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Jacobian-Guided Active Learning for Gaussian Process-Based

Inverse Kinematics

Shibao Yang1 and Pengcheng Liu1 and Nick Pears1

AbstractÐ Frequent replanning in dynamically changing en-
vironments often pushes robot manipulators towards singular
configurations and joint limits, causing traditional inverse
kinematics (IK) solvers to fail and hindering adaptability. We
address this with an enhanced Gaussian Process IK (GP-
IK) framework that uses a Jacobian-guided acquisition strat-
egy for robust planning. This method adapts its exploration-
exploitation balance in real-time based on local sensitivity and
mechanical constraints, ensuring the planner can find reliable
solutions even near manipulator limits. By enabling robust
performance in challenging configurations, our approach allows
for a tighter integration of perception and planning, fostering
more adaptive and resilient robots, as demonstrated on a 7-DOF
Franka robot.

I. INTRODUCTION

For robots to operate effectively in dynamically changing

environments, they must frequently replan their motions,

a process that often drives manipulators towards singular

configurations and joint limits [1], [2], [3]. While data-

driven methods like Gaussian Process Inverse Kinematics

(GP-IK) are promising for such adaptive planning [4], [5],

[6], they falter precisely in these critical regions where the

robot’s Jacobian matrix becomes ill-conditioned [7], [2]. In

these states, the IK solution becomes highly sensitive and

numerically unstable, leading to unpredictable behaviour.

Compounding this issue, conventional GP-IK exploration

strategies are computationally inefficient, wasting resources

by indiscriminately amassing data from many unfruitful

attempts to find a solution. This highlights a critical need for

a more intelligent exploration mechanism that can efficiently

navigate these challenging configurations to ensure robust

and reliable robot motion in response to real-world changes.

The integration of Jacobian-based sensitivity analysis with

active learning principles presents a novel opportunity to

address these fundamental challenges. We identify three

key areas where this integration could substantially improve

system performance: 1) Lack of local mechanical constraint

awareness leads to inefficient exploration in challenging

configurations. 2) Crucial balance between exploration and

exploitation needs to account for both task-space objectives

and configuration-space limitations, particularly when oper-

ating near joint limits or singular positions. 3) Adaptation of
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Fig. 1: The Jacobian-Guided GP-IK Framework that uses GP

models to learn optimal movements, guided by an acquisition

strategy that balances exploration and exploitation.

sampling strategies must consider both probabilistic uncer-

tainty and mechanical feasibility to ensure reliable operation

across diverse conditions.

To address these challenges, we propose a novel Jacobian-

Guided GP-IK framework that fundamentally advances the

capability of active learning strategies in robotic manipu-

lation. Our approach introduces a sophisticated Jacobian-

guided acquisition mechanism that dynamically adapts the

exploration-exploitation balance based on local sensitivity

measures and mechanical constraints. This innovation is

integrated with Expected Improvement (EI) and Upper Con-

fidence Bound (UCB) acquisition functions [8], enabling the

system to intelligently navigate complex configuration spaces

while maintaining robustness near singular configurations

and joint limits. By incorporating Jacobian-based sensitiv-

ity information into the acquisition process, our method

maintains high solution quality while significantly reducing

computational overhead in challenging scenarios.

We make the following contributions:

• A novel Jacobian-Guided GP-IK framework is pro-

posed, integrating mechanical sensitivity analysis with

an active learning strategy.

• A comprehensive analysis is conducted on how the

Jacobian-guided exploration strategies affects the GP-

IK solutions, revealing distinct advantages for different

operational requirements.



• An enhanced GP update mechanism has been devel-

oped, leveraging Jacobian information to ensure robust

performance under various operational conditions.

II. METHOD

GP models have become a principled way to tackle

IK under redundancy, uncertainty, and nonlinearity: multi-

variate Gaussian IK captures distributions over feasible joint

configurations for smooth motion, and Gaussian-distributed

damping within Damped Least Squares improves singularity

robustness [4]. GP regression has also been used to learn for-

ward/inverse kinematics, particularly in soft robots showcas-

ing strong modelling of complex mappings [9]. At the same

time, Jacobian-based optimisation remains the workhorse

for IK and singularity analysis, yet effectively blending

probabilistic GP predictions with joint constraints and task

priorities is still challenging [10]. To improve data efficiency,

active-learning GP frameworks have been explored for re-

ward learning and kinematic calibration, leveraging Bayesian

uncertainty to guide informative sampling [8]. Building on

these ideas, our Jacobian-guided GP-IK incorporates GP-

driven adaptive weighting and a sensitivity metric to balance

exploration and exploitation while improving robustness and

accuracy near joint limits and singularities [11].

A. Active Learning

Active learning with GPs iteratively fits a surrogate to

observed data and selects new query points via an acquisition

function that trades off exploitation (promising mean predic-

tions) and exploration (high uncertainty), reducing samples

needed to model the objective or locate optima [12]. In our

GP-IK setting, we employ two complementary choices, EI

to target configurations likely to improve accuracy and UCB

to probe uncertain regions, supporting efficient search under

redundancy and near difficult areas [13], [8]. However, these

standard acquisitions rely solely on GP means and variances

and are agnostic to kinematic structure, joint limits, and

singularities; notably, they provide no mechanism to respond

when the Jacobian becomes ill-conditioned near singular

configurations.

B. Jacobian-Guided Acquisition

Jacobian-Guided Acquisition (Algorithm 1) presents a

novel approach to IK that enhances solution quality and con-

vergence reliability by incorporating configuration sensitivity

analysis with machine learning techniques. The configuration

quality assessment employs a weighted combination of fun-

damental manipulability metrics. The primary formulation

integrates the condition number of the Jacobian matrix [14],

manipulability measure [15], and kinematic isotropy [16].

The condition number is the ratio of the largest to small-

est singular value of the Jacobian matrix which indicates

numerical stability of the IK solution. The manipulability

measure represents the volume of the manipulability ellipsoid

and is calculated as the square root of the product of

all singular values, which quantifies the robot’s ability to

generate velocities in arbitrary directions.

Algorithm 1 Jacobian-Guided Acquisition

1: Input: target pose, initial config

2: Output: final config, success

3: Initialize:

4: q ← initial config

5: GP ← InitializeGaussianProcess()
6: Main Loop:

7: while not converged do

8: // 1. Compute current state and error

9: current pose← ForwardKinematics(q)
10: error ← ComputeError(target pose, current pose)
11: if error < tolerance then

12: return (q, true)
13: end if

14: // 2. Sensitivity Analysis

15: J ← ComputeJacobian(q)
16: sensitivity ← AnalyzeJacobianSensitivity(J)
17: UpdateGPModel(q, sensitivity)
18: // 3. Compute and apply step

19: weights← GetWeights(q, sensitivity)
20: λ← sensitivity × damping factor

21: dq ← DampedLeastSquares(J, weights, λ, error)
22: // 4. Update configuration

23: q ← q + dq

24: q ← ClampToJointLimits(q)
25: end while

26: return
(

q, CheckSuccess(q, target pose)
)

We employ GPR [17] to model the mapping between

configuration space and sensitivity metrics. The covariance

function uses a MatÂern kernel with ν = 2.5, chosen for

its smoothness properties. This specific level of smoothness

is particularly appropriate for modelling physical systems

like robotic manipulators. The resulting GP prior assumes

functions that are smooth enough to capture the underlying

physics while still allowing for the non-linear behaviours

approaching singularities.

The Jacobian sensitivity analysis provides crucial informa-

tion about the robot configuration, which examines singular

values and their ratios to detect potential problematic con-

figurations. The system calculates a sensitivity metric that

considers multiple factors: manipulability (how easily the

end-effector can move in any direction), isotropy (uniformity

of movement capability), and proximity to joint limits.

We employ GPR to learn from previous attempts and

predict sensitivity at new configurations. This creates a

probabilistic model of the workspace, allowing the system

to anticipate challenging regions before encountering them.

The GP model is continuously updated as new configurations

are explored, improving its predictions over time.

The acquisition function combines the learned sensitivity

model with traditional error metrics to guide the optimisation

process. This function balances exploration and exploitation,

adapting its behavior based on the current state and predicted

sensitivity. When the system encounters high-sensitivity re-



gions, it automatically adjusts its step size and damping

parameters to maintain stability.

III. EXPERIMENTAL EVALUATION

A. Performance Analysis of Active Learning in GP-IK

This study evaluates three inverse kinematics methods:

a standard Gaussian Process-based approach (GP-IK) and

two variants enhanced with active learning acquisition func-

tionsÐExpected Improvement (EI) and Upper Confidence

Bound (UCB). The experiments compare their performance

in terms of success rate, convergence speed, and accuracy,

first in a general case and subsequently in a more complex

application involving a 7-DOF robotic arm.

TABLE I: Comparison of GP-IK Methods.

Metrics Normal GP-IK EI UCB

Success Rate (%) 57.14 57.14 57.14

Iteration 289.29 200.00 69.29

Position Error (m) 0.1557 0.0935 0.1425

Orientation Error (rad) 0.3945 0.2769 0.3228

TABLE II: Overall Performance Metrics

Metrics Normal GP-IK EI UCB

Success Rate (%) 93.33 100.00 93.30

Iteration 39.07 200.00 19.07

Position Error (mm) 3.04 2.87 2.27

Orientation Error (rad) 1.56 6.79 1.40

The initial results, shown in Table I, established that while

all methods had an identical success rate (57.14%), their effi-

ciency and accuracy varied significantly. The UCB-enhanced

method converged fastest (69.29 iterations), whereas the EI-

based approach yielded the highest accuracy with the lowest

position (0.0935 m) and orientation (0.2769 rad) errors. Both

active learning strategies clearly outperformed the standard

GP-IK baseline.

To further assess these methods in a more constrained

and complex scenario, a second experiment was conducted

on a 7-DOF Franka Emika robot, focusing on challenges

like redundancy resolution and joint limit handling. As

detailed in Table II, EI demonstrated superior reliability

with a 100% success rate, proving robust even in difficult

configurations near joint limits where other methods faltered.

UCB was again the most computationally efficient, requiring

only 19.07 iterations on average. In contrast, EI consistently

reached its 200-iteration cap, indicating a distinct trade-off

between solution reliability and speed. All methods achieved

high positional accuracy, but EI’s exhaustive search resulted

in substantially better orientation accuracy (6.79e-6 rad).

Across both experiments, a clear performance trade-off

emerges: UCB provides the fastest convergence, making it

ideal for time-sensitive applications, while EI ensures the

highest accuracy and reliability, suiting it for high-precision

tasks like assembly. These findings suggest that a hybrid

approachÐleveraging UCB’s rapid initial convergence be-

fore switching to EI for fine-grained refinementÐcould offer
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an optimal balance. Future work could explore adaptive

strategies, potentially guided by reinforcement learning, to

dynamically select the best acquisition function based on task

requirements and convergence behaviour.

B. Comparative Evaluation Against TRAC-IK

We evaluated our probabilistic, GP-based IK solver against

TRAC-IK [18], a state-of-the-art baseline that combines

KDL’s numerical IK with sequential quadratic program-

ming using two complementary acquisition strategies: EI to

emphasise exploitation and UCB to encourage exploration.

Experiments on a 7-DOF manipulator used two datasets: six

standard test cases (including home and ready) and a com-

prehensive set of 24 cases comprising 20 randomly generated

configurations spanning the workspace plus four deliber-

ately challenging scenarios (near-singularity, extended reach,

elbow-up, and twisted). Success was defined as achieving

a position error below 10−3 m and an orientation error

below 10−2 rad. Particularly noteworthy is our method’s

performance on pathological test cases where traditional

solvers struggle. For the near-singularity configuration at

position [0.554, 0.0, 0.521] m, both GP variants success-

fully converged while TRAC-IK failed after exhausting its

iteration budget. Similarly, for the extended reach pose

at [−0.310, 0.0, 0.589] m, approaching the manipulator’s

workspace boundary, our probabilistic weighting mechanism

adaptively adjusted the Jacobian regularisation to maintain

numerical stability.

The results demonstrate that the learned GP models effec-

tively capture the relationship between joint configurations

and task-space errors, enabling robust solving even in regions
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where traditional geometric intuition fails. The adaptive

weighting, informed by GP uncertainty estimates, provides a

principled mechanism for handling ill-conditioned Jacobians

without requiring manual tuning or special-case handling.

The two acquisition functions demonstrated distinct be-

havioural characteristics aligned with their theoretical prop-

erties. The EI strategy exhibited conservative convergence

behaviour with: Stricter convergence thresholds (0.99 for

position, 0.98 for orientation); Slower learning rate (α = 0.5)

enabling fine-grained optimization; Multiple restart policy (5

attempts) ensuring global optimum discovery.

Conversely, the UCB strategy prioritised rapid conver-

gence through: Relaxed thresholds (0.85 for position, 0.80

for orientation); Aggressive learning rate (α = 1.5) with

momentum term (β = 0.3); and Single-pass optimisation

with early termination.

IV. CONCLUSIONS

In conclusion, we introduce a novel Jacobian-Guided GP-

IK framework that provides a robust and computationally

efficient foundation for robots operating in dynamically

changing environments. By integrating mechanical sensitiv-

ity into the active learning process, our method reliably

solves for motions near singular configurations and joint lim-

its, a critical requirement for the frequent replanning needed

in adaptive robotics. By offering a foundational motion

planning layer that enables tighter integration between per-

ception and planning, our work makes a direct contribution

to creating more adaptive and responsive robots; when the

planner can be trusted in challenging configurations, higher-

level systems can more confidently react to real-time sensory

input. Looking forward, the enhanced stability provided by

our framework is essential for deploying robots in complex,

interactive scenarios, such as human-robot collaboration and

dynamic obstacle avoidance, paving the way for the next

generation of truly adaptive and resilient robotic systems.
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