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ABSTRACT: We explore an extension of the ACDM model in which the pressure p of the dark
energy (DE) fluid evolves with the expansion of the Universe, expressed as a function of the
scale factor a. The corresponding energy density p is derived from the continuity equation,
resulting in a dynamical equation-of-state parameter w = p/p during the late-time expansion
of the Universe. The pressure is modeled using a Taylor expansion around the present epoch
(a = 1), introducing deviations from a cosmological constant within the dynamical dark
energy (DDE) framework. At first order, a single new parameter ; captures linear deviations,
while a second-order parameter, 2o, accounts for quadratic evolution in the pressure. We
constrain the first- and second-order DDE models using multiple observational datasets and
compare their performance against ACDM and the CPL parameterization. A joint analysis
of Planck CMB, DESI, and DESY5 data yields the strongest evidence for DDE, with a 2.7¢
deviation in the first-order model and over 40 in the second-order model — providing strong
statistical support for a departure from a cosmological constant. The reconstructed DE
evolution in the second-order case reveals a distinctive non-monotonic behavior in both energy
density and wpg(a), including clear phantom-crossing phenomena. Notably, the late-time
evolution of wpg(a) remains consistent across datasets and shows strong agreement with the
CPL parameterization, underscoring the robustness of the pressure-based approach.
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1 Introduction

Theoretical models, combined with high-precision cosmological observations, have significantly
refined our understanding of the universe’s fundamental dynamics. One of the most remarkable
discoveries of the past century is that the expansion of the universe is not decelerating,
as originally expected due to gravitational attraction, but is instead accelerating. The
first direct evidence for this phenomenon came from observations of high-redshift Type
Ia supernovae [1, 2], which act as standard candles due to their well-calibrated intrinsic
luminosity. This unexpected result pointed to the existence of a dark energy (DE) component
driving the accelerated expansion on cosmological scales. Subsequent measurements of the
cosmic microwave background (CMB) anisotropies [3, 4] provided strong support for this
framework, offering precise constraints on the universe’s energy content and indicating that DE
constitutes approximately 70% of the total energy density. Large-scale structure surveys, such
as the Sloan Digital Sky Survey (SDSS) [5-7] and the 2-Degree Field Galaxy Redshift Survey
(2dF) [8], further corroborated this picture by mapping the spatial distribution of galaxies and
detecting baryon acoustic oscillation (BAO) signatures. Together with Type Ia supernovae,
BAO measurements historically favored the standard cosmological model ACDM at low
redshift [9-12], where A is the cosmological constant and CDM stands for Cold Dark Matter.

However, this concordance has recently been called into question. New results from the
Dark Energy Spectroscopic Instrument (DESI) [13-17] and the Dark Energy Survey (DES)
Y5 supernovae sample [18] challenge the previous consistency, suggesting that low-redshift
BAO and SNe data may no longer support the standard ACDM model. These findings point
to a potential dynamical nature of DE and open the door to alternative scenarios. Despite its
dominant role in the cosmic energy budget, the fundamental nature of DE remains unknown.
Whether it corresponds to a true cosmological constant, a dynamical scalar field evolving over
cosmic time, or modifications to general relativity on large scales is still an open question.
Addressing this mystery is a central goal of current and upcoming observational efforts,
including next-generation CMB experiments, galaxy redshift surveys, and gravitational wave
observatories, all aiming to probe the physics driving cosmic acceleration. Validated data



from DESI already improve upon earlier releases, offering tantalizing hints of new physical
mechanisms operating at late times, which may also play a role in resolving the persistent
Hubble tension [19-24].

In fact, aside from the potential dynamics of DE, there are also the long-standing
cosmological tensions that arise when analyzing the ACDM model using different combinations
of data sets [25-30]. The most persistent and statistically significant among them is the
Hubble tension [25, 28-41]. The latest values of the Hubble constant Hy inferred from CMB
measurements [42—44], assuming the ACDM model, yield a Hubble constant in more than
50 tension with direct astrophysical observations [45-71].

The mounting evidence for a time-evolving DE component, together with the persistent
cosmological tensions observed when applying the ACDM model across various datasets,
motivates the exploration of alternative scenarios in which novel properties of the DE fluid
emerge. Recently, the second data release (DR2) from DESI hints at a dynamical nature of
DE [16]. An assessment using the Chevallier-Polarski-Linder (CPL) parametrization [72, 73]
(also referred to as the wyp—w, parametrization) reveals a deviation from a cosmological
constant at more than 20 confidence level, when the data are combined with CMB and
various Type Ia supernova datasets [16]. This result remains robust under alternative choices
of DDE parametrizations and dataset combinations [13, 21, 23, 74-116].

In this work, we adopt a pressure parametrization framework to describe a DDE, following
the approach proposed in ref. [117]. Instead of parametrizing the DE equation of state w,
this method considers a Taylor expansion of the DE pressure around the cosmological
constant behavior, p = —pg + (1 — a)p1 + . . ., where constant pressure corresponds to ACDM.
Deviations from this baseline are modeled through the introduction of additional K-essence
fields, analogous to the assisted inflation scenario, where higher-order terms in the expansion
require multiple scalar fields. While the original model was tested against supernovae, BAO,
and X-ray cluster gas fraction data available at the time, our goal is to revisit and constrain
this framework using the latest cosmological datasets, including recent BAO measurements
from DESI and SDSS, PantheonPlus and DESY5, as well as updated CMB observations.

The paper is organized as follows. The modeling of the pressure parametrization is
outlined in section 2. The methodology and datasets used are discussed in section 3. The
results are presented in section 4, followed by a discussion in section 5. Conclusions are

summarised in section 6. We work in units where h = ¢ = 1.

2 Dynamical dark energy parametrization

In the pressure parametrization approach of ref. [117], the term that parametrizes the evolution
of the DE pressure is expanded in a Taylor series around the present time, as

1
p= —po+zﬁ(1—a)”pn7 (2.1)

n>1""

where a denotes the scale factor and the series is truncated at the desired order in the
resolution. Note that the zeroth-order term in the expansion is explicitly negative, since
we set pg > 0. In the absence of interaction with other fluids, the DE component follows



the continuity equation,

d
a§+3H@+p%:& (2.2)
so that eq. (2.1) results in an expression for the energy density as p = p(a).

We first consider the truncation of the Taylor series in eq. (2.1) for the pressure field at first
order. For a single DE fluid, eq. (2.2) leads to the following expression for the energy density:

3
P = PDE,0 — 1(1 —a)p1, (2.3)

where ppgo is the DE energy density today and p; is a DE parameter. Note that for
a = 1, the expression recovers p = ppg. The corresponding pressure term from eq. (2.1)
at first order reads:

3
p= —pDEO + (4 - a) P1- (2.4)
We introduce a reformulation of the pressure parameters in terms of the dimensionless
quantities:
DE,0 _3m
Oppo= 220 g =21 (2.5)
Pcrit 4 perit

where peiy = 3H3/(87G) is the critical energy density today. This parameterization ensures
that the present-day DE abundance Q2pg o has a direct correspondence with the standard
cosmological model in the limiting case where p; = 0. Under these assumptions, the equation-

of-state parameter wpg = p/p reduces to

+1 Qla
391 (1*a)*QDE,O ’

wpg = —1 (2.6)

We choose to expand the dark energy pressure p(a) directly, rather than the equation
of state parameter wpg, for both theoretical and practical reasons. From a theoretical
standpoint, the pressure appears explicitly in the Einstein field equations and directly governs
the acceleration of the Universe. In particular, the spatial component of the Einstein equation
shows that the total pressure determines the dynamics of the cosmic expansion at the
background level. Since cold DM is pressureless, it does not contribute to this equation;
instead, the dynamics at late times is driven by DE. This means that the DE pressure ppg(a)
can be directly reconstructed from observables such as the angular diameter distance or
the luminosity distance, without assuming any value for the matter density. As a result,
any statistically significant deviation of ppg(a) from a constant directly indicates dynamical
dark energy, independent of uncertainties in the matter sector. From a practical modeling
perspective, expanding p(a) ensures that both ppg(a) and wpg(a) are derived consistently
from the energy-momentum conservation equation in eq. (2.2), preserving the self-consistency
of the cosmological evolution. In contrast, parameterizing wpg(a) implicitly assumes that
the ratio of pressure to density is the most fundamental quantity to model. This choice can
bias the interpretation of the results, as the derived cosmological dynamics are forced to
conform to a specific, and potentially restrictive, functional form for wpg(a).



Our expansion of the pressure can be theoretically motivated by scalar field models of
dark energy, such as quintessence, where the pressure evolves smoothly with time in terms of
the field ¢ as p = ¢?/2 — V(¢), where V(¢) is the effective potential. A Taylor expansion in
p(a) around a = ag thus corresponds to a late-time expansion of the scalar field dynamics.
More generally, p(a) arises directly in the effective stress-energy tensor in covariant theories
of modified gravity, such as Horndeski theories, making it a more fundamental and stable
quantity to parametrize than the derived function wpg(a). Moreover, a concrete Lagrangian
realization of our pressure expansion was presented in [117], where a multi-field k-essence
model is constructed, yielding the desired pressure expansion as a sum of effective field
contributions. Each term in the Taylor expansion of p(a) corresponds to a distinct k-essence
component with its own Lagrangian. Specifically, eq. (9) of ref. [117] provides the form of
the action that reproduces a given pressure expansion to arbitrary order, starting from a
constant Lagrangian at zeroth order, and building higher-order corrections with appropriately
constructed kinetic and potential terms. This construction offers a consistent field-theoretic
embedding of our phenomenological model.

The top-left panel in figure 1 shows the evolution of the DE equation of state, wpg,
from eq. (2.6) under a first-order expansion, highlighting the effect of varying the modified
DE parameter ;. For illustrative purposes, the present-day DE density parameter is fixed
at Qppop = 0.7. Here, Qpgy is defined as Qprg = 1 — Oy — Ok — O, where Qy, is the
matter density parameter, () is the curvature density parameter, and €2, is the radiation
density parameter. The top-right panel illustrates the impact of varying {2 on the energy
density ratio ppg(a)/ppg(ap). The bottom panel in the figure shows the impact of varying
Q1 at first order on the CMB TT power spectrum. The most significant effects are observed
at low multipoles, primarily due to modifications in the late-time Integrated Sachs-Wolfe
(ISW) effect. This behavior is particularly relevant in light of eq. (2.6), which predicts the
presence of a pole in the equation of state at

QpEo
Q

(2.7)

Apole = 1 —
When Q; > Qpg o, this pole appears at a scale factor apqe between the early Universe and
the present epoch, modifying the evolution of the gravitational potentials and enhancing
the ISW contribution to the CMB anisotropies.!

We now turn to the truncation of the Taylor series at second order in the pressure
parametrization. This leads to the following expression for the energy density:

3 3
P = PDE,0 — Z(pl +p2)(1—a)+ Em(l —a?), (2.8)

'In some regions of the parameter space, the pressure expansion may lead to a divergence in wpr(a) at
early times, typically due to the denominator in eq. (2.6) crossing zero. To ensure that the model remains
numerically stable we enforce a regularization condition: when a divergence is encountered, i.e. a = apole,
we set wpg(apole) = 0 if Q1 > Qpg. This prescription ensures that wpg(a) remains finite across the entire
domain relevant for our analysis and avoids unphysical poles without introducing artificial discontinuities in
the observable quantities. We have verified that this procedure has negligible impact on the background or
perturbation evolution within the range probed by current data.
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Figure 1. Expansion to first order. Top panel: The equation of state wpg from eq. (2.14) (left)
and the energy density ratio ppgr(a)/ppr(ag) (right), shown as functions of the scale factor a. For
illustration, the present-day DE contribution is fixed at Q2pgo = 0.7. Bottom panel: The impact of
varying the modified DE parameter £2; on the CMB TT power spectrum.

where, in addition to the parameter p; from eq. (2.3), an extra DE parameter ps appears.
The corresponding pressure term from eq. (2.1), truncated at second order, reads:

3 9 1,
—— S 4= . 2.
D pDE,o+(4 a>p1+(20 a+2a )pg (2.9)

Similarly to eq. (2.5), we introduce the dimensionless quantities ;2 = %%, so that
the energy density of a single DE component, truncated at second order in the Taylor
expansion, takes the form:

04 Q9 2 oy 22
= 1 —1 —(1— . 2.1
p= PpEO ( +(a—1) <QDE70 T QDE’O) +(-a >QDE’O) (2.10)

Similarly, the pressure associated with a single DE component at second order is given by:

_ 1+ <1 - 4a> th | <3 a4 2(12) {2 (2.11)
P = PDED 3 QDE,O 5 3 3 QDE,O ' '
From this, the equation-of-state parameter can be expressed as:
1 (Ql + <1 — %a) Qg) a
wpg = —1 + g 3 5 . (2.12)
[Ql + E (1 — ga) QQi| (1 — a) — QDE,O
The expression above diverges for values of the scale factor equal to
5 (Q + Q) £ \/(Ql + Qg)2 — %QQ (Ql + %Qz — QDE,O)
Apole = — , (2.13)
4 Qo



where the expression is valid for o # 0. If Qs = 0, the equation-of-state parameter wpg
in eq. (2.12) reduces to

+1 Ql(l
391 (1_a)_QDE,O ’

wpg = —1 (2.14)
The top panels of figure 2 show the evolution of the DE equation of state wpg in eq. (2.14)
under a second-order expansion, highlighting the effects of different values of the modified
DE parameters €2y and €2y. For illustrative purposes, the present-day DE density parameter
is fixed at {2pgo = 0.7. The middle panels illustrate the impact of varying the modified DE
parameters 1 and g, respectively, on the energy density ratio ppg(a)/ppr(ag).

The top and middle panels in figure 2 demonstrate that our second-order expansion
model captures diverse DE behaviors. Quintessence (—1/3 > wpg > —1) scenarios are
illustrated by the curves with 2, = —1.5,—1.0 in the left panels, and Qs = 0.0,1.0 in the
right panels. Phantom DE (wpg < —1) is represented by the curve with €; = 0.0 in the
left panel. The phantom crossing behavior, where wpg traverses the boundary w = —1, is
shown by the curve with €1 = —0.5 in the left panel and the curves with 9 = 2.0,3.0,4.0
in the right panel. Additionally, singularities of wpg [118](as shown in eq. (2.13)), depicted
by the €2y = 0.5 curve in the left panel and Qs = 3.0,4.0 curves in the right panel, which
occur when DE density transitions from negative to positive values. Notably, in the top right
panel, the orange (22 = 3.0) and yellow (23 = 4.0) curves exhibit singularities in the early
universe, followed by phantom crossing behavior in the late universe.

The bottom panels in figure 2 illustrate how variations in DE parameters affect the
Cosmic Microwave Background (CMB) TT power spectrum, primarily at large angular
scales (low-¢ multipoles) dominated by the late-time Integrated Sachs-Wolfe (ISW) effect.
Specifically, the yellow curve (2; = 0.5 in the left panel and Q9 = 4.0 in the right panel)
shows enhanced power at low multipoles compared to the other curves. Unlike the orange
curve in the right panel (Q2 = 3.0), whose singularity occurs earlier, the yellow curve’s later
singularity leads to stronger ISW contributions because it influences the universe at a time
when DE plays a more dominant role in the cosmic energy budget.

In the following, we compare the results for the DDE parametrization truncated at first
or second order in the expansion of the pressure term (see eq. (2.1)) with the ACDM model,
as well as with the dynamical wp—w, (CPL) parametrization [72, 73], which arises from
Taylor expanding a general w(a) to linear order as

wpg(a) = wo +w, (1 —a). (2.15)

The parameters wy and w, are crucial for characterizing the evolution of the equation-of-state
parameter w(a) in cosmological models, and are treated as constants in the CPL model. The
ACDM model is recovered for wg = —1 and w, = 0. In the DDE framework, the parameter
wy is defined as the value of the equation-of-state parameter evaluated at the current scale
factor (a = 1), and is explicitly given by:

Q1+ %QQ

=1 —2 = 2.16
o 3QpE,0 (2.16)
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Figure 2. Expansion to second order. Top panel: The equation of state wpg from eq. (2.12) as a
function of the scale factor a. Middle panel: The energy density ratio ppr(a)/ppgr(ag) from eq. (2.10)
as a function of the scale factor a. For both top and middle panels, the left side shows fixed Q5 =1
with varying €2, as indicated in the legend, while the right side shows fixed € = —1 with varying Qs.
The present-day DE contribution is fixed at Qpg,o = 0.7 for illustration. Bottom panel: The impact
on the CMB TT power spectrum when varying ; with fixed Qs = 1 (left) and when varying Qo with
fixed 1 = —1 (right), where Qpg o is defined as Qpro =1 — Qm — A — Q.

Additionally, the parameter w,, which quantifies the rate of change of the equation-of-state
parameter with respect to the scale factor evaluated at a = 1, is given by:

_ OpEo (Ql - %Qz) - (Ql + %Qz>2

2
a=1 3%k

dw(a)
da

(2.17)




3 Methodology and data

To perform parameter inference, we utilize Cobaya [119], a Markov Chain Monte Carlo (MCMC)
sampler designed for cosmological models, in conjunction with a modified version of CAMB [120],
a Boltzmann solver adapted to incorporate the DDE parametrization. To model dark energy
perturbations, we use the default parameterized post-Friedmann (PPF) method implemented
in CAMB [120], which allows w(a) to cross the phantom divide (w = —1) without introducing
divergences in the perturbation equations [121, 122]. To assess the convergence of our chains,
we use the Gelman-Rubin statistic R — 1 [123], adopting R — 1 < 0.01 as the threshold for
convergence. The MCMC results are analyzed and visualized using getdist [124].

To systematically compare the DDE models under consideration, we use the following
datasets:

o CMB. Cosmic Microwave Background (CMB) measurements from the Planck 2018
legacy data release, including the high-¢ Plik TT, TE, and EE likelihoods, the low-
¢ TT-only Commander likelihood, and the low-¢ EE-only SimAll likelihood [4, 125,
126]. Additionally, we include lensing measurements from the Atacama Cosmology
Telescope (ACT) DR, specifically the actplanck baseline likelihood [127, 128]. This
combined dataset is collectively referred to as CMB.

o BAO. Baryon Acoustic Oscillation (BAO) and Redshift-Space Distortion (RSD) mea-
surements from the completed SDSS-IV eBOSS survey [129], which include both
isotropic and anisotropic distance measurements and expansion rates across a broad
redshift range, incorporating Lyman-o BAO data. This dataset is referred to as SDSS.
We also use BAO data from the first three years of observations by the Dark Energy
Spectroscopic Instrument (DESI DR2) [16, 17, 130], referred to as DESI.

o Type Ia Supernovae. Distance modulus measurements of Type Ia Supernovae (SNe
Ia) from the PantheonPlus sample [131, 132], which includes 1701 light curves from
1550 distinct SNe Ia spanning redshifts z € [0.001,2.26]. This dataset is referred
to as PantheonPlus. In addition, we include the complete five-year dataset from
the Dark Energy Survey (DES), containing 1635 SNe Ia with redshifts in the range
0.1 < z < 1.13 [18, 133, 134], referred to as DESY5.

In our analysis, we adopt flat and uniform priors as summarized in table 1. The extended
cosmological models build upon the standard six-parameter ACDM framework, which includes
the baryon density Qph?, cold dark matter density Q.h?, optical depth 7, the amplitude
and spectral index of scalar fluctuations In(109A4;) and ng, and the angular size of the
sound horizon at last scattering 5. Beyond these, the CPL model introduces two additional
parameters, wy and wg, as defined in eq. (2.15). For the DDE model, we introduce one
additional parameter, €)q, in the first-order expansion, denoted as DDEL in table 1. The
second-order expansion includes both £2; and €9, denoted as DDE2 in table 1.

To quantify the statistical performance of the DDE pressure parametrizations relative
to the standard ACDM scenario or the CPL parametrization, we evaluate the differences
in the minimum chi-square values:

2 2 2
AXmin,ACDM/CPL = Xmin,1st/2nd — Xmin,ACDM/CPL" (3.1)



Model Parameter Prior

ACDM Qph? [0.005,0.1]
ACDM Qch? [0.001,0.99]
ACDM T [0.01,0.8]
ACDM 100 65 [0.5,10]
ACDM 1In(10'°4,)  [1.61,3.91]
ACDM N [0.8,1.2]
CPL wo [-3,1]
CPL W, [-3,2]
DDE1 0 [—2.0,2.0]
DDE2 01,0 [~10.0, 10.0]

Table 1. Flat prior distributions imposed on the cosmological parameters used in our analysis. The
CPL and DDE models include the standard ACDM parameters, along with the additional parameters
specific to each extended model.

A negative value of the difference in eq. (3.1) indicates that the data favor the DDE
parametrization over the baseline model, either ACDM or CPL. The more negative the
value, the stronger the preference for the DDE scenario. Since ACDM is nested within
both the first-order DDE expansion (corresponding to €; = 0) and the second-order DDE
expansion (corresponding to Q5 = 0 and Qy = 0), Wilks’ theorem [135] implies that Ax2,;,
should follow a y? distribution with k& degrees of freedom under the assumption that the
null hypothesis (ACDM model) holds and the errors are Gaussian and correctly estimated,
where k = 1 for the first-order and k = 2 for the second-order expansion. To express Ax2..
in more familiar terms, we convert it to a frequentist significance No for a one-dimensional
Gaussian distribution using:

CDF, 2 (Axin | £) = /2 g, (3.2)

1 N
— e
V2T /—N
where the left-hand side denotes the cumulative distribution function of the y? distribution
with k& degrees of freedom. Solving eq. (3.2) for N yields the Gaussian-equivalent significance
with which the DDE parameterization is preferred over the ACDM model.

Furthermore, we perform Bayesian model comparisons by computing the logarithm of the
Bayesian evidence using MCEvidence [136], accessed through the Cobaya wrapper provided
in the wgcosmo repository [137]. According to the Bayes’ theorem, the posterior probability
distribution P(©|D, M;) for a model M; with parameters ©, given data D, is expressed as:

L(D[|0, M;)r(0|M;)

(3.3)

where £(D|©, M;) denotes the likelihood, m(0©|M;) the prior, and £(D|M;) the Bayesian
evidence, defined by:

£(DIM;) = / £(D]6, Mi)m(©|M;) d6 . (3.4)

(3



The relative posterior probabilities between two competing models M; and M; are
given by the ratio:

P(M;|D) P(M;)
LMIE) _ 2 , 3.5
P(M,|D) ~ 7 P(M,) (3
where the Bayes factor Z;; is defined as:
E(DIM;) _ 2
1= EDIM) ~ 2, 30

We therefore define the relative log-Bayesian evidence comparing the DDE parametrization
to the ACDM or CPL scenarios as:

Aln Zij =In Zl —In Zj y (37)

where i € {1st,2nd} denotes the DDE model truncated at either first or second order, and
j € {ACDM, CPL} represents the baseline model. Positive values of Aln Z;; indicate a
preference for the DDE model, with the strength of evidence interpreted according to the
revised Jeffreys’ scale [138]: the evidence is considered inconclusive if 0 < |Aln Z;;| < 1, weak
if 1 < |AlnZ;| < 2.5, moderate if 2.5 < |Aln Z;5| < 5, strong if 5 < |Aln Z;;| < 10, and
very strong if |Aln Z;;| > 10, in favor of the preferred model.

4 Results

In this section, we present observational constraints on our DDE extensions at first and
second order and evaluate their model preference statistics compared to ACDM and the
CPL parametrization.

4.1 First-order expansion results

For the first-order expansion, we allow 21 to vary according to the priors set in table 1. The
marginalized contours and posterior distributions are shown in figure 3, with the parameter
constraints at 68% confidence level (CL) summarized in table 2. The first-order expansion
model is characterized by the parameter 21, which quantifies deviations from the cosmological
constant model (where ACDM corresponds to §2; = 0). Our results reveal that constraints
on {2 and other cosmological parameters vary depending on the dataset combination:

o« With CMB data alone, parameters are poorly constrained, showing a strong preference
for a high Hy = 831“%0 km/s/Mpc and a low matter density Q, = 0.217J_r818%?1. For
Qq, we find ) = 0.89f8:??1, indicating a significant deviation from zero, though with
large uncertainty. Both these parameters trend in the right direction to alleviate the
cosmological tensions on Hy and Ss.

e The addition of SDSS data breaks parameter degeneracies, substantially strengthening
the constraints, with Hy = 69.3 £ 1.3km/s/Mpc and €, = 0.297 + 0.011, closer to the
values obtained under ACDM. The constraint on €2; tightens to 2y = 0.16f8:ﬁ, showing
a mild preference for positive values but consistent with zero at approximately 1.50.
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e The CMB+PantheonPlus combination yields 21 = —0.062 4+ 0.075, consistent with
zero at less than 1o, and Hy = 66.68 £ 0.76 km/s/Mpc, notably lower than with other
datasets. A lower Hy corresponds to a higher Q,,, = 0.3221 + 0.0084, reinstating the
cosmological tensions.

e For CMB+SDSS+PantheonPlus, we find €; = —0.032 4+ 0.068, showing excellent
consistency with ACDM. Consequently, both the Hubble constant, Hy = 67.40 +
0.64km/s/Mpc, and the matter density, 2, = 0.3132 4+ 0.0065, agree well with the
Planck 2018 ACDM results [42].

¢ Replacing SDSS with the more recent DESI DR2 data in CMB+DESI yields ; =
0.0957512, showing a slight preference for positive values but still consistent with zero
at less than lo. The parameters Hy = 69.3 = 1.1km/s/Mpc and Q,, = 0.2946 + 0.0090
are comparable to those from CMB+SDSS.

e The most significant deviation from ACDM appears with CMB+DESI4+DESY5, giving
Q1 = —0.162 £ 0.067, indicating a preference for negative {2; at more than 2¢. The
Axiﬁm AcpMm Value is —7.35, corresponding to a preference for the DDE model over
ACDM at the 2.70 level, as calculated using eq. (3.2). This represents the strongest
indication against ACDM among our dataset combinations, suggesting that the addition
of DESY5 data may be particularly sensitive to deviations from the cosmological
constant model.

¢ Finally, CMB+DESI+4PantheonPlus yields ©; = —0.072 £ 0.068, consistent with zero
at just over lo, and gives Hy = 67.74 + 0.61 km/s/Mpc and Q,, = 0.3068 =+ 0.0056.

We now present the goodness of fit and Bayesian evidence of the first-order expansion
compared to the standard ACDM and CPL (wy—w,) models. When comparing to ACDM,
table 2 shows the first-order model performs better in terms of the maximum-likelihood
fit (AX?nin,ACDM) for the CMB-only and CMB+DESI4+DESY5 datasets, while for all other
cases it is comparable to ACDM. Nevertheless, having one additional parameter means any
improvement in 2 must be sufficiently large to yield a positive A In Zycpy. In practice, most
combinations in table 2 aa show Aln Zycpym < 0, indicating that the evidence does not favor
adding this extra parameter. A notable example is the CMB+DESI+DESY5 dataset, where
AxfmmACDM = —7.35 suggests a better fit, but Aln Zycpm = 0.0 reveals no clear Bayesian
preference for the first-order model over ACDM. Similarly, in the CMB-only case, the resulting
Aln Zxycpw is less than 1, indicating that two models are statistically indistinguishable in
terms of Bayesian evidence. When comparing to the CPL parameterization, table 2 reveals
that across all data combinations, the CPL parameterization consistently provides a better
fit compared to the first-order expansion model (as evidenced by positive AX?nin,CPL values).
However, the Bayesian evidence typically favors the simpler first-order expansion model
unless the improvement in fit is sufficiently large to overcome the penalty due to the increased
model complexity. As shown in the bottom part of table 2, in cases where Axiﬁmch
is much higher, the Bayesian evidence shifts to favor the CPL parameterization over the
first-order expansion model.
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Figure 3. Expansion to first order. One-dimensional posterior distributions and two-dimensional
marginalized contours for the key parameters of the model. Results are obtained by considering
different dataset combinations: CMB+SDSS, CMB+PantheonPlus, CMB-+SDSS+PantheonPlus,
CMB+DESI, CMB+DESI+DESY5, and CMB+DESI+PantheonPlus.

4.2 Second-order expansion results

For the second-order expansion, we allow both € and 9 to vary according to the priors
given in table 1 (with ACDM corresponding to ©; = Q9 = 0). The marginalized contours
and posterior distributions are shown in figure 4, with parameter constraints at the 68%
confidence level summarized in table 3.

Our analysis reveals:

« With CMB data alone, both DE parameters remain poorly constrained, with ; =
—O.Gf%:g and only a lower limit on €25 > 1.3. Other cosmological parameters are also
poorly constrained, with Hy = 79 + 10km/s/Mpc and Q,, = 0.246J_r8:835, with a shift of
the mean values in the direction of alleviating the cosmological tensions.
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Parameters CMB CMB CMB CMB+SDSS CMB CMB CMB+DESI
+SDSS +PantheonPlus +PantheonPlus +DESI +DESI4+DESY5 +PantheonPlus

Q h? 0.02243 £ 0.00015  0.02242 +0.00014  0.02238 £ 0.00015  0.02245 £ 0.00014  0.02252 £ 0.00013 ~ 0.02260 = 0.00013 ~ 0.02257 % 0.00013

Qch? 0.1193 £0.0012  0.11960 £ 0.00098  0.1201+0.0012  0.11918 £ 0.00096 0.11817 £ 0.00084  0.11719 +0.00075  0.11752 % 0.00076

100 fyic 1.04101 £ 0.00031  1.04099 +0.00030  1.04092 +0.00031 ~ 1.04105 +0.00029 1.04118 +0.00028  1.04130 £ 0.00028 ~ 1.04125 % 0.00028

Treio 0.0526 £ 0.0076  0.0560 +0.0074  0.0549 + 0.0075 0.0588+5:99%2 0.0604+5:99%% 0.0646 + 0.0078 0.0632:+3:9969

ns 0.9671£0.0043  0.9665+0.0039  0.9653+0.0041  0.9677 +0.0038  0.9702+0.0036  0.9728+£0.0035  0.9719 % 0.0035

In(10'° 4y) 3.038 £ 0.014 3.048 £0.013 3.047 £0.014 3.05379018 3.05579018 3.063 £ 0.014 3.06070012

[N 0.89%0:92 0167917 —0.062£0.075  —0.032 % 0.068 0.095+012 —0.162 £ 0.067 —0.072 £ 0.068

Hy [km/s/Mpc] 83110 69.3+1.3 66.68 = 0.76 67.40 £ 0.64 69.3+1.1 66.98 = 0.56 67.74 +0.61

s 0.939798L, 0.828 +0.013 0.8067 £ 0.0088  0.8097 + 0.0082 0.820 £ 0.013 0.7957+£0.0083  0.8039 % 0.0085

Ss 0.78379% 0.8236 + 0.0095 0.836 + 0.011 0.827240.0093  0.8128+0.0077  0.8128+£0.0078  0.8128 % 0.0078

O 0.217+5:919 0.297 £ 0.011 0.3221+0.0084  0.3132+0.0065  0.2946+0.0090  0.3131+0.0053  0.3068 = 0.0056

AXZ 0 ACDM —4.13 0.23 0.34 0.28 0.7 -7.35 —0.33

Aln Zyopym 0.57 ~1.98 -3.0 —3.09 -2.5 0.0 ~2.68

AXZ i cPL 0.96 2.68 1.85 4.45 8.25 12.1 7.2

Aln Zcpr, 0.55 1.21 2.05 0.93 —~1.94 —2.71 —0.1

Table 2. Expansion to first order. Parameter constraints at 68% CL from different datasets for the
first-order expansion. Ax?2, and Aln Z are defined as Axfmn’ACDM/CPL = XPin1st — X?nin,ACDM/CPL’
and Aln Zycpm/cpn = InZig — In Zycpmycpr.  Negative values of Axfmn’ACDM/CPL favor the
Pressure Parameterization DE model over the standard ACDM/CPL scenario, while positive values of
Aln Zycpm/cpr indicate a preference for the DDE model.

¢ Adding SDSS data significantly improves the constraints and shifts the preferred
values, yielding Q; = —1.3%72 and Qy = 3.372%. This indicates a mild preference for
negative €} and positive (2o at slightly more than 1o. The Axfmn’ rcpm value of —2.72
corresponding to 1.10 as calculated using eq. (3.2), indicates that a mild preference
for the DDE model than ACDM at slightly more than 1o level. The Hubble constant
becomes Hy = 66.9 £ 2.1 km/s/Mpc, much closer to the value under ACDM.

e The CMB+PantheonPlus combination yields 1 = —0.64 £+ 0.63 and 25 = 1.7 + 1.9,
showing a similar preference for negative €2y and positive €3, though with substantial
uncertainties. The Axfmm rcpum Value of —1.49 indicates that the DDE model is
consistent with ACDM within the 1o level. This combination provides Hy = 67.5 +
1.2km/s/Mpc, in good agreement with the Planck 2018 ACDM results [42].

e More stringent constraints come from the CMB+SDSS+PantheonPlus combination,
with ©; = —0.74 + 0.36 and Q5 = 2.01 + 0.99. The Ax2, ,opy value of —3.35
corresponds to a preference for the DDE model over ACDM at the 1.30 level, as

calculated using eq. (3.2).

« Replacing SDSS with DESI DR2 provides stronger evidence for deviations from ACDM.
The CMB+DESI combination yields Q; = —3.24705* and a lower limit of Q3 > 6.44.
The AX?nin, rcpm Value of —8.97 corresponds to a preference for the DDE model over
ACDM at the 2.50 level, as calculated using eq. (3.2). The Hubble constant becomes
Hy = 62.8753 km/s/Mpc, while the matter density rises to Oy, = 0.36270527.

e The most significant evidence for deviation comes from CMB+DESI4+DESY5, which
constrains 7 = —1.33 £ 0.33 and €3 = 3.25 £ 0.88. The Axfmn’ACDM value of —18.41
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corresponds to a strong preference for the DDE model over ACDM at the 40 level, as
calculated using eq. (3.2), providing strong evidence that DDE deviates substantially
from a cosmological constant.

¢ Finally, CMB+DESI+PantheonPlus yields 2; = —0.85 + 0.31 and Q3 = 2.17 £ 0.85.
The Axfmm rcpm Value of —6.53 corresponds to a preference for the DDE model over
ACDM at the 20 level, as calculated using eq. (3.2). This combination provides
Hy = 67.62 £ 0.60km/s/Mpc and Qp, = 0.3106 £ 0.0057, values consistent with the
Planck 2018 ACDM results [42].

A notable feature in our results is the strong negative correlation between the €2 and Qo
parameters, visible in figure 4. This correlation is consistent across all dataset combinations
and indicates that models with more negative 2 values require more positive 2o values
to maintain consistency with observational data.

We compare the goodness of fit and Bayesian evidence of the second-order expansion
against the standard ACDM and CPL (wp—w,) models. When comparing the second-
order expansion to ACDM, we find negative Axfm.n’ rcpum values for most dataset combina-
tions, indicating a better fit of our model. The improvement is particularly dramatic for
CMB+DESI+DESY5, with AX?nin,ACDM = —18.41, suggesting a 40 preference for DDE
model. When considering Bayesian evidence (A ln Z5cpym), which penalizes additional model
complexity, the results are more nuanced. For most dataset combinations, ACDM is favored
due to its simplicity, with negative Aln Zxcpum values. However, for CMB+DESI4+DESY5,
we find Aln Zycpm = 1.84, indicating that even after accounting for the complexity penalty,
the second-order expansion is moderately favored. According to the Jeffreys’ scale [138], this
represents “moderate” evidence in favor of our model. Comparing the second-order expansion
to the CPL parameterization, we find the absolute values of both Axfmn,CPL and Aln Zcpr,
are typically less than 1, implying that differences between the two models are minor in both
likelihood and Bayesian terms. Thus, while our second-order model is marginally disfavored
relative to CPL in terms of maximum-likelihood fit, the small values of Aln Z indicate that
they remain nearly indistinguishable according to Bayesian evidence.

4.3 Dark energy evolution

The left and middle panels in figures 5, 6, and 7 compare the reconstruction of the normalized
DE density ppg(a)/ppr(ap) (left) and pressure ppg(a)/ppr(ag) (middle) for the first-order and
second-order expansions against a cosmological constant across multiple dataset combinations.
The first-order expansion model (blue curves) exhibits relatively mild evolution in the DE
density across cosmic history. For all dataset combinations, this model shows:

e The normalized density generally remains above unity, with a gradual decrease toward
the present epoch (a = 1)

o Modest deviations from the ACDM prediction (dashed black line)

o Relatively narrow confidence intervals, indicating tighter constraints

The first-order model constrained by the CMB+DESI+DESY5 dataset combination (fig-
ure 6) shows the strongest deviation from ACDM, exceeding 20. By contrast, the
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Figure 4. Expansion to second order. One-dimensional posterior distributions and two-
dimensional marginalized contours for the second-order expansion for the key parameters, as obtained
from different dataset combinations: CMB+SDSS, CMB+PantheonPlus, CMB+SDSS+PantheonPlus,
CMB+DESI, CMB+DESI+DESY5, and CMB+DESI+PantheonPlus.

CMB+DESI+PantheonPlus and CMB+SDSS+PantheonPlus combinations yield more modest
deviations (nearly lo for the former and less than 1o for the latter).

The second-order expansion model (red curves) reveals dramatically different behavior
from both the first-order model and ACDM:

o Significantly lower ppg(a) values at early times (a < 0.1), with median values falling to
~ (00—04) pDE,O

¢ A non-monotonic evolution pattern, with the density first increasing with scale factor,
crossing the ACDM prediction at a = 0.4-0.6, reaching a maximum at a ~ 0.7-0.8, and
then decreasing to unity at the present day

e Much larger confidence intervals, particularly at early times, indicating the model’s
additional flexibility and the corresponding reduction in constraining power
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Parameters CMB CMB CMB CMB+SDSS CMB CMB CMB+DESI
+SDSS +PantheonPlus +PantheonPlus +DESI +DESI4+DESY5 +PantheonPlus

Q h? 0.02244 +0.00016  0.02238 +0.00014  0.02239 £ 0.00014  0.02239 £ 0.00014 0.02243 £ 0.00013  0.02244 + 0.00013 ~ 0.02247 + 0.00013

Qch? 0.1192+0.0013  0.1201£0.0011  0.12000.0012  0.1199£0.0010 ~ 0.11941 +0.00090  0.11913 = 0.00089  0.11886 = 0.00091

100 6pc 1.04101 £ 0.00032  1.04092 +0.00030  1.04093 + 0.00030  1.04094 £ 0.00030  1.04102 + 0.00029  1.04106 & 0.00029  1.04109 + 0.00029

Trcio 0.0522 4 0.0076  0.0539+0.0075  0.0543+0.0076  0.0549 + 0.0075  0.0546 + 0.0072 0.0563+5:99%7 0.0574+5.00%9

ns 0.9675 4 0.0045  0.9654+0.0040  0.9656 +0.0041  0.9658 +0.0039  0.9670 +0.0037  0.9677+0.0036  0.9684 + 0.0037

In(10'° A;) 3.036 £ 0.015 3.043 £ 0.014 3.044 +0.014 3.045 £ 0.014 3.044 +0.013 3.04770013 3.049 £ 0.014

[oN -0.6%27 -1.3H2 —0.64 +0.63 —0.74 +0.36 —3.241051 —~1.33+0.33 —0.85 + 0.31

Q >1.30 3.3123 1.7+£1.9 2.01 £0.99 > 6.44 3.25 +0.88 2.17+£0.85

Ho [km/s/Mpc] 79+ 10 66.9 + 2.1 675+ 1.2 67.62 + 0.65 62.8734 66.73 4 0.57 67.62 + 0.60

o3 0.9047041 0.811 +0.018 0.814 % 0.012 0.8163 % 0.0089 0.77270015 0.8047 £0.0085  0.8106 % 0.0087

Ss 0.79710:0% 0.838 + 0.014 0.833 + 0.011 0.8334 % 0.0098 0.84810: 003 0.8304 £0.0090  0.8248 % 0.0090

Qe 0.24610:9%7 0.32110:0%9 0.314 + 0.012 0.3128 + 0.0065 0.36210:022 0.3194 +0.0058  0.3106 + 0.0057

AX2 0 AcDM —6.31 —2.72 —1.49 —3.35 —8.97 —18.41 —6.53

Aln Zyopm —0.36 —4.07 ~5.9 —5.3 ~1.0 1.84 —3.52

AxZ i opL -1.23 —0.27 0.01 0.83 —1.42 1.04 1.01

Aln Zcpy, —0.38 —0.88 —0.85 ~1.28 —0.44 —0.87 —0.94

Table 3. Expansion to second order. Parameter constraints at 68% CL from different data
sets for second-order expansion. Ax2. and AlnZ are defined as Axfmn’ACDM/CPL = aningnd -
anin’ACDM/CPL, and Aln Zycpm/cpr = In Zong —In Zycpmycpr- Negative values of Axfnin’ACDM/CPL
favor the Pressure Parameterization DE model over the standard ACDM/CPL scenario, while positive
values of Aln Zycpy/cpr indicate a preference for the DDE model.
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Figure 5. Reconstruction of the normalized DE density ppgr(a)/ppr(ag) (left panel) and pressure
ppe(a)/ppr(ao) (middle panel) as functions of the scale factor a. The solid red and blue lines represent
the mean curves from the second-order and first-order parameterizations, respectively, based on MCMC
samples using the combined datasets CMB+SDSS+PantheonPlus. Shaded regions denote the 68%
and 95% CL for each parameterization. The horizontal dashed black line indicates the present-day
value, normalized to unity at a = ag, for reference. Also shown is the evolution of the dark-energy
equation of state wpg(a) (right panel) for the first-order (blue) and second-order (red) expansions,
compared to the CPL parameterization (green), using the same data combination. The solid lines
show the medians, while the dark (light) shaded bands represent the 68% (95%) CL for the CPL
parameterization. The dashed horizontal line marks the cosmological constant value w = —1.
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Figure 6. Same as figure 5, for the combined datasets CMB+DESI+DESY5.
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Figure 7. Same as figure 5, for the combined datasets CMB+DESI+4PantheonPlus.

The second-order model constrained by the CMB+DESI4+DESY5 dataset (figure 6) shows
the strongest deviation from ACDM, well beyond 2¢0. The CMB+DESI+PantheonPlus and
CMB+SDSS+PantheonPlus combinations yield more modest deviations (slightly more than
20 for the former and nearly 20 for the latter). This suggests that the DESY5 data may
be particularly sensitive to DE dynamics, potentially due to its extended redshift coverage
or different systematic uncertainties compared to PantheonPlus. Furthermore, DESI data
appears to favor DDE more strongly than SDSS data, as already discussed in [16].

The right panels of figures 5, 6, and 7 show the reconstructed equation of state wpg(a)
under three different parameterizations. The first-order expansion (blue) median wpg(a)
remains very close to a cosmological constant throughout (—1 < w < —0.9) and never crosses
into the phantom regime. In contrast, the second-order expansion (red) median wpg(a) starts
at w = —1at a =0, dips to w >~ —1.2 to —1.25 at a ~ 0.1-0.25, before evolving upward
and crossing the phantom divide (w = —1) at a ~ 0.7-0.8, remaining in the quintessence
regime thereafter. The behavior of wpg(a) after a ~ 0.5 (including its present value and
the phantom crossing) is consistent across dataset combinations and agrees well with results
from the CPL parameterization, demonstrating remarkable consistency in the qualitative
behavior of late-time wpg(a) across different models and dataset combinations. Unlike the
CPL parametrization, the second-order pressure expansion exhibits a transient phantom
phase, with wpg < —1 at intermediate redshifts followed by a return to wpg > —1 at
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Figure 8. Left: Confidence contours (68% and 95%) in the wy—w, plane for various dataset
combinations. Right: Zoom-in on the wo—w, plane, restricted to the first-order expansion model only.

later times. This crossing has important implications for model building; for instance, in
multi-field scalar field models, the cosmological constant equation of state can be crossed
without pathologies [139, 140].

Figure 8 summarizes the posterior constraints on the present-day equation-of-state
parameter wq and its first derivative w,, as defined in egs. (2.16) and (2.17). In the right
panel, the contours derived from the first-order pressure expansion are tightly clustered around
the ACDM point (wp,ws) = (—1,0). The dataset combinations CMB+SDSS+PantheonPlus
(green) and CMB+DESI4-PantheonPlus (purple) are consistent with a cosmological constant
at the 68% CL, while CMB+DESI+DESY5 (red) remains consistent at the 95% CL. The
first-order model yields relatively tight constraints, concentrated in a narrow diagonal band
stretching from the upper left to the lower right of the parameter space. This structure
indicates a strong degeneracy between the wy and w, parameters, with more negative values
of wy corresponding to less negative values of w,. By contrast, the left panel shows the
results from the second-order pressure expansion (orange, blue, magenta), which occupy a
region of parameter space characterized by wg > —1 and w, < 0. The increasingly negative
values of w, indicate stronger evolution of w(a) away from —1 at earlier times. CMB+DESI
shows the strongest deviation from cosmological constant. A comparison between the results
obtained from CMB+SDSS+PantheonPlus (orange) and CMB+DESI+PantheonPlus (blue)
reveals that replacing SDSS with DESI data shifts the constraints further from the ACDM
solution. A similar trend is observed when comparing CMB+DESI4-PantheonPlus (blue) with
CMB+DESI4+DESY5 (magenta), indicating that substituting PantheonPlus with DESY5 data
pushes the contours even further from the cosmological constant. The dataset combinations
CMB+DESI+PantheonPlus and CMB+DESI+DESY5 show more than 20 deviation from
a cosmological constant, while CMB+SDSS+PantheonPlus remains consistent within the
20 level, consistent with the findings of [16].
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5 Discussion

In interpreting our model comparison, we emphasize that Bayesian evidence accounts for
both the goodness of fit and model complexity, unlike the x? statistic, which reflects only
the best-fit likelihood. For instance, in table 2, while the CPL model yields a better fit
compared to the first-order model, it also introduces one additional parameter. Bayesian
evidence, defined as the integral of the likelihood weighted by the prior, inherently penalizes
such increases in parameter space unless the improvement in fit is substantial. This embodies
the principle of Occam’s razor: simpler models are favored unless additional complexity
is strongly justified. Therefore, despite a worse x?, the first-order model can still achieve
higher Bayesian evidence due to its lower complexity. The choice of prior volumes plays
a critical role in this comparison, as enforcing identical priors across models may obscure
genuine differences in model behavior and penalization.

We previously discussed that a sign change in the dark energy density ppg would lead to
the presence of a pole in wpg(a), as noted in section 2. The normalized DE density curves
ppE(a)/ppr(ap) shown in figures 5, 6, and 7 demonstrate that while this pole is unlikely to
appear within the 68% CL region, it does emerge within the 95% CL region. However, this
pole has minimal impact on our findings. The primary reason is that it occurs only in the early
universe — the sign change in ppg(a)/ppg(ag) happens at a < 0.1 in figures 5, 6, and 7 — and
thus affects only the shape of the confidence regions near a = 0.1. Since dark energy becomes
dominant in the late universe, our analysis focuses primarily on the behavior of the equation
of state w(a) at later times (a > 0.2), where the pole has negligible influence on our results.

To test the sensitivity of the datasets to the signs of ; and €y, we study the evolution
of the quantity

—~

1+ 2) dppE

X
3ppE,o dz

= (1+ wpe) 222 (5.1)
PDE,0

where wpg is the dark energy (DE) equation of state and ppg its energy density. The behavior
of X can signal new physics in the DE sector. Within the DDE framework, as shown in
figure 9, analysis of the combined CMB+DESI+DESY?5 datasets shows that X = 0 is excluded
at the 20 level, disfavoring the cosmological constant solution wpg = —1, in agreement with
the 2D parameter contours shown in figures 6, 8. In the first-order scenario, X stays positive
over the redshift range z € [0, 5], excluding both phantom behavior (1 + wpg < 0) and
negative ppg. In the second-order case, X becomes negative for z = 0.7, indicating a single
phantom crossing, similar to CPL.

The set of egs. (2.10) can be rewritten as follows for the first-order case (22 = 0),
showing that dark energy can be effectively decomposed into a cosmological constant plus an
additional fluid characterized by an equation-of-state parameter w = —4/3, corresponding

p = ppEO [(1 h ) ; a] . (5.2)

{IpE,o QpE,o

to a phantom fluid:

Similarly, for the second-order expansion, equations (2.10) can be rewritten as follows,
indicating that dark energy can be effectively decomposed into a cosmological constant
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Figure 9. Reconstruction of X shown in eq. (5.1) as a function of the redshift z for the first-order,
second-order, and CPL parameterizations. Shaded regions denote the 68% and 95% CL for each
parameterization. Results are obtained using the CMB+DESI4+DESY5 dataset combination.

Parameter First-order expansion Second-order expansion
CMB+DESI CMB+DESI+PantheonPlus CMB+DESI CMB-+DESI+PantheonPlus

Qph? 0.02250 + 0.00013 0.02252 + 0.00013 0.02249 + 0.00013 0.02251 + 0.00013

Qch? 0.11834 + 0.00077 0.11812 =+ 0.00066 0.11852 + 0.00075 0.11824 = 0.00066

100 Oy 1.04115 4 0.00029 1.04119 + 0.00028 1.04114 + 0.00028 1.04118 + 0.00028

Treio 0.0596+3-9069 0.0606+5-9068 0.0591+0-90%% 0.0604 + 0.0071

ng 0.9697 + 0.0035 0.9705 + 0.0033 0.9692 + 0.0035 0.9700 = 0.0034

log(101°4,) 3.054 4 0.014 3.05613912 3.053 +0.013 3.055 +0.013

o 0.137+9938 < 0.0401 0.253+399 0.0697-02%

Q — — —0.1501385, —0.0398+9049.

Hy [km/s/Mpc]

69.66f§§§87
0.8245 1015

68.581032
0.0057
0-813970 005

0.8308 01

0.816275 506

o8
Ss 0.8128 + 0.0078 0.8146 + 0.0077 0.8123 + 0.0077 0.8149 = 0.0076
O 0.29170-0008 0.3005 + 0.0040 0.286970 005 0.2991 + 0.0042
AXZ i ACDM 0.97 0.45 1.35 1.97

Table 4. Parameter constraints (68% CL) for the first- and second-order expansions under the
following prior conditions: €1 > 0 for the first-order expansion, and Qy < 0 with Q; + Q5 > 0 for
the second-order expansion. Results are shown for the CMB+DESI and CMB+DESI4PantheonPlus
dataset combinations.

accompanied by two additional fluids with equation-of-state parameters w = —4/3 and
w = —5/3, respectively:
0 3 Qo 0 Qo 2 Q
=ppEo ||1— - + a—— a”| . 5.3
£ = PDE, Opeo  5QpEo Opeo  pro 5 QpE,0 (5:3)

Ref. [117] proposed a Lagrangian that can model such a system, consisting of a cos-
mological constant plus n additional phantom components, corresponding to an n-th order
Taylor expansion around the cosmological constant value in the pressure parameterization.
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Figure 10. Expansion to first order with the prior condition 2; > 0. One-dimensional posterior
distributions and two-dimensional marginalized contours for the key parameters of the first-order
expansion. Results are obtained using the CMB+DESI and CMB+DESI+PantheonPlus dataset com-
binations.

While we do not delve into the details of this Lagrangian, it is important to note that if
the dark energy behavior arises from this framework, it imposes certain prior conditions:
Q0 > 0 for the first-order expansion, and 2o < 0 with €1 + Q2 > 0 for the second-order
expansion. These constraints arise because the energy density of each phantom component,
derived from a dynamical field, must remain positive.

We present the posterior distributions and parameter constraints (68% CL) for the
first- and second-order expansion models in figure 10, figure 11, and table 4. Our analysis
demonstrates that the results obtained under these imposed priors remain consistent with
the previous results shown in tables 2, 3 and figures 3, 4, which used the more general prior
ranges defined in table 1. Moreover, comparing the values of Ax?nm? AcpM in table 4 with
those in tables 2 and 3 reveals that models constrained by these priors provide a poorer fit to
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Figure 11. Expansion to second order with the prior conditions 25 < 0 and 27 + 5 > 0. One-
dimensional posterior distributions and two-dimensional marginalized contours for the key parameters
of the second-order expansion, obtained from the CMB+DESI and CMB+DESI+4PantheonPlus
dataset combinations.

the CMB+DESI and CMB+DESI+PantheonPlus datasets, relative to the more general prior
scenario. This suggests that a purely phantom behavior of DDE is not favored by the data.
Instead, a larger parameter space (as shown in table 1) is required to allow greater flexibility
in DDE behavior and to produce more compelling results, as discussed in section 4.

6 Conclusions

In this work, we have examined constraints on DDE models expanded to first and second
order, comparing their performance against the ACDM and CPL parameterizations using
various observational datasets. Our analysis has provided valuable insights into the nature
of dark energy and its evolution throughout cosmic history.

The first-order expansion model remains close to a cosmological constant across cosmic
history (—1 < w < —0.95) and never enters the phantom regime. The parameter 21, which
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characterizes deviations from ACDM, typically remains consistent with zero at approximately
the 1o level for all dataset combinations, except for the CMB-only and CMB+DESI4+DESY5
cases. Notably, the CMB+DESI+DESY5 combination indicates the strongest deviation from
ACDM, at the 2.70 level. However, Bayesian evidence analysis reveals no clear preference for
the first-order model over the simpler ACDM scenario. Interestingly, the Bayesian evidence
shows that the first-order expansion model consistently outperforms the CPL parameterization
for dataset combinations that do not include DESI, whereas the inclusion of DESI data
reverses this preference, favoring the CPL parameterization despite its higher complexity
(i.e., greater number of free parameters).

The results from the second-order expansion, which introduces an additional parameter
o, present significantly stronger indications of DDE. Particularly striking is the dataset
combination CMB+DESI4+DESY5, which shows a deviation from ACDM exceeding 4c.
Bayesian evidence further supports this model for this specific combination, representing
“moderate” statistical preference according to the Jeffreys’ scale. Other dataset combinations,
such as CMB+SDSS+PantheonPlus and CMB+DESI+PantheonPlus, also show deviations
from ACDM at the > 20 level and improved maximum-likelihood fits. However, the increased
complexity of the second-order model often leads to weaker Bayesian support compared
to ACDM. In terms of comparison with the CPL parameterization, our second-order
expansion model performs comparably in both maximume-likelihood fit and Bayesian evidence
across most dataset combinations. This concern has been studied in detail, for example
in ref. [141], where Taylor expansions of wpg(a) can suffer from prior-volume effects in
Bayesian model comparison.

When examining the reconstructed DE evolution, we observe that the second-order model
reveals a distinctive non-monotonic behavior in the dark energy density, with significantly
lower values at early times compared to ACDM, followed by an increase that peaks around
a ~ 0.7-0.8, before decreasing to its present value. The corresponding equation of state
exhibits analogous non-monotonic features and phantom-crossing behavior. Notably, the
evolution of wpg(a) after a ~ 0.5, including its present value and the phantom crossing,
remains consistent across various dataset combinations and shows strong agreement with
results obtained from the CPL parameterization. This demonstrates remarkable consistency
in the qualitative behavior of late-time wpg(a) across different models and datasets. The
phantom-crossing behavior has important theoretical implications, as it cannot be explained
by standard quintessence or phantom models. It suggests that DDE may require more exotic
frameworks, such as scalar-tensor theories or modified gravity.

Our results highlight the importance of dataset selection in constraining DE models. The
combination of CMB, DESI, and DESY5 data consistently shows the strongest preference for
DDE. The DESY5 data appears particularly sensitive to DE dynamics, potentially due to its
extended redshift coverage or distinct systematic uncertainties compared to PantheonPlus.
Similarly, DESI data shows a stronger preference for DDE than SDSS data.

Overall, while the evidence for DDE remains tentative for most dataset combinations,
the strong preference shown by certain datasets, particularly when using our second-order
expansion model, suggests that the cosmological constant may not provide a complete
description of DE. Our multi-model analysis across various dataset combinations offers
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compelling evidence for a DDE component exhibiting phantom-crossing behavior. Future
surveys with improved precision and extended redshift coverage will be crucial for definitively
resolving this question and potentially uncovering the true, possibly dynamical, nature of
dark energy.
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