
Accelerating Fault-Tolerant Real-Time
Classification with IDK Classifiers

Sanjoy Baruah[0000−0002−4541−3445] and Alan Burns[0000−0001−5621−8816]

1 Washington University in St. Louis, USA (baruah@wustl.edu)
2 The University of York, UK (burns@york.ac.uk)

Abstract. We consider the problem of rapid, fault-tolerant classifica-
tion using IDK classifiers—components that return a class label or “I
Don’t Know” if confidence is insufficient. Multiple such classifiers may
be available, each with different speed-accuracy trade-offs. Prior work has
developed scheduling algorithms to minimize expected classification du-
ration under classifier faults. We present improved schemes that achieve
lower expected classification durations while maintaining fault tolerance.

Keywords: Classification · Hard-real-time· Fault Tolerance

1 Introduction

Classifiers are essential software components for categorizing inputs into prede-
fined classes. In autonomous Cyber-Physical Systems (CPS), perception increas-
ingly relies on Deep Learning-based classifiers [?], which must deliver accurate,
real-time predictions on resource-constrained platforms. However, modern ML
research often favors accuracy over runtime efficiency, leading to high-latency
models with marginal accuracy gains—e.g., a tenfold increase in runtime yields
only slight improvements on ImageNet [?,?].

IDK Classifiers. IDK classifiers improve runtime efficiency by using fast classi-
fiers for easy inputs and deferring harder cases to slower, more accurate models.
Multiple IDK classifiers with varying speed-accuracy trade-offs can be organized
into an IDK cascade [?], where classifiers are applied sequentially until a real
class is returned. A final deterministic classifier ensures classification completion.
Recent work [?,?,?,?] provides algorithms to synthesize such cascades, optimiz-
ing expected classification time under optional deadline constraints.

Faulty Classifiers. Recent work [?] extends prior cascade synthesis algorithms
by incorporating fault tolerance, enabling timely and accurate classification de-
spite faulty IDK classifiers. Specifically, [?] presents an algorithm that minimizes
expected classification time under fault-free conditions, while ensuring correct
classification by a deadline under a defined fault model (see Section ??).

Cascades Reconsidered. While the cascade approach proposed by Wang et
al. [?] is elegant and effective for minimizing expected execution time in fault-free
settings, we argue that it is overly restrictive when fault tolerance is required.

2 S. Baruah and A. Burns

Predetermining a fixed classifier sequence limits flexibility; instead, better per-
formance can be achieved by dynamically selecting the next classifier at runtime
based on prior successes and failures, guided by precomputed decision logic.

This Research. Prior work on fault-tolerant classification using IDK classifiers
has focused exclusively on cascades [?], as reflected in the very title of that pa-
per. In this work, we explore a dynamic, non-cascade-based alternative aimed at
minimizing expected classification duration under fault conditions. We demon-
strate that our approach can outperform the cascade-based state-of-the-art [?],
offering significant improvements. Our key contributions are:
– A non-cascade-based strategy for fault-tolerant use of IDK classifiers, shown

via example to reduce expected classification time.
– Algorithms for both offline preprocessing and online decision-making, along

with analysis.
– Evaluation of our method’s scalability and its performance gains over prior

work [?].

Organization. The remainder of the paper is organized as follows. Section ??
provides background: (i) the formal model for systems of IDK classifiers, (ii) the
fault model from [?], and (iii) a review of relevant prior results. Section ??
presents our main conceptual contributions, beginning with a motivating ex-
ample and followed by the development and analysis of an alternative to pre-
synthesized cascades. Section ?? reports on experimental evaluation, assessing
both performance and scalability using synthetic workloads and benchmarks
from [?]. We conclude in Section ?? with a summary and directions for future
work.

2 A Model for IDK Classifiers

We adopt the formal model for IDK classifiers commonly used in real-time sys-
tems literature [?,?,?,?,?]. We assume n IDK classifiers K0,K1, . . . ,Kn−1 and
a deterministic classifier Kdet, all targeting the same classification task. Classi-
fier outputs are not assumed to be probabilistically independent; instead, their
joint behavior is represented by 2n regions in a Venn diagram (e.g., Figure ??
for n = 3), each corresponding to a possible combination of classifiers returning
either a class or IDK. The probabilities of these regions can be estimated empiri-
cally using profiling methods [?,?]. The system is further characterized by worst-
case execution times C0, . . . , Cn−1, Cdet for each classifier. Algorithms have been
developed to synthesize IDK cascades minimizing expected classification time,
with the most general known algorithm [?] having worst-case complexity O(4n).

Incorporating Fault Tolerance

A fault occurs when an IDK classifier returns an incorrect class (i.e., not IDK)
that differs from the ground truth. A fault model defines the types of such fail-
ures; we adopt the model from [?], which introduces exclusivity sets to capture

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 3

(K0,K1,K2)

(K0,K1,K2)

(K0,K1,K2)

(K0,K1,K2) (K0,K1,K2)

(K0,K1,K2)

(K0,K1,K2) (K0,K1,K2)

Fig. 1: (From [?]) Venn diagram illustrating the 2n disjoint regions of the probability
space for n = 3 IDK classifiers and one deterministic classifier. The blue, red, and brown
ellipses represent the regions where classifiers K0, K1, and K2 return real classes (i.e.,
not IDK). The surrounding rectangle indicates the deterministic classifier’s success
region (i.e., all inputs). Each of the 23 = 8 regions is labeled by a 3-tuple, where Ki

denotes success and Ki indicates IDK output by classifier Ki.

correlated failures among classifiers. Two classifiers form an exclusivity pair if
they cannot validate each other’s outputs (e.g., due to shared sensor input).
The exclusivity set of classifier Ki, denoted E(Ki), contains all classifiers with
whichKi forms exclusivity pairs. These sets are symmetric (Ki ∈ E(Kj)⇒ Kj ∈
E(Ki)) and reflexive (Ki ∈ E(Ki)), since repeating the same classifier offers no
fault-detection benefit. However, exclusivity is not transitive: it is possible that
Ki ∈ E(Kj) and Kj ∈ E(Kk), but Ki /∈ E(Kk)—e.g., if Kj uses two sensors, one
shared with Ki and the other with Kk.

Tolerating Faults. We assume the deterministic classifier Kdet is either fault-
free or adequately handles its own faults via recovery mechanisms. To tolerate
up to F ≥ 0 faulty IDK classifiers, any classification must satisfy one of the
following: (i) agreement among F +1 IDK classifiers that are mutually exclusive
(i.e., not in each other’s exclusivity sets), or (ii) a classification by Kdet. Our
performance objective is to minimize the expected execution duration under
fault-free behavior, reflecting the assumption that faults are rare. However, if a
hard deadline is specified, it must be met regardless of whether faults occur.

Run-time Algorithm. The run-time algorithm that we will develop executes
classifiers one at a time until either: (i) F+1 classifiers that are not in each other’s
exclusivity sets have returned real (i.e., non-IDK) classes; or (ii) the deterministic
classifier Kdet is executed. If Kdet is executed, then we return the class that it
outputs. Otherwise, once F + 1 classifiers not in each other’s exclusivity sets
return real classes, we check whether or not these classifiers have returned the
same class. If so, we return this class and are done, otherwise a fault has been
detected and we immediately call the deterministic classifier Kdet and return the
class that is output by Kdet. (As stated above, if a hard deadline is specified

4 S. Baruah and A. Burns

within which classification must complete, this entire process may take no more
than the specified deadline during both fault-free and faulty behaviors.)

3 A Fault-Tolerant Classification Algorithm

This section presents our main technical contribution: a proposed dynamic alter-
native to the state-of-the-art cascade-based approach of [?] for achieving fault-
tolerant classification via IDK classifiers, that has smaller expected duration to
successful classification. We first illustrate with an example, in Section ??, that
dynamically determining the next classifier to execute at run-time is superior to
statically pre-determining (as a cascade does) the order in which the classifiers
are to be called. The remainder of the section is devoted to deriving, evaluating,
and explaining our proposed algorithm for such dynamic choosing of classifiers.
We start out in Section ?? with a high-level overview, before presenting the
detailed pre-processing and run-time algorithms in Sections ?? and ?? respec-
tively. This is followed by a theoretical analysis in Section ??, in which interesting
and relevant properties of the algorithm (including its runtime complexity) are
established.

Summarizing the Workload Model. Throughout this section we will use the
workload model discussed in Section ?? that is commonly used in the real-time
computing literature for describing instances of IDK classifiers, and assume that
we have a collection K of IDK classifiers K0,K1,K2, . . . and one deterministic
classifier Kdet, for the same classification problem. Hence the instance is com-
pletely specified as described in Section ??, by 2|K| probabilities; the |K| + 1
WCETs Co, C1, C2, . . . and Cdet; the number F of faults that need to be toler-
ated; an exclusivity set Ei for each IDK classifier Ki; and (optionally) a hard
deadline within which classifications must always be completed.

3.1 A Motivating Example

We will now step through a contrived example that illustrates the benefits of
choosing classifiers for execution dynamically, rather than pre-determining the
sequence of classifiers beforehand prior to runtime. In the example we have four
IDK classifiers K0,K1,K2, and K3, as well as a deterministic classifier Kdet, for
the same classification problem, with WCETs as follows:

classifier K0 K1 K2 K3 Kdet

WCET 1 48 25 25 Cdet (value given later)

and probabilities of successful classification specified in Venn-diagram form in
Figure ??. From the Venn diagram in Figure ?? we learn that of the 24 = 16
possible combinations of outcomes (individual classifiers returning a real class
or IDK), only three happen with non-zero probability on any individual input:

1. All four IDK classifiers will return IDK (this happens with probability ε,
where ε is a small positive real number: ε ≈ 0.0).

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 5

0.5− ε
2

0.5− ε
2ε

(K0,K1,K2,K3)

(K0,K1,K2,K3) (K0,K1,K2,K3)

Fig. 2: Venn diagram depiction of probabilities of non-IDK classification for the ex-
ample of Section ??. Probability values are in bold, and only regions with non-zero
probability are depicted.

2. Classifiers K0 and K1 will both return non-IDK classes while K2 and K3

will both return IDK; this happens with probability
(
0.5− ε

2

)
.

3. Classifiers K2 and K3 both return non-IDK classes while K0 and K1 will
both return IDK; this, too, happens with probability

(
0.5− ε

2

)
.

(All other possible outcomes are assumed to have, in this contrived example, a
zero probability of occurrence.)

Suppose no exclusivity pairs exist beyond reflexivity (i.e., E(Ki) = {Ki} for
all i), and we aim to tolerate a single fault (F = 1). Then, in fault-free cases,
two IDK classifiers must return non-IDK results. From Figure ??, we observe
that only either (K0,K1) or (K2,K3) can do so on any given input. Hence,
any static cascade omitting one of these pairs will invoke Kdet in about half
of fault-free cases. Assuming Cdet = 500 and ε ≈ 0, the optimal static cascade
〈K0,K1,K2,K3,Kdet〉 has an expected duration of

0.5× (1 + 48) + 0.5× (1 + 48 + 25 + 25) = 74. (1)

By comparison consider a dynamic strategy (depicted in Figure ??) that begins
with K0:

– If K0 succeeds, it runs K1 for confirmation (leaf A in Figure ??).
– If K0 fails, it tries K2 and then K3 (leaf C), falling back to Kdet only if K2

also fails (leaf E).

This strategy yields an expected duration of

0.5× (1 + 48) + 0.5× (1 + 25 + 25) = 50, (2)

an ≈ 33% improvement over the optimal static cascade.

The Presence Of Hard Deadlines. Thus far in this example, we have assumed
that either no hard deadline is specified, or it is large enough that meeting it
is not an issue. The gap in performance between prior static cascade-based and
the proposed dynamic approaches may become even more pronounced if hard

6 S. Baruah and A. Burns

K0

K1 K2

— Kdet K3 Kdet

— Kdet

A:
(
0.5− ε

2

)
B: 0 E: ε

C:
(
0.5− ε

2

)
D: 0

(leaf name) (probability)

Fig. 3: Decision tree for fault-free behaviors (left branch: real class, right branch: IDK).
Each leaf is labeled with a name and the probability of its becoming the terminating
vertices in fault-free behavior.

deadlines must be considered. Suppose that some hard deadline D ≥ Cdet were
specified such that each classification must complete within a duration of D
time units (note that if D < Cdet then this is impossible to guarantee). Since
C0 + C1 + C2 + C3 = 99 for our example, then if (D − Cdet) < 99 the static
cascade cannot include all four classifiers. Now, the optimal cascade becomes
〈K0,K1,Kdet〉 (rather than 〈K2,K3,Kdet〉 since C0 + C1 < C2 + C3), with
expected execution duration approximately:

(1 + 48) + 0.5× Cdet (3)

while the dynamic strategy discussed above remains valid for D ≥ 51 + Cdet,
i.e., D − Cdet ≥ 51.3 Hence for D satisfying:

51 + Cdet ≤ D < 99 + Cdet.

3 This follows from the observation that the three root-to-leaf paths in the decision
tree of Figure ?? ending in Kdet have execution durations

(C0 + C1 + Cdet) = 49 + Cdet

(C0 + C2 + Cdet) = 26 + Cdet

(C0 + C2 + C3 + Cdet) = 51 + Cdet

respectively. Therefore, the strategy is “safe” – will not cause a deadline miss –
provided D ≥ max (49 + Cdet, 26 + Cdet, 51 + Cdet), i.e., D ≥ 51 + Cdet.

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 7

the expected duration under the dynamic approach is 50 whereas the expected
duration under the static approach will increase with increasing value of Cdet;
hence the performance improvement of the dynamic approach as compared to
the static one becomes more marked as Cdet becomes larger.

3.2 An Overview of the Dynamic Strategy

Our classification strategy is to dynamically select the next classifier to execute
at run-time, based upon what has happened thus far during the current classifi-
cation attempt. Accordingly, at any time during runtime let us define the current
state to be an ordered pair (S, T), where S is a set of classifiers (S ⊆ K) and
T a subset of S (T ⊆ S), denoting that the classifiers in S are those that have
been executed thus far and of these, each classifier in the set T has returned a
class other than IDK (and hence each classifier in (S \ T) has returned IDK).
We emphasize that S and T are sets – the order in which these classifiers were
executed in arriving at the current state is not relevant. It has been previously
observed [?, p. 369] that during classification using IDK classifiers the current
state is defined “only [by] the set of classifiers, and not on their order,” and that
this fact reduces the number of states to be considered from a factorial function
of the number of classifiers to merely an exponential one. For states defined as
above – i.e., the ordered pair (S, T) – Theorem ?? (see Section ??) shows that
exactly

(
3|K|

)
distinct states are possible. Prior to run-time, our preprocessing

algorithm (Section ??) will compute a lookup table

row state next cost rY rN
0 (∅, ∅) Ki c n1 n2

1
2
...

...
...

...
...

...
...

...
...

...
...

...

in which the number of rows equals the number of distinct states. This lookup
table is interpreted as follows.

– Each row corresponds to a different state, which is specified in the column
labeled state.

– When in a particular state during runtime, the next classifier one should
execute in order to minimize the expected remaining duration to completion
is the one specified in the column labeled next in the row corresponding to
that particular state. The expected remaining duration to complete success-
ful classification upon so doing is given in the column labeled cost.

– Upon executing this classifier, the row corresponding to the resulting state
if the execution is successful (i.e., does not return the class IDK) is specified
in the column labeled rY , whereas if the execution is unsuccessful (returns
IDK), the row corresponding to the resulting state is specified in the column
labeled rN .

8 S. Baruah and A. Burns

row state next cost rY rN
0 (∅, ∅) K0 50 2 1
1 ({K0}, ∅) K2 50 13 11
2 ({K0}, {K0}) K1 48 8 6
3 ({K1}, ∅) K2 50 17 15
4 ({K1}, {K1}) K0 1 8 7
...
6 ({K0,K1}, {K0}) Kdet 100 - -
...
8 ({K0,K1}, {K0,K1}) ⊥ 0 - -
9 ({K2}, ∅) K0 49 12 11
10 ({K2}, {K2}) K3 25 48 46
...
11 ({K0,K2}, ∅) Kdet 100 - -
...
13 ({K0,K2}, {K2}) K3 25 55 51
...
27 ({K3}, ∅) K0 49 30 29
28 ({K3}, {K3}) K2 25 48 47
...
51 ({K0,K2,K3}, {K2}) Kdet 100 - -
...
55 ({K0,K2,K3}, {K2,K3}) ⊥ 0 - -
...

Fig. 4: Selected rows of the lookup table for our example

– If the classifiers in T include F + 1 classifiers not in each others’ exclusivity
sets, then no further execution is needed; this is reflected by the column
next containing a ⊥ and the column cost a 0.

Some of the 34 = 81 rows of the lookup table that is constructed for the exam-
ple instance of Sec. ?? are depicted in Figure ?? (for Cdet ← 100); the reader
may verify that the decision tree of Fig. ?? is indeed implicitly embedded4 in
this table. This lookup table is used during runtime (after some additional pre-
processing) to determine which classifier to execute next; the precise manner in
which this is done is described in Section ??.

3.3 The Preprocessing Algorithm

We now describe the algorithm that constructs the lookup table prior to run-
time. This algorithm first initializes the table to have 3|K| rows with one row
corresponding to each of the 3|K| possible states (see Theorem ??). The first
4 Since the initial state corresponds to Row 0 of the table in Figure ??, the first
classifier executed is K0, with K1 executed next if K0 returns a real class (row 2) or
K2 if it returns IDK (row 1), and so on.

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 9

row corresponds to the initial state (∅, ∅), and the remaining rows correspond
to different states in some canonical order, such that the row corresponding to
any particular state can be identified in O(|K|) time.5 The column labeled ‘cost’
is initially set equal to the dummy sentinel value ∞ in all rows. As will be de-
tailed later, the function expand(S, T) (listed as Algorithm ??) implements a
top-down dynamic program that fills in the row in the lookup table correspond-
ing to the state (S, T). Hence calling expand(∅, ∅) fills in the first row of the
lookup table; as we will soon see, the resulting recursive calls also fill in the other
rows of the lookup table. Before providing a detailed description of this top-level
function expand(S, T) and explaining how a single call to expand(∅, ∅) fills in
the entire table, we first briefly discuss two helper functions that are used by
expand(S, T).

Helper Function ftCount(T, F). For a set T of IDK classifiers and an
F ∈ N≥0, this function returns true if there is a cardinality-(F + 1) subset of
T for which the classifiers are all not in each others’ exclusivity sets, and false
otherwise.

As we will see in Theorem ??, this function encapsulates an NP-hard problem.
We solve it by exhaustive enumeration: if Kdet 6∈ T , then each of the

(|T |
F+1

)
subsets of T of cardinality (F +1) is examined separately to determine whether
there is one in which no two classifiers comprise an exclusivity pair. Hence a call
to this function has runtime complexity O

(
|K|F+1 · (F + 1)2

)
.

Helper Function condPr(S, T,Kj). For a given state (S, T) and IDK clas-
sifier Kj ∈ (K \ S), this function computes the probability that Kj will return a
class other than IDK when executed from state (S, T).

When at state (S, T) during runtime, the IDK classifiers in S have been
executed with those in T returning a real class and those in (S \ T) returning
IDK. Hence the probability space for the outcome if Kj were to be called next
comprises all those regions in the Venn diagram for which the |K|-tuple labeling
the region contains a Ki for each Ki ∈ T (since Ki returned a real class) and
Ki for each Ki ∈ (S \ T) (since Ki returned IDK), while containing either Ki

or Ki for each Ki 6∈ S. Let R denote the collection of all these regions. For each
region r ∈ R, let p(r) denote the probability associated with the region r in the
specification of K (i.e., the probability that a randomly-drawn input will receive
non-IDK classifications from exactly the classifiers that appear in non-negated
form in the |K|-tuple labeling region r). Let R′ ⊂ R denote the collection of
all those regions in R for which the |K|-tuple labeling the region contains Kj

(rather than Kj). The probability that Kj will return a class other than IDK

5 Many schemes are possible, including binary search of the table, which takes

O(log(3|K|)) = O(|K| × log 3) = O(|K|) time.

10 S. Baruah and A. Burns

// Update next and cost for the state (S, T), and return the
updated cost

1 if (
(∑

K`∈S
C`
)
+ Cdet > D) then //not a safe state

2 return ∞
3 if (ftCount(T, F) = true) then //no need to execute any further
4 cost← 0;next← ⊥; return 0

5 if (cost 6=∞) then //This state has already been explored
6 return cost

// For each remaining classifier, investigate what happens if it is
executed next

7 for each Kj ∈ (K \ S) do //If Kj were executed next...
8 Prob← condPr(S, T,Kj) //Probability Kj succeeds
9 costY ← expand(S ∪ {Kj}, T ∪ {Kj}) //cost if Kj succeeds...

10 costN ← expand(S ∪ {Kj}, T) //...cost if it fails;
11 tmpCost← Cj + Prob · costY + (1− Prob) · costN //expected cost of

executing Kj

12 if (cost > tmpCost) then //cheaper to execute Kj?
13 cost← tmpCost
14 next← Kj

15 if (cost > Cdet) then
16 cost← Cdet

17 next← Kdet

18 return cost
Algorithm 1: expand(S, T) – A Dynamic Program (using memoization)

when executed from state (S, T) is then the ratio(∑
r∈R′

p(r)

)
÷

(∑
r∈R

p(r)

)
(4)

and hence this is what is returned by condPr(S, T,Kj). It is straightforward
to determine this by examining all 2|K| regions, determining for each in O(|K|)
time whether it belongs to R and if so, to R′ as well; hence a call to this function
has runtime complexity O

(
2|K| · |K|

)
.

Top-Level Function expand(S, T). This function, presented in high-level
pseudo-code form in Algorithm ??, is essentially a memoization-based imple-
mentation of a dynamic program that computes the minimum expected remain-
ing duration to successful classification in fault-free behaviors that is achievable
from the input state (S, T). The lookup table is generated as an auxiliary data
structure during the execution of this dynamic program (see, e.g., the subsection
titled “Reconstructing the optimal solution” in [?, p. 387] for a textbook review
of how such auxiliary data structures are an essential component of dynamic

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 11

programming). The call expand(S, T) first checks in Line ?? whether the state
(S, T) is an unsafe one because executing all the classifiers in S would exceed
the deadline (if one is specified), in which case the expected duration that is
returned is∞. Then in Line ?? it checks whether no further execution is needed
because the successful classifiers —the ones in T— satisfy the fault-tolerance
requirement; if so, then a value of zero is returned.

Since the lookup table was initialized to have all entries in the cost column
equal to ∞, a non-∞ value here implies that this state has already been visited
in some prior recursive call, and the computed value cached in the cost column
of the corresponding row – this is checked in Line ??. Else (i.e., cost =∞), this
state is being explored for the first time.

The for-loop at Lines ??–?? explores, for each IDK classifier Kj that has not
yet been executed, the option of executing it.

– In Line ??, the helper function condPr(S, T,Kj) is called to determine the
probability that classifier Kj would be successful if called from the current
state (S, T). The next two lines (Lines ?? and ??) make recursive calls to de-
termine the expected remaining duration to successful classification whenKj

returns a real class or IDK respectively. Line ?? then uses the results of the
computations in the three prior lines to determine the expected remaining
duration to successful classification if Kj is executed.

– The if statement beginning at Line ?? determines whether executing Kj

results in a lower expected duration to successful classification than has
been discovered thus far; if so, the cost and next fields in the corresponding
row are updated accordingly.

And finally, the if statement beginning at Line ?? determines whether executing
Kdet results in a lower expected duration to successful classification than has
been discovered thus far; if so, the cost and next fields in the corresponding row
are updated accordingly.

The following example illustrates the workings of expand(S, T). In this ex-
ample we walk through a high-level trace of a call to expand(∅, ∅) for the col-
lection of classifiers K we had considered in Section ??, thereby explaining how
row 0 of the lookup table of Figure ?? is obtained.

Example 1. Let us suppose that expand(∅, ∅) is called upon the example of
Section ?? (with no deadline specified). It may be verified that the conditional
tests of Line ??, ??, and ?? all fail and execution continues through to the for-
loop beginning at Line ??. This for-loop (Lines ??–??) executes four times with
Kj taking on each of the values K0,K1,K2, and K3 in succession.

The recursive call for Kj ← K0 in Line ?? fills in Row 2, and the one in
Line ?? fills in Row 1. While we will not trace these calls explicitly, it may be
verified by re-reading Section ?? that the cost and next entries in these rows are
indeed what a correct algorithm would conclude. (Consider, for instance, Row 1,
corresponding to the state when K0 has been executed and has returned IDK.

12 S. Baruah and A. Burns

Our decision tree in Figure ?? tells us that the right thing to do here is execute
K2 next, and that doing so will have us execute K3 next for a total duration of
C2 + C3 = 50. Row 2 may be verified in a similar manner.)

The recursive calls for Kj ← K1, Kj ← K2, and Kj ← K3 respectively fill
in Rows 3–4, Rows 9–10, and Rows 27–28 of the table respectively; these, too,
may be verified by referring back to the decision tree of Figure ??.

With Rows 1–4, 9–10, and 27-28 so filled, let us see how the columns of Row 0
get assigned values. It may be verified from the Venn diagram of Figure ??
that Prob is assigned a value (0.5 − ε) in Line ?? for each of the four cases
Kj ← K0,Kj ← K1, Kj ← K2, and Kj ← K3. With ε ≈ 0, tmpCost for these
four cases evaluates as follows:

for Kj ← K0: 1 + 0.5× 48 + (1− 0.5)× 50 = 50
for Kj ← K1: 48 + 0.5× 1 + (1− 0.5)× 50 = 73.5
for Kj ← K2: 25 + 0.5× 25 + (1− 0.5)× 49 = 62
for Kj ← K3: 25 + 0.5× 25 + (1− 0.5)× 49 = 62

from which it is evident that tmpCost takes on its minimum value of 50 for
Kj ← K0, as reported in the columns labeled cost and next of Row 0. Since K0

is the next classifier executed, rY points to Row 2 (representing the state when
K0 is executed and returns a real class) and rN to Row 1 (representing the state
when K0 is executed and returns IDK).

This completes our explanation of how the call to expand(∅, ∅) upon the
example of Section ?? fills in row 0 of the table of Figure ??. ut

Compressing the Lookup Table. The lookup table computed by the call to
expand(∅, ∅) is compressed next, by removing the rows that are not needed for
run-time use. Specifically, only the rows that are reachable from Row 0, i.e., those
that are referenced directly or recursively in the rY and rN columns starting from
Row 0, need to be retained. (On the table of Figure ??, for instance, only the 9
rows numbered 0, 1, 2, 6, 8, 11, 13, 51, and 55 are reachable from Row 0, and
are hence the only ones of the 34 = 81 rows that need be retained for runtime
use.)

Should run-time memory be a concern, further compression is possible by
also removing the state and cost columns from the rows that remain – these
columns were only used for constructing the table, and will not be needed for
runtime decision making.

How large can these tables be after compression? While one can come up
with pathological examples where most of the 3|K| rows must be retained, our
experience on the evaluation experiments (reported in Section ??) has been
that the number of rows in the compressed table is typically very small, rarely
exceeding a number that is a low-degree polynomial of the number of classifiers.
And in those cases where the table size is unacceptably large, one can adapt
standard table-compression techniques to develop approximation schemes that
trade off table-size for optimality.

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 13

1 // “T [r].colName” denotes the entry in the column that is labeled colName of
row r of the lookup table (denoted T)

2 row← 0
3 while true do
4 if T [row].next = ⊥ then
5 if All non-IDK classifications obtained are the same then
6 return this classification

7 else // fault detected
8 Call Kdet and return its classification

9 else
10 Call the classifier specified in T [row].next
11 if this classifier returns a non-IDK class then
12 record this classification
13 row← T [row].rY
14 else
15 row← T [row].rN

Algorithm 2: Runtime Algorithm

3.4 The Runtime Algorithm

The runtime algorithm that is executed for selecting the classifiers to execute
when a new input needs to be classified is depicted in high-level pseudocode
form as Algorithm ??. In this pseudo-code, the variable row denotes the row
corresponding to the current state of the system; it is initialized to 0 since Row
0 is the row corresponding to the initial system state, (∅, ∅), in the lookup table.
The while loop beginning at Line ?? is repeatedly executed to choose the next
classifier to execute — T [row].next denotes the column next of the row row in the
lookup table, denoted T in the pseudocode. If this equals ⊥ (i.e., the if condition
of Line ?? evaluates to true), the current state satisfies the fault-tolerance
condition. When this happens, the non-IDK classification decisions that have
been made thus far are compared; if they are all equal, this classification is
returned, else, a fault has been detected and so the deterministic classifier Kdet

is called and its classification decision returned.

If on the other hand the if condition of Line ?? evaluates to false, then
fault tolerance has not yet been achieved and additional calls to classifiers are
needed. Lines ??–?? are executed: the classifier that should be executed from the
current state is called, and the variable row updated appropriately depending
upon whether this classifier returns a real class or IDK; if a real class, then this
class is recorded (for comparison with other non-IDK classes that are returned
by other classifiers, for purposes of fault detection in Line ??).

14 S. Baruah and A. Burns

3.5 Some Properties

We now prove the result, claimed in Section ?? and subsequently used in Sec-
tion ?? (to dimension the lookup table that is constructed there), of the upper
bound of 3|K| on the number of distinct states:

Theorem 1. There are 3|K| distinct ordered pairs (S, T) where S ⊆ K and
T ⊆ S.

Proof. This is shown by a simple counting argument. For each i, 0 ≤ i ≤ |K|,
there are

(|K|
i

)
subsets of K of exactly i elements; hence, the number of distinct

sets S of exactly i classifiers equals
(|K|
i

)
. Each such S has exactly 2i distinct

subsets; hence for each such S, T can take on exactly 2i distinct values. The
total number of (S, T) pairs is therefore equal to

|K|∑
i=0

((
|K|
i

)
· 2i
)

=

|K|∑
i=0

((
|K|
i

)
· 2i · 1|K|−i

)
//Note that 1|K|−i = 1

= (2 + 1)
|K|

= 3|K| //Applying the Binomial Theorem

and the theorem is proved.

We have described, in Section ??, how the helper function ftCount(T, F) is
implemented using an approach of exhaustive enumeration, i.e., by considering
all subsets of T of cardinality (F +1) to determine whether there is one with no
exclusivity pairs. We show below that one is not likely to be able to obtain a more
efficient implementation than this, by proving that it is NP-hard to determine
whether a set of IDK classifiers T contains at least F + 1 mutually exclusive
ones.

Theorem 2. Given a set T ⊆ K of IDK classifiers and a positive integer F ,
determining whether T contains (F +1) mutually exclusive classifiers is an NP-
complete problem.

Proof. The problem is clearly in NP: we can simply guess which classifiers in T
are the F + 1 mutually exclusive ones, and verify that none of them is in each
other’s exclusivity sets, all in polynomial time.

To show that it is NP-hard, we will reduce from the Independent Set
problem, which is defined [?, p. 194] in the following manner:
instance: Graph G = (V,E), positive integer K ≤ |V |.
question: Does G contain an independent set of size K or more, i.e., a subset V ′ ⊆ V
such that |V ′| ≥ K and such that no two vertices in V ′ are joined by an edge in E?

Given an instance 〈G = (V,E),K〉 of independent set, we can reduce to
an instance of determining whether a set T of IDK classifiers contains F + 1

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 15

mutually exclusive ones as follows. We will have one IDK classifier Iv for each
v ∈ V , and

E(Iv) =
⋃

(v,w)∈E

{Iw}

It is evident that the set of |V | IDK classifiers so obtained will have K+1 mutu-
ally exclusive ones if and only if the instance 〈G = (V,E),K〉 ∈ independent
set.

Runtime Complexity (of the Preprocessing Phase). The preprocess-
ing phase essentially consists of initializing the lookup table with 3|K| rows and
then calling expand(∅, ∅). The call to expand(∅, ∅) will make recursive calls
to expand(S, T) for different values of (S, T); however, memoization as imple-
mented in Algorithm ?? (see Line ??) ensures that each such recursive call is
expanded at most once per state. Hence there are at most 3|K| calls to expand().
For each such call, the only non straight-line (i.e., constant-time) steps are:

– Line ??: ftCount(T, F). We saw in Section ?? that each such call has
runtime complexity O

(
|K|F+1 · (F + 1)2

)
– Line ??: condPr(S, T,Kj). We saw in Section ?? that each such call has

runtime complexity O
(
2|K| · |K|

)
.

– The for-loop at Lines ??–??, which is executed | (K \ S) | = O(|K|) times.

Hence the total running time is

O
(
3|K| ×

(
|K|F+1 · (F + 1)2 + 2|K| + |K|

))
= O

(
3|K| · |K|F+1 · (F + 1)2 + 6|K| + 3|K| · |K|

)
≈ O

(
6|K|

)
where the last step makes the reasonable assumption that |K| is significantly
larger than F .

We contrast this to the state-of-the-art algorithms that are used for synthe-
sizing static cascades, that are known [?, p. 369] to have a runtime bound of
O
(
4|K|

)
.

4 Evaluation

In this section, we present experiments evaluating two key aspects of our dynamic
alternative to cascade-based fault-tolerant classification using IDK classifiers: ef-
fectiveness and scalability. By effectiveness, we refer to the reduction in expected
execution duration compared to the state-of-the-art static approach from [?]. As
discussed earlier, our preprocessing algorithm has a worst-case runtime com-
plexity of O(6|K|), compared to O(4|K|) for the approach in [?]. Our scalability
evaluation assesses the practical implications of this higher asymptotic cost by
comparing how preprocessing times scale with increasing |K|.

16 S. Baruah and A. Burns

Our experiments used two kinds of data. First, we evaluated the two work-
loads considered in [?]—a hand-crafted illustrative instance and a real-world
case study—reported in Section ??. Second, we developed a synthetic workload
generator to explore a broader range of parameter settings, with results reported
in Section ??.

All experiments were conducted on a 2022 MacBook Air equipped with an
Apple M2 processor and 8GB of RAM, running macOS Sequoia 15.0.1. The
algorithms and synthetic workload generator were implemented in Python 3.11.5.
Code was written with an emphasis on clarity and ease of development, rather
than runtime efficiency.

4.1 Evaluating the Workloads From [?]

Workload I. The simple illustrative example introduced in [?, Sec. VI-B], con-
sisting of four IDK classifiers and a deterministic classifier, was used to compare
our dynamic approach with the cascade-synthesis algorithm from [?]. Execution
times for the preprocessing phase were 36.7ms for our method and 14.5ms for
the cascade synthesis—both negligible. We then computed the expected classifi-
cation durations under fault-free conditions for various values of Cdet; results are
shown in Figure ??. As the table indicates, our dynamic approach consistently

Cdet Static Duration Dynamic Duration Ratio
500 212 209 0.99
1000 387 362 0.94
1500 562 512 0.91
2000 735 662 0.90
2500 885 812 0.92
3000 1035 962 0.93

Fig. 5: Expected execution durations for the example of [?, Sec. VI-B] (see Sec. ??).

outperforms the static cascade, with reductions in expected duration ranging
from 1% to 10% depending on Cdet.

Workload II. The applicability of the approach advocated in [?] was demon-
strated upon a real-world, multi-modal case study in [?, Sec. VII].6 We ran both
our dynamic preprocessing algorithm and our implementation of the cascade-
synthesis algorithm of [?] on this case study; the measured running times were
38.2 ms and 12.0 ms respectively – once again, both are fast enough for pre-
processing time to not be a concern. We then computed the expected duration to
6 As was explained in [?], this case study concerns the autonomous detection of po-
tentially hostile enemy vehicles in a battlefield environment. Three different kinds
of sensors were involved: acoustic (a microphone array), seismic (a vertical-axis geo-
phone), and vision (a camera) – hence the term ‘multi-modal.’

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 17

successful classification in fault-free scenarios for both algorithms; these turned
out to be 7340.05 for the static cascade and 7261.07 for the dynamic approach:
a savings of (7340.05 − 7261.07)/7340.05 or ≈ 1.1%. Hence for this case study
the improvement in performance, while present, is not particularly large.

4.2 Synthetically Generated Workloads

We developed a synthetic workload generator, not with the aim of modeling
real-world scenarios faithfully but rather to facilitate exploration of the space of
possible system configurations by systematically varying several parameters. Our
generator accepts the number |K| of IDK classifiers, the desired fault-tolerance
level F , and several additional parameters:

– Two positive integers, wcet_max and wcet_det_ratio, determine the WCET
values. Each IDK classifier’s WCET is drawn uniformly at random from
[1,wcet_max], while the deterministic classifier’s WCET is set to Cdet =
wcet_max× wcet_det_ratio.

– A real-valued parameter excl_prob in [0, 1] governs the generation of exclu-
sivity pairs. Several generation modes are supported, including random (each
pair of classifiers forms an exclusivity pair independently with probability
excl_prob, subject to symmetry) and bipartite (classifiers are partitioned
into two sets, with exclusivity pairs spanning the partition).

– Probabilities over the 2n Venn regions are generated using a Dirichlet dis-
tribution, with several options: uniform (equal concentration parameters),
biased (higher concentration parameters for certain regions), and partitioned
(different classifier subsets dominate under different input conditions).

– An optional deadline D may be specified; if omitted, D defaults to ∞.

We conducted an extensive set of experiments using workloads generated by
this tool. Below, we present findings from our scalability study and summarize
selected parameter exploration results aimed at evaluating the effectiveness of
our proposed dynamic algorithm. (Due to space constraints, we omit a full report
of the parameter space exploration.) Scalability. We measured the running
times of our preprocessing algorithm across a wide range of randomly generated
workloads. These running times were observed to depend primarily on the value
of |K| (the number of IDK classifiers). The only other parameter that was found
to significantly influence runtime is the deadline D: when D is very small, the
preprocessing algorithm typically completes quickly, returning a strategy that
either executes only the deterministic classifier Kdet (if D ≥ Cdet by a small
margin) or reports infeasibility otherwise.

Figure ?? reports the running times of our preprocessing algorithm for vari-
ous values of |K| with D ≡ ∞. Abdelzaher et al. observe [?, p. 356] that values
of |K| “that are much greater than about 12 are unlikely to be commonly en-
countered in practice”. In light of this, we note that the largest running time we
observed—approximately 4598 seconds (or about 75 minutes) for |K| = 12—is
quite acceptable. This suggests that our prepossessing algorithm scales well for
problem sizes likely to arise in practical applications.

18 S. Baruah and A. Burns

|K| 4 5 6 7 8 9 10 11 12
static 0.0056 0.0368 0.2349 0.7992 5.0043 33.6420 493.1335 707.9548 1506.1612

dynamic 0.0210 0.1248 0.9224 2.5149 17.4509 107.0504 2335.3348 2817.1647 4597.7350
ratio 3.7750 3.3895 3.9267 3.1466 3.4872 3.1820 4.7357 3.9793 3.0526

(a) Times (in seconds), and ratio

(b) Running times
(c) Logarithm of running times

Fig. 6: Scalability experiments: measured running times of the static and dynamic
prepossessing algorithms for increasing values of |K|.

Effect of F . We examined the impact of the desired degree of fault tolerance,
F , on the expected duration to successful classification under fault-free behavior.
As expected, this duration generally increases with larger values of F . What is
more interesting is how the performance advantage of the dynamic strategy over
the static one evolves with F .

For F = 0 (i.e., when no faults must be tolerated), the two strategies exhibit
identical expected durations—this is anticipated, and indeed static cascades are
most suitable when fault tolerance is not a requirement. On the other hand,
for large values of F , the expected durations of the two strategies converge.
Intuitively, the need to tolerate many faults makes it more efficient to execute
the deterministic classifier Kdet directly, bypassing the overhead of coordinating
among IDK classifiers.

Figure ?? plots the ratio of the expected execution duration of the opti-
mal static cascade to that of the dynamic strategy, as a function of F , using
a set of example instances with |K| = 7.7 These instances were generated with
uniformly distributed WCETs for the IDK classifiers, a wcet_det_ratio of 50,
uniform probability distributions, and randomly generated exclusivity pairs with
excl_prob set to 0.05.

(a) The number F of
faults that must be toler-
ated is changed.

(b) The probability of
pairs forming exclusivity
sets is changed.

(c) The hard deadline D
is changed.

Fig. 7: Effectiveness experiments: variation of the ratio of expected execution du-
rations of the optimal static cascade and our dynamic strategy as different workload
parameters are varied. (All evaluations were on example instances with |K| = 7; other
parameters are varied as discussed in Section ??).

7 This experiment was conducted to explore how increasing F affects classification
duration; it is not intended to model realistic scenarios—note that even in safety-
critical systems, F is rarely set to a value greater than 2.

Accelerating Fault-Tolerant Real-Time Classification with IDK Classifiers 19

Effect of Exclusivity Sets. We also examined the impact that changing the
likelihood of pairs of classifiers forming exclusivity pairs has on the expected
duration to successful classification in fault-free behaviors – this was achieved
by changing the value of the parameter excl_prob provided to our workload
generator. The ratio of expected execution duration of the optimal static cascade
to the dynamic strategy is plotted as a function of excl_prob in Figure ??,
for example instances with |K| = 7 that were generated to have uniformly-
distributed WCETs for the IDK classifiers, a wcet_det_ratio of 50, uniform
probability values, and no deadline specified. As can be seen from Figure ??, the
performance improvement of the dynamic strategy over the static one becomes
more marked with increasing likelihood of pairs of classifiers not being able to
validate each others’ classifications.
Effect of D. Towards the end of Section ??, we briefly discuss how the improved
performance of our dynamic strategy over static cascades may be further magni-
fied if a hard deadline is specified within which classification must be completed.
We have investigated this issue more systematically and methodically upon syn-
thetically generated workloads; our observations are remarkably similar to the
ones made with respect to the degree of fault tolerance. Specifically, the ratio
of the expected execution duration of the optimal static cascade to the dynamic
strategy

– is the same as that for the case when deadlines are not specified (and hence
defaults to the case D ≡ ∞) for large values of (D − Cdet);

– increases as (D − Cdet) is decreased – this shows that the dynamic strategy’s
superiority increases; and

– decreases again as (D − Cdet) becomes very small – this is a consequence
of the fact that as (D − Cdet) → 0, the only fault-tolerant strategy is often
to directly execute the deterministic classifier Kdet (i.e., the static cascade
〈Kdet〉 is also the optimal dynamic strategy).

An illustrative outcome is plotted in Figure ??, which depicts the ratio of ex-
pected execution duration of the optimal static cascade to the dynamic strat-
egy is plotted as a function of (D − Cdet). (This plot is for example instances
with |K| = 7 that was generated by our workload generator to have uniformly-
distributed WCETs for the IDK classifiers, a wcet_det_ratio of 50, and uniform
probability values.)

5 Conclusions

We have shown in this paper that when fault tolerance is desired, restricting one-
self to only using pre-synthesized cascades has an adverse effect on the expected
duration to successful classification. Hence we propose a dynamic alternative
that adaptively decides at runtime which classifier to execute next based on the
outcome of prior classifier executions. We derive pre-processing and runtime al-
gorithms for implementing this adaptive approach, and demonstrate that these
algorithms have acceptable running times that are comparable to those of the

20 S. Baruah and A. Burns

corresponding algorithms for static cascades, and achieve smaller expected du-
ration to successful classification than the prior static approaches were able to
achieve.

The ideas of exclusivity pairs and exclusivity sets, introduced in [?] and used
here to specify the requirement that multiple classifiers return the same class
subject to a constraint over which classifiers to use, can also be applied to other
classification problems. For example, the requirement for a collection of diverse
classifiers to return different classes when applied to the same input can be
addressed in a similar manner. Here diversity would replace exclusivity. And
hence sampling via a diverse set of classifiers will deliver a broader spectrum
of samples (in a shorter period of time). This application will be investigated
further as part of future work.

In future work we also plan to investigate adaptive strategies for exploiting
the differences between classifiers’ WCETs (the Ci parameters) and their actual
execution times, and extend our pre-processing and runtime algorithms to ex-
ploit these differences in order to achieve lower expected duration to successful
classification in both fault-free and fault-tolerant settings.

Acknowledgments. Supported in part by the US National Science Foundation
– NSF CNS-2141256, CNS-2229290 (CPS), and CNS-2502855 (CPS). This re-
search was also funded in part by Innovate UK SCHEME project (10065634).
EPSRC Research Data Management: No new primary data was created during
this study.

