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Abstract screening is a notoriously labour-intensive step in systematic reviews. Al-aided abstract
screening faces several grand challenges, such as the strict requirement of near-total recall of relevant
studies, lack of initial annotation, and extreme data imbalance. Active learning is the predominant
solution for this challenging task, which however is remarkably time-consuming and tedious. To
address these challenges, this paper introduces a weakly supervised learning framework leveraging
large language models (LLM). The proposed approach employs LLMs to score and rank candidate
studies based on their adherence to the inclusion criteria for relevant studies that are specified
in the review protocol. Pseudo-labels are generated by assuming the top 7% and bottom B% as
positive and negative samples, respectively, for training an initial classifier without manual annotation.
Experimental results on 28 systematic reviews from a well-established benchmark demonstrate a
breakthrough in automated abstract screening: Manual annotation can be eliminated to safely reducing
42-43% of screening workload on average and maintaining near-perfect recall — the first approach
that has succeeded in achieving this strict requirement for abstract screening. Additionally, LLM-
based pseudo-labelling significantly improves the efficiency and utility of the active learning regime
for abstract screening.

Responding to this high demand (Kitchenham and Br-
ereton, 2013), much effort and process have been made
in Al-aided automated systematic review tools, with a
significant focus on abstract screening using machine learn-
ing (van Dinter, Tekinerdogan, and Catal, 2021; Dos Santos,
da Silva, Couto, Reis, and Belo, 2023; Ofori-Boateng,
Aceves-Martins, Wiratunga, and Moreno-Garcia, 2024).
However, prominent challenges exist, hindering the widespread
application of such tools. Challenge 1: One grand challenge
is the lack of labeled data. The success of machine learn-
ing, particularly deep learning, hinges on the availability
of high-quality labeled data, but each SR constitutes a
distinct dataset without any initial annotations. Acquiring
such labeled data is resource-intensive, especially when
expert knowledge is required (Garg and Kalai, 2018). Chal-
lenge 2: This situation is further exacerbated by the non-
generalisability of an abstract screener across review topics
due to the fact that each SR constitutes a different dataset
about a particular review topic. Therefore, models trained on
one SR are rarely transferrable to other SRs, making manual
annotation unavoidable for every new review.

Active learning has become the dominant strategy to
mitigate the reliance on large labeled datasets by select-
ing the most informative examples to be labeled manu-
ally (Rhee, Erdenee, Kyun, Ahmed, and Jin, 2017). How-

1. Introduction

A systematic review (SR) is an important productivity
tool for synthesising the existing literature and evidence of a
research topic from all available publications. It is critical for
evidence-based medicine. Doing a rigorous SR is very labor-
intensive and expensive. One estimate was approximately
67.3 weeks for completing an SR, which cost millions of dol-
lars for academic institutions and pharmaceutical companies
every year (Michelson and Reuter, 2019). An SR starts with
searching scientific databases, which may return thousands
or tens of thousands of candidate studies, most of which
are actually irrelevant. Thus it is imperative to screen the
candidate studies to decide which meet the inclusion criteria
and should be included in the review. Often, screening is first
done by checking the abstracts (and titles), called abstract
screening—one of the most tedious and time-consuming SR
steps (Michelson and Reuter, 2019). A cost-effectiveness
analysis estimated that each reviewer spends 83 to 125 hours
to screen 5000 references at a cost of approximately $17,000
(2013 prices) (Shemilt, Khan, Park, and Thomas, 2016).
According to the best-practice guideline, which recommends
at most 3 hours per reviewer per day to maintain screening
performance and quality (Polanin, Pigott, Espelage, and
Grotpeter, 2019), this amounts to 27.5 to 41.7 days just for

abstract screening.
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ever, the success of active learning is determined by the com-
position strategy and quality of the initial training dataset
(Hwang, Choi, and Choi, 2024). Challenge 3: This has been
proved extremely challenging because abstract screening
is an intrinsically extremely imbalanced classification task.
The imbalance ratio between relevant/included and irrele-
vant/excluded studies often can be as high as 1:100. Extreme
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class imbalance is the major obstacle to efficiently building
a high-quality initial training dataset due to the difficulty
in discovering samples of the rare class (almost always
the included studies) with minimal supervision (i.e., active
discovery) (Sziics and Papp, 2022). Additional difficulty also
resides in the optimisation of the initial classifier with lim-
ited labeled data, especially without enough samples of the
rare class. Challenge 4: Adding to all the afore-mentioned
challenges is the non-negotiable requirement for near-total
recall (defined as at least 95% at the minimum) of relevant
studies, while maintaining as high precision as possible.
Missing a few relevant studies will significantly weaken the
reliability of the collected evidence for answering a medical
problem and thus invalidate the systematic review.

To address these challenges, this paper proposes a zero-
initialised active learning framework by introducing a negli-
gible amount of financial overhead. Our work falls within
the paradigm of wunsupervised active learning, where the
absence of sufficient labeled data requires leveraging unsu-
pervised solutions for both selection and prediction (Souza,
Rossi, Batista, and Rezende, 2017). Specifically, large Lan-
guage Models (LLMs) are leveraged to answer predefined
selection criteria questions and rank candidate studies based
on their abstracts’ adherence to the selection criteria. A set of
pseudo-labeled studies is generated by assuming the top 7%
as positive samples and the bottom B% as negative samples.
These pseudo-labels are used to train an initial classifier. The
pseudo-labels make it possible to achieve a more informed
starting point for the active learning cycle and continuously
improve the effectiveness of the active learning cycle, which
results in stronger screening performance and fast conver-
gence.

This study has the following main contributions:

1. We propose a novel method for generating pseudo-
labels by ranking candidate studies using LLMs, re-
ducing the burden of manual labeling for abstract
screening.

2. We demonstrate how these pseudo-labeled datasets
can effectively initialise an active learning cycle, bal-
ancing perspectives of uncertainty and diversity.

3. We introduce a framework for zero-initialised unsu-
pervised active learning that naturally addresses chal-
lenges of class imbalance and active discovery with
little extra effort.

4. We perform extensive experiments on a large number
of systematic reviews and evaluate the effectiveness
of our framework in various aspects, including im-
proving screening performance, addressing class im-
balance and enhancing active learning.

2. Related Work

2.1. Machine Learning for Abstract Screening
There has been nearly two-decade research in using

machine learning to automate or semi-automate systematic

reviews. In the seminal work (Cohen, Hersh, Peterson, and

Yen, 2006), abstarct words, MeSH (Medical Subject Head-
ings) terms and MEDLINE publication tags were used to
build document representation and a voting perceptron was
trained to predict inclusion/exclusion decisions for abstract
screening. Wallace, Trikalinos, Lau, Brodley, and Schmid
(2010) extended documentation representation with “bag-
of-biomedical-words” features based on UMLS (Universal
Medical Language System) terms and trained a support
vector machine (SVM) for classification. In 2021, an analysis
of 41 studies revealed that SVM and Bayesian Network were
the most popular machine learning algorithms and “bag-of-
words” and TF-IDF were the most common feature extrac-
tion methods (van Dinter et al., 2021). A few tools were
developed too, such as Abstrackr (Wallace, Small, Brod-
ley, Lau, and Trikalinos, 2012), EPPI-Reviewer (Thomas,
Brunton, and Graziosi, 2010), and SWIFT-Review (Howard,
Phillips, Miller, Tandon, Mav, Shah, Holmgren, Pelch,
Walker, Rooney et al., 2016). Recently, the deep auto-
encoder architecture was employed to learn a strong docu-
ment representation (Kontonatsios, Spencer, Matthew, and
Korkontzelos, 2020). The most prominent challenge to
machine learning is the need of enough labeled data for
classifier training, which are unavailable at the outset of a
systematic review. This challenge is worsened by the ex-
treme data imbalance. The majority of the literature assumed
a significant amount (e.g., 50%) of documents annotated
with inclusion/exclusion labels (Cohen et al., 2006; Wallace
etal., 2010, 2012; Howard et al., 2016), hindering their real-
world applicability due to this high demand for unavoidable
manual workload.

2.2. Active Learning for Abstract Screening

Active learning is a prominent method for efficiently
training a classifier with minimal labelled data by itera-
tively selecting informative examples from an unlabeled
pool and improving the classifier (Lewis, 1995). Due to
the cold-start nature of abstract screening, i.e., having no
annotated data at the beginning of a review, active learning
has been widely applied to gradually enlarging the train-
ing dataset by suggesting samples to human reviewers to
annotate (Wallace et al., 2010; Miwa, Thomas, O’Mara-
Eves, and Ananiadou, 2014; Cormack and Grossman, 2016;
Howard, Phillips, Tandon, Maharana, Elmore, Mav, Sedykh,
Thayer, Merrick, Walker, Rooney, and Shah, 2020; van de
Schoot, de Bruin, Schram, Zahedi, de Boer, Weijdema,
Kramer, Huijts, Hoogerwerf, Ferdinands, Harkema, Willem-
sen, Ma, Fang, Hindriks, Tummers, and Oberski, 2021). Sev-
eral sampling strategies exist. Wallace et al. (2010) query un-
labeled documents using a uncertainty-based method, which
prioritise instances closest to the classifier’s decision bound-
ary, assuming that solving these hard samples improves
model performance. On the contrary, Miwa et al. (2014)
and (Howard et al., 2020) adopt a certainty-based strategy,
i.e., finding samples farthest from the decision boundary.
While traditional methods measure uncertainty using pos-
terior probability (Luo, Schwing, and Urtasun, 2013), re-
cent advances either directly predict uncertainty or predict
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data loss to approximate uncertainty (Hwang, Choi, and
Choi, 2022). Many of these sampling strategies are also
available in existing Al-aided systematic review tools, such
as Abstrackr (Wallace et al., 2012), RobotAnalyst (Przy-
byta, Brockmeier, Kontonatsios, Le Pogam, McNaught, von
Elm, Nolan, and Ananiadou, 2018), and ASReview (van de
Schoot et al., 2021).

2.3. Constructing the Initial Training Dataset

The construction of the initial training set is a critical but
less-explored issue. Diversity-based approaches first apply a
clustering algorithm and select the instances that are closest
to cluster centres for labelling (Kang, Ryu, and Kwon, 2004;
Zhu, Wang, Yao, and Tsou, 2008). On the contrary, border-
based methods select the samples near the boundaries be-
tween two or more clusters, as they are deemed more confus-
ing to label and thus may provide additional discriminative
power (Yuan, Han, Guan, Lee, and Lee, 2011). Yuan et al.
(2011) proposed a hybrid strategy that combines the center-
based and border-based methods for initial instance selec-
tion, which demonstrated outstanding performance com-
pared the individual strategies in the active learning setting.
Through a comprehensive evaluation, Xie and Yu (2017)
found that the samples near cluster centers often yielded
better accuracy than border-based and hybrid strategies.
These methods may suffer from class imbalance in the initial
training set, as abstract screening data is inherently highly
imbalanced. It is challenging to obtain a representative set of
positive samples and train an effective classifier. Therefore,
some recent approaches created balanced datasets by select-
ing examples uniformly across clusters (Szfics and Papp,
2022). Our method solves these challenges; it identifies more
positive samples through LLLM-based scoring and balances
the initial training set using pseudo-labeling. From another
angle, our method also falls within the paradigm of unsu-
pervised active learning (UAL), where labeled data is either
extremely limited or entirely absent (Souza et al., 2017). In
UAL, selection and prediction are based on unsupervised
methods, leveraging the cluster assumption that similar in-
stances should share the same label (Wang, Chen, and Zhou,
2012). UAL also faces class imbalance, so our method can
be seen as an innovative solution for bootstrapping the zero-
initialised UAL process.

2.4. Leveraging LLMs for Abstract Screening
Large language models (LLMs) offer new opportuni-
ties for systematic reviews (Luo, Chen, Zhu, Wang, Liu,
Lyu, Wang, Wang, and Chen, 2024), but results are some-
what daunting. Guo, Gupta, Deng, Parl, Page, and Nau-
gler (2024) engineered inclusion and exclusion criteria into
prompts for GPT-4 to make binary decisions, but the average
sensitivity was only 76%. In (Oami, Okada, and Nakada,
2024), all five reviews reported performances and the pooled
sensitivity was only 49%. Meanwhile, some light is also
shed on the positive side. Matsui, Utsumi, Aoki, Maruki,
Takeshima, and Takaesu (2024) applied a 3-layer approach
for prompting GPTs to make sequential decisions based
on study design, population, and intervention and control,

which achieved human-comparable performances on two
reviews. This indicates the value of explicitly reasoning
over each selection criterion like what we propose in this
paper (Sect. 3.1.2). Combining various LLMs’ decisions
may also suppress individual models’ bias and improve
recall (Li, Sun, and Tan, 2024; Oami et al., 2024; Sanghera,
Thirunavukarasu, El Khoury, O’Logbon, Chen, Watt, Mah-
mood, Butt, Nishimura, and Soltan, 2025).

A potential way to safely deploy LLMs in the real-
world systematic review practice is to rank, instead of clas-
sify, candidate studies, e.g., on a five-point Likert scale
(Dennstédt, Zink, Putora, Hastings, and Cihoric, 2024; Is-
saily, Ghanaati, Kolahi, Shakiba, Jalali, Zarei, Kazemian,
Avanaki, and Firouznia, 2024). Our approach has some
resemblance to this idea, but we aimed to address the chal-
lenges of zero-initialised active learning. Specifically, we
score and rank candidate studies in a more nuanced way
using LLMs’ answers for each selection criterion, gener-
ate a small amount of pseudo labels from the ranking to
create the initial training data without manual annotation,
and demonstrate that a classifier trained on the weak labels
generated by pseudo-labeling is able to safely rule out a
decent percentage of studies from manual screening without
hurting the sensitivity. Additionally, our approach ensures a
more balanced and representative dataset, addressing issues
of class imbalance and accelerating convergence in active
learning.

3. Methodology

This study builds on a previously developed successful
framework (Akinseloyin, Jiang, and Palade, 2024; Akin-
seloyin, Jiang, and Valade, 2025). The primary goals of our
methodology are to create a fully automated pipeline to build
an initial classifier that is effective at screening workload
reduction with minimal to no human intervention and to
optimise the active learning regime for abstract screening by
leveraging LLMs’ capabilities in answering questions about
selection criteria, ranking candidate studies, and generating
pseudo-labels.

3.1. LLM-Based Screening Prioritisation
3.1.1. Problem Definition

For an SR, suppose the unlabelled document set, i.e.,
the candidate studies (here titles and abstracts) for screening
is denoted by D = {d,d,,...,dy}, where d; is the i-
th document and N can be quite large, from thousands to
tens of thousands. The abstract screening task aims to train
a machine learning model M that assigns a binary label
to each document: M D~ Y, where Y € {0,1},
“0” means exclusion and “1” means inclusion. To start the
active learning cycle for abstract screening, we must obtain
a small set of initial labels as the training set and split the
dataset into two parts: £ = {(d, yy,...,(d;, y;)} is the set
of labeled samples, where y; € {0,1}(Vj € {1,....1}),
and U = {d;,q,...,dy} is the set of unlabeled samples.
It is challenging to obtain a high-quality £ to train a good
classifier to start the active learning cycle.
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3.1.2. Scoring Using Large Language Models

Each SR specifies a number of selection criteria that
every included study must satisfy. Following Akinseloyin
et al. (2024), each criterion is transformed into a question,
again automatically by LLMs, with three possible answers,
“Yes”, “No” or “N/A” (not answerable, unsure or neutral).
Let @ = {q,...,qx} denote the set of inclusion crite-
ria questions. Based on the questions, an LLM is used to
score each study. For each document d;, an LLM is first
used to produce the answers for all the questions: A; =
{ay;»...,ak;}, where a; ; is the answer for the k-th question
g on the i-th document d;. A “Yes” answer starts with
the answer word “Positive” followed by an LL.M-generated
reason for the answer, while the “No” and “N/A” answers
start with “Negative” and “Neutral” respectively. Then, a
score is assigned to measure the adherence of document
d; to the k-th criterion, denoted by s(d;, q;), based on its
answer a;; and the reasoning text for question g. See
Appendix A.1 for details of the prompt and an example. In
this paper, this initial score is the probability that an answer
text has a positive sentiment by a BART-based sentiment
analyser (Muthukumar, 2021).

Using LLM-generated answers alone does not produce
the optimal results (Akinseloyin et al., 2024; Guo et al.,
2024; Oami et al., 2024) (Also see A.2 for result compar-
isons), so the following hypothesis was engineered to re-rank
LLM-based results: Given an included study, there must be
a certain part of it that matches the corresponding inclusion
criterion, so it is natural to assume a high semantic relevance
between the study and the criterion question. Therefore the
initial answer score is adjusted by averaging it with the
semantic relevance between the study and the corresponding
question:

s(d;,q;) = (1 —a)-5(d;, q,) + acotr(d;, q), (1)

where r(d;, q;)) is the semantic relevance between the i-th
document and k-th criterion question and @ € (0, 1) is the
controlling parameter. In this paper, r(d;, q;)) is approxi-
mated by the cosine similarity between the text embeddings
of document d; and criterion question g,. The initial score
of each document is defined as the average of its scores with
respect to all questions:

K

5. = = Y 5(dap). @

k=1

Because an included study is expected to meet all selection
criteria, we assume a high semantic relevance between it
and the paragraph of inclusion criteria in the SR protocol,
denoted by Q. So, the document score is can be further
adjusted using this document-level semantic relevance as
follows:

5@, Q) =1-p)-5d;, Q)+ p-rd;,Q), 3

where r(d;, Q) is the cosine similarity between the text em-
beddings of the document and selection criteria paragraph
and g € (0, 1) is another controlling parameter.

3.1.3. Ensemble of Large Language Models

Following Akinseloyin et al. (2025), an ensemble of
LLMs, denoted as G = {g;,....8)} with each g; ( €
{1,2,..., M}) being an LLM, was employed to reduce the
potential bias of the individual LLMs (Also see Appendix
A.2 for further analysis). For each SR with the selection
criteria questions (i.e., selection criteria paragraph) Q and
each candidate study d;, the ensemble averages the scores
assigned by each individual LLM g according to the selec-
tion criteria, denoted as s g(d i» Q), according to the following
equation. This method has been proved extremely effective
for candidate study prioritisation (Akinseloyin et al., 2025)
while maintaining minimal additional costs (Also see Sect.
5.6).

5 Q) = 2 N 5,(d), Q). “

Vgeg

3.2. Weakly Supervised Active Learning
3.2.1. Handle Data Imbalance by Pseudo-Labeling
Systematic reviews often exhibit a high degree of class
imbalance, where the relevant documents (y = 1) are signif-
icantly outnumbered by the irrelevant ones (y = 0). Existing
methods struggle to initialise a classifier effectively under
such high imbalance. In this paper, we propose to generate
and use pseudo-labels according to LLM-based document
scores obtained using the method described in prior sections.
Suppose we sort the documents in descending order of
their scores, forming a ranked list

R = {d(l)’d(Z)’ ’d(N)}’

where d;) represents the top i-th document according to
LLM-assigned scores such that Vi <= j, we have s(d(,-), Q) >=
s(d(;), Q). The ranking procedure prioritises the documents
that are most likely relevant, which significantly increases
the chance of identifying positive samples from the top of the
ranked list R. We propose to choose the top T'% of the ranked
documents as (pseudo-labelled) positive samples, denoted as
P, and correspondingly the bottom B% as (pseudo-labelled)
negative samples, denoted as N'. More formally, they are
created as follows:

5

Using the pseudo-labels, we are able to initialise the
training set as follows in order to train an initial classifier
and initialise the active learning cycle:

L={d,y)|dePUN,y=1ifdeP,y=0ifd € N}.
(6)
Because the initial training set is built using pseudo-

labels, the complete dataset D is not annotated with human-
assigned labels.
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Algorithm 1 Active Learning Framework for Abstract Screening Based on Pseudo-Labeling

Input: Document set D, an ensemble of one or several LLMs G.

Output: Trained classifier f,.
: Score documents using LL.Ms according to Eq. (3-4).

1
2: /*The following two steps differ from normal active learning.*/

3: Build the initial pseudo-labeled training set £ according to Eq. (6).

4: Initialise: Set i < O; initialise the set of labeled samples and the set of unlabeled samples before active learning starts:

LO 2, U0 D
: repeat

Train: Train (i = 0) or re-train a classifier f (Si) using £O.

Query: Select a batch of unlabeled samples B C V") according to Eq. (8).
:  Annotate: For each sample d € B assign its true label y*.
10:  /*The following step differs from normal active learning.*/
11:  Update: L0+D « £D\ {(d,y)|Vd € B} U {(d,y*)|Vd € B}, U*D « D\ B.
12: until a stopping condition is met, e.g., achieving an estimated 95% recall threshold (Howard et al., 2020).

5
6
7. Predict: Use classifier f éi) to predict the samples in U,
8
9

3.2.2. Initialising and Running Active Learning Cycle

After obtaining the pseudo-labeled training set, an initial
probabilistic classifier f, is trained on £. Then batch-based
active learning starts: use the classifier to select a batch
of the most informative unlabeled samples, send them for
human annotation, rebuild the training set with human-
assigned labels, and repeat the process iteratively until a
predefined stopping condition is met. The informativeness
of an unlabeled document d is measured using uncertainty
sampling according to the following equation (Lewis, 1995):

u(d) = 1 —max(fy(d), 1 = fo(d)), @)

where fy(d) returns the posterior probability for document
d. A batch B of k most uncertain samples is chosen as
follows:

B = argmax gy i D, U(d). ®)
den’

Algorithm 1 summarises how our framework initialises
and runs the active learning cycle, called weakly supervised
active learning, for abstract screening leveraging pseudo-
labelling. The overall process is similar to traditional active
learning with three notable differences. Firstly, Algorithm
1 uses LLM-assigned pseudo-labels to initialise a training
set to start the active learning cycle (Step 3). Secondly,
during the active learning cycle, the initial pseudo-labelled
training set will be improved by new samples, so £© is
initialised by C (Step 4), which will be iteratively updated.
Thirdly, after the active learning cycle is started, the newly
sampled documents are labeled and used to improve the
training set for re-training: (i) if a sample is not in the pseudo-
labelled training set, then simply add it to the training set;
(ii) otherwise, replace the label of the original sample with
the label assigned by human annotator (Step 11). Note that in
Step 11, each selected sample (d, y) will only be visited once
as it will be removed from the unlabeled set. A noteworthy
feature of our weakly supervised active learning framework

is that it prevents class imbalance from regaining dominance
because the initial set of pseudo-labeled samples (i.e. L) are
always part of the training data. In addition, out framework
allows active learning to pick more positive samples during
the whole active learning cycle and converge much faster
than traditional methods, which is a second factor to alleviate
class imbalance.

4. Experimental Setup
4.1. LLM Setup

For LLM-based scoring and ranking, we used three
cheap LLMs by some of the most famous companies in the
LLM industry: GPT-40 mini by OpenAl (more precisely,
gpt-40-mini-2024-07-18), Gemini 1.5 Flash by Google Al
(more precisely, gemini-1.5-flash-001), and Claude 3 Haiku
by Anthropic (more precisely, claude-3-haiku-20240307).
The APIs of all three LLMs allow setting the temperature
to O to ensure replicability, so a temperature of zero was
employed throughout our experiments to maintain the sta-
bility of the generated responses. For other LLM options,
the default values were used. The text embedding model for
generating the representation vectors for candidate studies
was OpenAl’s text-embedding-3-large. In our experiments,
both @ and g are set to 0.5 for calcualting the re-ranked
document scores.

4.2. Datasets

We use 28 datasets from the CLEF eHealth 2019 Task 2,
a well-established benchmark for technology-assisted re-
view in empirical medicine (Kanoulas, Li, Azzopardi, and
Spijker, 2019). 20 SRs about clinical intervention trials
(Intervention) and 8 SRs about diagnostic test accuracy
(DTA) are used for evaluation, with each SR constituting a
distinct dataset. Each SR contains a pool of candidate studies
(titles and abstracts) and the ground-truth include/exclude
labels. Dataset statistics can be found in (Kanoulas et al.,
2019).
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4.3. Evaluation Metrics

Traditional Metrics for Abstract Screening The ab-
stract screening task entails labeling a/l documents in a finite
pool so that no potentially relevant study is missed. Conse-
quently, the most critical requirement for abstract screening
is maintaining (near) total recall (or near perfect sensitivity):
failing to retain relevant studies will severely undermine
the validity of an entire review (Kanoulas et al., 2019).
Precision and accuracy are only useful when (near) total
recall (of positive samples, i.e., included studies) is achieved.
In the field of automated systematic review, the dominant
performance metric for abstract screening is Work Saved
over Sampling (Cohen et al., 2006), which is defined below.

e Work Saved over Sampling at Recall Level R%
(WSS@ R%):

TN+ FN

WSS@R% =1 — — (1.0 - R%),

where TN and F N are the true and false negatives,
respectively, at recall level R%, and N is the total
number of studies. In practice, WSS@95% is often
used, which quantifies the percentage of the dataset
that can be skipped from manual screening once 95%
of the relevant studies are found.

Finite-Pool Active Learning Metrics Following Miwa
et al. (2014), we also incorporate the following metrics tai-
lored to finite-pool active learning (Wallace, Small, Brodley,
and Trikalinos, 2010):

e Yield captures the fraction of relevant documents
ultimately identified (at the end of an iteration of the
active learning cycle). Formally:

TP, + TPy,

ield = 5
Y (TP, + EN,) + TP,

where TP; and TPy are the true positives among
the labeled and unlabeled sets, respectively, and FNy,
denotes false negatives in the unlabeled pool.

e Utility;, a weighted combination of yield burden:

p - yield + (1 — burden)
p+1

where burden(|L|/(|£| + |U’|) and it measures the
proportion of studies that the reviewer must manually
inspect, and the parameter f reflects how critical re-
call is compared to minimising workload. A a lower
burden indicates less human effort and a larger f
means prioritising recall (sensitivity) over workload
reduction.

utility; =

, ©))

4.4. Baselines and Proposed Approach

Most sampling strategies are applied to selecting sam-
ples after the active learning cycle has been started, but the
focus of the current paper is on improving the quality of
the initial training data. Regarding initialising a classifier
without pre-labeled data, only a few methods exist, which
are compared to as baselines. They include:

e Centroid (Kang et al., 2004): The Centroid method
selects the samples near cluster centroids (by k-means,
k = 2) to initialise the classifier.

e Border (Yuanetal.,2011): The Border method chooses
the samples around cluster boundaries.

e Hybrid (Yuan et al., 2011): The Hybrid method uses
Centroid and Border to each select half of the samples.

e The Random method randomly initialises a training set.

There are two variants of our approach. The details of
used LLMs are described in Appendix ??.

e LLM-Based Pseudo-Labeling (LLM-Pseudo): Candi-
date studies are scored according to Eq. (4). The top
T% are pseudo-labeled as positive samples and the
bottom B% as negative according to Eq. (5), circum-
venting any need for manual annotations at the outset.

e LLM-Ranking & Expert Annotation (LLM-True):
This is a variant of our approach by using the gold-
standard labels of the top T'% and bottom B% docu-
ments based on LLM ranking.

4.5. The Active Learning Protocol

To train the initial classifier, each baseline method and
our own approaches use 5% of the whole dataset to form
the initial training set (i.e., T = B = 2.5). In the LLM-
Pseudo method, the top and bottom 2.5% are assigned the
positive (included) and negative (excluded) pseudo-labels,
while in the LLM-True method the ground-truth labels are
used, which indicates that this 5% need to be annotated by
human experts. In the Centroid, Border and Hybrid methods,
2.5% of the documents from each of the two clusters are used
and annotated by human reviewers.

Active learning then proceeds according to Algorithm 1
described in Sect. 3.2.2, where new documents are queried
based on certainty-based sampling. Throughout the cy-
cle, we track both traditional metrics (recall, accuracy,
WSS@95%) and finite-pool metrics (yield, utility,). Note
that, our approach is not only used for constructing the
initial training set (Step 4 in Algorithm 1) and initialising
the classifier, but also used to improve the training set by
adding more labelled samples and positive samples, and
by correcting the initial training set’s labels (Step 11 in
Algorithm 1).

Note that the current paper focuses on the improving the
active learning cycle from angle of better-quality training
data, so we follow the common choices in prior research in
abstract screening based on active learning (Wallace et al.,
2010; Miwa et al., 2014; van Dinter, Catal, and Tekinerdo-
gan, 2021). To be precise, a linear support vector machine
(SVM) and certainty-based sampling are used during the
active learning cycle. According to Ofori-Boateng, Trujillo-
Escobar, Aceves-Martins, Wiratunga, and Moreno-Garcia
(2024), document embedding is the most effective feature
engineering approach, so GPT embeddings (Sect. 4.1) are
used in our experiments. Although our framework signifi-
cantly alleviates class imbalance, we still apply weights on
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Method Pos-Neg Ratio Recall Accuracy WSS@95% Method Intervention DTA
Border 0.003£0.005  0.001 £0.001  0.092+0.119  0.009 +£0.015 LLM-Pseudo Theoretical WSS@95%  0.664 + 0.108  0.675 + 0.097
Centroid 0.191 £ 0.123 0.549 +£0.176  0.766 +0.128  0.470 +0.152 LLM-Pseudo Actual WSS 0417 +0.098 0432 +0.157
Hybrid 0.073+0.044  0375+0.173 0.634+0.181 0.358 +0.162 Cali-LLM-Ens Actual WSS 028 035
Random 0.066+0.038 0243 +0.088 0.648+0.109 0.259 +0.109 - -
LLM-True 0316 £0.118  0.298+0.175 0.879x0072 0355£0.142  Table 3
LLM-Pseudo  1.000 +0.000  0.998 +0.002 0.474+0.074 0.664 +0.097 . .
Comparison of Theoretical WSS and Actual WSS.
Table 1
Initial classifier's performance on Intervention.
by six methods. Since systematic reviews strive to avoid

Method Pos-Neg Ratio Recall Accuracy WSS@95%  missing relevant studies, methods like Border and Random
Border 0.001 +0.002  0.000+0.000 0.117+0.202 0.056 = 0.098 . diatel itable due to their 1 1 level
Centroid 0.166+0.127 05850242 08712009 0.534x0232 Aar¢ immediately unsuitable due to their low recall levels.
Hybrid 0.170+0.133  0.635+0.244 0.692+0.210 0522+0217 Centroid and Hybrid provide moderate improvements but
Random 0.114£0.138 = 0.297£0.151  0.722£0.161 = 0.407+0.174 i1 faj] to meet the requirement of above 95% recall. Al-
LLM-True 0.197+0.105  0.144+0209 0.880+0.110 0.437 +0.209 . .
LLM-Pseudo  1.000+0.000  0.994+0.006 0.515+0.054 0675+0.157 though the LLM-True offers relatively high accuracy (e.g.,

Table 2 0.879 in Intervention), its recall remains insufficient. By
able

Initial classifier's performance on DTA.

the positive and negative classes when training or re-training
the SVM, based on this equation: w; = N/(K X Nj),
where w § is the weight for the j-th class, K = 2 is the
total number of classes, N is total number of samples in the
training set, and N/ is the size of the j-th class. Although a
large volume of literature exists for improving other aspects
of active learning, they are not the foci of the current study
and are not explored as the investigation of these factors will

constitute a separate study.

5. Results and Discussion

5.1. Mitigating Class Imbalance

Table 1 and 2 present the average ratio of positive to neg-
ative studies (the “Pos-Neg Ratio” columns) by six initial-
isation methods across two review types (Intervention and
DTA). The Border and Random methods identify extremely
small fractions of positive studies (e.g., on average 0.003 and
0.066, respectively, for Intervention), underscoring how con-
ventional approaches are susceptible to exacerbating class
imbalance. Centroid and Hybrid perform slightly better but
still struggle to ensure a sufficient number of relevant studies
in the initial sample set. LLM-True leverages the actual labels
assigned by human reviewers, so it achieves higher ratios
(0.316 and 0.197); however notable imbalance still exists.

In contrast, our LLM-Pseudo method sets the positive-to-
negative ratio to 1.0 by design, implicitly mitigating class
imbalance. Balanced sampling plays a crucial role in im-
proving active learning for systematic reviews, which aims
to achieve total recall of relevant studies. By guarantee-
ing a sufficient number of positive examples early on, our
approach allows the model to converge more rapidly and
accurately, thus reducing the overall screening workload.
Furthermore, because it derives pseudo-labels from LLM-
based relevance ranking, no human annotation is needed at
the outset, thereby further minimising manual effort.

5.2. The Screening Power of the Initial Classifier
Tables 1 (Intervention) and 2 (DTA) summarise the
recall, accuracy, and WSS @95% of the classifiers initialised

contrast, LLM-Pseudo achieves near-perfect recall: on avergae
0.998 for Intervention and 0.994 for DTA. More importantly,
LLM-Pseudo meets this critical threshold on all 28 reviews, in-
dicating the universal applicability and trustworthy deploy-
ment of our approach to the real-world systematic review
practice. LLM-Pseudo also achieves the highest WSS @95%,
indicating a substantial amount of potential workload reduc-
tion. Note that all other methods require human reviewers
to manually label at least 5% of the candidate studies at the
outset. This amount of unavoidable workload causes a small
further reduction to the reported WSS @95% values of these
methods in the tables.

Our LLM-Pseudo method can be deemed a breakthrough
in semi-automated abstract screening. It achieves average
accuracies of 47.4% and 51.5% on Intervention and DTA,
respectively. Although its accuracy is lower than other base-
lines, LLM-Pseudo is the only method that has the potential
to be accepted by human reviewers due to the strict re-
quirement of near-total recall. From the near-total recall and
low positive-to-negative ratio, we can conclude that errors
primarily manifest as false positives (i.e., including irrele-
vant studies). This characteristic enables the safe elimination
of a substantial portion of candidate studies from manual
screening based solely on the initial classifier’s verdicts,
achieving an average reduction of 41%-43% on all 28 reviews
(refer to Sect. 5.3 for more in-depth discussions). These
results highlight the benefits of our LLM-based pseudo-
labeling approach, which completely eliminates the need
for upfront manual annotation and implicitly mitigates the
extreme class imbalance.

5.3. Theoretical v.s. Actual Workload Savings
Most prior studies, if not all, report the Theoretical
WSS @95%, which represents an oracle-like scenario, where
the WSS@95% is computed by adjusting the threshold for
the classifier’s posterior probabilities and stopping exactly
at the point where 95% of positive studies are retrieved.
However, in practical screening scenarios, one cannot know
a priori when precisely 95% recall has been achieved without
having full knowledge of the dataset. Therefore, theoretical
WSS inflates the actual workload saving. Our approach em-
pirically guarantees 95% recall on all SRs, which allows us to
calculate the Actual WSS by replacing R in the WSS equation
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with the actual recall obtained by the initial classifier. WSS
inflation is also caused by the fact that prior studies require a
fixed fraction of the dataset to be manually annotated. In this
case, WSS@95% is only calculated on the remaining unan-
notated portion. In contrast, our methodology eliminates the
need for any initial annotation, thereby saving screening load
across the entire dataset.

Table 3 compares Theoretical WSS@95% and Actual
WSS on both review categories. Here we also compare with
arecent “zero-shot” method which makes probabilistic deci-
sions by instructing LLMs (Wang, Scells, Zhuang, Potthast,
Koopman, and Zuccon, 2024), although it is not entirely
zero-shot because the probability threshold is calibrated on
a separate large set of reviews as training data. The best
results of their ensemble method that meets the minimal
requirement for recall are retrieved and compared, named
Cali-LLM-Ens in Table 3. For LLM-Pseudo, the average Ac-
tual WSS values are 0.417 for Intervention and 0.432 for
DTA. They are understandably lower than the Theoreti-
cal WSS@95% values (0.664 and 0.675, respectively), but
significantly higher than cali-LLM-Ens. These results are
meaningful in two aspects. On the one hand, on average
41%-43% of screening load can be safely saved on both
review categories without any human annotation, which can
be considered as a breakthrough.

5.4. Impact of Pseudo-Labeling on Active
Learning

This section demonstrates how pseudo-labeling benefits
active learning through several simulation studies, focusing
on one systematic review (review ID: CD011768; category:
Intervention; Size: 8963; Number of included studies: 53).
The widely-adopted protocol for simulation studies in prior
research (Wallace et al., 2010; Miwa et al., 2014; Cormack
and Grossman, 2016; Howard et al., 2020; van de Schoot
et al., 2021) was obeyed. Before active learning is started,
all six methods (Sect. 4.4) are used for creating the initial
training set and training the initial classifier. Then, certainty-
based sampling was applied to select the instance the model
is most confident is positive, i.e., |/3| = 1. This approach is
particularly effective in abstract screening when prioritising
high-confidence positives increases the representation of
relevant studies in the labeled set, which in turn helps the
classifier learn more discriminative features for identifying
relevant literature (Miwa et al., 2014; van de Schoot et al.,
2021) in future iterations.

Figure 1 illustrates how positive samples (relevant stud-
ies) are accumulated throughout the active learning cycle.
The Border method (green line) struggles to find any pos-
itives early on, while Random (blue) and Centroid (orange)
increase recall at a slower pace. By contrast, LLM-Pseudo
(brown) rapidly detects relevant studies and achieves the
95% recall threshold (pink dashed horizontal line) much
faster than all other methods. This swift ascent is critical
in systematic reviews, where missing even a few essential
citations can compromise the overall findings. This LLM-
driven strategy consistently targets the most informative

Recall Curve during Active Learning for Review CD011768
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Figure 1: Pseudo-labeling makes active learning converge
faster to reach the required recall level: A case study.
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Figure 2: Pseudo-labeling improves the utility of active learning
in abstract screening: A case study.

samples, minimising the effort required to reach a near-
complete recall of relevant studies.

Figure 2 shows each approach’s utility under a high
penalty for missing positives (f = 19). The Border method
(green line) remains near zero, indicating it fails to quickly
locate enough relevant documents. Random, Centroid, Hybrid,
and LLM-True (blue, orange, grey, and purple, respectively) all
rise sharply but occasionally fluctuate, reflecting dips when
less-informative samples are chosen. By contrast, LLM-Pseudo
(brown) rapidly attains near-perfect utility and sustains that
level, demonstrating an ability to identify critical docu-
ments early while minimising reviewer workload. Over-
all, these trends highlight how LLM-based pseudo-labeling
effectively balances sensitivity and annotation effort. This
efficiency is further quantified by examining how fast each
method first achieves the target recall threshold of 95%.
As annotated in Figure 1, LLM-Pseudo reaches this thresh-
old by the 366-th iteration, substantially earlier than the
Centroid (549-th) and Hybrid (564-th) methods, resulting
in an improvement of over 1/3 on the efficiency of active
learning. Reaching high recall earlier reduces the number
of samples that need to be manually labeled, thus lowering
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Recall Curve during Active Learning for Review CD012342
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Figure 3: Pseudo-labeling makes active learning converge
faster to reach the required recall level: A second case study.

Utility Curve during Active Learning for Review CD012342
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Figure 4: Pseudo-labeling improves the utility of active learning
in abstract screening: A second case study.

the burden component of the utility metric (Eq. 9). As a
result, LLM-Pseudo maintains higher utility values throughout
the active learning process as shown in Figure 2, though
subject to a negligible decline due to more samples being
annotated. This better trade-off between recall and human
effort reinforces its practical benefit in resource-constrained
review settings where both sensitivity and efficiency are
paramount.

An additional case study on the Intervention review
CDO012342 is given in Figure 3 and 4. Centroid and Hybrid
significantly improve the efficiency of active learning com-
pared to Random. They reach the 95% recall threshold at
the 243-th and 244-th iterations respectively, LLM-Pseudo
allows active learning to converge much earlier, at the 80-th
iteration, resulting in a signfiicant speedup of about 2/3 on
this particular review.

5.5. Why is Pseudo-Labeling Effective?

An interesting question is why pseudo-labeling is so
effective. To answer this question, we evaluate the effect
of varying the top n% threshold (in our experiments n =
T + B and T = B) on the pseudo-labeled training set. In
Figure 5, by varying n% from 5% to 50% (i.e., T% from

Similarity and Accuracy vs Percentage (Large SRs)

rall Positive Avg Similarity
Similarity of Top Percent
—e— Accuracy

Similarity

10 20 30 40 50
Percentage

Figure 5: Impact of the pseudo-labeled size (n%) on the quality
of the initial training set, explaining why pseudo-labeling works.

2.5% to 25%), we compare the average cosine similarity
among the true positive samples (the red dotted line) to
the average similarity between the pseudo-labeled positive
and the true positive samples (the blue bars) as well as the
corresponding initial classifier’s accuracy (the green line),
both averaged across all 28 reviews. For small values of n%
(e.g., 5-10%), the pseudo-labeled positive samples exhibit
a similarity close to or exceeding the average similarity of
true positives, suggesting that the pseudo-labeling approach
is effective at capturing highly semantically similar, thus
potentially relevant documents to the review topic. As n%
increases, the similarity between the pseudo-labeled positive
and true positive samples decreases, reflecting a dilution
effect where more and more irrelevant samples are included
in the top T% and pseudo-labeled as positive. However,
accuracy improves steadily as the classifier incorporates
more data, reaching a plateau beyond 30%.

This analysis highlights the trade-off inherent in pseudo-
labeling: A smaller n% ensures higher precision by focusing
on the most relevant studies, but risks omitting potentially
useful data. Conversely, a larger n% allows for broader
coverage of relevant documents at the cost of introducing a
higher proportion of less relevant documents. Determining
the optimal n% is critical for balancing precision and recall,
ensuring the effectiveness of pseudo-labeling in reducing
manual workload without compromising classification per-
formance.

5.6. Cost Effectiveness Analysis

Table 4 shows the calculation of the costs of the in-
dividual LLMs and the ensemble, where “Price” is set by
LLM providers for every million tokens (MTks), the “Size”
columns show the total sizes of the inputs to LLMs and the
outputs geenrated by LLMs for all the abstracts of the 28
SRs, the “Cost” columns show the total costs spent on each
LLM. Correspondingly, the “Avg. Size” and “Avg. Cost”
columns show the average size (number of tokens) and costs
for the LLM inputs and outputs per abstract. The total cost
for LLM APIs used in our methodology is only $66.21 for
66677 abstracts in total. Abstract wise the cost is negligible.

Table 3 shows that our LLM-Pseudo approach can safely
reduce on average 41.7% and 43.2%, respectively, of the
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Models LLM Inputs LLM OQutputs Sum
Price | Size | Cost | Price | Size | Cost [ Total Cost [ Avg. Cost
Gemini 1.5 Flash $0.075 28.32 MTks  $2.12 $0.3 18.50 MTks  $5.55 $7.67 $1.93E-04
GPT-40 Mini $0.15 28.32 MTks $4.25 $0.6 20.93 MTks $12.56 $16.81 $4.22E-04
Claude 3 Haiku $0.25 28.32 MTks  $7.08 $1.25 27.72 MTks $34.65 $41.73 $1.05E-03
Averaging (Ensemble) - - $13.45 - - $52.76 $66.21 $ 1.66E-03

Table 4
Cost effectiveness analysis of LLM-based pseudo labelling.

screening load on Intervention (in total 39847 abstracts) and
DTA (26830), eliminating the need for any human interven-
tion. They amount to 39847 X 41.7% =~ 16993 studies about
Intervention and 26830x43.2% ~ 11591 studies about DTA,
in total about (16993 + 11591 =)28584 candidate studies
saved from manual screening.

The Cochrane Handbook for Systematic Reviews of In-
terventions suggests an “‘estimated reading rate of one or two
abstracts per minute” (Lefebvre, Glanville, Briscoe, Feather-
stone, Littlewood, Metzendorf, Noel-Storr, Paynter, Rader,
Thomas, and Wieland, 2024), which we believe is applica-
ble to systematic reviewers of very high domain expertise.
According to this reading rate, the minimal savings made by
our approach will be to (28584 + 2 + 60 =)238.2 hours to
476.4 hours, which are approximately 31.76 to 63.52 days
per reviewer (calculated based on the UK standard of 7.5
working hours per day). Suppose the best practice guideline
for large-scale abstract screening (Polanin et al., 2019) is
followed, which suggests at most 2-3 hours per reviewer
per day, the savings will be about (238.2 + 3 =)79.4 days
to (476.4 + 2 =)238.2 days per reviewer. This is indeed a
significant amount of savings at a very low cost! Note that,
the Actual WSS reported in Table 3 establishes the lower
bound, so we envision much better automated screening
performance in future work that is built upon the current
study.

It will be harder to estimate the financial savings brought
by the LLM-based pseudo-labeling approach. However, a
conservative estimation can be made by supposing a post-
graduate research assistant does abstract screening and as-
suming a low-end annual salary at about £22,000 (according
to the statistics on Grassdoor, roughly $29526 according to
the exchange rate on 22 May 2025), a total number of 200
working days and 7.5 work hours per day according to the
normal UK standard, without considering the overhead for
national insurance and pension, etc. The hourly salary for
a postdoc-level reviewer is about $29526 + (7.5 x 200) =~
$19.68 per hour. So, the estimated amount of financial
savings per reviewer can be from (238.2x19.68) ~ $4687.78
to (476.4 x 19.68) =~ $9375.55, at the cost of paying less
than $66.21 for API calls, approximately 1/140 of the manual
labelling cost. If the reviewer is a postdoctoral researcher
with a base annual salary of £37000 (roughly $49603), the
financial savings will be increased to as high as $15754.55
per reviewer.

6. Conclusion

This paper introduces a zero-initialised active learning
framework that leverages LLM-based pseudo-labeling to
overcome the lack of initial labeled data in systematic re-
views. By automatically ranking and designating the top
T % as positive and the bottom B% as negative samples, the
method ensures a balanced, high-quality initial training set
without manual intervention. Experiments on 28 systematic
reviews of a well-established benchmark for technology-
assisted review demonstrate near-perfect recall of relevant
studies and significantly higher workload reduction com-
pared to conventional methods. Particularly, pseudo-labeling
enables training a classifier that can safely reduce manual
screening workload by more than 40% without the need for
any human labeling at minimal LLM API costs. It is cur-
rently the only approach proven to achieve the minimum 95%
recall threshold required for automated abstract screening
across a large number of systematic reviews. Moreover, the
results highlight the value of combining LLM-based pseudo-
labeling with active learning to accelerate abstract screen-
ing, leading to faster convergence and improved utility. In
future work, further validation studies will be conducted
and additional strategies will be explored to enhance LLMs’
question-answering capabilities and to optimise the scoring,
ranking and pseudo-labeling methods.

A. Appendices
A.l. LLM Prompt and Example

Figure 6 shows the prompt we used for experiments. To
elicit the reasoning capability of LLMs, we also prompted
an LLM to describe how he derived the answer, which fills
the “Reasoning path” section of the structured output in
a predefined format shown in the figure, as well as how
confident the LLM was about his answer, which is a float
number between 0 and 1 filled in the “Confident level”
section of the structured output. The “Extra information”
section returned by an LLM typically included elements
such as abbreviations or contextual nuances that the model
might not fully understand. This helped in identifying areas
where the model’s predictions could be further clarified or
corrected, particularly when errors occured.

Figure 7 shows an example, including the title and ab-
stract of the abstract of a candidate study, and an inclusion
criterion (converted to a question), and Figure 8 shows the
corresponding output generated by an LLM using the prompt
presented in Figure 6.
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You are a researcher screening titles and abstracts of scientific
papers for the systematic review '{review_title}'.

Analyse the abstract below within the brackets and answer the
question below. Taking a step-by-step approach towards
reasoning and answering the question.

Question: {question}

Keep your answers as short as possible. The answer should be
in either a positive, neutral, or negative sentiment format The
answer must contain your answer, how you got to your answer
(reasoning path), confidence of your answer from 0 to 100 and
finally what extra information would make you more confident in
your answer. Format of the answer should be like the example
below in text(string) not JSON or Code:

(‘Answer': ,

'Reasoning path’: ,
'Confidence level': ,
'Extra Information'":

)

Figure 6: Prompt for answering inclusion criteria questions.

Model MAP | R@50% | WSSQ@95%

GPT-40_mini 0.4461 96.97% 0.6558

Gemini 1.5 flash | 0.4665 | 97.78% 0.6740

Claude Haiku 0.4144 | 97.03% 0.6321

Ensemble 0.4703 | 97.87% 0.6961
Table 5

Performance comparisons of LLMs and the ensemble.

A.2. Additional Results

Table 5 compares the performances of the LLM ensem-
ble (for scoring and ranking candidate studies) against the
three individual LLMs as baselines across three key metrics:
Mean Average Precision (MAP), Recall at 50% screening
(R@50%), and WSS@95. The ensemble method consis-
tently outperformed the individual baseline models across
all metrics, achieving the highest MAP (0.470), R@50%
(97.87%), and theoretical WSS @95 (69.61%). These results
underscore the value of model ensembling in enhancing
systematic review screening performance by capturing the
complementary strengths of individual models.
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