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A B S T R A C T

Optimizing the feature representation and decoding efficiency of the steady-state visual evoked potentials 

(SSVEPs) is critical to enhancing the performance of neural signal decoding systems. Current deep learning models 

often overlook the physical topological information of EEG channels, resulting in suboptimal feature extraction 

and limited recognition performance. To address these challenges, this study proposes a synergistically designed 

SSVEP recognition framework to alleviate data insufficiency, improve the feature representation, and enhance 

decoding efficiency. Specifically, a slicing-and-scaling technique is adopted to improve the model generalization 

under limited-sample scenarios. A graph-based spatial filter leverages the topological relationships among EEG 

channels to suppress redundant information and enhance spatial feature quality. A lightweight convolutional 

neural network (CNN) with fewer parameters is developed to efficiently extract discriminative temporal–spatial 

features for accurate SSVEP classification. Experimental results on two public benchmark datasets and one self-

collected dataset demonstrate that the proposed framework outperforms baseline deep learning models, yielding 

improvements of at least 6.8 %, 8.5 %, and 0.5 % in peak average classification accuracy, respectively. The maxi-

mum average information transfer rates (ITRs) achieved on the three datasets were 221.4 bits/min,106.7 bits/min, 
and 133.9 bits/min, respectively. By simultaneously reducing model complexity and improving decoding perfor-

mance, the proposed framework offers an effective and promising approach for efficient neural signal decoding 

in SSVEP recognition.

1. Introduction

The non-invasive brain-computer interface (BCI) system establishes 

a direct link between the human brain and external electronic devices, 

enabling individuals to interact with these devices without relying on 

the peripheral nervous system [1–3]. Given its advantages of higher 

temporal resolution, lower cost, and greater portability [4,5], electroen-

cephalography (EEG) is widely used in most non-invasive BCI systems 

to measure human neural activity, providing real-time monitoring of 

neural responses. In particular, steady-state visual evoked potentials 

(SSVEP) based EEG-BCIs, which reflect periodic neural responses elicited 

by visual stimuli, have achieved significant advancements in fields such 

as medical assistive technologies [6], daily life assistance [7], indus-

trial device control [8,9], and entertainment and virtual reality [10]. 

Achieving superior recognition accuracy is a crucial requirement for 

developing robust SSVEP-based EEG-BCI systems.

Traditional prior knowledge-based methods are widely used in 

SSVEP classification due to their computational efficiency and high 

classification accuracy [11]. By constructing spatial filters based on 

common templates or optimized signal components, these methods 

aim to enhance the signal quality of the measured SSVEPs by improv-

ing the signal-to-noise ratio (SNR) [12]. The former methods include 

canonical correlation analysis (CCA) [13], filter bank CCA (FBCCA) 

[14], deep multiset CCA (MsetCCA) [15,16], and multivariate varia-

tional mode decomposition CCA (MVMD-CCA) [17]. These methods 

extract time-domain features by computing the correlation coefficients 

between EEG signals and predefined sinusoidal reference signals. The 

latter methods, such as task-related component analysis (TRCA) [18] 

and task-discriminant component analysis (TDCA) [19], aim to maxi-

mize the reproducibility of individual SSVEP trials thereby improving 

the effectiveness of spatial filters. Although these traditional methods
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have demonstrated notable performance in SSVEP classification, their 

reliance on static templates and handcrafted features may limit their 

ability to capture the non-stationary and complex neural dynamics, 

thereby reducing robustness in scenarios with varying signal condi-

tions [20].

Benefiting from the automatic feature extraction and end-to-end opti-

mization capabilities of deep learning (DL) algorithms, fully data-driven 

DL models have been increasingly developed to process SSVEP signals. 

By learning effective representations directly from raw EEG data, these 

models contribute to enhancing both the quality of the extracted features 

and the reliability of subsequent recognition. Several DL models have 

demonstrated the state-of-the-art (SOTA) performance in improving the 

classification accuracy of SSVEP-BCIs. For instance, Waytowich et al. 

[21] proposed EEGNet, one of the most widely used convolutional neu-

ral network (CNN) models, which effectively exploits temporal-spatial 

information across all channels by a depth-wise separable convolution 

block and achieves higher classification accuracy than the standard CCA 

method. Ding et al. [22] introduced the Filter Bank-based time-domain 

CNN (FB-tCNN) to fully utilize both fundamental and harmonic infor-

mation. Zhang et al. [23] adopted complex spectrum features as the 

input to a DL network, referred to as FB-CCNN. Pan et al. [24] devel-

oped a model integrating the CNN and long-short term memory (LSTM) 

network to capture temporal dependencies within temporal-spatial fea-

tures of SSVEP signals. Additionally, Wang et al. [25] and Chen et al. 

[26] introduced attention modules in CNN-based architectures to en-

hance classification performance, as features from different domains 

or channels may contribute unequally. Despite the significant progress 

achieved by these DL algorithms in SSVEP-BCIs, the majority of them 

capture spatial dependencies primarily based on channel index order, 

rather than explicitly considering the physical topological characteristics 

of the electrode layout.

The topological characteristics of EEG signals play a crucial role 

in shaping the spatial dependence between electrodes [27]. In fact, 

brain activity generates similar waveforms across different electrode 

locations, particularly among closely spaced electrodes. This spatial 

proximity often causes adjacent electrodes to record highly similar sig-

nals, leading to information redundancy [28]. In addition, the spatial 

relationships among EEG channels are represented by their indices in 

traditional CNN models [29]. As a result, the local spatial filtering con-

siders only the left and right neighboring channels of a given channel 

while neglecting anterior and posterior neighboring channels. This lim-

itation is particularly pronounced for edge channels, where the next 

indexed channel is not necessarily physically adjacent. Although sev-

eral studies have employed graph neural networks (GNNs) to model 

topological relationships among EEG channels for SSVEP classifica-

tion [30–33], these approaches typically construct trainable, multi-layer 

graph structures to model inter-channel dependencies in EEG data, 

aiming to enhance spatial feature representation for SSVEP classifi-

cation. However, iterative neighborhood aggregation across multiple 

layers might result in feature over-smoothing and substantially increase 

the number of trainable parameters, leading to higher model complex-

ity and computational demands. Notably, GNN-based models focus on 

spatial feature modeling rather than explicitly addressing information 

redundancy.

To leverage the topological characteristics of EEG while mitigating 

the large number of trainable parameters in the DL model, this study pro-

poses an SSVEP processing framework composed of three sequential yet 

complementary modules, enhancing both neural signal representation 

and classification performance. Specifically, a random walk Laplacian 

matrix based on graph theory is employed as a topology-aware spatial fil-

ter, reducing inter-channel redundancy in SSVEP signals. A lightweight 

CNN with fewer training parameters is then applied to extract discrimi-

native temporal–spatial features for multi-class classification. To address 

the overfitting issue caused by limited training data in DL models, a 

slicing-and-scaling method is employed as a data augmentation strategy 

to increase sample diversity. Although these modules are implemented

independently and sequentially, their integration creates a synergistic 

effect, as each module enhances the effectiveness of the next, collec-

tively resulting in improved neural signal representation, classification 

accuracy, and low computational complexity.

The key contributions of this work can be summarized as follows:

1. A new SSVEP decoding framework is proposed, synergistically in-

tegrating slicing-and-scaling data augmentation, topology-aware 

graph spatial filtering, and lightweight CNN architecture. This in-

tegrated design allows each module to complement the others 

in enhancing overall model performance while maintaining low 

computational complexity.

2. The slicing-and-scaling augmentation improves model robustness

under limited data conditions; the graph-based spatial filter re-

duces inter-channel information redundancy by leveraging EEG 

topology; and the compact CNN efficiently extracts discriminative 

temporal–spatial features with minimal parameters. The inte-

grated approach supports enhanced SSVEP feature decoding and 

stable recognition performance within individual subjects.

3. Experimental results on two public and one self-collected dataset

demonstrated that the proposed framework substantially improves 

recognition accuracy and information transfer rate (ITR) com-

pared to representative baseline methods, verifying the effective-

ness and practical utility of the design.

2. Methods

This study proposes a synergistic framework for SSVEP recognition. 

The entire framework of the proposed method is illustrated in Fig. 1. In 

the following subsections, the details of the method will be introduced.

2.1. SSVEP datasets and preprocessing

In this study, two public datasets and one self-collected dataset were 

used to evaluate the effectiveness of the proposed method.

(1) Dataset I: 40-Target Benchmark Dataset [34]: The first dataset con-

tains data from 35 healthy subjects. EEG data were recorded from 

64 electrodes at a downsampling rate of 250 Hz. Subjects were 

presented with a screen including 5 ×8 stimulus matrix that rep-

resented 40 characters. The frequencies of the stimuli ranged from 

8 Hz to 15.8 Hz with 0.2 Hz interval, and the phases ranged from 

0 to 1.5𝜋 with 0.5𝜋 interval. The whole experiment was composed 

of 6 blocks, with each block including 40 trials corresponding to 

the 40 stimuli. Each trial started with a 0.5-s target cue, followed 

by 5 s of flickering at the target frequency. Subsequently, there 

was a 0.5-s blank on the screen before the next trial.

(2) Dataset II: 40-Target Beta Dataset [35]: The second dataset was

collected from 70 healthy subjects. The 40 SSVEP stimulus fre-

quencies were same as those in Dataset I; however, the experiment 

was conducted without laboratory electromagnetic shielding and 

was presented using QWERTY virtual keyboard. Unlike Dataset 

I, the entire experiment consisted of four blocks, and the stimula-

tion duration for each trial varied among subjects. Specifically, for 

subjects 1–15, the stimulation duration was 2 s, while for subjects 

16–70, it was 3 s.

(3) Dataset III: 12-Target self-collected Dataset: The third dataset was

a self-collected dataset, which was recorded using 16 electrodes 

from 11 healthy subjects. The sampling frequency was 256 Hz 

without downsampling. There were 12 SSVEP stimuli flickering 

with a frequency range of 9.25–14.75 Hz (interval was 0.5 Hz), 

with the phase range of 0𝜋 to 1.5𝜋 (interval was 0.5𝜋). The experi-

ment consisted of ten blocks for each subject. Each block included 

12 trials, each corresponding to a different stimulus pattern. Each 

trial began with a 0.5-s target cue, followed by 5 s of stimulus 

flickering, and concluded with a 0.5-s rest period.
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Fig. 1. The whole framework of the proposed lightweight convolutional neural network with graph-based filter for SSVEP Recognition.

To ensure the quality of EEG data, several preprocessing steps were 

applied to both datasets, which were conducted using the EEGLAB [36] 

toolbox in MATLAB 2024 a (The MathWorks, Natick MA). Baseline 

correction and 6–33 Hz band-pass filtering were performed on both 

datasets. Nineteen EEG electrodes were selected for the two public 

datasets (Fig. 2(a)), and nine for the self-collected dataset (Fig. 2(b).

2.2. Data augmentation

Given the limited number of trials available in both datasets to train 

the DL model, this study employed a slicing-and-scaling techniques to 

augment the dataset. Specifically, after preprocessing, EEG data from 

each trial was divided into five/three/two non-overlapping one-second 

time segments according to different datasets, and amplitude scaling 

technique was applied to generate additional samples. Although ampli-

tude scaling has been explored in previous EEG research, its integration 

and systematic evaluation within the SSVEP decoding framework— 

especially in combination with topology-aware spatial filtering and DL 

models—remain limited. This data augmentation approach not only in-

creases data diversity but also helps mitigate overfitting and improve 

classification performance.

The sliced one-second segment was denoted as 𝑋 ∈ R 

𝐶×𝑇 . C repre-

sented the number of EEG channels and T denoted the time series length. 

For the subsequent model performance analyses requiring shorter data 

length, each 1-s segment was further truncated from the beginning to 

generate segments of 0.2, 0.4, 0.6, and 0.8 s. For each shorter duration, 

only the initial portion (e.g., 0–0.2 s) of each 1-s segment was used, 

thereby ensuring the number of samples remained consistent across all

segment lengths. Next, data augmentation was performed using a scaling 

method, following the rules below:

𝑋 𝑠𝑐𝑎𝑙𝑒𝑢𝑝 

= (1 + 𝛼) × 𝑋 (1)

𝑋 𝑠𝑐𝑎𝑙𝑒𝑑𝑜𝑤𝑛 = (1 − 𝛼) × 𝑋 (2)

where 𝑋𝑠𝑐 𝑎𝑙𝑒𝑢𝑝 

and 𝑋 were the data obtained by amplifying and𝑠𝑐𝑎𝑙𝑒𝑑𝑜𝑤𝑛        

reducing the amplitude of the original signal, respectively; 𝛼 was the 

scaling control factor that was set to 0.1 in this study. 𝑋, 𝑋 and𝑠𝑐𝑎𝑙𝑒𝑢𝑝 

𝑋 together𝑠𝑐𝑎𝑙𝑒𝑑𝑜𝑤𝑛  formed the final training dataset, where each sample

Fig. 2. The electrode configuration and predefined connectivity for Dataset I (a), 

Dataset II (a) and Dataset III (b).
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was denoted as 𝑋 𝑎𝑢𝑔 

. Through this data augmentation method, the size 

of SSVEP data for each subject was increased to 1800 samples (5 trials

× 3 scales × 6 blocks × 40 classes) for Dataset I, 960 or 1440 samples 

(2 or 3 trials × 3 scales × 4 blocks × 40 classes) for Dataset II, and 1200 

samples (5 trials × 3 scales × 10 blocks × 12 classes) for Dataset III.

2.3. Graph-based spatial filter

It is widely accepted that EEG signals represent a mixture of multiple 

brain sources [37,38]. A single EEG channel can simultaneously receive 

signals from multiple brain regions, with activity from each source con-

tributing to responses across multiple channels. Consequently, different 

channels may contain overlapping information leading to redundancy.

Let 𝑟 ∈ R 

3 denote a spatial location in three-dimensional(3D) 

Euclidean space. The scalp potential 𝑉 (𝑟) is a scalar field that reflects 

the cumulative effect of multiple cortical current sources at position 𝑟 

and the electric field 𝐸(𝑟) is defined as the negative spatial gradient of 

the potential [39,40]:

𝐸(𝑟) = −∇𝑉 (𝑟) (3)

where ∇ is the vector differential operator, 𝐸 represents the direction 

and magnitude of electric field propagation at each point in space. 

According to Ohm’s law in conductive media, the current density 𝐽 (𝑟) is 

proportional to the electric field at that point:

𝐽 (𝑟) = 𝜎(𝑟) ⋅ 𝐸(𝑟) = −𝜎(𝑟) ⋅ ∇𝑉 (𝑟) (4)

where 𝜎(𝑟) is the electrical conductivity tensor at location 𝑟. This 

equation forms the foundation for relating measured scalp potentials 

to underlying cortical current sources [39]. EEG signals are typically 

analyzed under the quasi-static approximation, which neglects electro-

magnetic wave propagation and assumes that the current density field 

𝐽 (𝑟) obeys the law of current conservation:

∇ ⋅ 𝐽 (𝑟) = 0 (5)

Therefore, let substitute Eq. (4) it into the Eq. (5) yields the Poisson 

equation [40]:

∇ ⋅ (𝜎(𝐫)∇𝑉 (𝐫)) = −𝜌 𝑠 

(𝐫) (6)

If there are sources (such as neural discharges), the right-hand side is no 

longer zero and the Eq. (6) is modified as follows:

∇ ⋅ (𝜎(𝐫)∇𝑉 (𝐫)) = −𝜌 𝑠 

(𝐫) (7)

where 𝜌 𝑠 

denotes the source current density, indicating the presence and 

intensity of local neural sources. Assuming the conductivity is homoge-

neous and isotropic [39], i.e., 𝜎(𝑟) = 𝜎, a constant scalar, the Eq. (7) 

simplifies to

∇ 

2 𝑉 (𝐫) = − 

𝜌 𝑠(𝐫)
𝜎

(8)

Here, ∇ 

2 𝑉 is denoted as the Laplacian operator of the potential field 

[40]. Mathematically, the Laplacian at a given location quantifies how 

much the electric potential at that point differs from the average po-

tential of its neighboring points. When the potential field is spatially 

smooth, indicating minimal differences between adjacent points, the re-

sulting Laplacian values approach zero. Conversely, sharp local changes 

in potential, such as those produced by focal cortical sources, yield 

large Laplacian values. This inherent property allows the Laplacian 

operator to function as a spatial high-pass filter, attenuating spatially 

widespread, low-frequency background activity while amplifying local-

ized, high-frequency spatial components. Thus, the Laplacian operator 

effectively emphasizes source-related neural activity and suppresses 

broadly distributed or volume-conducted signals.

To implement this principle in a discrete electrode space, the spa-

tial configuration of EEG channels can be modeled as a graph and a 

graph Laplacian operator [41,42], which serves as a discrete analogue 

of the continuous Laplacian operator ∇ 

2 𝑉 . A weighted graph is defined 

as 𝐺 = {𝑁, 𝐿}, where 𝑁 denotes the set of EEG channels (nodes) and 

𝐿 represents the links between nodes. The connectivity is encoded in 

a weighted adjacency matrix 𝐴 = ∈ R 

𝐶×𝐶 where 𝐶 is the number of 

channels. The weight 𝐴 𝑖𝑗 between channels 𝑖 and 𝑗 is defined as: 

𝐴 𝑖𝑗 

=

⎧

⎪

⎨

⎪

⎩

1
𝑑 𝑖𝑗

, 𝑖 is adjacent to 𝑗

1, 𝑖 = 𝑗 

0, otherwise

(9)

where 𝑑 𝑖𝑗 is the Euclidean distance between the 3D coordinates of chan-

nels 𝑖 and 𝑗. In this study, the graph structure is constructed based on the 

physical distance between the EEG channels. The standard physical 3D 

coordinates for each channel are provided by EEGLAB [36]. As shown in 

Fig. 2, usually the channels located to the left, right, front, and back of 

a given channel in the visual cortex were selected as its neighbor nodes 

in this work.

Following the graph construction process described above, a graph

based random walk Laplacian matrix is introduced to enhance the 

feature differentiation  

×among EEG channels. Specifically,
∑

 let D ∈ R 

𝐶 𝐶

be the diagonal matrix whose elements 

𝐶are 𝐷𝑖𝑖 

 

= 𝑗=1 𝐴 𝑖𝑗 

. A random

walk 

−1transition  

 matrix 𝑃 is defined as 𝑃 = 𝐷 𝐴, where each element

𝑝 indicates the probability of transitioning from channel 𝑐 

 

to channel𝑖𝑗 𝑖  

𝑐 in𝑗  a random walk. Based on 𝑃 , the random walk Laplacian matrix 𝐿 

𝑟𝑤

∈ R 

𝐶×𝐶 is formulated as:

-

𝐿 

rw = 𝐼 − 𝑃 (10) 

where I is the identity matrix. 𝐿 

𝑟𝑤 quantifies each channel’s deviation 

from the weighted average of its neighbors on the graph, mimicking the 

divergence of a gradient field. It can be seen as a spatial filter to enhance 

the information difference of the EEG data 𝑋 𝑎𝑢𝑔 ∈ R 

𝐶×𝑇 as follows:

𝑋 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 

= 𝐿 

rw 𝑋 𝑎𝑢𝑔 (11) 

At each time point 𝑡, the filtered signal of channel 𝑐 𝑖 is defined as: 

𝑋 𝑓 𝑖𝑙𝑒𝑟𝑒𝑑 

[𝑐 𝑖, 𝑡] = 𝑋[𝑐 𝑖 

, 𝑡] − 

∑

𝑐 𝑗∈𝑁(𝑐 𝑖) 

𝑃 𝑐 𝑖 

𝑐 𝑗
𝑋[𝑐 𝑗 

, 𝑡] (12)

where 𝑁(𝑥𝑖 ) denotes the set of spatial neighbors of  

 

the channel 𝑐𝑖  

. This

operation effectively subtracts the weighted average of the spatial neigh

bors from the current channel, retaining only the component that differs 

from its local surroundings. If the signals of neighboring channels 𝑋[𝑐 𝑗 

, 𝑡] 

are highly similar due to volume conduction or spatially widespread

activity, then 𝑋[𝑐 , and the weighted average of the neigh𝑖, 𝑡] ≈ 𝑋[𝑐 𝑗 , 𝑡]        

  

bors approaches 𝑋[𝑐 

 

, 𝑡]. value𝑖  Thus, the subtraction yields a  close to

zero, indicating that the local spatial information is redundant. In con

trast, when 𝑋[𝑐 or𝑖  

, 𝑡] ≫ 𝑋[𝑐𝑗  

, 𝑡]  𝑋[𝑐𝑖 , 𝑡] ≪ 𝑋[𝑐 𝑗 

, 𝑡], 𝑋 becomes𝑓 𝑖𝑙𝑒𝑟𝑒𝑑 

[𝑐 𝑖 

, 𝑡] 

large in magnitude, highlighting local spatial discrepancies. Therefore, 

𝐿𝑟𝑤 approximates the operator ∇2Laplacian  

      𝑉 of the scalp potential

in the discrete electrode space, enabling spatial filtering that preserves 

source-related, high-frequency spatial patterns while attenuating low-

-

-

-

frequency, volume-conducted background activity. Fig. 3 illustrates a 

simplified example demonstrating the graph-based spatial filtering pro-

cedure, where inter-node signal differences are enhanced, as reflected 

by the color changes.

2.4. The lightweight CNN architecture and the design of loss function

Given the significantly smaller number of EEG samples compared 

to the large number of parameters in deep neural networks, this study 

proposes a lightweight convolutional neural network with a graph-

based filter, termed LGFCNN. The network consists of four convolutional
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Fig. 3. A simplified example demonstrating the graph-based spatial filtering pro-

cedure, with node colors representing signal activations pre- and post-filtering.

Table 1 

The architecture of LGFCNN.

Layer type Output dimension Kernel size Options

Input (1,C,T)

Conv2D (48,C,T) 1 × 𝑇 ∕2 stride=(1,1)

padding=’same’

BN 

Depth-wise Conv2D (48,1,T) 𝐶 × 1 stride=(1,1)

depth=1

BN

Activation ELU

Average Pooling (48,1,T/4) 1 × 4 stride=(1,4)

Dropout ratio=0.5

Conv1D (48,1,T/4) 3 stride=1

padding=1

Point-wise Conv2D (48,1,T/4) 1 × 1 stride=1

padding=’same’

BN

Activation ELU

Average Pooling 48,1,T/32) 1 × 8 stride=(1,8)

Dropout ratio=0.5

Flatten (48 × 𝑇 ∕32) 

Dense 𝐾
Activation softmax

blocks and a fully connected classifier. The Conv2D slides along the time-

line to extract local temporal features; the Depthwise Conv2D serves 

as a spatial filter; the Conv1D further extracts the contextual features 

in the time dimension to enhance the ability for time modeling; the 

pointwise Conv2D performs feature fusion and mapping. After apply-

ing the graph-based filter, the data 𝑋 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 

is reshaped as (1, 𝐶, 𝑇 ). The 

detailed network parameters are presented in Table 1, where 𝐾 denotes 

the number of SSVEP classes.

To avoid the overconfidence and improve the generalization capabil-

ity of the model, this study introduces a joint loss function, 𝐿𝑜𝑠𝑠 𝑐𝑙 

. The 

standard cross-entropy loss function is depicted as follows:

𝐿𝑜𝑠𝑠 𝑐𝑒 

= − 1
𝑁

𝑁
∑ 

𝑖=1

𝐾
∑

𝑘=1
𝑦 𝑖,𝑘 

log(𝑝 𝑖,𝑘 

) (13)

𝑦 𝑖,𝑘 

= 

{ 

1, 𝑘 = true label
0, 𝑘 ≠ true label

(14)

where 𝑁 denotes the batch size, 𝑦 𝑖,𝑘 

denotes the label of the 𝑖 

𝑡ℎ sample 

to be of the class 𝑘, and 𝑝 𝑖,𝑘 

is the probability that the model predicts 

the 𝑖 

𝑡ℎ sample to be of the class k. While this approach ensures that 

the model primarily focuses on actual categories, it may also lead to 

overconfidence in predictions and insufficient generalization. The label

smoothing method converts true labels from “hard labels” to “soft la

bels”, making a light reduction in the probability of the correct category, 

and evenly distributing the reduction to the other categories. The con
′

verted soft target label 𝑦 of𝑖,𝑘  each sample i and class k is defined as:

-

-

𝑦
′

𝑖,𝑘 = 

{

(1 − 𝜖), 𝑘 = true label
𝜖

𝐾−1 , 𝑘 ≠ true label 

(15)

where 𝜖 is the smoothing parameter, set to 0.1 in practice. Therefore, 

the cross entropy after label smoothing is:

𝐿𝑜𝑠𝑠 𝑙𝑠𝑟 

= − 1
𝑁

𝑁
∑ 

𝑖=1

𝐾
∑

𝑘=1
𝑦
′

𝑖,𝑘 log(𝑝 𝑖,𝑘 

) (16)

The joint loss function is defined as: 

𝐿𝑜𝑠𝑠 𝑐𝑙 

= 𝐿𝑜𝑠𝑠 𝑐𝑒 

+ 𝛼 𝑙𝑠𝑟 

× 𝐿𝑜𝑠𝑠 𝑙𝑠𝑟 

(17)

where, 𝛼𝑙 is𝑠𝑟  a weighting parameter that controls the proportion of the

regularization loss 𝐿𝑜𝑠𝑠 in𝑙𝑠𝑟  the total loss. In this study, 𝛼𝑙 𝑠𝑟 

was set to

0.1.

2.5. Training strategy

A subject-dependent experiment was conducted to evaluate the per-

formance of the proposed model. All original SSVEP trials were first 

partitioned into training and testing sets with a ratio of 85 % to 15 %. In 

the testing set, only the slicing method was applied to the original trials. 

The training set was further divided into training and validation subsets 

using five-fold cross-validation, with each fold allocating 80 % of the 

data for training and 20 % for validation. During this process, the vali-

dation subset included only sliced segments of the original trials, while 

the training subset employed both slicing and scaling for data augmen-

tation. The same data partitioning and augmentation procedures were 

applied consistently across all deep-learning models. All models were 

trained using the early stopping strategy, in which training was stopped 

if the validation accuracy did not improve by at least 0.01 % within 50 

epochs. The model with the best performance on the validation set was 

selected and subsequently evaluated on the testing set. The proposed 

model was implemented using the PyTorch framework and executed on 

an NVIDIA Quadro GV100 with a memory size of 32GB. The Adam opti-

mizer was employed to update model parameters and minimize the loss 

function. The learning rate and weight decay were both set to 0.001. 

For each fold, the batch size and total iteration epochs were set to 128 

and 500 for Dataset I, and 64 and 500 for Dataset II and Dataset III, 

respectively.

2.6. Performance evaluation 

2.6.1. Evaluation metrics

The classification accuracy and information transfer rate (ITR) were 

applied as performance evaluation metrics. The accuracy is computed 

as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃
𝐴𝑃

(18)

where TP denotes the number of correctly predicted samples and AP is 

the number of all samples predicted. The ITR is defined as:

𝐼𝑇𝑅 = 

60
𝑇

[ 

log 2 

𝐾 + 𝑃 log 2 𝑃 + (1 − 𝑃 ) log 2 

( 1 − 𝑃
𝐾 − 1

)] 

(19)

where T, K, and P represent the time length, the number of targets, and 

the classification accuracy, respectively. Specifically, an additional 0.5 s 

was added to the parameter T to account for the gaze movement time, 

as suggested in [43]
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2.6.2. Statistical analysis

All experimental results were reported as the average classification 

accuracies and ITRs across all subjects unless otherwise specified. Error 

bars in the figures represent the standard error of the mean (SEM). 

Furthermore, the Wilcoxon Signed-Rank test with Bonferroni correction 

was conducted to compare the baseline models (EEGNet [21], CCNN 

[44], AttentCNN [45], SSVEPNet [24], and SSVEPformer [20]) with the 

proposed LGFCNN model to assess statistical significance. The asterisks 

shown in figures indicate significant differences between the proposed 

model and the other baseline models (*p<0.05, **p<0.01, ***p<0.001).

3. Results 

3.1. The overall SSVEP classification performance 

3.1.1. Comparison with DL model

The distribution of classification accuracies across all subjects for the 

proposed models and other baseline models on data segments longer 

than 0.6 s is illustrated in Fig. 4. The width of the violin plots represents 

the density of data points at different accuracy levels. Among all data 

lengths and datasets, the median accuracy of LGFCNN is generally above 

that of all models. Furthermore, the distribution of accuracies achieved 

by LGFCNN was most concentrated, indicating higher consistency in per-

formance. Specifically, for Dataset I, the bottom of the violin in LGFCNN 

has almost no extremely low-score samples below 60 %, while other 

models have a distinct long tail in the low-accuracy region.

To further compare the overall performance across all subjects, the 

average classification accuracy and ITR of all models on both datasets 

are presented in Fig. 5. For Dataset I, as shown in Fig. 5(a), LGFCNN 

achieved the highest accuracy among all baseline models when the 

data length was greater than or equal to 0.4 s. Specifically, the accu-

racies for data lengths of 0.4 s, 0.6 s, 0.8 s and 1 s were 62.4 ± 9.5%, 
86.3 ± 8.0%, 88.7 ± 6.3% and 93.1 ± 4.3%, respectively. The correspond-

ing ITRs (Fig. 5(d)) of LGFCNN also outperformed those of the baseline 

models across all data lengths that were greater than or equal to 0.4 s. 

The highest average ITR achieved by LGFCNN was 221.4 ± 34.4bits/min 

at 0.6 s. For Dataset II, which also comprises 40 SSVEP targets, LGFCNN 

consistently outperformed the other models across data lengths ranging 

from 0.6 to 1 s. The highest ITR of LGFCNN was achieved at the 1-s data 

length. However, its overall classification accuracy was lower than that 

achieved on Dataset I. In terms of the Dataset III, the accuracies and 

ITRs of LGFCNN were generally higher than those of all baseline models 

across all data lengths. However, at 0.8 s, LGFCNN’s accuracy was 0.8 % 

and 0.7 % lower than that of CCNN and SSVEPformer, respectively. 

Furthermore, the significance level between the LGFCNN and the base-

line models was also shown in Fig. 5. The results indicated that LGFCNN 

generally achieved a significant performance improvement across most 

data lengths on all datasets, with p-values consistently below 0.05.

The t-distributed stochastic neighbor embedding (t-SNE) technique 

was applied to visualize the output features of different models, and

the result was shown in Fig. 6. To quantitatively evaluate the qual-

ity of the feature clusters, three standard metrics were employed: the 

Calinski-Harabasz (CH) Index, the Silhouette Coefficient, and the Davies-

Bouldin (DB) Index. Higher CH Index and Silhouette Coefficient values, 

alongside a lower DB Index, indicate better cluster quality, reflecting 

greater between-cluster separation, improved sample alignment within 

clusters, and enhanced intra-cluster compactness, respectively. Fig. 6(a) 

indicates that features of 40 classes were well differentiated by the 

proposed LGFCNN model, as features belonging to the same class clus-

tered closely together. Although the output features of EEGNet exhibited 

compact clusters, several classes of EEGNet’s features overlapped, indi-

cating a lower discriminative ability. Besides, for the SSVEPformer, it 

presented the highest Silhouette Coefficient and the lowest DB Index, 

indicating tighter within-class compactness and reduced inter-class sim-

ilarity at the sample level. However, its CH Index was lower than that 

of LGFCNN, reflecting weaker dispersion between class centroids. In 

terms of other models, the output features of all classes were largely 

intermixed, showing no clear boundaries among these features.

3.1.2. Comparison with conventional methods

To more comprehensively evaluate the performance of the proposed 

LGFCNN, additional experiments were conducted on 1-s data segments, 

comparing LGFCNN with the classical template-based methods eTRCA 

and TDCA under two training protocols. All methods were evaluated 

using the leave-one-out block strategy on the same dataset, which com-

prised both original and augmented data. The protocols were defined as 

follows: (1) CBFTrain – only the initial 1-s segment from each block 

was used for training and testing; and (2) CBATrain – all 1-s seg-

ments from each block were used for training and testing. As shown 

in Fig. 7, LGFCNN achieved the highest accuracies under the CBATrain 

protocol, but its performance dropped sharply under the CBFTrain pro-

tocol. In contrast, both eTRCA and TDCA performed better under the 

CBFTrain protocol, yet showed substantial declines in accuracy when 

evaluated with CBATrain. Overall, without distinguishing between pro-

tocols, LGFCNN achieved the best accuracies with the lowest standard 

deviations on Dataset I and Dataset III, whereas TDCA yielded the 

highest accuracy on Dataset II.

3.2. Effectiveness analysis of data augmentation and graph-based spatial

filter

Fig. 8 presents the t-SNE visualization of learned feature distributions 

before and after data augmentation. It is evident that after data augmen-

tation, the features of different classes become more compact within 

clusters and are better separated from each other. Feature clustering 

metrics for augmented data showed significant improvement compared 

to those for data before augmentation. Besides, to examine the sensi-

tivity of data augmentation scale factor 𝛼, the average accuracy across 

all subjects under different data lengths and scale factors is shown in

Fig. 4. Distributions of classification accuracy across all subjects using five DL models at different data lengths for Dataset I (a), Dataset II (b), Dataset III (c). The 

proposed LGFCNN genearally showed the most concentrated accuracy distribution.
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Fig. 5. Average classification accuracy and ITR of five models for Dataset I (a,d), Dataset II (b,e) and Dataset III (c,f) at different data lengths. Blue, brown, gray, 

purple and green asterisks indicate significant differences between LGFCNN and EEGNet, CCNN, AttentCNN, SSVEPNeta and SSVEPformer respectively (*p<0.05, 
**p<0.01, ***p<0.001).

Fig. 9. Across all values of 𝛼, the accuracy of a given data length ex-

hibited minimal fluctuation. Although the optimal 𝛼 may depend on the 

characteristics of the dataset, 𝛼 = 0.1 appears to be the optimal choice, as 

it maintains stable performance across different time lengths and offers 

additional benefits for shorter data lengths, such as 0.6 s.

To analyze the effect of the graph-based spatial filter, the corre-

lation coefficients among channels were calculated and visualized in 

the form of heat maps, as shown in Fig. 10. It could be observed 

that the correlations between a given channel and the other channels 

were generally high, indicating minimal information differences among 

them. Furthermore, combined with the topological information shown 

in Fig. 2, the correlation coefficient increased as the distance between 

channels decreased. However, after applying the random walk Laplacian 

filter, the information differences between channels were greatly en-

hanced, emphasizing the importance of neighboring channels for a given 

channel.

To further evaluate the effectiveness of the data augmentation 

method, the random walk Laplacian filter, and their combined usage 

with the proposed LGFCNN, four ablation experiments were conducted 

on Dataset I. The data with or without augmentation was named as “W/ 

Augmentation” and “W/O Augmentation”, respectively; the model with 

and without graph-based filter was named as “W/ GSF” and “W/O GSF”, 

respectively. Therefore, the four experiments were: (1)W/ Augmentation 

& W/ GSF; (2)W/ Augmentation & W/O GSF; (3)W/O Augmentation &

W/ GSF; (4)W/O Augmentation & W/O GSF. Fig. 10(a) shows average 

accuracies of each experiment at different data lengths and the signifi-

cance level comparison. In all cases of data length, except for 0.2 s, the 

“W/ Augmentation & W/ GSF” condition demonstrated the best perfor-

mance, showing a significant improvement compared to the conditions 

“with/without GSF or augmentation” methods. Specifically, under the 

same condition of W/ GSF or W/O GSF ((1) vs. (3) or (2) vs. (4)), the 

use of augmentation improved accuracy ranging from 6.2 % to 12.5 %. 

Regarding the effect of GSF, it contributed to an accuracy improvement 

ranging from 2.8 % to 8.2 %. Fig. 10(b) presents the ITR performance 

comparison of all ablation experiments. It is noted that the trend change 

of all conditions was consistent with that of accuracy. However, the high-

est ITR of all models was achieved at a data length of 0.6 s. Furthermore, 

as the data length decreased to 0.2 s, both accuracy and ITR dropped sig-

nificantly, and the use of GSF did not provide additional benefits when 

data augmentation was applied.

3.3. Analysis of the number of EEG channels

To evaluate the performance of the proposed model with differ-

ent numbers of EEG channels, the average accuracies for two channel 

configurations (9 channels vs. 19 channels) across all data lengths in 

Dataset I are presented in Fig. 11. The overall results indicated that 

larger number of channels generally improves classification accuracy,
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Fig. 6. t-SNE visualization of output features for a representative subject using 

six models on Dataset I: (a) LGFCNN, (b) EEGNet, (c) CCNN, (d) AttentCNN, 

(e) SSVEPNet and (f) SSVEPformer. LGFCNN demonstrates clearer intra-class 

clustering and greater inter-class separability.

Fig. 7. Accuracy comparison of LGFCNN, eTRCA, and TDCA under CBATrain and 

CBFTrain protocols (data length = 1 s). LGFCNN performed best with CBATrain, 

while eTRCA and TDCA were more competitive with CBFTrain.

especially for longer data lengths. Specifically, for 9-channel configura-

tions, accuracy was relatively low, primarily concentrated around 20 % 

for 0.2 s, increasing to around 40 % at 0.4 s. For longer data lengths, 

accuracy improved in both configurations; however, the 19-channel 

setup exhibited a more pronounced enhancement, with a significant

Fig. 8. t-SNE visualization of output features for data before and after augmen-

tation in Dataset I.

Fig. 9. Parameter sensitivity analysis for the augmentation scale factor 𝛼 on 

Dataset I (a) and Dataset III (b). The model exhibited the most stable and robust 

classification performance when 𝛼 was set to 0.1.

Fig. 10. Heat maps of the correlation coefficients matrix of EEG channels for (a) 

Dataset I and (b) Dataset II. Information difference was enhanced after applying 

graph-based spatial filter.

portion of results exceeding 80 %. The 9-channel configuration ex-

hibited a wider spread in accuracy, suggesting greater variability in 

performance. While both configurations benefited from longer data seg-

ments, the 19-channel setup achieved superior accuracy with reduced 

variance, suggesting that an electrode arrangement incorporating more

Neurocomputing 656 (2025) 131561 

8 



R. Ma, Y. Cao, S.Q. Xie et al.

Fig. 11. Ablation experiment results for Dataset I in terms of accuracy (a) and 

ITR (b). The full framework incorporating both the graph-based spatial filter and 

data augmentation achieves the best overall performance.

connectivity information among channels enables more robust SSVEP 

feature extraction for classification tasks.

Additionally, experiments were conducted on a 9-channel configura-

tion for all DL models using Dataset I to further evaluate the performance 

of the proposed LGFCNN model. Table 2 shows the average accuracy of 

each model at the data lengths of 0.6 s and 1 s. It demonstrates that 

even with reduced channels, the proposed LGFCNN model consistently 

had superior performance compared to other DL models.

3.4. Parameter analysis of loss function and DL neural network structure

To investigate the effect of the regularization factor 𝛼 𝑙𝑠𝑟 

, Fig. 12 

presents box plots illustrating the classification accuracy of the pro-

posed model across different values of 𝛼 𝑙𝑠𝑟 

on Dataset I and Dataset

III, with the data length set to 0.8 s. For Dataset I, accuracy peaked at

𝛼 𝑙𝑠𝑟 = 0.1, but declined as 𝛼 𝑙𝑠𝑟 

increased to 0.25 and 0.5, suggesting that 

moderate regularization may enhance performance, whereas excessive 

regularization could introduce instability. In Dataset III, classification

Table 2 

Classification accuracy of different models under 9-channel configuration in Dataset I.

Data Models

length (s)
LGFCNN EEGNet CCNN AttentCNN SSVEPNet SSVEPformer

ACC(%) 0.6 67.0±11.2 55.8±11.1 47.7±11.5 49.1±17.8 42.9±14.2 49.9±14.8
1 80.3±8.9 76.4±12.1 65.2±15.1 64.8±20.6 65.5±15.4 76.0±15.1

Fig. 12. Average classification accuracy for different number of channels on 

Dataset I.The 19-channel configuration led to a significant improvement in 

classification accuracy. (**p<0.01, ***p<0.001).

Table 3 

Ablation experiments on the last two convolution modules of LGFCNN.

Data Modules ACC (%)

length (s)
Conv1D Point-wise Conv2D Dataset I Dataset II

0.6 ✓ ✓ 86.3±7.9 81.1±9.2
✓ 82.2±7.8 80.50±8.4

✓ 77.5±9.3 78.7± 9.7

0.8 ✓ ✓ 88.6±6.3 86.4±13.1
✓ 87.1±5.5 90.7±7.8

✓ 85.7±5.8 90.1±7.1

accuracy remained relatively stable, exhibiting a slight decline as 𝛼 𝑙𝑠𝑟 

increased, suggesting lower sensitivity to regularization. Overall, intro-

ducing regularization factor 𝛼 𝑙𝑠𝑟 

= 0.1 improves accuracy compared to 

the non-regularized case 𝛼 𝑙𝑠𝑟 

= 0, suggesting that a moderate level of 

regularization can enhance performance.

To evaluate the impact of key modules of LGFCNN, an ablation study 

was conducted on the Conv1D and Point-wise Conv2D modules using 

data lengths of 0.6 s and 0.8 s. As shown in Table 3, it was obvious that 

models incorporating Conv1D consistently achieved the highest or near-

highest accuracy, indicating its important contribution to further extract 

features after the preceding modules. While Conv1D alone performed 

reasonably well, the addition of Point-wise Conv2D further enhanced 

accuracy. Moreover, the optimal neural network architecture comprises 

both Conv1D and Point-wise Conv2D, as it maximizes classification 

performance.

To demonstrate the lightweight characteristic of the proposed model, 

Table 4 summarizes the computational complexity of LGFCNN and com-

parative baseline models, evaluated on Dataset I with 1 s EEG segments. 

It shows the number of parameters, the number of floating-point opera-

tions, inference time, training time, test time and classification accuracy. 

It should be noted that the reported training time for each model already 

includes the time required for data augmentation, as data augmenta-

tion was performed prior to model training. Since data augmentation is 

only applied during the training phase, it does not affect the inference
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Table 4 

Computational complexity of all DL models on the Dataset I with the 1-s data length.

Models Params (k) Flops (m) Inference time (ms) Train time (s) Test time (ms) Accuracy(%)

EEGNet 52.1 186.2 3.3 109.9 12.9 86.3±9.4
CCNN 369.6 503.0 42.1 541.6 26.2 70.0±14.3
AttentCNN 675.4 10,891.5 39.2 228.5 47.0 67.7±14.8
SSVEPNet 34,639.3 4892.8 1.9 100.4 14.5 66.1±15.4
SSVEPformer 2330.0 414.7 9.5 149.0 16.0 76.3±14.7
LGFCNN 30.0 160.3 2.1 62.9 4.0 93.1±4.3

Fig. 13. Parameter sensitivity analysis for the loss function regulation factor 𝛼 𝑙𝑠𝑟 

for Dataset I (a) and Dataset III (b). The model performance was moderately 

enhanced when 𝛼 𝑙𝑠𝑟 was set to 0.1.

or test time for individual samples. From the perspective of computa-

tion count, the proposed LGFCNN has substantially lower number of 

parameters and reduced floating-point operations, which is approxi-

mately 42 % lower than EEGNet, and dramatically lower than both 

CCNN and SSVEPformer, illustrating a clear advantage in model com-

pactness. Although its inference time and training time were not the 

lowest, it still has rapid inference speed and test procedure, indicat-

ing the suitability of LGFCNN for real-time BCI applications. Combining 

the classification performance, LGFCNN underscored its optimal bal-

ance between computational efficiency and classification performance 

(Fig. 13).

4. Discussion 

4.1. Analysis of data augmentation

In recent years, deep learning (DL) methods have provided a new per-

spective on SSVEP classification. However, the amount of training data 

is a crucial factor affecting the performance of DL models. Although 

amplitude scaling has been previously used for data augmentation in 

EEG and motor imagery studies [46,47], its application and systematic 

evaluation within SSVEP decoding frameworks remain limited. Most 

recent SSVEP data augmentation research has focused on strategies 

such as phase-locked time-shift [11], mask encoding [48], and principal 

component-based manipulations [49], which often require more com-

plex transformations or additional parameter optimization. In this work, 

we demonstrate that amplitude scaling—a simple, training-free aug-

mentation method—can be effectively integrated with topology-aware 

spatial filtering and deep learning models. The simplicity, efficiency, 

and compatibility of amplitude scaling make it a practical choice for 

real-world SSVEP applications. As shown in Fig. 11, the model’s per-

formance varied significantly with and without the slicing-and-scaling 

augmentation method. It was demonstrated that a larger amount of 

data, particularly in shorter data lengths (e.g., 0.4 s), could significantly 

improve performance by compensating for the limitation of reduced 

information in shorter segments [11]. To further explore the reason 

for the improvement, a t-SNE visualization analysis of the learned fea-

tures from the last layer of the proposed model, as shown in the Fig. 8, 

was conducted. It is clear that after the data augmentation, there was 

a clearer clustering among different classes compared to the features

before data augmentation. After data augmentation, it showed higher 

CH-index, higher silhouette coefficient and lower DB-index, reflecting 

better class cluster separation, better-defined class clusters and higher 

intra-class compactness, respectively. It could be concluded that the aug-

mented samples might increase the diversity and expose the model to 

more variations (scale changes) in SSVEP, thereby making it more ro-

bust to unseen data [50]. Besides, the scaling factor had no significant 

impact on performance when the amplitude of the original data was 

scaled up or down within 20 %, which is consistent with the compari-

son results presented in [47]. This may be attributed to the fact that the 

frequency information of SSVEP remains unchanged when its amplitude 

is scaled up or down within the range of 20 %.

4.2. Analysis of the graph-based spatial filter and the proposed model

While most DL models for SSVEP classification incorporate spa-

tial convolution layers to capture electrode relationships, they do not 

explicitly encode the physical topology of the electrode montage. This 

study proposes the use of a graph-based spatial filter before feeding 

data into the DL model, resulting in a significant improvement in accu-

racy and ITR, as shown in Fig. 11. Besides, while recent SSVEP studies 

have introduced GNN-based models to extract complex inter-channel de-

pendencies through multiple graph convolutions, these methods rely on 

dynamically learned adjacency matrices and require substantial param-

eter optimization. Distinguishing itself from the GNN-based approaches, 

the proposed graph-based spatial filter is derived directly from the im-

mutable physical layout of the EEG channels, serving as a fixed spatial 

filter prior without any trainable parameters. The performance results 

illustrate that embedding a spatial prior based on electrode topology 

is a highly effective strategy, offering balance between classification 

performance and model parsimony. Furthermore, the heat maps of the 

correlation coefficients between EEG channels, as shown in Fig. 10, 

provide a possible explanation for this improvement by reducing redun-

dant information among channels and highlighting crucial components. 

As demonstrated in [41], the Laplacian operation might reduce spatial 

noise and help in identification of sources.

Besides comparison with DL models, comparison with traditional 

template-based methods was also conducted. As illustrated in Fig. 7, 

LGFCNN achieved superior performance under the CBATrain protocol 

but suffered a marked decline with CBFTrain, which can be attributed 

to the limited training data available for each class, especially given the 

larger number of stimulus classes. In contrast, eTRCA and TDCA per-

formed better with CBFTrain but dropped markedly under CBATrain, 

likely due to their phase sensitivity and the difficulty of construct-

ing effective templates from phase-diverse segments. These results 

demonstrate that deep-learning and template-based methods exhibit 

complementary strengths: while deep models such as LGFCNN can effec-

tively capture complex temporal dynamics when sufficient phase-diverse 

data are available, template-based methods retain clear advantages in 

scenarios with limited training samples.

In terms of the proposed DL neural network, the overall compar-

ison of accuracy and ITR, as depicted in Figs. 4 and 5, demonstrates 

its significant improvement. Specifically, for the 40-class Dataset I, it 

improved the ITR by almost 80bits/min when compared with the best 

baseline model in the case of 0.6 s. More importantly, the number of
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parameters in this model was significantly lower than that of other 

baseline models, demonstrating the advantage of its lightweight struc-

ture while maintaining strong feature extraction capability. Ablation 

studies presented in Table 3 further underline the critical role of the 

adopted convolutional architecture, specifically the combination of a 

Conv1D layer followed by a point-wise Conv2D module. One possible 

interpretation for this performance gain is that Conv1D layer effi-

ciently captures temporal characteristics of the SSVEP signal with fewer 

parameters, which might also reduce overfitting and improve gener-

alization capability. Furthermore, SSVEP signals primarily consist of 

periodic waveforms at specific frequencies, making temporal character-

istics inherently critical. Therefore,it suggests that emphasizing tempo-

ral feature extraction could be more advantageous than purely spatial 

modules.

4.3. Limitations and future work

Although the proposed method achieved good performance in SSVEP 

classification, there are still some potential directions for further im-

provement in practical applications. First, the performance of the pro-

posed model at shorter data lengths, such as 0.2 and 0.4 s, was not 

satisfactory. Since the graph structure was constructed based on the 

physical distance between channels, it might overlook the underly-

ing dynamic interrelationships among channels that evolve over time. 

Therefore, exploring a dynamic graph-based filter could be a promis-

ing approach to address the challenges associated with short data 

lengths. Second, this study primarily focused on intra-subject SSVEP 

classification, which aligns closely with practical BCI applications em-

phasizing user-specific optimization scenario. It is acknowledged that 

cross-subject generalization remains a major challenge due to signif-

icant individual variability in EEG signals. While data augmentation 

increases within-subject data diversity, it does not address the dis-

tribution shift between subjects. In future work, advanced transfer 

learning and domain adaptation approaches could be employed to ex-

tend the proposed network for effective inter-subject generalization, 

thereby further broadening its practical applicability across diverse user 

populations.

5. Conclusion

This study presented a synergistic SSVEP decoding framework, 

designed to jointly address overfitting under limited data, spatial re-

dundancy across EEG channels, and computational inefficiency. The 

architecture integrates a slicing-and-scaling data augmentation strat-

egy, a topology-aware graph spatial filter based on the random walk 

Laplacian, and a lightweight convolutional network for efficient fea-

ture extraction and classification. Experimental results on two public 

datasets and a self-collected dataset validate the effectiveness of the 

framework, demonstrating superior accuracy and ITR compared to 

representative baselines. Moreover, the model demonstrates low com-

putational complexity and fast inference speed in the offline evaluation, 

suggesting its feasibility for scalable and potentially real-time deploy-

ment in practical SSVEP-BCI systems. The architectural design, focusing 

on user-specific decoding, balances model compactness and recogni-

tion performance. Future work will explore transfer learning and do-

main adaptation techniques to extend the framework to cross-subject 

scenarios and further enhance its generalization across diverse user 

populations.

6. Data and code availability

The Benchmark dataset is available at http://bci.med.tsinghua.edu. 

cn/download.html. The Beta dataset is available at https://figshare. 

com/articles/dataset/The_BETA_database/12264401. The self-collected 

dataset can be obtained from the corresponding author upon request. 

The code of the proposed model is available at https://github.com/ 

MRBMELMH.
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