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Unseen Data Detection using Routing Entropy in
Mixture-of-Experts for Autonomous Vehicles

Sang In Lee
Chungnam National University
Daejeon, South Korea
sangin.lee.life@o.cnu.ac.kr

Abstract—Unseen data that differ significantly from the train-
ing data can cause machine learning models to behave un-
predictably, which is particularly problematic in safety-critical
systems like autonomous vehicles. Detecting such data, commonly
called out-of-distribution (OOD) data, is essential for ensuring
the robustness of these models. Existing methods often rely on
the model’s final output, which are limited since the model can be
overconfident on unseen data. In this paper, we propose Routing
Entropy, a novel OOD detection method that leverages the
internal routing behavior of Mixture-of-Experts (MoE) models,
a design increasingly adopted in modern neural networks. We
hypothesize that MoE models exhibit high confidence routing
for in-distribution (ID) inputs, but greater uncertainty for OOD
inputs. We quantify this uncertainty by calculating the entropy
of the routing scores for a given input. Experimental results on a
MoE-based semantic segmentation model used for perception in
autonomous driving demonstrate that Routing Entropy is effec-
tive on its own and, more importantly, provides a complementary
signal to existing output-based methods. Combining Routing
Entropy with an existing method significantly improves OOD
detection performance. These results suggest that leveraging
internal routing behavior of MoE models is a promising direction
for robust OOD detection.

Index Terms—OQut-of-distribution detection, uncertainty quan-
tification, mixture-of-experts, routing entropy

I. INTRODUCTION

Autonomous vehicles have become a key application area
where machine learning (ML) models serve as critical soft-
ware components [1]. As ML components are increasingly
integrated into functionalities such as perception, planning,
and control in autonomous driving systems (ADS), ensur-
ing their quality has become a critical concern in software
engineering [2]. Traditional quality assurance methods, built
on assumptions of deterministic logic and specified behavior,
are not well-suited to handle the non-deterministic nature of
ML-based systems [3]. Modern ML models, especially deep
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Fig. 1. Routing Entropy-based OOD detection in a Mixture-of-Experts
(MoE) model. (a) Illustration of a MoE layer, the router selects the top-k
expert networks based on routing scores, and their outputs are combined. (b)
Proposed method, which uses Routing Entropy to detect unfamiliar inputs.
In-distribution (ID) samples produce low entropy (confident routing), while
out-of-distribution (OOD) samples produce high entropy (uncertain routing).

learning-based models, are often “black boxes,” making their
internal logic impossible for engineers to fully understand.
This lack of transparency makes it difficult to verify and ensure
the reliability of ADS [4].

A primary threat to the ADS is their behavior on unseen
data, also called out-of-distribution (OOD) data. Since ML
models are fundamentally data-driven, their performance heav-
ily depends on the training data [5]. When these models en-
counter OOD data—inputs that deviate from the training data
distribution, they may produce unreliable or even dangerously
incorrect outputs [6]. This problem is especially crucial in
safety-critical systems such as ADS.

To address this challenge, it is essential to “know what
they don’t know” by quantifying uncertainty and detecting
OOD inputs. By managing uncertainty, these techniques con-
tribute to runtime monitoring, allowing systems to recognize
when their predictions may be untrustworthy [7]. In safety-



critical domains, this capability enables fail-safe mechanisms
or fallback strategies that ensure safe operation under uncer-
tainty [8, 9]. Furthermore, quantified uncertainty can inform
test data generation by identifying regions of the input space
where the model is less confident, guiding more effective and
targeted software testing [10, 11].

Most existing OOD detection and uncertainty quantification
methods for deep neural networks (DNNs) focus on analyzing
the model’s final output, such as softmax probabilities [12, 13]
or output variability [14, 15]. These methods are based on the
hypothesis that models will exhibit greater deviation and lower
confidence in their predictions for OOD inputs compared to
in-distribution (ID) inputs. While this is a natural approach for
black-box deep learning models, it becomes problematic when
models produce overconfident predictions on OOD inputs,
which can be dangerous in safety-critical applications [13].

In this paper, we focus on internal uncertainty signals
within a rising paradigm in modern neural network design,
the Mixture-of-Experts (MoE) [16]. This design has recently
gained considerable attention as it enables efficient scaling
of model capacity (i.e., the number of parameters) while
maintaining computational efficiency [17, 18, 19]. As shown
in Fig. 1(a), this is achieved by an internal routing mechanism,
which selectively activates a small subset of experts (i.e., sub-
networks) for each input. During training, the model learns to
predict which experts are best suited to process a given input,
and each expert becomes specialized in handling the specific
types of data assigned to it. We hypothesize that the routing
behavior itself is a rich source of uncertainty information, as it
tends to route familiar ID inputs with high confidence, while
showing greater uncertainty for OOD inputs.

Based on this hypothesis, we propose Routing Entropy, a
novel OOD detection method that quantifies the uncertainty in
expert selection for MoE models. We detect OOD inputs by
analyzing the entropy of routing decisions, which we quantify
by calculating the Shannon entropy of the routing score dis-
tribution. This process is conceptually illustrated in Fig. 1(b).
Our evaluation of a MoE-based semantic segmentation model
demonstrates that Routing Entropy is an effective and com-
petitive method for detecting OOD inputs. Furthermore, we
demonstrate that Routing Entropy provides a complementary
signal to existing output-based methods. Our results reveal
that combining Routing Entropy with existing method signif-
icantly improves OOD detection performance across various
scenarios. These results suggest that leveraging the internal
routing behavior of MoE models is a promising direction for
developing more robust and reliable OOD detection systems.

We summarize our contributions as follows:

(1) We propose Routing Entropy, a novel OOD detection
method that quantifies the uncertainty in the routing deci-
sions of Mixture-of-Experts (MoE) models. This provides
a new perspective on internal model behavior for OOD
detection.

(2) We validate the effectiveness of our proposed method
across a range of real-world scenarios that autonomous

vehicles may encounter, using a diverse OOD dataset built
with a high-fidelity simulator

(3) We demonstrate that Routing Entropy provides comple-
mentary information to output-based uncertainty methods,
and that their combination significantly enhances OOD
detection performance.

II. PROPOSED METHOD

The Mixture-of-Experts (MoE) consists of a router and a
set of N sub-networks, called experts. The core of MoE is
conditional computation, which activates a sparse subset of
experts, and this selection is handled by the router. Fig. 1(a)
illustrates the process of a standard MoE layer with a top-k
routing policy. For a given input Xj,, the router computes a
vector of routing scores over all IV experts. Top-k selection is
then applied, where only the k experts with the highest scores
are chosen to process the input. The final output of the MoE
layer X, is then calculated as a weighted sum of the outputs
from these selected experts, with the weights based on their
routing scores.

While routing scores are mainly used for expert selection,
we observe that their distribution also reflects the model’s
uncertainty in its decisions. For familiar ID inputs, the router
tends to assign high scores to a few experts, showing confi-
dence decisions. In contrast, for unfamiliar OOD inputs, the
scores are more evenly spread across experts, indicating uncer-
tainty. To quantify this behavior, we propose Routing Entropy,
which measures the uncertainty of the routing distribution.
A confident routing will produce low entropy, while a high
entropy indicates an uncertain routing.

The calculation of the Routing Entropy is as follows. For
a given input z, the router produces a vector of routing
score logits L(x) = [l1,la,...,ln] for N available experts.
We first convert these logits into a probability distribution

P(x) = [p1,p2,-..,pn] using the Softmax function:
eli
pi(r) = =¥

Zj:l elj
From this probability distribution, we then calculate the Rout-
ing Entropy Houting () using the Shannon entropy formula:

N
Hrouting(x) = - va(lli) logpl(:zz)
i=1

This scalar value represents our OOD detection score. A higher
score indicates a higher likelihood of the input being OOD.
Fig. 1(b) shows the concept of our method. For typical ID
inputs, such as clear-day driving scenes, the router confidently
assigns high scores to a few specific experts. Conversely, for
OOD inputs, such as nighttime scenes or domain shifts (e.g.,
from synthetic to real-world image), the router produces a
flatter, more uniform score distribution. By calculating the
Routing Entropy, our method translates these patterns into
a scalar value. As shown on the Fig. 1(b) right, ID inputs
produce low entropy values (blue), while OOD inputs produce
high values (red). The separability between these two distri-
butions allows for OOD detection with a simple threshold.



III. EVALUATION

We evaluate the proposed Routing Entropy method with the
following research questions:

RQ1 (Effectiveness): How effective is the Routing Entropy
compared to baseline OOD detection methods?

RQ2 (Complementarity): Does utilizing both Routing En-
tropy and an output-based method achieve better per-
formance than when either method is used alone?

RQ3 (Optimal Combination): Which combination of Rout-
ing Entropy and an output-based baseline shows the best
performance?

A. Experimental Setup

Model. We trained a semantic segmentation model for au-
tonomous driving scenarios. We use Mask2Former [21], a
state-of-the-art Transformer-based architecture known for its
strong performance on various segmentation tasks. To incor-
porate our method, we modified its architecture by replacing
the standard Feed-Forward Network (FFN) in the final layer of
the Transformer decoder with a Mixture-of-Experts FFN layer.
We configured this MoE layer with N = 8 experts and a top-k
routing policy where k£ = 2. Since Mask2Former operates with
a multiple input-output structure due to its internal design, we
take the mean of their OOD scores to obtain a single score
per image for further evaluation.

Training. As the focus of our work is OOD detection rather
than segmentation performance, we utilized the CARLA simu-
lator [22] to generate both ID and OOD data. Our training data
consists of 20,000 images captured under various but “normal”
daytime driving conditions. The model was trained on this
dataset until it converged without data augmentation.

OOD Data. To evaluate the OOD detection capabilities of
our method, we created five types of OOD datasets. These
datasets were designed to simulate a range of challenges that
an autonomous vehicle might encounter, which are sparsely
represented in standard training datasets. The OOD types cover
three main categories of distribution shift: perceptual changes
(e.g., lighting, weather), data corruption from potential sensor
failures, and the domain gap between synthetic and real-world
data. An ID test set was also used in evaluation, which is
generated under the same conditions as the training data. The
five OOD types are described as follows:

* Low Illumination: Nighttime scenes with limited lighting,
evaluating day-to-night shifts.

* Heavy Fog: Reduced visibility due to dense fog, represent-
ing adverse weather conditions.

* Blur: Gaussian blur applied to images, mimicking focus loss
or motion blur.

* Noise: Random black pixels injected into images to simulate
sensor or transmission errors.

» Syn-to-Real: Real-world images from Cityscapes [23] to
evaluate synthetic to real-world domain shifts.

Baselines. To ensure a fair and practically meaningful compar-

ison, we limit our evaluation to training-free methods. Methods

that require access to OOD data for additional training [24, 25]

or hyperparameter tuning [26, 27] are not considered. These
approaches typically assume availability of a portion of OOD
samples during development, which is a significant limitation
in scenarios where such examples are unknown. In contrast,
our method does not rely on any additional training or tuning
with OOD data. Therefore, we consider the following baselines
that are training-free:

e Maximum Softmax Probability (MSP) [12]: A standard
baseline for OOD detection. This uses the maximum value of
the model’s final softmax probability vector as a confidence
score. The intuition is that models produce lower confidence
scores for OOD inputs.

* Prediction Entropy [20]: Also known as Softmax Entropy,
this evaluates the entire distribution of the final prediction.
It is calculated by Shannon Entropy formula to the softmax
probabilities of the prediction logits. A higher entropy means
greater uncertainty in the model’s prediction, which suggests
a potential OOD input.

* Gini Coefficient [13]: This method, recently proposed for
OOD detection, calculates the Gini coefficient—a measure
of inequality from economics—to the model’s final softmax
probabilities. It quantifies the level of disparity in the pre-
diction confidence distribution.

Evaluation Metrics. We measure the false positive rate of
OOD samples when true positive rate of ID samples is at 95%
(FPR95) and the area under the Receiver Operating Character-
istic curve (AUROC) as threshold independent metrics. These
metrics quantify how well a method can distinguish between
ID and OOD data and are widely adopted in prior works on
OOD detection [12, 24, 27].

B. RQI Results: Effectiveness

Table I shows our evaluation results across the five OOD
types. To answer RQ1, we evaluate Routing Entropy (RE) as a
standalone method against the baselines. The results in the top
four rows of Table I show that RE is highly effective, though
its performance varies depending on the OOD type. RE shows
a substantial improvement over all baselines in three OOD
types. Notably, in the Syn-to-Real scenario, RE achieves an
FPRO95 of 2.29%, while baselines score above 25%. It shows
similarly dominant performance on Low Illumination (7.40%
FPR95) and Noise (17.50% FPR95). However, RE shows
clear limitation in the Heavy Fog scenario. Its performance
is significantly lower than baselines, particularly Prediction
Entropy (79.20% vs. 95.56% in AUROC).

The reason why the model’s routing behavior is highly
sensitive to some OOD types but less so others is a topic
for future investigation. We argue that this observation opens
a promising direction: to deeply analyze the characteristics
of MoE routing behavior and understand which types of
distribution shifts it can and cannot effectively capture.

C. RQ?2 Results: Complementarity

To answer RQ2, we investigate if a combined approach
improves OOD detection by utilizing both our internal routing



TABLE I
EVALUATION RESULTS ON VARIOUS OOD TYPES

Method \ Type Low Illum. Heavy Fog

Blur Noise Syn-to-Real

FPR95 | AUROC 1 FPR95 | AUROC 1

FPR95 | AUROC 1 FPR95 | AUROC 1t

FPR95 | AUROC 1

Standalone Method

MSP [12] 38.18 88.42 24.43 92.71 52.25 81.25 63.96 77.92 25.78 91.30
Pred. Entopy [20] 38.91 86.02 12.24 95.56 50.99 80.72 69.22 72.43 26.25 89.69
Gini Coef. [13] 3891 84.47 21.77 93.91 50.10 79.80 63.44 72.81 29.90 87.12
Rout. Entropy (ours) 7.40 98.38 31.67 79.20 39.79 80.49 17.50 93.18 2.29 99.60
Combination with Routing Entropy

MSP + Rout. Entropy 542 99.11 24.84 83.70 32.97 83.78 14.90 94.54 0.52 99.84
Pred. + Rout. Entropy 2.97 99.50 15.21 93.63 27.34 89.05 12.76 95.95 0.00 99.96
Gini + Rout. Entropy 3.54 99.45 17.19 92.27 27.45 88.38 13.33 95.68 0.00 99.95
Combination of Baselines

MSP + Pred. Entropy 39.37 86.88 16.61 95.19 51.51 80.99 69.06 73.95 26.67 90.41
MSP + Gini Coef. 3891 85.66 22.34 93.82 50.68 80.24 63.28 74.23 29.43 88.38
Pred. + Gini Coef. 38.80 85.33 18.28 94.81 50.73 80.30 66.04 72.58 27.55 88.52

Note: Bold indicates the best performance for each OOD type. Underline marks the best performance within standalone method.

Prediction Entropy Routing Entropy (ours) Prediction + Routing Entropy

(combined)
Fig. 2. OOD score distributions on the Syn-fo-Real scenario. Distributions
of scores for Prediction Entropy (left), Routing Entropy (middle), and their
combination (right). Blue and red represent ID and OOD data, respectively.
Note that the distribution shapes for the two individual methods are visibly
different. The combined method clearly shows improved separability.

signal and an external prediction signal. We create these com-
bined scores using a simple additive approach. We compute
a combined score by adding the Routing Entropy and the
baseline score. For methods like MSP, and Gini coefficient,
which produce higher scores for confident predictions, we
negate the values before adding them.

The results in Table I demonstrate that this combination
strategy is highly effective. We first observe from the bottom
three rows of Table I that combining baselines with each other
(e.g., MSP + Pred. Entropy) yields no meaningful performance
gain, indicating they capture redundant information.

In contrast, combining RE with any baseline leads to a
significant improvement. The improvement is noteworthy in
the Blur scenario, while RE alone (80.49% AUROC) performs
similarly with the baselines, combining it with Prediction
Entropy (Pred. + Rout. Entropy) boosts the AUROC to
89.05%. This suggests that even when the individual signals
are not overwhelmingly strong, they capture complementary
aspects of the OOD input. Similar gains are observed in Low
Illumination, Noise, and Syn-to-Real. This complementary
nature is visually illustrated in Fig. 2, which shows the score
distributions for the Syn-fo-Real scenario. We observe that
Prediction Entropy and our Routing Entropy produce visibly
different distribution shapes for both ID (blue) and OOD (red)
data. When these two scores are additively combined, the
resulting distributions for ID and OOD data become more
separated (Fig. 2 right).

However, in the Heavy Fog scenario where RE’s standalone
performance is particularly poor, combining it actually de-
grades the performance (FPR95 12.24% — 15.21% in Pred.
Entropy). This result indicates that if the routing signal itself
is too noisy for a certain OOD type, a simple additive combi-
nation can harm an already effective output-based method.

D. RQ3 Results: Optimal Combination

Finally, to answer RQ3, we identify which combination of
Routing Entropy and a baseline method yields the best perfor-
mance. The results in the middle section of Table I consistently
show that combining Routing Entropy with Prediction Entropy
(Pred. + Rout. Entropy) is the most effective approach across
all evaluated OOD types, with its scores marked in bold.

An interesting result from the Noise scenario shows the
unique synergy between these two entropy-based methods.
In this case, the Gini coefficient is better standalone baseline
than Prediction Entropy. However, the Pred. + Rout. Entropy
combination is still superior to the Gini + Rout. Entropy com-
bination. This suggests that the effectiveness of a combination
depends not just on the performance of the individual methods,
but on the compatibility of the signals they represent.

We believe the synergy arises from using entropy to measure
uncertainty at two consecutive stages: routing and prediction.
Future work could explore more advanced approaches and
combination methods to better leverage the complementary
information from these for OOD detection.

IV. CONCLUSION

In this paper, we propose Routing Entropy, a novel method
that leverages the internal routing mechanism of Mixture-of-
Experts (MoE) models for out-of-distribution (OOD) detec-
tion. We found that it appears to capture different aspects of
model uncertainty compared to existing methods that analyze
the model’s final output. This complementarity was confirmed
when combining routing entropy with an output-based method,
which consistently led to significantly better OOD detection
performance. We hope this work contributes to opening a



new direction of research in OOD detection by leveraging the
internal behaviors of modern neural network architectures.
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