7917 ± 0.0319 0.1367 ± 0.0798 0.0964 ± 0.0521 -0.0600 ± 0.1090 0.9113 ± 0.1625

FairVIC Invariance CF 0.7250 ± 0.0356 0.7961 ± 0.0412 0.1257 ± 0.0793 0.0927 ± 0.0603 -0.0759 ± 0.0724 0.8902 ± 0.0972

FairVIC Invariance AD 0.0085 ± 0.0272 0.0044 ± 0.0316 0.0109 ± 0.0843 0.0036 ± 0.0548 0.0159 ± 0.0689 0.0211 ± 0.0856

FairVIC 0.7250 ± 0.0239 0.8108 ± 0.0237 0.1443 ± 0.0796 0.1017 ± 0.0464 0.0016 ± 0.0604 1.0037 ± 0.0764

FairVIC CF 0.7380 ± 0.0223 0.8248 ± 0.0134 0.1466 ± 0.0943 0.1002 ± 0.0507 -0.0017 ± 0.0768 1.0000 ± 0.0979

German

Credit

FairVIC AD 0.0130 ± 0.0198 0.0140 ± 0.0239 0.0023 ± 0.0292 0.0014 ± 0.0181 0.0033 ± 0.0584 0.0036 ± 0.0759

higher weight for accuracy (λacc = 0.2) was chosen compared to the COMPAS and German Credit datasets. This decision

reflects the findings in Table 6, where a lower accuracy weight (λacc = 0.1) led to fairness metrics such as disparate

impact exceeding one. While this reflects FairVIC’s ability to actively address fairness concerns, the chosen weights

create a careful balance between fairness and predictive performance. FairVIC leverages the increased accuracy weight

to account for the complexity of the Adult dataset, characterised by its larger size, while maintaining strong fairness

outcomes. The dominant weight assigned to the covariance term (λcov = 0.6) further ensures FairVIC prioritizes equitable

outcomes across protected groups, achieving robust group fairness without compromising individual fairness or accuracy.

The BiasBios dataset also require stronger interventions from the covariance term to improve group fairness, therefore we

assign weights of λacc, var, inv = 0.05, and λcov = 0.85 to this dataset.

These weight configurations reflect the flexibility of FairVIC in balancing dataset-specific requirements for individual

fairness, group fairness, and prediction accuracy. To effectively utilise FairVIC, we recommend users prioritise their

specific fairness objectivesÐwhether group fairness or individual fairnessÐbased on the desired application context. If

group fairness is the primary goal, assigning a higher weight to the covariance term (λcov) can help mitigate disparities

across protected groups. Conversely, for tasks requiring equitable treatment at the individual level, increasing the weight of

the invariance (λinv) term will enhance individual fairness. For users aiming to optimize specific performance metrics, such

as accuracy or fairness, we could recommend conducting a grid search over the loss term weights (λacc, λvar, λinv, λcov) to

fine-tune the trade-offs for their dataset.

Additionally, users should consider the complexity and size of their dataset when configuring the weights. Larger datasets

or those with greater feature diversity may require higher weights for accuracy (λacc) to maintain strong predictive perfor-

mance. Fairness requirements may also vary depending on the level of societal or organisational impact, and we encourage

users to carefully assess the implications of their choices in real-world deployments. Finally, we recommend evaluating

FairVIC’s performance using a range of fairness and accuracy metrics to ensure that the selected configuration aligns with

the intended goals of the application.
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Figure 4. An example latent space visualization from one random seed of a baseline model and a FairVIC model on the Adult Income

dataset. Subgroup (1) represents male individuals, and subgroup (0) represents female individuals.

Figure 5. An example loss landscape visualisation from one random seed of a baseline model and a FairVIC model on the Adult Income

dataset.

B.4. Model Representation Analysis

An example latent space visualisation from the baseline model and FairVIC can be seen in Figure 4. In the baseline model,

we observe a separation between subgroups, where women (subgroup 0) are predominantly located in the upper region and

men (subgroup 1) in the lower region of the latent space. This separation suggests that the baseline model’s representations

may be influenced by the protected attribute, leading to the biased decision-making reported in Table 1. In contrast, the

FairVIC model shows a more condensed and overlapping distribution of both subgroups within the same latent space.

This indicates, alongside results in Table 1 and feature importance in Figure 3a that FairVIC has successfully reduced the

model’s reliance on the protected characteristic and any proxy variables, thereby promoting more equitable representations.

The overlapping and compact structure in the FairVIC latent space demonstrates that similar data points, regardless of their

subgroup membership, are mapped closer together, ensuring that the model’s predictions are not unfairly biased towards

one group over the other.

B.5. Model Optimization Analysis

Figure 5 illustrates the loss landscapes of the baseline and FairVIC models on the Adult Income dataset. Both models

exhibit smooth loss surfaces, indicating that they are relatively well-optimized. The baseline model (left) shows a stable

loss landscape with a slight gradient. The FairVIC model (right), despite incorporating additional fairness constraints,

maintains a similarly smooth surface albeit with tiny peaks in various places. This demonstrates that the inclusion of

variance, invariance, and covariance terms in the loss function does not introduce instability or optimisation challenges.
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B.6. Theoretical Analysis

In this section, we theoretically analyze FairVIC and show how each individual loss term is sub-differentiable.

B.6.1. THEOREM 1

Theorem 1. Each individual term in FairVIC Lvar, Linv, Lcov is sub-differentiable everywhere in the model’s parameters

θ.

Proof. The variance term is defined as:

Lvar =
1

N

N
∑

i=1

max(0, γ − σ(z)) (4)

where z is the latent embeddings for the input x. z = gθ(x) is continuous in θ, where gθ is the function/layer that maps

input x to the latent embedding z. σ(z) is the standard deviation of a continuous variable in a finite sample, which is

continuous except at rare instances where all zj are identical. Even in this degenerate case, σ(·) is sub-differentiable. The

max(0, ·) operator is only non-differentiable at 0, where the sub-derivative set is [0, 1]. Hence max(0, ·) is sub-differentiable

w.r.t θ. The invariance term is defined as:

Linv =
1

N

N
∑

i=1

(ŷi − ŷ∗i )
2

(5)

where ŷi is the model’s predictions, and ŷ∗i is the model’s predictions where the protected attribute is flipped. As ŷi is

differentiable in θ, then (ŷi − ŷ∗i )
2

is differentiable as it is the composition of smooth functions. The covariance term is

defined as:

Lcov =

√

∑N
i=1

(

(ŷi − E[ŷ])
⊤
· Pi

)2

N
(6)

where
∑N

i=1

(

(ŷ − E[ŷ])
⊤
· P

)2

is a sum of squares, which is smooth and differentiable. The square root is differentiable

for non-zero input and sub-differentiable at 0.

Each of the three terms is (sub-)differentiable everywhere in θ. Hence a gradient-based or subgradient-based method can

be applied directly with FairVIC.

C. Lambda Ablation Study Results

Tables 6 and 7 show the full results for each model when the weights on the FairVIC terms are adapted. Table 6 shows

the effect of changing λacc while keeping the FairVIC terms equal so that λvar, inv, cov = 1−λacc

3 , where 0 < λacc < 1, and

Table 7 sets λacc = 0.1, and suppresses one or two FairVIC terms to explore the effect of only utilising one or two term(s)

at a time. For full discussion and analysis of the results of the lambda ablation study, see Section 6.3.
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Table 6. Performance and fairness results for FairVIC on the three tabular datasets, where the FairVIC terms are weighted equally, such

that λacc + λvar + λinv + λcov = 1.

Dataset λacc λvar,inv,cov Accuracy F1 Score Equalized Odds Absolute Odds Statistical Parity Disparate Impact

0.10 0.30 0.8157 ± 0.0061 0.4622 ± 0.0412 0.3506 ± 0.0560 0.1929 ± 0.0328 0.0191 ± 0.0222 1.2542 ± 0.2653

0.20 0.26 0.8358 ± 0.0084 0.5500 ± 0.0463 0.2321 ± 0.0784 0.1226 ± 0.0442 -0.0339 ± 0.0302 0.7970 ± 0.2118

0.30 0.23 0.8448 ± 0.0053 0.6061 ± 0.0421 0.0918 ± 0.0507 0.0550 ± 0.0229 -0.0983 ± 0.0341 0.5073 ± 0.0952

0.40 0.20 0.8481 ± 0.0033 0.6354 ± 0.0253 0.0560 ± 0.0137 0.0433 ± 0.0102 -0.1339 ± 0.0276 0.4069 ± 0.0434

Adult

Income

0.50 0.16 0.8506 ± 0.0052 0.6564 ± 0.0110 0.0630 ± 0.0117 0.0473 ± 0.0175 -0.1561 ± 0.0161 0.3686 ± 0.0301

0.10 0.30 0.6618 ± 0.0130 0.6061 ± 0.0197 0.1881 ± 0.0412 0.1451 ± 0.0317 -0.1754 ± 0.0324 0.7533 ± 0.0442

0.20 0.26 0.6661 ± 0.0114 0.6661 ± 0.0114 0.2000 ± 0.0466 0.1448 ± 0.0339 -0.1805 ± 0.0306 0.7391 ± 0.0344

0.30 0.23 0.6606 ± 0.0091 0.6162 ± 0.0266 0.1754 ± 0.0615 0.1326 ± 0.0485 -0.1687 ± 0.0426 0.7545 ± 0.0564

0.40 0.20 0.6643 ± 0.0094 0.6162 ± 0.0202 0.1946 ± 0.0400 0.1433 ± 0.0345 -0.1797 ± 0.0313 0.7457 ± 0.0363

COMPAS

0.50 0.16 0.6681 ± 0.0142 0.6239 ± 0.0192 0.2037 ± 0.0500 0.1654 ± 0.0527 -0.1988 ± 0.0526 0.7221 ± 0.0620

0.10 0.30 0.7160 ± 0.0431 0.8059 ± 0.0351 0.1034 ± 0.0429 0.0704 ± 0.0300 -0.0298 ± 0.0612 0.9574 ± 0.0842

0.20 0.26 -0.0298 ± 0.0612 0.8112 ± 0.0239 0.1305 ± 0.0754 0.0915 ± 0.0506 -0.0190 ± 0.0970 0.9791 ± 0.1282

0.30 0.23 0.7205 ± 0.0286 0.8042 ± 0.0229 0.1189 ± 0.0593 0.0864 ± 0.0522 -0.0545 ± 0.0842 0.9305 ± 0.1154

0.40 0.20 0.7265 ± 0.0270 0.8096 ± 0.0226 0.1222 ± 0.1240 0.0815 ± 0.0783 -0.0767 ± 0.0880 0.9004 ± 0.1189

German

Credit

0.50 0.16 0.7175 ± 0.0211 0.8029 ± 0.0199 0.1073 ± 0.0549 0.0745 ± 0.0406 -0.0851 ± 0.0605 0.8866 ± 0.0839

Figure 6. Absolute difference from the ideal value for performance (green) and fairness (blue) metrics of FairVIC with varying λacc

values across all tabular datasets. The FairVIC terms are weighted equally, such that λacc + λvar + λinv + λcov = 1.

Table 7. Performance and fairness results for FairVIC on the three tabular datasets, where only one or two FairVIC terms (λvar, λinv, or

λcov) are weighted at a time.

Dataset λacc λvar λinv λcov Accuracy F1 Score Equalized Odds Absolute Odds Statistical Parity Disparate Impact

0.10 0.90 0.00 0.00 0.8481 ± 0.0038 0.6650 ± 0.0180 0.1018 ± 0.0270 0.0919 ± 0.0229 -0.1943 ± 0.0285 0.3079 ± 0.0370

0.10 0.00 0.90 0.00 0.8150 ± 0.0053 0.4281 ± 0.0938 0.0437 ± 0.0363 0.0342 ± 0.0330 -0.0811 ± 0.0516 0.3199 ± 0.0383

0.10 0.00 0.00 0.90 0.8106 ± 0.0109 0.4396 ± 0.0764 0.3535 ± 0.1011 0.1990 ± 0.0591 0.0282 ± 0.0291 1.4377 ± 0.6835

0.10 0.45 0.45 0.00 0.8322 ± 0.0103 0.5382 ± 0.0747 0.0608 ± 0.0254 0.0481 ± 0.0210 -0.1112 ± 0.0332 0.3353 ± 0.0390

0.10 0.45 0.00 0.45 0.8275 ± 0.0079 0.5535 ± 0.0524 0.2860 ± 0.0505 0.1597 ± 0.0294 -0.0126 ± 0.0239 0.9651 ± 0.2578

Adult

Income

0.10 0.00 0.45 0.45 0.8137 ± 0.0048 0.4614 ± 0.0504 0.3573 ± 0.0669 0.1975 ± 0.0380 0.0191 ± 0.0325 1.2790 ± 0.2316

0.10 0.90 0.00 0.00 0.6598 ± 0.0144 0.6250 ± 0.0283 0.2932 ± 0.1011 0.2490 ± 0.0746 -0.2834 ± 0.0733 0.6144 ± 0.0823

0.10 0.00 0.90 0.00 0.6571 ± 0.0121 0.6232 ± 0.0384 0.2618 ± 0.0412 0.2101 ± 0.0266 -0.2435 ± 0.0264 0.6530 ± 0.0551

0.10 0.00 0.00 0.90 0.6475 ± 0.0172 0.6018 ± 0.0405 0.0874 ± 0.0522 0.0606 ± 0.0427 -0.0146 ± 0.0686 1.0010 ± 0.1556

0.10 0.45 0.45 0.00 0.6683 ± 0.0103 0.6424 ± 0.0156 0.2173 ± 0.0353 0.1809 ± 0.0239 -0.2223 ± 0.0223 0.6694 ± 0.0392

0.10 0.45 0.00 0.45 0.6575 ± 0.0131 0.6147 ± 0.0280 0.1007 ± 0.0519 0.0730 ± 0.0471 -0.0540 ± 0.0795 0.9274 ± 0.1440

COMPAS

0.10 0.00 0.45 0.45 0.6718 ± 0.0164 0.6358 ± 0.0326 0.2047 ± 0.0448 0.1635 ± 0.0404 -0.2018 ± 0.0454 0.7067 ± 0.0578

0.10 0.90 0.00 0.00 0.7140 ± 0.0253 0.8011 ± 0.0233 0.1414 ± 0.0566 0.0951 ± 0.0412 -0.1049 ± 0.0412 0.8646 ± 0.0511

0.10 0.00 0.90 0.00 0.7165 ± 0.0356 0.7917 ± 0.0319 0.1367 ± 0.0798 0.0964 ± 0.0521 -0.0600 ± 0.1090 0.9113 ± 0.1625

0.10 0.00 0.00 0.90 0.7060 ± 0.0325 0.7911 ± 0.0358 0.1497 ± 0.0863 0.1005 ± 0.0599 0.0229 ± 0.0755 1.0225 ± 0.1128

0.10 0.45 0.45 0.00 0.7485 ± 0.0436 0.8248 ± 0.0340 0.1675 ± 0.0866 0.1135 ± 0.0546 -0.1204 ± 0.0996 0.8469 ± 0.1271

0.10 0.45 0.00 0.45 0.7110 ± 0.0311 0.7975 ± 0.0231 0.1219 ± 0.0620 0.0880 ± 0.0533 0.0175 ± 0.0635 1.0283 ± 0.0894

German

Credit

0.10 0.00 0.45 0.45 0.7260 ± 0.0167 0.8091 ± 0.0145 0.1516 ± 0.0617 0.1190 ± 0.0481 -0.0739 ± 0.1093 0.9006 ± 0.1405
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