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Structured Observer Synthesis via Static Output Feedback

Hadriano Morales Escamilla1 and Paul Trodden1

Abstract— This paper considers the problem of structured
observer synthesis for linear-time-invariant (LTI) systems. The
importance of the problem is demonstrated through two mo-
tivational examples: utilizing high-fidelity black-box models as
part of observers, and anti-windup gain design. The problem is
connected with its control counterpart: static output feedback,
and the process is illustrated through the design of an anti-
windup gain for a multi-variable PID controller. A numerical
example shows how the resulting closed-loop system converges
faster than a recent method in the literature, with the added
benefit of solving the problem with a non-iterative method,
which decreases the computational effort.

Keywords— Structured observer, anti-windup, static output
feedback, multi-variable control.

I. INTRODUCTION

State-feedback controllers rely on knowledge of the sys-

tem states, however, these are rarely measured, at least not

completely. An observer aims at estimating these unmeasured

states by combining knowledge about the system dynamics

with the available measurements [1].

In addition, one may think of other inaccessible system

variables that might be of importance depending on the

designer needs. For instance, those cases where some inputs

are not measured, e.g. unknown disturbances, or variation in

system parameters, such as the drift caused by deterioration.

For these, the unknown input observer (UIO) offers an

estimate of said inputs [2]. Other requirements may be moti-

vated by the need of having accessible certain unmeasurable

outputs, hence, an output observer may be required [3].

All these classical approaches assume that the predicted

system state will be corrected fully, i.e. that the error between

the predicted outputs and the respective measurements will

be used to correct all the states simultaneously. Therefore, if

there are restrictions in how the corrections are performed,

alternative synthesis procedures become necessary. These

restrictions might be, for example, that only a subset of the

predicted states are to be corrected, or that different subsets

of measurement are used to correct each state.

These restrictions are motivated in Section II via two

practical examples: an UIO using black-box models, and

design of anti-windup gains.

As we show in Section III-B, the problem of the structured

observer design for linear-time-invariant (LTI) systems can

be posed as its counterpart in control design: the static output

feedback (SOF) synthesis, which allows taking advantage of

recent results from [4].

1Hadriano Morales Escamilla and Paul Trodden are with the Department
of Automatic Control and Systems Engineering (ACSE), The University
of Sheffield, UK (e-mail: h.m.escamilla@sheffield.ac.uk,
p.trodden@sheffield.ac.uk).

A. Motivating examples

The UIO using black-box models aims at utilizing the

best available representation of a system as part of the

observer. However, this type of model may have its dynamics

inaccessible to us, and hence, the corrections introduced

by an observer will not be able to alter directly the state

transition equation. Instead, this will be achieved indirectly

through some auxiliary input, i.e. the correction is restricted

in the way it is introduced to the state. This restriction is

imposed by the architecture of the observer.

In the case of multi-variable anti-windup design, most

modern literature [5, 6, 7] poses the design problem as a

controller synthesis with a sector non-linearity. A perhaps

simpler approach is the observer-based synthesis [8, 9],

which regards the unsaturated closed-loop system as an

imperfect estimator of the true system, i.e. the system with

saturated inputs. The restriction in this case is imposed by the

problem, as only the controller state can be directly corrected.

B. Notation

Throughout the paper, the standard mathematical notation

is used, with lowercase array variables, e.g. x, uppercase

matrix variables, e.g. A. The symbols R and S are the sets

of real and symmetric numbers respectively. The dimensions

of the sets are specified as exponents, and any restrictions

as subscripts, e.g. Snx

++ (Snx

+ ) is the set of positive definite

(positive semi-definite) symmetric matrices of order nx.

The sum of a square matrix with its transpose is repre-

sented by {A}S = A + AT . The symbol ⋆ in the upper-

diagonal blocks is used to indicate their equivalence to the

transpose of the corresponding lower-diagonal blocks in a

symmetric matrix.
[

A ⋆

B C

]

≡

[

A BT

B C

]

. (1)

The definiteness and semi-definiteness of a matrix are rep-

resented by the mathematical symbols ≺ and �. The symbol

I represents the identity matrix of appropriate dimensions.

Finally, E [·] performs the expected value operation.

C. Aim and contribution of this paper

In this paper we consider the structured observer synthesis,

firstly by acknowledging its relevance in realistic engineering

applications, and secondly by framing this problem as the

estimator equivalent to static output feedback (SOF) synthe-

sis, i.e. the design of a gain constrained in both its row and

column spaces.

This paper extends the non-iterative result of [4] to ob-

server design, and establishes a common framework to the



synthesis of structured observers. The process is illustrated

by applying the technique to an anti-windup strategy, show-

ing how when a PID is tuned, the backstepping gain can

be readily determined as a function of the system dynamics,

and the controller gains.

II. PROBLEM STATEMENT AND MOTIVATING EXAMPLES

This section contextualizes the problem addressed in this

paper by first discussing two motivating examples. The

problem is then formalized in a common framework.

A. Unknown input observer design using black-box models

High-fidelity models representing complex engineering

and/or social systems present an accurate means to better un-

derstand these systems, and to obtain unmeasured variables

that can be used for monitoring or control purposes.

It is therefore desirable to use these models within ob-

server frameworks, so the accuracy of the estimations is

significantly improved. However, these models are often built

as black-box software applications, which makes it difficult

to use the standard observer design paradigm.

Observers are usually designed making the assumption

that the state transition equation is available, and can be

corrected, e.g. the standard, or extended, Kalman filter mod-

ifies the state of the model during the correction step [10].

This is somewhat incompatible with the nature of black-box

models, where the internal state transition cannot be directly

modified, as only system inputs and outputs are available.

Hence, to modify the dynamics when a black-box model is

to be used as part of the observer, the designer is left only

with the possibility of changing the inputs to the system.

If all inputs are known, the designer might choose to

introduce small variations to the existing inputs, and if some

of the system inputs are unknown, the designer might choose

to use these unknown inputs, or a subset of them, adapting

the model to better resemble the real system.

All these different alternatives can be regarded as unknown

input observer (UIO) problems, with structure constraints,

i.e. with restrictions on how the system state is corrected.

Fig. 1 shows an example of an UIO using a black-box model,

where the signal d(t) needs to be estimated in order to adapt

the black-box model.

Unknown input observer

Plant

Unknown input 
estimator

Black-box 
model

Fig. 1. Unknown-input observer using a black-box model.

In the UIO problem, the dynamics of the unknown input

can be regarded as a random walk using a Gaussian variable

[11], effectively defining the random nature of the changes in

this input from the system’s perspective. A linear version of

this system can be represented in state space as in (2) using

augmented state formulation, where the time dependency of

the variables is omitted for simplicity of notation.


























[

ẋ

ḋ

]

=

[

A G

0 0

][

x

d

]

+

[

B

0

]

u+

[

wx

wd

]

,

y =
[

C H
]

[

x

d

]

+Du+ v ,

(2)

where x ∈ R
nx is the system state, u ∈ R

nu is the

measured input, d ∈ R
nd is the unknown input, y ∈ R

ny

is the measurement, the matrices A, B, C, D, G, and H

are of appropriate dimensions, and the stochastic variables

wx ∈ R
nx , wd ∈ R

nd and v ∈ R
ny are the sources

of uncertainty in the state, the unknown input, and the

measurement respectively.

The observer from Fig. 1 can then be formulated as per (3).

where it can be seen that the correction enters the augmented

state only through the unknown input d, as the dynamic

equation is not available in the said architecture.
[

˙̂x
˙̂
d

]

=

[

A G

0 0

] [

x̂

d̂

]

+

[

B

0

]

u+

[

0
I

]

K ỹ , (3)

where ỹ = (y − ŷ) is the measurement error, and K is the

observer gain of appropriate dimensions.

B. Observer-based anti-windup design

A more general setting would be that where the corrections

are introduced to the state through a desired structure, i.e.

the correction does not modify the state transition equation

freely, but through a (non-invertible) matrix.

As an illustrative example, we will consider here the

design of a backstepping gain for the anti-windup of a

proportional-integral-derivative (PID) controller, following

the observer-based interpretation of anti-windup techniques

[9]. The procedure followed here is applicable to both single-

and multi-variable controllers.

The relevance of the PID, being the most used control

paradigm in industry [12], is well recognized. The availabil-

ity of a tool to systematically design anti-windup gains as

part of the tuning process of a PID is therefore pertinent and

timely, considering the latest developments on static output

feedback (SOF) synthesis.

The main challenge when designing anti-windup backstep-

ping gains arises when trying to find a feasible solution to the

bilinear matrix inequality (BMI) reached during the synthesis

process. This BMI is non-linearizable due to the restriction in

how the corrections enter the closed-loop system, since, like

with the UIO from Section II-A, only part of the state can be

modified, i.e. the corrections in an anti-windup scheme can

be made to the controller integrator, its input, or its output,

however, none of these corrections will reach the system

when the controller output is saturated.

Fig. 2 shows a common PID scheme, where the backstep-

ping correction is introduced through the error signal [5].



PlantPID

Fig. 2. Backstepping anti-windup scheme for a PID regulator.

The closed-loop LTI system from Fig 2 can be formulated

in state-space form as in (4), where the correction enters the

state through the input of the controller. This, like in (3),

illustrates a case with restrictions to the state correction.
[

ẋ(t)

ẋc(t)

]

= Acl

[

x(t)

xc(t)

]

+

[

0

Gc

]

Kb ũ(t) , (4)

where x ∈ R
nx and xc ∈ R

nc are the system and controller

states respectively, ũ = (ū−u) is the difference between the

system input and the controller output, Acl is the closed-loop

transition matrix, Gc is the controller state correction matrix,

and Kb is the backstepping gain.

This type of setup can be easily generalized to any type of

restriction in the correction of the observer, as it will be clear

in Section II-C, and it is chosen to illustrate the process of

designing the structured observer, as it is a well-understood

control paradigm by the broader engineering community.

C. The structured observer design problem

Let us consider the following LTI continuous-time system:
{

ẋ(t) = Ax(t) +B u(t) +Gω(t) ,

y(t) = C x(t) +Du(t) +H ω(t) ,
(5)

where x(t) ∈ R
nx , u(t) ∈ R

nu , and y(t) ∈ R
ny represent

respectively the state, input, and measurement of the system,

ωT
(t) = [wT

(t) v
T
(t) ], with w(t) ∈ R

nw being the system uncer-

tainty, and v(t) ∈ R
nv being the measurement noise. Matrices

A, B, C, D, G, and H are of appropriate dimensions.

The uncertainty w(t) and the measurement noise v(t)
are regarded as Gaussian variables with zero mean and

covariances given by (6).

E

[

[

w(t)

v(t)

] [

w(τ)

v(τ)

]T
]

=

[

Q ⋆

S R

]

δ(t−τ) , (6)

where Q ∈ S
nw and R ∈ S

nv are the covariance matrices

of the uncertainty and the measurement noise respectively,

S ∈ R
nv×nw is the cross-covariance, and δ(·) is the Dirac

delta function. Finally, the covariance of ω(t) is defined in

(7), where Qω is defined by blocks in (6).

E

[

ω(t) ω
T
(τ)

]

= Qω δ(t−τ) . (7)

The structured observer design problem consists in de-

signing a linear observer gain K ∈ R
nq×ny , such that

the estimated state x̂(t) in (8) converges to a value that

minimizes the covariance of the estimation error defined by

x̃(t) = x(t) − x̂(t), i.e. K minimizes P(t) = E

[

x̃(t)x̃
T
(t)

]

.

{

˙̂x(t) = A x̂(t) +B u(t) + J K
(

y(t) − ŷ(t)
)

,

ŷ(t) = C x̂(t) ,
(8)

where J ∈ R
nx×nq is the correction matrix. The dynamics

of the error between the system and the observer are:

˙̃x(t) = A x̃(t) +Gω(t) − J K
(

C x̃(t) +H ω(t)

)

. (9)

In contrast to the traditional Luenberger [1] or Kalman

filter [10] observers, the uncertainty matrix G from (5) can

now be included in the estimator by setting J = G in (8),

in order to take advantage of our knowledge about how the

uncertainty enters the system. Furthermore, in an even more

general case, the correction matrix in the observer (8) might

even differ from the one in the system (5), i.e. J 6= G, or be

non-trivial, i.e. J 6= I .

From this definition, it follows that the UIO observer prob-

lem presented in II-A is a particular case of the structured

observer from (8) using an augmented system representation,

and a correction matrix J = [ 0 I ]
T

. Similarly, the PID anti-

windup design from II-B can also be considered a structured

observer with J =
[

0 GT
c

]T
.

The challenge arises precisely when considering a non-

invertible correction matrix, which leads to a non-linearizable

bilinear matrix inequality. This will be solved by means of

SOF methods such as the one in [4], for which first we

will need to solve a traditional observer design, e.g. the

continuous-time Kalman filter [13].

III. STRUCTURED OBSERVER SYNTHESIS

This section presents our proposed method to solve the

structured observer synthesis, and its application to PID anti-

windup design. First, some useful lemmas are enunciated.

Second, it is shown how the structured observer design can

be reformulated as a SOF problem, with the resulting BMI

being dilated following the approach in [4]. Finally, the

process is illustrated through the anti-windup design for a

PID controller.

A. Useful lemmas

Lemma 1: Continuous-time Kalman filter. The traditional

Kalman filter in continuous time follows (10).

˙̂x(t) = A x̂(t) +B u(t) + L
(

y(t) − ŷ(t)
)

, (10)

where the observer state is fully corrected via multiplying the

measurement error by the gain L ∈ R
nx×ny . It is well-known

[13] that solving the Riccati inequality in (11) provides the

optimal observer gain L in the sense of minimum error

covariance when the observer is constructed as in (10).

(A− LC)P(t) + P(t) (A− LC)
T

+ [I − L]

[

Qs ⋆

Ss Rs

] [

I

−LT

]

� 0,
(11)

where P(t) ∈ S
nx

++ is the covariance of the state estimation

error, the matrices A, C, G, and H are defined in (5), and

the system covariance matrices are defined by (12).

Qs = GQω GT , Ss = H Qω GT ,

Rs = H Qω HT .
(12)



The optimum is achieved with P(t) = Po and L = Lo

such that the equality holds.

Lemma 2: Structured observer. The pair (P,K) minimis-

ing the trace of P(t) subject to (13) is the optimum solution

to the structured observer problem.

(A− JKC)P(t) + P(t) (A− JKC)
T

+ [I − JK]

[

Qs ⋆

Ss Rs

] [

I

−KTJT

]

� 0,
(13)

where K ∈ R
nw×ny is the structured gain, and P(t) ∈ S

nx

++.

The proof follows from setting L = JK in (11).

For clarity of notation, the time-dependency of all signals

and matrices will be omitted from the notation hereafter.

Lemma 3: Linear quadratic static output feedback. For

the closed-loop system given by:

ẋ = (A+BKsofC)x , (14)

where Ksof ∈ R
nu×ny is the static output feedback gain,

the tuple (P,X, Y ), which minimizes the trace of P subject

to (15), provides a Ksof that is locally optimal, among the

class of SOF gains, with respect to the linear quadratic (LQ)

criterion [4].
[

{

(A+BKlqr)
TP

}S
+Qlqr ⋆

BTP + ST
lqr −XKlqr + Y C Rc − {X}

S

]

� 0,

(15)

where Klqr ∈ R
nu×nx is the optimal state-feedback gain

with respect to the LQ criterion, Qlqr and Slqr are defined

by (16) and (17) respectively, and Rc ∈ S
nu

+ is the actuation

penalty.

Qlqr = Qc + {ScKlqr}
S
+KT

lqrRcKlqr , (16)

Slqr = Sc +KT
lqrRc , (17)

where Qc ∈ S
nx

+ is the state penalty, and Sc ∈ R
nx×nu is

the cross-penalty. The proof can be found in [4], where it is

discussed how this approach also minimizes the conservatism

of the solution. The SOF gain is given by Ksof = X−1Y .

B. From structured observer to SOF formulation

Recognizing that the optimum correction in an observer is

given when the correction matrix is J = I , the full observer

gain L is first derived by solving (11). This gain is then used

to reformulate (13) in terms of the error between a structured

gain K with its correction matrix J , and the optimal full

observer gain L.

{(A− LC)P + (L− JK) (CP + SL)}
S

+QL + (L− JK)Rs (L− JK)
T
� 0,

(18)

where the new matrices SL and QL are defined by (19) and

(20) respectively.

SL = Ss −RsL
T , (19)

QL = Qs − {LSs}
S
+ LRs L

T . (20)

This formulation enables the dilation of the BMI from (18)

into the following form:

[

{(A− LC)P}
S
+QL ⋆

CP + SL Rs

]

+

{[

(L− JK)
−I

]

[F X]

}S

� 0,

(21)

where F ∈ R
ny×nx and X ∈ R

ny×ny are two new slack

matrices.

The slack matrix F can be safely set to 0 in (21), thanks

to (A− LC) being Hurwitz by design of L, which leaves

the resulting dilated inequality as linear after applying the

change of variable Y = KX . This leads to (22), which can

be solved by any readily available LMI solver. For more

details on this dilation the reader is referred to [4].
[

{(A− LC)P}
S
+QL ⋆

CP + SL +XTLT − Y TJT Rs − {X}
S

]

� 0.

(22)

The gain K = Y X−1 resulting from minimizing the trace

of P subject to (22) can be used directly as the structured

observer correction gain, or can be used as a starting point

for iteration algorithms, such as the one proposed in [14],

which may numerically refine the gain further.

This development takes us to formulate the following

result. The proof follows from the appropriate changes of

variables in Lemma 3.

Proposition 1: The triplet (P,X, Y ) that minimizes the

trace of P subject to (22) provides a locally optimal solution

to the structured observer problem by letting K = Y X−1.

Remark 1: As discussed in [4], this solution is locally

optimal due to the latent conservatism of the method. Nev-

ertheless, this conservatism is minimized as part of the

solution.

Remark 2: This result can also be understood from the

perspective of the known duality between optimal control

and estimation [15], as it pivots on a result from controller

synthesis.

C. PID anti-windup design

The second motivating example given in the introduction

is the design of a backstepping anti-windup gain that corrects

the error fed back to a PID controller, to avoid windup.

Anti-windup, and more generally AWBT (anti-windup

bump-less transfer) techniques have been studied extensively

by the control community for decades, with early connec-

tions to static output feedback noticed in [16] and [17], where

even an example of a decentralized anti-windup gain is given.

A multi-variable PID controller, like the one in Fig. 2,

before introducing any anti-windup corrections, can be for-

mulated in state-space as in (23), adapted from [18].










ẋc =

[

−T−1 0
0 0

]

xc +

[

T−1

I

]

e ,

u =
[

−T−1Kd Ki

]

xc +
(

Kp − T−1Kd

)

e ,

(23)

where xc ∈ R
2ne is the controller state, which contains

twice as many states as errors being fed to the controller,

as derivative filters and integrators, u ∈ R
nu is the control

command given by the PID controller, e ∈ R
ne is the



error signal, T ∈ S
ne is a diagonal matrix containing the

time constants of the derivative filters (to provide causality),

and Kp, Ki, and Kd are the multi-variable PID gains of

appropriate dimensions. These gains are assumed tuned to

control the plant in (5) as part of an independent process.

A more generic formulation of the controller when adding

anti-windup compensation is provided in (24).
{

ẋc = Ac xc +Bc e+Gc Kb (ū− u) ,

u = Cc xc +Dc e+Hc Kb (ū− u) ,
(24)

where Ac, Bc, Cc, and Dc are the controller matrices, defined

in (23) for the PID case, while Gc and Hc are the state and

output correction matrices of appropriate dimensions.

In order to illustrate the example from Fig. 2, the matrices

Gc and Hc are defined by (25), as the correction enters

through the error signal. However, other definitions are

possible depending on the choice of correction.

Gc = Bc , Hc = Dc . (25)

Let us now define a non-linear closed-loop system, where

the controller output is exactly the plant input at all times,

and the non-linearity is represented in the controller by

additive uncertainty as per (26).
{

˙̄x = Ax̄+Bū , ȳ = Cx̄+Dū ,

˙̄xc = Acx̄c −Bcȳ + w , ū = Ccx̄c −Dcȳ + v .
(26)

where w ∈ R
nc , and v ∈ R

nu are the uncertainties in the

controller state and its output, and the reference signal from

Fig. 2 has been set to 0 for simplicity of notation.

If now we define the plant represented by the matrices

(A,B,C,D), in connection to the controller with anti-

windup from (24), as our estimator with corrections, then, the

dynamics that define the error between our estimator and the

non-linear closed-loop system can be defined by (27), after

performing the necessary algebraic operations.
{

˙̃xcl = Acl x̃cl +Gcl ω −Bcl Kb ũ ,

ũ = Ccl x̃cl +Hcl ω −Dcl Kb ũ ,
(27)

where xT
cl =

[

xT xT
c

]

is the closed-loop state, containing

both the system and the controller states, and ωT = [wT vT ].
The resulting closed-loop matrices from this type of inter-

connection, or the process to obtain them, can be seen in the

literature, see for example [7] and references therein.

This formulation follows ideas from [9], by regarding the

difference between the saturated and the unsaturated closed-

loop systems as caused by the uncertainty affecting the

controller state and the command signal. The error between

these two systems is the result in (27).

Due to the presence of the feedthrough matrix Dcl, a

change of variable is needed in order to obtain the original

SOF formulation. By using the transformation from [19]:

Γb = Kb(I +Dcl Kb)
−1, the error is redefined in (28).

˙̃xcl = Acl x̃cl +Gcl ω −Bcl Γb (Ccl x̃+Hcl ω) . (28)

The synthesis of the gain Γb can be seen as a case of

structured observer design, by letting A = Acl, G = Gcl,

J = Bcl, C = Ccl, and H = Hcl in (9). Finally, once the

gain Γb has been calculated, the backstepping gain can be

recovered by reverting the transformation as in (29).

Kb = (I − Γb Dcl)
−1 Γb . (29)

Remark 3: The presence of feedthrough is not desirable in

practice. In order to avoid it in the anti-windup scheme, a first

order transfer function can be used to filter the error ũ before

multiplying it by the backstepping gain. This additional

time constant can be easily incorporated to the design by

augmenting the state.

Remark 4: In general, all observer cases where the num-

ber of correction signals is lower than the number of states,

can be represented by a non-invertible matrix J .

Remark 5: when solving the problem with feedthrough,

the non-singularity of (I − Γb Dcl) can be imposed through

the LMI in (30).
[

−I ⋆

Dcl + Y T −DclD
T
cl − {X}S

]

≺ 0 . (30)

The proof follows from applying, to the inequality

(I − Γb Dcl) (I − Γb Dcl)
T

≻ 0, a similar dilation to the

one used in III-B.

IV. NUMERICAL EXAMPLE

This section shows the results of synthesizing a backstep-

ping gain by the proposed method, in comparison to the

method from [7], where a PI controller connected to an

example plant from [20] is presented. Computation of anti-

windup gains for this system is claimed to be challenging

using other existing approaches.

Two anti-windup strategies are analyzed and computed to

solve the problem in [7]: Algorithm 1 is used to obtain a gain

that corrects the controller state xc directly, while Algorithm

2 is used to synthesize a gain to modify both the controller

state xc and the control signal u before saturation.

These two examples can be understood in the framework

of Section III-C by setting the matrices Bcl and Dcl to the

values in (31) and (32) respectively for each case, where the

matrices ∆u and ∆y are as defined in [7].

BCase1
cl =

[

0
I

]

, DCase1
cl =

[

0
]

. (31)

BCase2
cl =

[

0 B∆u

I Bc∆yD

]

, DCase2
cl = [ 0 ∆u ] . (32)

The gains obtained for two different sets of covariance

matrices are in Tab. I, together with the ones obtained with

the method from [7]. The sign of the latter has been inverted,

since the error signal in [7] is calculated as (u− ū).
The simulation results are shown in Fig. 3. The left two

plots show the system output, and the saturated control

signal, when the anti-windup correction only modifies the

controller state. The right two plots show the same signals,

but with the anti-windup correction applied to both the

controller state, and the control signal.



TABLE I

ANTI-WINDUP GAINS FOR THE EXAMPLE FROM [7]

Scenario Priuli et al. [7]
Section III-C

(Q = 1, R = 1)
Section III-C

(Q = 1, R = 0.1)

Case 1 1.6491 1.2959 5.9674

Case 2

[

1.0020
−0.4307

] [

0.6311
−0.8795

] [

8.3672
1.0148

]

Fig. 3. Simulation comparison with the gains synthesized in [7].

In Case 1, all responses are similar, with the first tuning

slightly slower than [7], and the second tuning slightly faster.

In Case 2, both tunings (overlapping in the figure) are slightly

faster than [7].

The most noticeable difference is in the computing times.

Our solution takes advantage of the recent results for SOF

synthesis from [4], which does not need to perform iterations,

resulting in faster computing times, as reported in Tab. II.

TABLE II

COMPUTING TIMES FOR THE GAINS IN TAB. I

Scenario Priuli et al. [7]
Section III-C

(Q = 1, R = 1)
Section III-C

(Q = 1, R = 0.1)

Case 1 35.49 s 0.14 s 0.11 s

Case 2 51.24 s 0.19 s 0.12 s

The times in Tab. II were obtained on an Intel Core i7-

7500U CPU @ 2.70GHz × 2 with 8 GB of RAM, using

YALMIP for MATLAB, with MOSEK as LMI solver.

V. CONCLUSIONS

This paper presents the structured observer synthesis prob-

lem for LTI systems, motivated by two examples of practi-

cal significance: the use of black-box models in observer

designs, and the synthesis of anti-windup gains.

The problem is formalized in an unified framework, and

connected with its control design counterpart: the static

output feedback (SOF) synthesis.

As an application example, the design of an anti-windup

gain is illustrated, and posed as a structured observer prob-

lem. Finally, the method is applied to an example from the

literature, recognized to be challenging to solve [7].

The results show that our method achieves slightly faster

responses in the example system, with the addition of provid-

ing the capability to tune the gain. Furthermore, if the method

from [4] is used, the gain can be computed in a fast and non-

iterative manner, resulting in a computation performed 200

to 300 times faster.

The structured observer synthesis has been illustrated here

for linear continuous-time invariant systems. Extension to

discrete-time is trivial, via formulation of the equivalent ARE

and BMI conditions. Similarly, extension to LPV systems is

possible by means of the Lyapunov shaping paradigm [21].
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