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ABSTRACT 14 

Increasing evidence indicates the existence of a cryosphere during the Cretaceous 15 

supergreenhouse. However, current understanding of a potential link between 16 

lithosphere dynamics and cryospheric processes in the Cretaceous plateau desert 17 

successions of China remains limited. We report the occurrence of ice-rafted dropstones 18 

and diamictites from the Upper Cretaceous Chishan Formation of the Subei Basin at 19 

the East Asian continental margin. Results from the analysis of provenance indicate that 20 

fluvial deposits of the Lower Chishan Formation were mainly derived from the Sulu 21 

Orogen to the north and the Zhangbaling Uplift to the west, whereas aeolian deposits 22 



of the Upper Chishan Formation were largely recycled from the two highlands, with an 23 

additional notable contribution from the post-Cretaceous basement of the Yangtze 24 

Block. Combined with previous evidence, provenance analysis indicates that Late 25 

Cretaceous collision between the Okhotomorsk Block and the East Asian continent led 26 

to the growth of the South China coastal mountains via crustal thickening, which 27 

generated an arid, high-altitude basin region that experienced desertification and 28 

paleohydrological variability, and that was supplied with additional clastic sediment 29 

sources from the basement. Our results provide evidence of Late Cretaceous 30 

cryospheric processes in a continental mid-latitude plateau desert linked to the north-31 

westward subduction and collision of the paleo-Pacific realm. Global cooling from the 32 

late Turonian to Maastrichtian drove the establishment of glaciers in high-altitude 33 

mountains leading to the development of ice-related deposits in the plateau deserts, as 34 

recorded in the Subei desert basin of the South China Coastal Mountains. The record 35 

of ice-rafted debris and the provenance signature reveal an active Cretaceous plateau 36 

cryosphere linked to lithosphere dynamics. 37 

INTRODUCTION 38 

The distribution of climate zones in East Asia during the Cretaceous is closely 39 

associated with atmospheric circulation patterns and lithospheric tectonic forcing (Jiang 40 

et al., 2008; Hagegawa et al., 2012; Wu et al., 2022). Cryospheric conditions have bene 41 

shown to have operated at different time intervals during the Cretaceous 42 

supergreenhouse in East Asia. During the Early Cretaceous, ice sheets, glacial debris 43 

flows, ice-rafted deposits and sand wedges developed in the plateau region at 44 



paleolatitudes of ~40°−45°N (Wang et al., 1996; Cheng et al., 2002; Yang et al., 2013; 45 

Wang et al., 2023). During the mid-Cretaceous, ice-rafted dropstones and diamictites 46 

occurred in the plateau desert basins at a paleolatitude of ~20°N (Wu and Rodríguez-47 

López, 2021). During the Late Cretaceous, striated cobbles indicate temporary glacial 48 

events in an intermontane desert basin at a paleolatitudes of ~30°N (Jiao et al., 2020; 49 

Cao et al., 2023a). Thus, a growing body of sedimentological evidence suggests a 50 

Cretaceous plateau cryosphere in East Asia. 51 

Fluvial–aeolian sedimentary successions record evidence of shifts between 52 

relatively wetter and drier climate regimes (Rodríguez-López et al., 2014; Lacotte and 53 

Mountney, 2022). In continental basins, arid conditions may facilitate the dominance 54 

of aeolian sedimentary processes, whereas fluvial systems are more active in response 55 

to wetter conditions. Numerous studies of ancient continental sedimentary successions 56 

have demonstrated a link between enhanced aeolian accumulation and a decrease in 57 

mean global temperature (e.g., Cosgrove et al., 2022; Rodríguez-López et al., 2022; Wu 58 

et al., 2022; Scherer et al., 2023). Wu and Rodríguez-López (2021) presented evidence 59 

of ice-related structures within aeolian interdune strata of mid-Cretaceous desert 60 

sedimentary successions in the Chuxiong and Simao basins of southwest China. 61 

However, it remains to be determined whether cryospheric processes were widespread 62 

during episodes of arid climate conditions in continental sedimentary basins during the 63 

Cretaceous period. 64 

Deposits of ice-rafted debris are reported in several mid-Cretaceous desert 65 

depositional successions in south-western China and these are indicative of the 66 



operation of cryospheric processes in a low-latitude in the Northern Hemisphere at this 67 

time (Wu and Rodríguez-López et al., 2021). In addition to recognition of a global 68 

cooling in the Late Cretaceous (Pucéat et al., 2003; Friedrich et al., 2012; Linnert et al., 69 

2014), other local-to-regional factors, notably a substantial increase in paleo-altitude 70 

induced by orogenic processes (lithospheric forcing), could additionally act to enable 71 

glacial depositional processes in terrestrial sedimentary successions. 72 

the aim of this work is to demonstrate evidence for continental cryospheric 73 

processes induced by paleoclimate and lithosphere dynamics at the East Asian 74 

continental margin. Specific objectives are as follows: (i) to describe the presence of 75 

dropstones and diamictites, along with the associated lithofacies, from the Upper 76 

Cretaceous Chishan Formation of the Subei desert basin of the South China margin; (ii) 77 

to characterize the cryospheric processes that operated during the Late Cretaceous in 78 

the mid-latitudes of the Northern Hemisphere; and (iii) to evaluate the influence of 79 

lithospheric dynamics on possible global Late Cretaceous glaciations by analysis of 80 

paleocurrent, petrography and detrital zircon U-Pb Geochronology data of Cretaceous 81 

rocks in the Subei Basin. 82 

GEOLOGICAL BACKGROUND 83 

The Subei basin is a Cretaceous to Cenozoic rift basin that developed along the 84 

East Asian continental margin (Chen et al., 2010). It is bounded by the Tan-Lu Fault to 85 

the west, the Jiangnan Orogen to the south, and the Sulu Orogen to the north (Fig. 1A). 86 

The Upper Cretaceous sedimentary successions of the basin fill include the Pukou, 87 

Chishan and Taizhou formations, from bottom to top. From analysis of ostracod, 88 



charophyta and sporopollen assemblages, these formations are determined to be 89 

Cenomanian to Coniacian, Santonian to Campanian, and Maastrichtian in age, 90 

respectively (BGMRJ, 1997; Yue et al., 1997; Yue and Ding, 1999) (Table S1 in the 91 

Supplemental Material). The Chishan Formation is characterized by mixed fluvial–92 

aeolian deposits and can be divided into the Lower and Upper members (Yue et al., 93 

1997). The Lower section comprises purple-red sandstones, siltstones and mudstones 94 

(Fig. 1C). The Upper section comprises brick-red fine- to coarse sandstones with 95 

subordinate very fine sandstones, siltstones and mudstones, which represent alternating 96 

deposits of aeolian dunes and wet interdunes (Yue et al., 1997; Cao et al., 2023b) (Fig. 97 

1C). Proposed ice-related deposits are located in the interdune deposits of the Upper 98 

unit, and are observed in the Dingyuan area in the western Subei basin (118°0′46″E, 99 

32°36′41″N) (Fig. 1B and Fig. S1 in the Supplemental Material). 100 

METHODS 101 

Eight stratigraphic sections from the Chuzhou, Ma’anshan, Chishan, and 102 

Dingyuan regions in eastern China were examined (Fig. 2). Lithofacies analysis was 103 

undertaken to classify sedimentary characteristics of the Chishan Formation in the 104 

Subei basin. The recognition and identification of ice-related deposits in interdune 105 

facies builds upon findings from earlier studies by Rodríguez-López et al. (2008) and 106 

Wu and Rodríguez-López (2021). Paleocurrent data were obtained from measurements 107 

of the azimuth of foresets of small-scale (0.2−0.8 m thick) cross-bedded sets of aqueous 108 

origin (n=22), and of large-scale (1.5−10 m thick) cross-bedded dune foresets of aeolian 109 

origin (n=71). These data were corrected to remove post-Cretaceous crustal rotation via 110 



analysis of paleomagnetic data (Sun et al., 2006), before being plotted on rose diagrams. 111 

Ten aeolian sandstone samples in the Upper member of the Chishan Formation and six 112 

aqueous sandstone samples in the Lower member were collected and analyzed using a 113 

Leica optical microscope to determine paragenetic associations, and to determine 114 

lithological composition using grain count methods. Based on the Gazzi-Dickinson 115 

point counting method (Dickinson and Suczek, 1979; Ingersoll et al., 1984), at least 116 

300 framework grains were counted per thin section. Three aeolian sandstone samples 117 

in the Upper member of the Chishan Formation and three aqueous sandstone samples 118 

in the Lower member were chosen for the analysis of detrital zircon U-Pb 119 

geochronology. Kernel density estimate (KDE) diagrams with a bandwidth of 30 Myr 120 

were constructed to visualize the zircon U-Pb age frequency distribution using IsoplotR 121 

(Vermeesch, 2012, 2018; Vermeesch et al., 2016); the peak heights of younger groups 122 

of an age distribution are magnified by the probability density model. Plots of 123 

cumulative probability densities (CPD) were also applied as an addition to the KDE 124 

model. The complexity of the parent sources of clastic sediments in a continental basin 125 

makes it challenging to identify provenance information. Thus, multidimensional 126 

scaling (MDS) was applied to transform dissimilarity quantification into a single point 127 

on a scatter plot for comparing multiple sources using the DZmds software program 128 

(Vermeesch, 2013; Saylor and Sundell, 2016). X‐ray diffraction analysis was performed 129 

on twelve mudstone samples in the Upper member of the Chishan Formation to identify 130 

and quantify the clay minerals. The detailed analytical procedures and data results are 131 

listed in the Supplemental Material. 132 



FACIES ASSOCIATIONS 133 

Nine lithofacies have been identified based on analysis of the sedimentology of 134 

the Chishan Formation. These lithofacies record evidence of aqueous and aeolian 135 

processes. They form eight facies associations that make up architectural elements. Key 136 

characteristics of each architectural element are summarized in Table 1. 137 

Aeolian dune 138 

This facies association is composed of well-sorted coarse- to very fine-grained 139 

sandstones (Ste) arranged into tabular or trough cross-stratified sets, 0.15 to 10 m thick. 140 

These light pink sandstones show sharp planar or subhorizontal upper and lower 141 

surfaces. Internal stratification in the cross-bedded sets records grainflow, wind-ripple 142 

and grainfall processes (Fig. 3). Translatent wind-ripple laminae occur in the basalmost 143 

** m of the cross-stratified sets. They are characterized by millimeter-scale inversely 144 

graded laminae. Grainflow strata are the primary component of the foresets of the cross-145 

stratified sets. Laminae are inversely graded or massive and may occur intercalated with 146 

wind-ripple laminae (Figs. 3A−3C). Grainfall strata are represented by millimeter-scale 147 

laminae of fine sandstone that commonly occur between individual grainflow deposits 148 

(Fig. 3D). The azimuths of the foresets are mainly between 035° and 100°, but 149 

subordinately range from 195° to 235°. 150 

The large-scale cross-bedding consisting of grainflow, wind-ripple and grainfall 151 

strata suggests the deposition upon aeolian dunes (Hunter, 1977). The dominant 152 

occurrence of grainflow strata indicates the presence of well-developed slipfaces in the 153 

wind direction (Kocurek, 1991). The grain flow strata packages resulted from the 154 



predominant westerly and subordinate northeasterly winds. The relative divergence 155 

between foreset azimuths and low-angle-inclined bounding surfaces indicates 156 

migrating crescentic dunes with sinuous crestlines (Rubin, 1987; Kocurek, 1991). 157 

Interdune facies association 158 

This facies association consists of purple mudstones (Fl), very fine sandstones 159 

(Sm), structureless muddy sandstones (Ss), and well-sorted laminated sandstones (She). 160 

Elements of this association form a decimeter-thick body with a lenticular geometry 161 

that pinches out between the cross-bedded aeolian dune elements laterally (Figs. 4 and 162 

5A). The architectural arrangement commonly records an intertonguing relationship 163 

with the toesets of the overlying aeolian dune cross-strata. 164 

Rounded to subrounded mud intraclasts (Figs. 5B−5E) occur in this facies 165 

association. They have widths of 0.8−22.8 cm and lengths of 1.0−31.7 cm. The clay 166 

minerals in these mud intraclasts are characterized by 83−90% illite/smectite mixed 167 

layers and 9−17% illite (Table S2). Examples of lonestones and diamictons within this 168 

facies association are observed. Lonestones are formed by isolated mud pebbles or 169 

cobbles “floating” entirely encased within an aeolian sandstone matrix (Figs. 5F−5H). 170 

Lonestones have lengths of 1.5−15 cm and widths of 1−7 cm. Lonestones are common 171 

within host sediments: these hosting laminated sandstones show rupture, penetration 172 

and bending structures in strata directly beneath the lonestones, and onlapping and 173 

bending structures directly atop (Figs. 5F−5I). The clay minerals in these lonestones 174 

consist of illite/smectite mixed layers (83−88%) and subordinate illite (9−16%) (Table 175 

S2). The diamictons are formed by rounded to subrounded mud pebbles and cobbles 176 



that possess a lenticular or thin-bedded geometry (Figs. 5J−5M), cm- to m-scale thick. 177 

These diamictons disrupt and deform the laminated sandstones on which they lie; they 178 

are draped by the overlying wind-ripple lamination (Figs. 5J−5M). The shape of the 179 

mud pebbles and cobbles in the diamicton is similar to the shape of the mud intraclasts 180 

associated with wet interdune deposits (Figs. 4A and 5B−5E). These lonestones and 181 

diamictons display distinguishing features indicative of vertical or oblique fall into the 182 

host sediment (Figs. 5F−5M). The clay minerals in these diamictons comprise 183 

illite/smectite mixed layers (84−89%) and subordinate illite (10−13%) (Table S2). 184 

The presence of the decimeter-thick lens-shaped geometry interbedded with 185 

aeolian dune cross-strata suggests deposition of aeolian interdunes (Kocurek, 1981; 186 

Mountney and Thompson, 2002). The well-sorted laminated sandstones are wind-ripple 187 

strata implying a dry interdune where the water table was below the depositional surface 188 

(Kocurek, 1981). The structureless muddy sandstones define deposition in a damp 189 

interdune where the groundwater level reached the depositional surface that captured 190 

windblown dust and sand grains (Kocurek, 1981). The lenticular geometry consisting 191 

of mudstones or interbedded sandstones and mudstones indicates a wet interdune 192 

element that developed in areas where the interdune depressions suffered fluvial floods 193 

(Kocurek, 1981; Mountney and Thompson, 2002). 194 

The preserved aeolian architectures demonstrate the intertonguing of the toesets 195 

of dunes and adjacent near-horizontal strata of coevally active interdunes, similar in 196 

form to those reported in the mid-Cretaceous desert in southwestern China and Iberia 197 

(Rodríguez-López et al., 2012; Wu and Rodríguez-López, 2021). The relationship 198 



demonstrates that mud intraclasts were derived locally from wet interdune deposits (cf. 199 

Rodríguez-López et al., 2008). The mud intraclasts typically have a rounded to 200 

subrounded shape. However, the manner of draping of overlying sandstone deposits 201 

over the mudstone clasts indicates that the clast-shaping process was not caused by 202 

water transport but by a process of essentially in-situ deformation due to the compaction 203 

of overlying aeolian dune toeset sandstones that caused the mud layer to be pinched. 204 

Differential compaction between aeolian dune sandstones and wet interdune deposits 205 

generated the mud pebbles and cobbles, which occur at the same stratigraphic level as 206 

adjacent undeformed parent interdune deposits. The formation mechanism is similar to 207 

that proposed by Wu and Rodríguez-López (2021) for deposits in oases of the Badain 208 

Jaran Desert, China: sediment loading under freezing conditions led to the compaction-209 

induced formation of mud intraclasts in the interdune facies (Fig. 6A). Ice floe at the 210 

margins of the oases resulted in reworking, loosening, transport and re-deposition of 211 

these mud intraclasts (Fig. 6B). 212 

The geometries of these lonestones are similar to dropstones reported from the 213 

mid-Cretaceous desert basins in southwestern China (Wu and Rodríguez-López, 2021), 214 

where falling mud intraclasts cause disruption and warping of the hosting laminated 215 

sandstones (Fig. 6C). The occurrence of the intraclasts in aeolian successions is 216 

commonly associated with water incursion into low-lying, low-relief parts of coastal or 217 

inland erg margin systems (Rodríguez-López et al., 2012). In this research, these mud 218 

intraclasts are all associated with wet interdune deposits. The similarity in clast shape 219 

and composition, and the presence of compaction-induced mudstone features in the wet 220 



interdune facies indicate that these lonestones and diamictons are derived from the mud 221 

intraclasts in the wet interdune deposits. Moreover, the geometrical relationships of the 222 

lonestones and diamictons and their relationship to their host sediments in the Subei 223 

aeolian deposits are similar to ice-rafted dropstones occurring in other ancient strata 224 

(e.g., Rodríguez-López et al., 2016; Le Heron et al., 2017; Wu and Rodríguez-López, 225 

2021; Xia et al., 2023). 226 

Aeolian sandsheet 227 

This facies association consists of well-sorted horizontal to sub-horizontal 228 

laminated fine sandstones (She). These light pink tabular sandstones are 1.5 m to 9 m 229 

thick and several to tens of meters wide (Figs. 7A and 7B). Internal stratification is 230 

characterized by subcritically climbing translatent strata 1–8 mm thick with inverse 231 

grading (Fig. 7C). This facies association occurs alone or interlayered with wet 232 

interdunes or aeolian dunes. The dip directions of the low-angle cross-bedding range 233 

from 6° to 12° and 332° to 340°. 234 

The tabular packages of horizontal to low-angle laminae suggest aeolian 235 

deposition (Hunter, 1977; Kocurek, 1981). The subcritically climbing translatent strata 236 

represent the migrating wind ripples (Hunter, 1977). They commonly occur in dry 237 

interdune, dune plinth and aeolian sheet deposits (Kocurek, 1981; Clemmensen, 1989; 238 

Mountney and Thompson, 2002). Given the large thickness and lateral extent and the 239 

isolated occurrence of this architectural element, this facies association is interpreted as 240 

aeolian sheet facies. 241 

Fluvial channel deposits 242 



This facies association is composed of trough cross-bedded sandstones (St), low-243 

angle cross-bedded sandstones (Sl) and thinly bedded or lenticular purple mudstones 244 

(Fl) (Figs. 8A and 8B). These sand bodies extend for several meters to tens of meters 245 

laterally and are bounded by low-relief basal erosional surfaces. The sandstones and 246 

mudstones form fining-upward units. The dip directions of the low-angle and trough 247 

cross-bedding are between 085° and 115°. 248 

The dominance of the fining-upward units with erosive bases suggests fluvial 249 

channel deposits (Miall, 1977). The trough cross-bedded sandstones are the products of 250 

downstream migration of sand bars in channels (Miall, 1977; Todd, 1989). The good 251 

development of sandstones with trough and low-angle cross-bedding, along with the 252 

extensive tabular sand bodies bounded by erosional bases, indicates that this facies was 253 

formed in ephemeral fluvial channel settings (Allen et al., 2014). 254 

Overbank flood deposits 255 

This facies association comprises massive tabular sandstones (Sm) and laminated 256 

mudstones (Fl) without erosive bases (Figs. 8C and 8D). The tabular heterolithic units 257 

are decimeter thick and several meters to tens of meters wide. Pale grey-green mottling, 258 

silty aggregates and slickensides are observed in the meter-scale thick massive 259 

mudstone layers. 260 

The presence of interbedded massive tabular sandstones and laminated mudstones 261 

with no erosive bases indicates unconfined flow deposition that characterizes overbank 262 

flood deposits (Smith et al., 1989; Miall, 1996). The fining-upward units record 263 

successive waning flood events (Smith et al., 1989). The occurrence of red coloration, 264 



mottling, silty aggregates and slickensides in the thick mudstone layers suggests 265 

oxidizing conditions and pedogenic alteration, and that floodplain environments could 266 

have formed during high-magnitude floods (Retallack, 1994; Basilici et al., 2022). 267 

Lake deposits 268 

This facies association consists of siltstones and mudstones (Fl), with massive 269 

muddy sandstones (Sm) and minor horizontal to low-angle cross-bedded laminated 270 

sandy conglomerates (Gh) and lenticular low-angle cross-bedded sandstones (Sl). Two 271 

types of lithological assemblages are formed. The first is interbedded massive 272 

mudstones and laminated siltstones several meters thick and tens of meters wide (Fig. 273 

9A). The second is vertical packages of siltstones and mudstones with laminated sandy 274 

conglomerates, massive muddy sandstones and low-angle cross-bedded sandstones 275 

(Figs. 9B−9D). Fossilized root traces are observed at the base of massive sandstones 276 

(Fig. 9C). Burrows are developed in the fine sediments (Fig. 9D). Mudcracks are also 277 

observed atop the muddy sandstones (Fig. 9E). These fine sediments contain abundant 278 

ostracodes and charophytes (Yue et al., 1997). The dip directions of the low-angle cross-279 

bedding vary from 138° to 175°. 280 

The dominance of massive mudstones and thin-bedded siltstones is indicative of a 281 

shallow lake setting (Benvenuti, 2003; Scherer et al., 2007). The presence of fossilized 282 

root traces, burrows, ostracodes, and charophytes suggests a lacustrine environment 283 

(Van Itterbeeck et al., 2007). The laminated sandy conglomerates, massive muddy 284 

sandstones and low-angle cross-bedded sandstones are formed in the lake marginal 285 

environment due to the deceleration of streams as they flow into a lake (Frisch et al., 286 



2019). The presence of mudcracks indicates periodic exposure of the lake marginal 287 

areas. 288 

PROVENANCE SIGNATURES 289 

Paleocurrent analysis 290 

Paleocurrent measurements were conducted to reveal regional and temporal 291 

paleocurrent orientations (Fig. 2). Paleocurrent data obtained from aqueous cross-beds 292 

of the Lower Chishan Formation indicate a southeastward paleo-water flow, implying 293 

the sources to the north and the west. Paleocurrent orientations obtained from large-294 

scale cross-bedded dune foresets of aeolian origin indicate dominant westerlies 295 

followed by northeasterlies and minor southeast winds, which are consistent with Late 296 

Cretaceous paleowind pattern that existed in the middle and low latitudes of the 297 

Northern Hemisphere (Jiang et al., 2008; Hagegawa et al., 2012; Yu et al., 2021). 298 

Petrographic indicators 299 

All examined sandstone samples from the Subei basin have a quartz−lithic 300 

composition with minor feldspar grains (Fig. 10A; Table S3). The detrital grains are 301 

subangular to well-rounded. Quartz grains are the most prevalent component and 302 

account for a mean of 76% from the framework. Distinct monocrystalline quartz grains 303 

with uniform extinction occur in all samples. Feldspar grains of the total rock 304 

composition are less than 5%. Plagioclase content is greater than that of K-feldspar and 305 

constitutes 70−90% of the total feldspars. Lithic fragments of the framework represent 306 

21%, on average. These lithic fragments are dominated by metamorphic quartzite 307 

(56−90% of the total lithic fragments), with subordinate volcanic and sedimentary lithic 308 



grains. 309 

Sandstone samples in the Lower member of the Chishan Formation contain 310 

relatively high amounts of sedimentary lithic fragments consisting of mudstone, 311 

siltstone, chert and carbonate (Figs. 10G−10I; Table S3), whereas those in the Upper 312 

member comprise distinctive volcanic clasts characterized by felsic textures (Figs. 313 

10D−10F; Table S3). 314 

Most of the monocrystalline quartz grains are clear and free of inclusions; they 315 

occasionally have embayment textures (Figs. 10D−10I). The presence of these textures 316 

suggests a volcanic origin (Yan et al., 2010). The occurrence of the monocrystalline 317 

quartz grains with inclusions and uniform extinction, and of the potassium feldspar 318 

grains indicates a felsic igneous source (Yan et al., 2010). 319 

On the Qt-F-L ternary diagram (Fig. 10B), all sandstone samples plot in the 320 

recycled orogen provenance domain (Garzanti, 2016). On the Qp-Lv-Ls ternary 321 

diagram (Fig. 10C), sandstone samples from the Lower member of the Chishan 322 

Formation plot in the collision suture and fold-thrust belt sources domain, and those 323 

from the Upper member of the Chishan Formation fall in the arc orogen provenance 324 

domain (Dickinson, 1985). 325 

Detrital zircon provenance 326 

Detrital zircon age groups of Early Cretaceous, Triassic, Early Paleozoic, 327 

Neoproterzoic, Paleoproterzoic−Archean were recognized and identified for the studied 328 

samples (Fig. 11A; Table S4). These age clusters are consistent with the Yanshanian, 329 

Indosinian, Caledonian, Jinningian, Luliangian, and Wutai orogenies that occurred in 330 



China (He et al., 2013), implying a mixed source pattern. These age populations overlap 331 

with the age spectra of the Sulu orogenic belt, Zhangbaling Uplift, and Yangtze and 332 

Cathaysian blocks on the KDE diagrams (Fig. 11A). Six sandstone samples from the 333 

Chishan Formation have their main age peaks at 126−142 Ma and 595−985 Ma (Fig. 334 

11A), which predominantly occurred in the Sulu orogenic belt and Zhangbaling Uplift. 335 

The sandstone samples from the Lower Chishan Formation have low percentages of 336 

age peaks of 1825−2000 Ma (8%) and 2400−2560 Ma (8.7%), and high percentages of 337 

595−985 Ma age population (43%) (Fig. 11A; Table S5). 338 

However, a marked change in the proportions of age clusters is observed from 339 

analysis of deposits of the Upper Chishan Formation. The sandstone samples from this 340 

unit have distinctive age peaks at 1825−2000 Ma (16.2%) and 2400−2560 Ma (19.2%), 341 

with a significant decrease in age groups of 595–985 Ma (26.6%) (Fig. 11A; Table S5), 342 

indicating a notable variation in provenance. 343 

DISCUSSION 344 

Cretaceous plateau cryosphere 345 

Anchor ice and ice floe were generated in water of oases in a hyper-arid plateau 346 

desert in winter when supercooling temperatures (−12℃) and strong freezing winds 347 

occurred (Wu and Rodríguez-López, 2021). Such ice can erode and transport interdune 348 

mud intraclasts under the effect of wind shear, water-level fluctuation, and periodic 349 

freezing and melting. The processes lead to the formation of ice-rafted intraclasts in the 350 

oases sediments. Our data from sedimentary lithofacies indicate the occurrence of 351 

Upper Cretaceous ice-rafted debris in desert oasis deposits of the East Asian continental 352 



margin, implying that Subei desert basin reached a paleoelevation where altitudinal 353 

cryospheric processes were possible, similar to those occurring in the Quaternary 354 

Badain Jaran Desert oases from China (Wu and Rodríguez-López, 2021). 355 

The Cretaceous was a major supergreenhouse period of Earth history that 356 

witnessed extreme warmth (3−10 ℃ warmer than today) (Skelton et al., 2003). Hitherto, 357 

it has been widely suggested that there was no continental ice during this greenhouse 358 

period (Huber et al., 2002; Miller et al., 2005; Forster et al., 2007). However, in recent 359 

years, increasing evidence has been put forward to indicate that global cooling events 360 

or cryospheric conditions occurred in the Atlantic, Antarctica, Canada, Europe, 361 

Australia, Alaska, and China during the Cretaceous period (e.g., Frakes et al., 1995; 362 

Macquaker and Keller, 2005; Miller et al., 2005; Bowman et al., 2013; Linnert et al., 363 

2014; Rodríguez-López et al., 2016; Rogov et al., 2017; Grasby et al., 2017; Niezgodzki 364 

et al., 2019; Galloway et al., 2020; Alley et al., 2020; Cavalheiro et al., 2021; Wu et al., 365 

2022). The proposal of a Cretaceous cryosphere is mainly based on the recognition of 366 

ice-rafted dropstones and diamictites (Frakes and Francis, 1988; Wang et al., 1996; 367 

Price, 1999; Cheng et al., 2002; Alley and Frakes, 2003; Simmons, 2012; Hore et al., 368 

2015; Jeans and Platten, 2021; Wu and Rodríguez-López, 2021), glendonites (Herrle et 369 

al., 2015; Grasby et al., 2017; Vickers et al., 2019; Rogov et al., 2021), permafrost 370 

wedges (Rodríguez-López et al., 2022; Wang et al., 2023), and ultra-depleted hydrogen 371 

and oxygen isotopes (Bornemann et al., 2008; Yang et al., 2013; Nelson et al., 2022). 372 

Recently, a comparison analysis of major climatic drivers argues for the link between 373 

significant short-term Cretaceous sea-level change and glacio-eustasy (Ray et al., 2019). 374 



Collectively, these studies imply the possible occurrence of a Cretaceous global 375 

glaciation environment. 376 

In detail, evidence occurs as Valanginian−Hauterivian glacial debris flows and 377 

sand wedges in the Ordos Basin (Cheng et al., 2002; Wang et al., 2023), early Aptian 378 

extremely negative δ18O values of hydrothermal zircon in an A-type granite at Baerzhe 379 

in northeastern China (Yang et al., 2013), Cenomanian−Turonian ice-rafted debris in 380 

the Songliao, Chuxiong and Simao basins (Wang et al., 1996; Wu and Rodríguez-López, 381 

2021), and Campanian striated cobbles in the Xinjiang Basin (Jiao et al., 2020). 382 

Combined with Santonian to Campanian glaciations in plateau desert oases of the South 383 

China coastal mountains, such evidence indicates the occurrence of a Cretaceous 384 

plateau cryosphere in China, which correlates with the appearance of global significant 385 

short-term eustatic variations, glendonites and dropstones (Ray et al., 2019; Wu et al., 386 

2022). 387 

In addition, following especially warm climate conditions at the boundary of the 388 

Cenomanian/Turonian, long-term global cooling was underway by at least the late 389 

Turonian and this trend intensified during the Campanian (Pucéat et al., 2003; Friedrich 390 

et al., 2012; Linnert et al., 2014). The Santonian to Campanian Chishan Formation 391 

spans this event of cooling intensification. This leads us to propose that cryospheric 392 

processes in the Subei desert record the secular cooling in the Late Cretaceous. 393 

Late Cretaceous East Asian marginal plateau 394 

The Cathaysian coastal mountains were first proposed by Chen (1997) based on 395 

analyses of thick-bedded molasse accumulations and paleontological records. An 396 



increasing body of evidence from basin provenance analyses (Tan et al., 2020; Chen et 397 

al., 2021), thermochronology (Li and Zou, 2017), carbonate clumped isotope 398 

paleothermometry (Zhang et al., 2016), and paleo-topographic modeling (Liu et al., 399 

2020; Zhang et al., 2021) suggests that a coastal mountain range with a paleoelevation 400 

of ≥2000 m existed along the South China continental margin from the Jiaolai basin to 401 

Hainan island during the Late Jurassic to Cretaceous (Fig. 1A). 402 

The provenance signature of the lower fluvial to upper aeolian strata from the 403 

Chishan Formation records a change in sand composition and detrital zircon age. 404 

Although litho-quartzose sands overall, the Upper Chishan Formation displays a 405 

substantial increase in component volcanic lithic grains, whereas the lithic grains from 406 

the Lower Chishan Formation are mostly of sedimentary origin (Fig. 10C). Furthermore, 407 

the detrital zircon U-Pb ages from the Lower unit are dominated by Mesozoic and 408 

Neoproterozoic ages, whereas zircons older than 1.6 Ga occur more frequently in the 409 

Upper Chishan Formation (Fig. 11A). The Paleoproterzoic−Archean zircon grains are 410 

in agreement with the ages of the dominant stages of crustal growth in South China (Li 411 

et al., 1992). This may imply that the Paleoproterozoic to Archean basement of the 412 

South China Block was a source area for the aeolian Upper unit. Given evidence of the 413 

south-easterly-directed paleocurrents preserved in the water-lain sediments (Fig. 2), the 414 

Sulu orogenic belt to the north and the Zhangbaling Uplift to the west were likely the 415 

major sediment sources for the Subei basin during deposition of the Lower Chishan 416 

Formation. 417 

To evaluate the relationship of Chishan Formation sands with basement sources, 418 



plots of MDS (Figs. 11B and 11C) and CPD (Fig. 12) compare our data with local 419 

basement sources based on previously published detrital zircon data. The Lower 420 

Chishan Formation has a similar contribution to Sulu Orogen and Zhangbaling Uplift, 421 

whereas the Upper Chishan Formation displays an increase of similarity with samples 422 

from the Yangtze Block. The sandstone modal compositions suggest a change in 423 

tectonic setting from collision suture and fold-thrust belt sources, to an arc-orogen 424 

source (Fig. 10C). Thus, it is suggested that the clastic sediments from the Chishan 425 

Formation should be mostly recycled from the Sulu orogenic belt and Zhangbaling 426 

Uplift, together with Early Cretaceous magmatic rocks developed in them. In addition, 427 

exposure and erosion of the pre-Cretaceous basement of the Yangtze Block caused by 428 

the collision between the Okhotomorsk Block and the South China Block along the East 429 

Asian margin (Yang, 2013; Zhang et al., 2016) supplied a distinct sediment source for 430 

the Upper section of this formation. Meanwhile, the synchronous cryospheric processes 431 

in the Subei desert indicate that this orogeny enabled plateau deserts to reach altitudes 432 

at which seasonal ice developed. A modern example of a high-altitude aeolian–433 

permafrost system at Qiongkuai Lebashi Lake in the western Himalayas of China 434 

showcases a frozen desert oases at 3,308 m above sea level (Rodríguez-López et al., 435 

2022). A combination of global cooling events from the late Turonian to Maastrichtian 436 

and the high topography of the coastal mountains may have resulted in the development 437 

similar glacial activity in the Cretaceous succession that is the focus of this study. 438 

In combination with characterization of sedimentary facies (Yue et al., 1997; Yue 439 

and Ding, 1999), a two-stage evolution model presenting the paleogeography of the 440 



East Asian continental margin is proposed (Fig. 13). During the early deposition stage 441 

of the Chishan Formation, subduction of the Izanagi Plate into Eurasia led to the 442 

formation of back-arc fault basins. The rapid exhumation of the Sulu orogenic belt and 443 

Zhangbaling Uplift provided the main sources for the Subei basin (Fig. 13A). From 444 

west to east, alluvial, fluvial and lacustrine deposits were developed in the basin (Fig. 445 

13B). During the late deposition stage of the Chishan Formation, aeolian dune and 446 

interdune facies associations were accumulated during an arid climate (Fig. 13D). At 447 

this time, the Subei basin received significant clastic sediments from the pre-Cretaceous 448 

basement of the Yangtze Block. The change in provenance and paleogeography is 449 

possibly connected with the tectonic dynamics in the region (Yang, 2013, Tan et al., 450 

2020) whereby a collision between the Okhotomorsk Block and the East Asian 451 

continent occurred along the East Asian continental margin (Fig. 13C). 452 

CONCLUSIONS 453 

We characterize the presence of ice-rafted dropstones and diamictites from the 454 

Upper Cretaceous Chishan Formation of the Subei Basin, and use paleocurrent, 455 

petrography and detrital zircon U-Pb geochronogy data to reveal the provenance. Our 456 

results suggest that the clastic sediments from the Chishan Formation were mostly 457 

recycled from the Sulu orogenic belt and Zhangbaling Uplift. Furthermore, the pre-458 

Cretaceous basement of the Yangtze Block provided a significant detritus for aeolian 459 

deposits in the Lower Chishan Formation. The change in provenance is related to the 460 

collision between the Okhotomorsk Block and the South China Block along the East 461 

Asian margin leading to the occurrence of the South China coastal mountains, 462 



generating an arid-climate, high-altitude basin region. This orogeny enabled plateau 463 

deserts to reach altitudes at which ice-related deposits developed, coupled with global 464 

cooling from the late Turonian to Maastrichtian, as recorded in the Subei desert basin. 465 

Our results for the Late Cretaceous paleoclimate and paleogeography at the East Asian 466 

continental margin have implications for the developments of an active Cretaceous 467 

plateau cryosphere associated with lithosphere dynamics. 468 
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 1104 

Figure captions 1105 

 1106 



Figure 1. Geological map and stratigraphic section at the East Asian continental 1107 

margin during the Late Cretaceous. (A) Key geological features and location of 1108 

the Subei Basin (modified from Zhang et al., 2016). The range of the coastal 1109 

mountains is based on the interpretations of Chen (1997) and Yang (2013). (B) 1110 

Geologic map of the study area in the Subei Basin. (C) Stratigraphy of the Chishan 1111 

Formation of the Subei Basin. The stratigraphic section is modified from Yue et al. 1112 

(1997). 1113 

 1114 

Figure 2. Sedimentary logs of the studied outcrop sections of the Chishan 1115 



Formation. Paleocurrents are presented. The location of these sections is shown in 1116 

Figure 1A. See Table 1 for facies codes and facie associations. 1117 

 1118 

Figure 3. Internal stratification in the trough cross-bedded sets. (A−C) Alternating 1119 

wind-ripple laminae (wr) and grainflow strata (gf). (D) Interbedding of grainflow 1120 

(gf) and grainfall (gfa) deposits in the trough cross-bedded sets. 1121 

 1122 

Figure 4. Dune–wet interdune intertonguing and associated mud intraclasts and 1123 



dropstones in the Upper Chishan Formation of the Subei Basin. (A) Interdune 1124 

mudstone intraclasts due to the compaction of the overlying aeolian dune toeset 1125 

sandstones. Geologist for scale is 1.8 m tall. (B) Aeolian dune toesets pinch-out into 1126 

strata of wet interdune origin where a sandy conglomerate cobble occurs. Hammer 1127 

for scale is 38 cm long. See table 1 for facies codes. 1128 

 1129 

Figure 5. Dune–wet interdune intertonguing and associated mud intraclasts, 1130 

dropstones and massive diamicton deposits in the Upper Chishan Formation of 1131 

the Subei Basin. (A) Massive diamicton occurs in wet interdune. The field 1132 

notebook is 18.2 long and 12.5 wide. See table 1 for facies codes. (B−E) Mud 1133 

intraclasts in the interdune facies. (F−H) The underlying laminations are bent and 1134 

disrupted as a result of the dropstones hitting the interdune laminations. (I) A 1135 



dropstone of sandy conglomerate cobble. The underlying laminations are 1136 

deformed and disrupted, whilst the top of the dropstone is draped by the overlying 1137 

laminations. (J) Close-up view from (A) showing downward bended lamination. 1138 

(K) Mud cobbles with its longest axis perpendicular, inclined or parallel to 1139 

lamination. (L) and (M) Lenticular diamicton deposits develop in the laminated 1140 

sandstones, which themselves show down-bent lamination at the bottom and 1141 

draped lamination at the top. 1142 

 1143 

Figure 6. Schematic model interpreting cryospheric processes on plateau desert 1144 

oases (modified from Wu and Rodríguez-López, 2021). (A) Differential 1145 

compaction between aeolian dune sandstones and wet interdune deposits 1146 

generates mud intraclasts, which occur at the same stratigraphic level as adjacent 1147 

undeformed parent interdune deposits. (B) Anchor ice forms in the oasis bottom 1148 



and ice floe forms in the oasis water surface with plateau desert temperatures 1149 

reaching −12 ℃. Strong westerlies blowing over the oasis water lead to cracking 1150 

of ice floes, which transport mudclasts derived from erosion of the margins of the 1151 

oases. At the same time, anchor ices carry mudclasts to the oasis water surface. (C) 1152 

Ice floe and anchor ice melt with increasing plateau desert temperatures, which 1153 

drop mud intraclasts and lead to the development of dropstones and diamictites 1154 

in the oasis bottom sediments. 1155 

 1156 

Figure 7. Aeolian sandsheet deposits in the Upper Chishan Formation. (A) isolated 1157 

horizontal to subhorizontal laminated sandstones (She). (B) Laminated sandstones 1158 

(She) overlie thin-beded musdtones (Fl). (C) Subcritically climbing translatent 1159 

strata showing inversely grading. 1160 



 1161 

Figure 8. Fluvial channel and overbank flood deposits in the Lower Chishan 1162 

Formation. (A) Vertical stacking of trough cross-bedded sandstones (St), low-angle 1163 

cross-bedded sandstones (Sl) and thinly bedded or lenticular purple mudstones 1164 

(Fl). (B) Trough cross-bedded sandstones (St) bounded by erosive bases overlie the 1165 

mudstone layer. (C) Alternating tabular sandstones (Sm) and laminated silty 1166 

mudstones (Fl). Thick silty mudstones represent pale grey-green mottling, siltstone 1167 

aggregates and slickensides. (D) Interbedded massive tabular sandstones (Sm) and 1168 

mudstones (Fl). Hammer for scale is 38 cm long. 1169 



 1170 

Figure 9. Lake deposits in the Lower Chishan Formation. (A) Alternating thick-1171 

bedded silty mudstones and thin-bedded siltstones (Fl). (B) Thin-bedded low-angle 1172 

cross-bedded sandstones overlie thick-bedded silty mudstones (Fl). Hammer for 1173 

scale is 38 cm long. (C) Thick mudstones (Fl) overlain by massive sandstones (Sm). 1174 

Fossilized root traces occur at the base of massive sandstones. (D) Burrows are 1175 

developed in the silty sediments. (E) Mudcracks occur atop the muddy sandstones. 1176 



 1177 

Figure 10. Petrography and modal grain compositions of sandstones from the 1178 

Chishan Formation. (A) Petrographic classification for sandstones (Garzanti 1179 

(2016). (B) and (C) Provisional compositional fields for different types of 1180 

provenance (Dickinson, 1985; Garzanti, 2016). (D−F) Petrography of sandstones 1181 

from the Upper Chishan Formation. (G−I) Petrography of sandstones from the 1182 

Lower Chishan Formation. Qtz, quartz; Qp, polycrystalline quartz; Qt, total 1183 

quartz; F, total feldspar; Kf, K-feldspar; Pl, plagioclase; L, total lithics; Ls, 1184 

sedimentary lithic fragments; Lss, sedimentary siltstone fragments; Lsch, 1185 

sedimentary chert fragments; Lsc, sedimentary carbonate fragments; Lv, volcanic 1186 

lithic fragments; Lvf, volcanic felsic fragments; Lmp, metamorphic quartzite 1187 

fragments; Cal, calcite. 1188 



 1189 

Figure 11. Kernel Density Estimate plots (KDE) and three dimensional 1190 

multidimensional scaling (MDS) for all samples and source terranes. (A) 1191 

Comparison of KDE of detrital zircon U-Pb ages from the Chishan Formation 1192 

with potential source terranes. (B) MDS of detrital zircon U-Pb ages for studied 1193 

sandstone samples and potential source terranes. (C) MDS for the Lower and 1194 

Upper Chishan Formation and potential source terranes. K-S test D value is used 1195 

to determine dissimilarity. Pie diagrams show the ratios of five major periods. 1196 

Sandstone samples (CS-1, CZ-2 and MAS-3) are from the lower Chishan 1197 

Formation; and sandstone samples (CS-3, DY-6 and LH-6) are from the upper 1198 



Chishan Formation. Six major age peaks are Yanshanian (126−142 Ma), 1199 

Indosinian (208−250 Ma), Caledonian (408−490 Ma), Jinningian (595−985 Ma), 1200 

Luliangian (1825−2000 Ma), and Wutai (2400−2560 Ma). Data sources: Sulu 1201 

Orogen (Yang et al., 2003; Liu et al., 2004; Yang et al., 2005; Zhang et al., 2005; 1202 

Huang et al., 2006; Liou et al., 2006; Liu et al., 2008a, Tang et al., 2008; Katsube 1203 

et al., 2009; Yang et al., 2009; Zhang et al., 2010; Charles et al., 2011; Lan et al., 1204 

2011; Liu et al., 2011; Wang et al., 2011; Xie et al., 2012; Zhang et al., 2012; Zhou 1205 

et al., 2012; Chen et al., 2013; Wang et al., 2015a; Li et al., 2016; Xu et al., 2016; 1206 

Zhao et al., 2016), Zhangbaling Uplift (Niu et al., 2008, 2020; Zhao et al., 2014; Xie 1207 

et al., 2016; Li et al., 2021), Yangtze Block (Zhang et al., 2006a, b; Liu et al., 2008b; 1208 

Wang et al., 2010a, b; Yan et al., 2011; Duan et al., 2012; Shen et al., 2012a, b; 1209 

Wang et al., 2012a, b; Xu et al., 2012; Li et al., 2013a; Wang et al., 2013a, b; Yang 1210 

et al., 2015a, b; Yu et al., 2015), Cathaysian Block (Wan et al., 2007; Wang et al., 1211 

2008; Yu et al., 2008; Wang et al., 2010c; Wu et al., 2010; Xiang et al., 2010; Yu et 1212 

al., 2010; Li et al., 2011; Yao et al., 2011; Li et al., 2012; Yao et al., 2014a, b; Wang 1213 

et al., 2015b), and North China Block (Darby et al., 2006; Diwu et al., 2008; Li et 1214 

al., 2008a, b; Li et al., 2010; Du et al., 2012; Yang et al., 2012; Li et al., 2013b; Liu 1215 

et al., 2013; Li et al., 2015). 1216 



 1217 

Figure 12. Cumulative probability densities plots (CPD) for all sandstone samples 1218 

in comparison to potential major sources. Detrital zircon age data are similar to 1219 

those used in Figure 5. 1220 



 1221 

Figure 13. Schematic cartoon model showing the Late Cretaceous tectonic 1222 

evolution at the East Asian margin. (A) Advancing northwestward subduction of 1223 

the Izanagi Plate with the development of back-arc rift basins during the period 1224 

of deposition of the Lower Chishan Formation (Santonian). (B) Depositional 1225 

model of the Lower Chishan Formation. Alluvial, fluvial and lacustrine deposits 1226 

were developed in the Subei Basin. (C) Collision of Okhotomorsk Block with 1227 

Eurasia Plate caused the occurrence of strike-slip fault systems, northwest-1228 

southeast shortening, coastal mountains with high elevations, and orogenic 1229 

exhumation during the period of deposition of the Upper Chishan Formation 1230 

(Campanian). (D) Depositional model of the Upper Chishan Formation. The Subei 1231 

Basin turned into a desert basin characterized by aeolian dune and wet interdune 1232 



deposits. Cryospheric processes in the East Asian marginal plateau were recorded 1233 

in the ice-related structures within interdune strata such as dropstones and 1234 

diamictites. 1235 

Table caption 1236 

TABLE 1. DESCRIPTION AND INTERPRETATION OF SEDIMENTARY FACIES IN THE 1237 
CHISHAN FORMATION 1238 

Facies 
association 

Facies 
code 

Depositional 
characteristics 

Depositional process 

Aeolian dune Ste Well-sorted, medium to 
thick beds, very fine to 
coarse-grained, trough 

cross-bedded sandstones 
(Ste). Internal 

stratification in the cross-
bedded sets comprises 
grainflow, wind-ripple 

and grainfall. 

Accumulation of crescentic aeolian 
dune deposits (Hunter, 1977; 

Kocurek, 1991). 

Wet interdune Sm, Fl Purple mudstones (Fl) 
and very fine sandstones 
(Sm). Decimeter-thick 

lenticular beds. 

A wet interdune element that 
developed in areas where the 

interdune depressions suffered fluvial 
floods (Kocurek, 1981; Mountney and 

Thompson, 2002). 
 

Damp 
interdune 

Ss Structureless muddy 
sandstones. Decimeter-
thick lenticular beds. 

Deposition in a damp interdune where 
the groundwater level reached the 
depositional surface that captured 
windblown dust and sand grains 

(Kocurek, 1981). 
Dry interdune Sle Well-sorted laminated 

sandstones (She). 
Decimeter-thick 
lenticular beds. 

Subcritical climbing of wind-ripple 
strata on the dry depositional surface 

(Kocurek, 1981). 

Aeolian 
sandsheet 

She Well-sorted, horizontal to 
sub-horizontal laminated 
fine sandstones (Sle and 
She). Medium to thick 

beds. 

Subcritically climbing translatent 
strata of wind ripples (Hunter, 1977; 

Kocurek, 1981). 

Fluvial 
channel 
deposits 

St, Sl, Fl Trough cross-bedded 
sandstones (St), low-
angle cross-bedded 

Downstream migration of sand bars in 
ephemeral fluvial channel settings 

(Miall, 1977; Todd, 1989; Allen et al., 



sandstones (Sl) and thinly 
bedded or lenticular 

purple mudstones (Fl). 
Several meters to tens of 

meters wide. Tabualr 
bodies with erosive 

bases. Fining-upward 
units. 

2014). 

Overbank 
flood 
deposits 

Sm, Fl Interbedded massive 
tabular sandstones (Sm) 

and laminated mudstones 
(Fl) without erosive 

bases. Fining-upward 
units. Pale grey-green 

mottling, silty aggregates 
and slickensides in the 

meter-scale thick massive 
mudstone layers 

Unconfined flow deposition that 
characterizes overbank flood deposits 

(Smith et al., 1989; Miall, 1996). 
Floodplain environments during high-

magnitude floods (Retallack, 1994; 
Basilici et al., 2022). 

Lake deposits Gh, Sm, 
Sl, Fl 

Siltstones and mudstones 
(Fl), with massive muddy 

sandstones (Sm) and 
minor horizontal to low-

angle cross-bedded 
laminated sandy 

conglomerates (Gh) and 
lenticular low-angle 

cross-bedded sandstones 
(Sl). Occurrence of 

mudcracks fossilized root 
traces, burrows, 
ostracodes, and 

charophytes. 

A shallow lake to offshore setting 
(Benvenuti, 2003; Scherer et al., 

2007; Frisch et al., 2019). 
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