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Abstract
Heat-related deaths occur throughout the summer months, peak during heatwaves, and 
are affected by temperature and exposed populations’ sensitivities to meteorological con-
ditions. Previous studies found that climate change is increasing heat-related mortality 
worldwide. We build on existing epidemiological methods to shed light on the adverse 
effects of climate change on human health. We address limitations in existing methods and 
apply refined approaches to assess heat mortality attributable to human-induced climate 
change in Zürich, Switzerland, over 50 years (1969–2018) including a case study of sum-
mer 2018. Our methodological refinements affect how counterfactual climate scenarios are 
derived, and facilitate accounting for changing vulnerability, and assessing impacts during 
and outside heatwaves. We find nearly 1,700 heat-related deaths attributable to human-
induced climate change between 1969 and 2018. Declining vulnerability to heat avoided 
at least 700 heat-related deaths. The approach described here could be applied elsewhere 
to quantify the effect of climate change on other health outcomes.

Keywords  Climate change attribution · Epidemiology · Climate impacts · Health.

1  Introduction

Human-induced climate change causes substantial morbidity and mortality from increas-
ingly frequent and intense extreme weather events, rising temperatures and sea levels, and 
changes in rainfall, among other factors (Cissé et al. 2022; Romanello et al. 2024). These 
physical (weather and climate-related) hazards have direct physiological effects, shift the 
distribution of pathogens and disease vectors, reduce the yields and nutrient quality of food 
crops, and influence socioeconomic determinants of health. As global temperatures rise, 
the magnitude of associated health impacts is projected to increase further (Ebi et al. 2018; 
Haines and Ebi 2019; Watts et al. 2021). Studies quantifying the already-occurring effects of 
climate change on health can improve awareness of its impacts, inform adaptation decisions 
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and political negotiations around loss and damage (James et al. 2019), and provide evidence 
for climate-related lawsuits (Stuart-Smith et al. 2024). Despite their relevance, attribution 
studies of this kind remain limited in number, scope, regional coverage, and in the rigour 
of methods applied: a recent review identified twenty studies that estimated the present-day 
health impacts of climate change (Carlson et al. 2025).

Current methods in attribution of the health impacts of anthropogenic climate change 
rely on established and widely applied approaches. Recent studies extended attribution 
analyses from assessing climate change influence on meteorological events to their health 
impacts, including on heat-related mortality (Mitchell et al. 2016; Mitchell 2016; Clarke et 
al. 2021; Vicedo-Cabrera et al. 2021) and the spatial extent of vector-borne disease (Gibb 
et al. 2023). These contributions combined the latest developments in climate trends and 
extreme weather event attribution with advanced methods in climate epidemiology to derive 
robust estimates of climate-related health impacts attributed to human activities (Vicedo-
Cabrera et al. 2019, 2021). However, several methodological questions arise when inte-
grating climate science and health methods that have not been sufficiently addressed or 
discussed. These include (1) how the counterfactual climate scenarios are derived and com-
bined with epidemiological data and methods, (2) the assumptions behind the use of differ-
ent definitions of vulnerability, and (3) the comparison between impact estimates during and 
outside extreme event periods (e.g., heatwaves).

Here, we identify and explore approaches for resolving these key methodological issues 
in health impact attribution studies and their application in attribution studies for specific 
events or trend studies. As an illustrative example of the application of these methods, we 
present a case study of the effect of climate change on heat-related mortality in the canton 
of Zürich (Switzerland, population 1.5 million in 2018) (Federal Statistical Office 2024). 
We use the case study to discuss the advantages, disadvantages and suitability of differ-
ent approaches for calculating counterfactual temperatures. We also show the impact of 
accounting for changes in vulnerability in the impact model and discuss the assumptions 
behind each choice (Sect. 3.2). We define ‘vulnerability’ based on the exposure-response 
association, and therefore in the IPCC’s definition, our usage encompasses both the propen-
sity or predisposition to be adversely affected (‘vulnerability’) and ‘exposure’, the presence 
of people in settings that could be adversely affected (Möller et al. 2023). Finally, we nar-
row down the investigation to the summer of 2018 to compare the attributable heat-related 
mortality accrued during a heatwave period with lengthier periods of milder summer tem-
peratures (Sect. 3.3).

2  Methods

We collected observed daily mean temperature and all-cause mortality data in the Canton of 
Zürich between 1969 and 2018 (see data availability). We then quantified the daily number 
of heat-related deaths using the total mortality for each day under observed and counter-
factual conditions. Fig. 1 provides an overview of the methodological framework, which is 
broadly in line with recently published guidance for health attribution research (Ebi et al. 
2025). We calculated climate-change-attributable heat-related mortality as the difference 
between the mortality associated with observed and counterfactual temperatures.
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2.1  Constructing the counterfactual temperatures

To conduct a climate change-health attribution analysis, studies need meteorological inputs 
to the health model under two contrasting conditions, often a ‘factual’ scenario representing 
the observed climate, and ‘counterfactual’ conditions that exclude drivers of interest, such 
as the effect of anthropogenic greenhouse gas and aerosol emissions. Previous research 
used bias-corrected climate model data to represent both the historical climate, with anthro-
pogenic and natural forcings (e.g., volcanic), and the counterfactual, ‘historical-natural’ 
climate from which anthropogenic climate forcings are excluded (Vicedo-Cabrera et al. 
2021). However, while the summary distributions of observed and climate model data for 
extended periods are comparable, daily climate model data do not align with observed con-
ditions; for instance, days with highest temperatures differ between models and observa-
tions (Fig. S1). For long-term studies where it is not necessary to precisely reproduce the 
conditions on specific days, this is of little consequence, and so in previous studies of this 
type (Vicedo-Cabrera et al. 2021) it was appropriate to use mean mortality for the day of the 

Fig. 1  Process chart showing the main steps of the climate and epidemiological analyses carried out. Input 
data are underlined. Data input into the epidemiological model are shown in dark green
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year, as is common in health impact projection studies (Vicedo-Cabrera et al. 2019), rather 
than observed data as the denominator to derive the daily fraction of deaths attributable to 
heat (Vicedo-Cabrera et al. 2021). However, in health attribution studies of single events 
(such as the 2003 heatwave in Paris) it would not be appropriate to use average mortality or 
raw/bias-corrected climate model output where observed conditions need to be accurately 
reproduced.

A modelling approach that accurately assesses the impacts of climate change on daily 
heat-related mortality is therefore needed. To do so, we derive counterfactual temperatures 
by subtracting the human-induced temperature change (due to anthropogenic greenhouse 
gas and aerosol emissions) for each day from the observations, based on climate-model 
and observation-based (in-situ and reanalysis) datasets. The counterfactual series therefore 
retains the pattern and variability of temperature found in the observations. This approach 
is similar to that previously applied (with annual data) to quantify economic impacts of 
climate change (Diffenbaugh and Burke 2019) but we are unaware of prior application of 
this approach to health impacts. The detrending method described in Mengel et al. (2021) 
removes the long-term trend in observed data to generate a counterfactual timeseries and 
similarly retains the observed pattern of meteorological values in the factual and counterfac-
tual series (i.e., heatwaves occur at the same time in the two series) but represents the impact 
of observed climate change (Mengel et al. 2021). Through the use of the Global Warming 
Index, our method removes the change in temperature attributable to anthropogenic green-
house gas and aerosol emissions, rather the trend in observed temperatures only. Moreover, 
our approach combines lines of evidence from observations and climate models, rather than 
trends in reanalysis only. Adapting the widely applied probabilistic attribution approaches 
described in Philip et al. (2020) and van Oldenborgh et al. (2021) the attributable tempera-
ture change is the difference between factual and counterfactual temperatures with probabil-
ities equal to the observations, from daily climate model and reanalysis (observation-based 
gridded climate data) data. In our example, Summer (June-August) warming attributable to 
anthropogenic influence in Zürich increased across the study period, reaching 1–1.5 °C in 
2009–2018 in model simulations, and slightly higher in reanalysis datasets (Fig. S2).

The main advantage of counterfactuals calculated by subtracting the attributable change 
from an observational timeseries, relative to simulations of counterfactual temperature series 
taken directly from climate models (e.g., simulations from the Detection and Attribution 
Model Intercomparison Project, DAMIP (Gillett et al. 2025), is that it replicates observed 
events on the dates at which they occurred and thus can be used to analyse both long-term 
impacts and those of individual weather events. Additionally, this allows us to use observed 
daily mortality to derive the daily heat-related deaths rather than mean mortality for the day 
of the year, avoiding spikes in mortality typically found in observed series being spuriously 
attributed to temperature on days when model temperatures were not high (Vicedo-Cabrera 
et al. 2021). Mean values by day of the year retain seasonal patterns and capture long-term 
trends but do not represent the full day-to-day variability of mortality. Thus, the use of 
observation-based counterfactuals, combined with observed mortality, affords greater confi-
dence in our estimation of absolute values of heat-related mortality (Table S3), especially in 
short periods of time (i.e., a specific summer season) and allows us to account for population 
changes over time. The effect of this approach can be seen in Fig. S1, where in our analysis 
daily temperatures in both factual and counterfactual timeseries correspond to peaks and 
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troughs in mortality, whereas GCM output (dashed lines in Fig. S1) does not rise and fall in 
step with observed mortality fluctuations.

Counterfactual temperatures were calculated by subtracting the temperature anomaly 
attributable to anthropogenic greenhouse gas and aerosol emissions from observed (station) 
temperatures for Zürich (Fluntern; see data availability statement). Here we describe how 
the attributable anomalies were calculated based on observations, reanalysis and climate 
model data. We calculated the change in daily-mean temperature attributable to anthropo-
genic climate change as the difference between the modelled daily-mean temperatures in the 
historical (1969–2018) and counterfactual climates in climate-model and observation-based 
(reanalysis) simulations.

2.1.1  Quantifying probability of observed temperatures

For each day of the study period, we calculated the probability of the observed tempera-
tures. We do so by first detrending the observed temperatures by regressing against 4-yr 
smoothed global-mean surface temperature (GMST) using the NASA-GISS temperature 
dataset (Lenssen et al. 2019) and subtracting the product of the regression coefficient ( α ) 
and GMST from the observations (α = (dTobs/dt) / (dTGMST /dt)). We then fitted the 
detrended temperatures to Logistic distributions that represented the distribution of tem-
peratures in the 30-year period centred on the year in question, or for data near the end of the 
timeseries, the longest period that could be centred on the year in question. To do this, we 
set the mean of the distribution to the thirty-year (or longest possible) moving mean centred 
on the year in question. This ensures that the estimated probabilities of daily temperatures 
are consistent with the climate in which they occurred. We note that years near the end of 
the timeseries will be more affected by internal variability due to the shorter period used to 
estimate the mean of the temperature distribution.

The logistic distribution was chosen by fitting the detrended observed daily mean temper-
atures (with seasonal cycle removed by subtracting the 30-day moving mean) to commonly 
used statistical distributions and applying the Anderson-Darling and Kolmogorov-Smirnov 
tests to identify the distribution that gave the best fit to the data. The statistical distributions 
attempted were the Generalised Extreme Value (GEV), Logistic, Normal, Rayleigh, and t 
Location Scale distributions. The seasonal cycle was reinstated through the use of observa-
tions in constructing the counterfactual temperatures.

2.1.2  Analysis of gridded data

Model and reanalysis temperatures are taken from the grid cell containing Zürich (based 
on a nearest-neighbour selection); for the model temperatures, these are taken from an 
18-member ensemble of Coupled Model Intercomparison Project Phase 6 (CMIP6) models 
detailed in Table S1. These models are all those with daily data available in The Centre 
for Environmental Data Analysis (CEDA) data archive at the time that the analysis com-
menced. We evaluated the models to assess whether the statistical characteristics of tem-
peratures in the models were consistent with those in the observations by comparing the 
scale and shape parameters of each of the model fits with that of the observations. Following 
Philip et al. (2020), the models for which the 5–95% confidence intervals of these param-
eters of the statistical fits overlapped with the 5–95% confidence intervals of the parameters 

1 3

Page 5 of 22    165 



Climatic Change         (2025) 178:165 

of the observations, were initially selected for use in the analysis. Because only one model 
passed this evaluation step, and it is preferable to include multiple models to better account 
for systematic uncertainty in the model representation of the climate system, due to model 
structural biases and differing representations of physical processes, we expanded the range 
of parameter values used to evaluate models slightly (by 5% relative to the 5 and 95% confi-
dence intervals). This increased the number of models passing the evaluation step to seven.

Since our analysis relies primarily on the long-term temperature trend in the models 
rather than day-to-day temperature variability (which is taken from station observations) to 
estimate counterfactual temperature values, a slight broadening of the criteria for models 
to pass the evaluation step has limited consequence for the results. For the five models 
included for which historical-natural simulations were unavailable, only the long-term trend 
is used to estimate counterfactual values, which therefore display no sensitivity to the shape 
of the temperature distribution. This justifies the inclusion of all seven models in our analy-
sis, and this is further supported by the fact that all seven selected models produce warm-
ing attributable to human influence that, at the end of the series, lie within the range of the 
observation-based datasets (Fig. S1). Our model evaluation means that the sample we use 
successfully simulate the temperature variability of the Swiss climate.

After selecting the models for use in the analysis, the equilibrium climate sensitivities of 
selected models (Tables S1, S2) are compared with the full set of CMIP6 models. The mean 
climate sensitivity of the selected models is very close to that across CMIP6 models, and the 
selected models also capture a substantial portion of the range in climate sensitivity found 
across CMIP6 models (Table S8) indicating that the sample we are left with is representative 
of the full set of CMIP6. For models for which we Had historical-natural simulations, the 
temperatures under historical and historical-natural conditions, both for 1969–2018, were 
estimated as the temperatures with the same probability as the temperature of the same day 
in the observations. For other models, and the observations and reanalysis datasets, we cal-
culated annual temperature anomalies attributable to anthropogenic climate forcing using a 
separate method, detailed below.

Following the selection of models as detailed above, we then proceed with the calculation 
of counterfactual temperatures. First, the difference in temperature caused by the difference 
between the mean elevation of the model grid cell (the spatial resolutions of which range 
from 0.94° x 0.94° to 1.875° x 1.25° and are stated in Table S2) and the station observations 
is corrected for using a lapse rate of −6.5 °C km−1, consistent with summer lapse rates found 
elsewhere in the European Alps (Zemp et al. 2007; Nigrelli et al. 2018) (while the precise 
lapse rate will vary with humidity, this does not affect our overall results since only attribut-
able anomalies rather than absolute temperature values are used in our model analysis). The 
same approach was used for the reanalysis data, for which we use three climate reanalysis 
datasets: the Modern-Era Retrospective analysis for Research and Applications, Version 2 
(MERRA-2) (Global Modeling and Assimilation Office (GMAO) 2015), Berkeley Earth 
Surface Temperature Project (Rohde and Hausfather 2020), and ERA5 (Hersbach et al. 
2020; Bell et al. 2021). We then detrended the model and observation-based temperatures by 
regressing against each model and reanalysis timeseries’ GMST and removed the seasonal 
cycle in the same manner as the station observations. We then fit the resulting timeseries to 
the same statistical distribution as the observations. The distribution was shifted over time 
such that it reflected the temperatures of the 30-year period centred on the year in question 
using the same approach as the station observations.
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2.1.3  Calculating counterfactual temperatures

We then calculated the attributable change in temperature for each day in all models that 
pass the evaluation step. We used the selected ensemble of CMIP6 models to simulate the 
distribution of daily temperatures in the historical period and in the absence of anthropo-
genic greenhouse-gas and aerosol emissions. We used daily output from historical (1850–
2014) and SSP 5-8.5 (2015 onwards) runs as transient simulations (because the projections 
are only used to generate distributions of temperature until 2018, results have limited depen-
dence on scenario choice as all SSPs are very similar until ~ 2030). For models for which 
both transient and historical-natural simulations (from the Detection and Attribution Model 
Intercomparison Project, DAMIP (Gillett et al. 2016) were available, the attributable change 
in temperature was calculated as the difference between the temperatures in the two sets of 
simulations, for probabilities equal to those in the observations. The probabilities of his-
torical and historical-natural model temperatures were calculated using the same approach 
taken for the observations, with probabilities calculated based on a distribution representing 
the 30-year period centred on the calendar year in question.

For the models for which historical-natural simulations were unavailable, the transient 
simulations were used and the distribution of daily-mean temperatures in the absence of 
human influence estimated by shifting the mean of the temperature distribution by the prod-
uct of the change in GMST attributable to anthropogenic climate influence and a scaling 
factor. Global-mean human-induced warming is taken from the Global Warming Index, an 
estimate of the anthropogenic contribution to global externally forced temperature change 
(Haustein et al. 2017). The scaling factor is dataset and region-specific and is the regression 
co-efficient calculated in detrending the model/observational temperature data, which is the 
ratio between the gradients of local temperature observations and (4-yr smoothed) GMST 
from NASA-GISS (Lenssen et al. 2019). These two methods for calculating counterfactual 
temperatures are both commonly used in attribution studies when historical-natural simula-
tions are available for some models but not others (Philip et al. 2020). Multiple reanalysis 
datasets were used to account for variations between the trend in temperature (and therefore 
estimated attributable warming) across observational products (Perkins-Kirkpatrick et al. 
2024).

The regression-based method used for timeseries for which historical-natural simula-
tions were unavailable can effectively account for the effect of anthropogenic influence on 
the climate on multi-decadal to centennial scales. However, it does not account for inter-
decadal variability. Consequently, this approach does not capture short-term influences on 
region-specific warming, such as Lowered central European temperatures in the 1970s due 
to anthropogenic aerosol emissions (Wilcox et al. 2013; Undorf et al. 2018) and so may 
overestimate temperature anomalies attributable to anthropogenic influence in this period, 
as seen in Fig. S2.

This approach is also based on three assumptions. First, using GMST as a covariate to 
represent anthropogenic influence on Local temperatures assumes that the Long-term pro-
portional contributions of anthropogenic and natural forcing to temperature change are equal 
at local and global scales, and therefore that there are no independent local factors that could 
create century-scale local climate trends. Such local factors might include local changes in 
albedo due to land-cover alterations over the past 150 years. Analyses of the effects of land 
use and land cover change found limited changes in mean temperature and slight cooling in 
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summer months over central Europe in the historical period, masking some of the attribut-
able warming trend and rendering our results conservative (Zhang et al. 2024). No other 
factors that could have caused century-scale climate trends are known for this region, such 
as volcanic activity with effects localised to Switzerland. A similar consideration of the 
possible role of local factors that could cause century-scale climate trends should be given 
if applying these methods to other locations. A similar assumption applies to the use of grid-
ded climate data to calculate attributable changes in temperatures: local factors are assumed 
not to cause local century-scale climate trends to differ significantly from trends at the scale 
of the grid cells. This is a widely applied assumption in climate change attribution studies 
(Philip et al. 2020) that we adopt here. Moreover, since our analysis is at the Canton scale 
(rather than a finer, such as city, scale) our results are less sensitive to this concern since this 
larger area is, on average, better represented by a grid cell than would be a specific location. 
However, location-by-location differences within the grid cell may be present.

Secondly, a common assumption in climate change attribution studies is that the trend 
in temperature extremes shifts with GMST, and that the scale parameter of the temperature 
distribution is unchanged over time. This is well supported for studies using large ensem-
bles of model simulations (Philip et al. 2020). Nevertheless, we tested this assumption by 
evaluating the sensitivity of attributable mortality to the values of the scale parameter. We 
iteratively fit 30-yr windows of detrended data to the statistical distribution and found that 
mortality is unchanged (< 0.01% change) for a 1 standard deviation shift in the values of 
the parameters.

Thirdly, our analysis is predicated on an assumption that the attributable shift in tempera-
ture is constant between the summer and the full year. This is approximately true in Europe, 
where summer temperatures rose at 0.0251 °C/yr between 1951 and 2020, compared with 
an annual warming rate of 0.0267 °C/yr (0.0556 °C/yr in summer vs. 0.0551 °C/yr annual 
warming over 1985–2020) (Twardosz et al. 2021).

2.1.4  Case study: summer of 2018

To date, most climate change attribution studies that focus on meteorological conditions 
evaluate the effects of climate change on individual extreme weather events, such as heat-
waves. However, in epidemiology, longer-term studies at the seasonal (Ballester et al. 2023) 
or multi-annual (Vicedo-Cabrera et al. 2021) timescale are more common. While peaks in 
heat-attributable mortality occur during heatwave periods, focusing only on extreme tem-
peratures may not capture the full extent of the impacts of climate change. We therefore 
assess heat-related mortality within and outside of heatwaves by limiting our analysis to the 
summer of 2018 and quantified heat-related mortality based on observed and counterfactual 
temperatures.

2.2  Epidemiological analysis

Our epidemiological analysis largely replicates the approach applied by Vicedo-Cabrera 
et al. (2021), whose method was developed in Gasparrini and Leone (2014), with several 
extensions. We calculated counterfactual heat-related mortality using the counterfactual 
temperatures generated as described in Sect. 2.1 above.
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Here we provide a brief overview of the epidemiological methods applied, noting ele-
ments of the methods specific to our study. We estimated the temperature-mortality rela-
tionship (Fig. 2) by conducting a time-series analysis with generalised linear models and 
quasi-Poisson regression using observed daily mean temperature and mortality data (see 
‘Data availability’) during June-August (Vicedo-Cabrera et al. 2021) although we note that 
heat events and some limited heat-related mortality may occur outside of these months and 
are not accounted for. This renders our results conservative. The analysis was performed 
across the whole study period (June-August 1969–2018) to obtain the overall exposure-
response relationship and the same approach repeated for three subperiods (1969–1985, 
1986–2003, and 2004–2018) to assess the impacts of changing vulnerability to heat. Daily 
mean temperature is widely used as a determinant of heat exposure in calculating tem-
perature-mortality association, and by subperiod to obtain the corresponding association 
estimates relationships (Gasparrini et al. 2015a; Vicedo-Cabrera et al. 2019, 2021; Lee et 
al. 2020).

We modelled the temperature-mortality dependency with a distributed lag non-linear 
model that simultaneously accounts for delayed effects and non-linearity of the association, 
typically found in temperature-health studies. Specifically, the exposure-response dimension 
was defined with a natural spline with two internal knots placed in the 50th and 90th per-
centile of the summer temperature distribution. The lag-response dimension also included a 
natural spline with two internal knots equally spaced in the Log scale and up to 7 days of lag. 
The time-series model included a natural spline of day of the year with 4 degrees of freedom 
and an interaction by year, and a natural spline of time with 1 knot every 10 years which 
affords sufficient statistical power to control for both seasonality and long-term trends. The 
specifications of the time series model and the definition of the cross-basis function of tem-
perature are the ones described in Vicedo-Cabrera et al. (2021) and were used extensively 
in previous assessments (Gasparrini et al. 2015a, b; Sera et al. 2020; Vicedo-Cabrera et al. 
2021). We did not control for air pollution and/or humidity because previous assessments 
suggested that the role of these variables as confounders was negligible (Gasparrini et al. 
2015a; Armstrong et al. 2019).

Observation-based estimates of the exposure-response association between tempera-
ture and mortality using a time-series regression and distributed lag non-linear model is 
the state-of-the-art epidemiological method for assessing health impacts of environmen-
tal stressors (Gasparrini et al. 2017; Vicedo-Cabrera et al. 2021; Lo et al. 2022). We used 
this association to calculate the heat-related mortality fraction for each day when tempera-
tures exceeded the temperature of minimum mortality under both observed conditions and 
counterfactual temperatures with the effect of anthropogenic greenhouse gas and aerosol 
emissions excluded (see Methods, ‘Constructing the counterfactual temperatures’). The 
minimum mortality temperature is the temperature at which risk of death is Lowest across 
the full observational timeseries. We quantified the uncertainty of the estimates by generat-
ing 1,000 samples of the coefficients defining the exposure-response association through 
Monte Carlo simulations, assuming a multivariate normal distribution. We derived the 95% 
empirical confidence intervals (eCI) from the resulting distribution, corresponding to the 
2.5th and 97.5th percentiles. The eCI of the ensemble estimates of the counterfactual sce-
narios (i.e., by averaging across the single-series estimates) were estimated by combining 
the single-series distributions. Thus, in this way we account for both uncertainty of the 
exposure-response function and the variability across the different counterfactual series.
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Fig. 2  Exposure-response association for the Canton of Zürich, and probability density functions for tem-
peratures under factual and counterfactual conditions, and the resulting distribution of mortality rates. (A) 
exposure-response association calculated using observed temperature and mortality data for 1969–2018, 
and the 5–95% empirical confidence intervals (shaded area). (B) PDFs of observed temperatures and a 
synthesis of model and observation-based counterfactual temperature timeseries (Methods). (C) Propor-
tion of heat-related mortality occurring at different temperatures. The vertical dashed line shows the 
minimum mortality temperature.
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3  Results

3.1  Constructing the counterfactual temperatures

Our analysis finds that between 1969 and 2018, 6,091 (2,716-9,476, 95% empirical confi-
dence interval (eCI)) heat-related deaths occurred in the Canton of Zürich. In the counterfac-
tual scenarios, heat-related mortality is 4,360 (988-7,931, 95% eCI; values are a synthesis of 
model and observed datasets, see Methods) leaving 1,683 (270-3,279) deaths attributable to 
anthropogenic climate change (Table S3). This is equal to 27.6% of heat-related mortality 
and 1.4% (0.2–2.7%) of summer all-cause mortality in Zürich over this period (Fig. 3b). 
We compared the results using counterfactual series derived from the seven climate models 
that passed our evaluation step, station observations, and reanalysis. The central estimate 
of attributable mortality across models ranges from 314 to 1,871, with higher attributable 
mortality estimates found in reanalysis and observation datasets, associated with stronger 
warming trends than indicated by the models (Table S3 and S4). This suggests the high 
sensitivity of the attributed burden to the amount of attributable warming and underlines the 
importance of using multiple datasets for estimating attributable changes.

3.2  Accounting for changes in vulnerability

Previous epidemiological analyses of heat-related mortality attributable to climate change 
typically used the same vulnerability estimate (i.e., exposure-response association) for 
assessing impacts in the factual and counterfactual climate conditions. As such, most stud-
ies did not explicitly consider how vulnerability changes over time when assessing anthro-
pogenic health impacts across long periods of time (Vicedo-Cabrera et al. 2021). These 
assessments argued that average risk across the study period would provide more robust and 
reliable estimates. We evaluated the effect of this assumption by comparing results gener-
ated using a single exposure-response calculated for the full analysis period with results that 
account for how mortality risk changed over 1969-2018.

Our overall results are consistent when generated using a single (full-period) and time-
varying exposure-response associations. Across the full analysis period, heat-related mor-
tality attributable to climate change was 1.4% of all-cause mortality when calculated with 
both time-varying and constant exposure-response associations (5–95% empirical confi-
dence intervals are 0.1–2.9% for time-varying exposure-response association, and 0.2–2.7% 
for a constant exposure-response association), supporting the approach of previous analyses 
that used one exposure-response association for the full time series (Vicedo-Cabrera et al. 
2021). However, we found that using a constant exposure-response association underesti-
mates heat-related mortality at the start of the timeseries, when the relationship between 
temperature and mortality risk is steeper, and overestimates heat-related mortality in the 
period since 2004, as risk was reduced, as detailed below (Fig. 3a, Fig. S2). In our case 
study, our time-varying exposure-response association finds that the fraction of all-cause 
mortality that is attributable to heat is 4.20% (1.41–6.69%) in the observed climate of 1969–
1985, compared with 3.88% (1.08–6.57%) for the constant exposure-response association. 
However, for 2004–2018, the heat-attributable fraction of mortality is Lower under the 
time-varying exposure-response association, at 4.83% (2.08–7.24%), compared with 6.32% 
(3.41–9.27%) for the constant exposure-response association. In any case, rising global 
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Fig. 3  Heat-related mortality attributable to regional anthropogenic climate change for the Canton of Zürich. 
(A) heat-related mortality as a % of all-cause summer mortality for 1969–2018 (overall exposure-response 
and ‘evolving vulnerability’ scenario only) and for each of the three time periods considered in the analy-
sis. The ‘evolving vulnerability’ and ‘constant vulnerability’ scenarios were identical for 1969–1985 and 
1986–2003 so only ‘evolving vulnerability’ is shown. Dark red bars show the heat-related mortality under 
observed temperature conditions, lighter bars are the mean of the counterfactual scenarios. (B) as in panel A 
but showing the heat-related mortality attributable to climate change, with 5–95% empirical confidence in-
tervals. (C) the relationship between the regional temperature anomaly attributable to anthropogenic climate 
change (for Zürich) and the attributable heat-related mortality as a percentage of all-cause summer mortality 
for the ‘evolving vulnerability’ (red) and ‘constant vulnerability’ scenarios (violet). The trend lines are calcu-
lated as a natural spline with 3 degrees of freedom, which produced the best fit to the data of the fits attempted 
(linear, and natural spline with 3, 4 and 5 degrees of freedom). Dashed lines show the continuation of the fit at 
temperature anomalies for which no data are available. We note that the ‘constant vulnerability’ scenario only 
excludes the change in exposure-response association between 1986–2003 and 2004–2018, and that further 
adaptation would be expected to occur in response to further warming, reducing the sensitivity of mortality 
risk to temperature. The shaded area represents the 5–95% confidence intervals of the trend. All values given 
are the synthesis values of all models and observation-based datasets.
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temperatures continues to increase the deaths attributable to human-induced warming as 
a proportion of all-cause mortality: when using the single exposure-response association, 
from 0.68% (−0.79−1.51%) in 1969–1985, rising to 1.34% (0.05–2.77%) in 1986–2003 and 
1.97% (1.2–3.94%) in 2004–2018.

Using the method described above, we then estimated the effect of changes in vulnerabil-
ity on heat-related mortality by deriving exposure-response associations from all-cause sum-
mer mortality for each of three periods (1969–1985, 1986–2003, and 2004–2018) (Fig. S3). 
We assess the impacts of changes in vulnerability over time by comparing our results under 
a ‘constant vulnerability’ scenario in which the exposure-response association calculated for 
1986–2003 is also applied to 2004–2018 with the findings in which vulnerability changes 
over time (‘evolving vulnerability’ scenario). Retaining the same exposure-response asso-
ciation across these sequential time periods assumes no changes in population structure or 
other factors that determine mortality risk. Similar approaches have been used outside of 
climate change attribution research, for instance by using age-stratified mortality associa-
tions with temperature (de Schrijver et al. 2022).

Under the ‘constant vulnerability’ scenario, in which these changes do not take place, 
an additional 730 deaths occurred over 2004–2018, relative to the ‘evolving vulnerability’ 
scenario when, in each case, mortality was calculated based on observed temperatures. The 
change in the exposure-response relationship from 2004 onwards thus caused an 29% reduc-
tion in heat-related mortality over the period 2004–2018 relative to the mortality expected 
in the absence of these changes (Table S6). In both the constant and evolving vulnerability 
scenarios, heat-related mortality attributable to climate change rose throughout the study 
period, with reductions in vulnerability limiting the extent of this increase (Table 1; Fig. 3c).

3.3  Attributable mortality within and outside heatwave periods

We focus our heatwave case study on the summer of 2018, a period of then-record-breaking 
heat across much of Europe (Rousi et al. 2023). Human influence was found in previous 
studies to Have increased the intensity and likelihood of the summer 2018 heatwave in 
northern and southern Europe (Barriopedro et al. 2020; Yiou et al. 2020). For the summer 
(June – August) of 2018, we estimate that 86 (55–113, 5–95% empirical confidence inter-
vals) of 208 (111–301, 5–95% empirical confidence intervals) heat-related deaths in the 
Canton of Zürich are attributed to anthropogenically-driven temperature rise (i.e., 41%), 
based on the temperature-mortality relationship derived for 2004–2018. We define the heat-

Table 1  Mean annual heat-related mortality attributable to anthropogenic climate change for the three peri-
ods considered in the analysis and for the three exposure-response scenarios. In the ‘evolving vulnerability’ 
scenario, a time-varying exposure response association was calculated based on observed temperatures and 
mortality for each of the three periods. In the ‘constant vulnerability’ scenario, the exposure-response asso-
ciation for 1986–2003 from the ‘evolving vulnerability’ scenario was also used for 2004–2018. In the ‘single 
exposure-response’ scenario, the exposure-response association was calculated based on observed mortality 
and temperature data from the full period (1969–2018). Central estimates and 5–95% confidence intervals 
were provided for the mortality values.
Scenario Mean annual heat-related mortality attributable to anthropogenic 

climate change
1969–1985 1986–2003 2004–2018

Evolving vulnerability 19 (−24−47) 37 (1–79) 47 (21–92)
Constant vulnerability 19 (−24−47) 37 (1–79) 58 (29–109)
Single exposure-response 16 (−18−35) 33 (1–69) 48 (29–97)
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wave period as 29 July – 10 August, the period of highest temperatures. Across these 12 
days (13% of summer), 83 (46–116) heat-related deaths occurred, with 22 (−3−46) attribut-
able to climate change (27% of heat-related deaths, Fig. 4).

Our findings provide an empirical demonstration that climate change increases heat-
related mortality on almost all summer days. While mortality peaks during heatwaves, much 
of the heat-related mortality attributable to climate change also occurs outside of heatwaves.

4  Discussion

Our results show a substantial burden of heat-related mortality attributable to climate 
change in Zürich. As in previous studies, we used a single exposure-response relationship 
derived from all observed mortality and temperature series representing the average vul-
nerability across the study period (Vicedo-Cabrera et al. 2021). Using the full timeseries 
reduces uncertainty in the exposure-response association, especially in locations with a 
low number of observations. However, the temperature-mortality relationship evolves over 
time due to changes in demographic (de Schrijver et al. 2022), physiological, behavioural, 
socioeconomic, and infrastructural factors (Mitchell 2021). A long daily-mortality data-
set allows us to subset the study period to assess changes in exposure-response associa-
tions over time. This allowed us to evaluate the previously used approach of using a single 

Fig. 4  Observed daily-mean temperatures (black) and heat-related mortality (red bars) showing the por-
tion attributable to anthropogenic climate change (dark red) for the Canton of Zürich, June – August 
2018. Daily heat-related deaths are represented by the height of the bar, with the dark red segment cor-
responding to the number of daily deaths attributable to climate change and lighter red representing those 
deaths that would have been expected to occur in the counterfactual conditions where the effect of human-
induced climate change is excluded.
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exposure-response relationship for the full time series and examine the effect of changing 
vulnerability over time. Nevertheless, we do not disaggregate the effects of specific drivers 
of vulnerability. Future work could attempt to assess the contributions of changing demo-
graphic factors, improved health systems, introduction of heat response plans, changes in 
behaviour, changes in urban green space and the built environment to burdens of heat-
related mortality.

Previous research quantified heat-related mortality attributable to anthropogenic climate 
change during heatwave periods alone (Mitchell 2016; Guo et al. 2018), across full sum-
mers (Mitchell et al. 2016) and over multiple years (Vicedo-Cabrera et al. 2021). The meth-
ods applied here address a limitation of these previous studies. Some analyses quantify 
long-term impacts but cannot accurately assess specific short-term events within the study 
period. Studies that quantify attributable heat-related mortality using changing probabilities 
of observed meteorological conditions due to climate change have been applied to events 
of limited duration but not long-term effects. Our approach to estimating counterfactual 
temperatures provides fungible results for heatwaves and longer periods. This allows us to 
conduct a long-term analysis that can be subset to provide results that for individual events 
within that longer timeseries.

Our climatological and epidemiological case study analyses yield three main findings. 
First, in the Canton of Zürich, 1,683 (270-3,279) summer heat-related deaths were attributed 
to anthropogenic climate change in 1969–2018. The range of different mortality estimates 
across observations, models and reanalysis datasets underlines the importance of using 
multiple lines of evidence to represent uncertainty in climate-change-attributable mortal-
ity. Second, reductions in vulnerability counteracted some impacts of rising temperatures, 
limiting the increase in heat-related mortality. Nevertheless, substantial heat impacts were 
still observed. Zürich enjoys advantages in its capacity to adapt to heat effects compared 
with many locations worldwide due to high quality housing, health and social services, and 
economic prosperity. Empirical evidence for the effectiveness of adaptation is limited (Ber-
rang-Ford et al. 2021). The results above demonstrate the effects of vulnerability changes, 
and therefore the potential effectiveness of adaptation measures. Implementing adaptation 
measures may incur costs in addition to the benefits, in terms of avoided mortality, detailed 
here, although these were beyond the scope of our analysis.

Third, heat-related mortality occurs at highest rates at the hottest temperatures. However, 
outside of heatwaves, the proportion of summer mortality attributable to anthropogenic cli-
mate change is higher (27% during the hottest 10% of summer days, versus 41% across 
summer 2018): climate change amplifies mortality throughout warm seasons. This finding 
is not, in fact, counterintuitive. Because the temperature-mortality relationship is steepest 
at high temperatures, absolute values of climate-change-attributable heat-related mortality 
are highest on the hottest days. However, on the more numerous days that are cooler but 
still above the minimum mortality temperature, climate change is responsible for a larger 
proportion of heat-related deaths. This is because the attributable warming accounts for a 
larger proportion of the difference between the observed and minimum-mortality tempera-
ture than on hot days. Analyses that focus on heatwaves alone will not capture the full effect 
of anthropogenic climate change on heat-related deaths.

Previous research found that globally 0.6% of warm-season all-cause mortality (37% of 
heat-related mortality) was attributable to anthropogenic climate change over 1991–2018 
(0.74% and 31.3% respectively for Switzerland, based on seven cities and one metropoli-
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tan area) (Vicedo-Cabrera et al. 2021). Here, heat-related mortality attributable to climate 
change was calculated as the difference between growing numbers of heat-related deaths 
occurring at increasingly common high temperatures and reduced numbers of deaths occur-
ring at decreasingly common moderate temperatures (the difference between the areas under 
the curves in Fig. 2c). Observed trends in heat-related mortality might be partially affected 
by changes in winter mortality because more potentially vulnerable people survive the win-
ter months (Ha et al. 2011; Armstrong et al. 2017), but they are not accounted for in this 
analysis and it is unclear to what extent this may be the case in the context of Zürich.

Previous attribution studies did not attempt to disaggregate quantitatively the effects 
of physical hazards between climate change, and other factors such as changing societal 
exposure and vulnerability (Jézéquel et al. 2024). Societal changes that may be unrelated 
to climate, such as improvements in public health systems, affect vulnerability to physical 
hazards, as does climate change adaptation. Challenges in disaggregating these factors and 
the absence of empirical evidence of how risk would have changed in the absence of climate 
change complicates identifying which drivers lead to reduced vulnerability. Due to these 
challenges, most attribution studies estimate mortality risk in presence of climate change 
and then apply the same exposure-response association to a counterfactual scenario where 
climate change is excluded. However, vulnerability to extreme weather events may have 
evolved differently in the absence of climate change. Here, we apply a simple approach to 
account for the effects of changes in vulnerability.

The reduced mortality that we find to be associated with changes in vulnerability could 
represent effects of changes in demographics, access to and quality of public health and 
healthcare systems, physiological acclimatization, behaviour, access to blue and green 
spaces, and infrastructure, to name just a few. Our approach does not facilitate disaggrega-
tion of the effects of specific drivers of the change in population sensitivity to heat. The 
Canton of Zürich has implemented limited measures for reducing heat impacts beyond those 
introduced at the Federal level (Ragettli and Röösli 2019), including information campaigns 
advising vulnerable populations on safe behaviour during heatwaves (Ragettli et al. 2017). 
Concurrently, population ageing in Zürich increased vulnerability to heat (de Schrijver et 
al. 2022).

Our results show that vulnerability to heat in Zürich has changed substantially over time. 
This change in vulnerability is likely to include the effect of adaptation measures, such 
as changes in behaviour and the availability of air conditioning, as well as factors such 
as improved healthcare, all of which can reduce the burden of mortality associated with 
high temperatures. These results contrast with previous research that compared exposure-
response associations for successive periods of time to evaluate England’s heatwave plan 
and found very little change in the temperature-risk relationship following its introduction 
(Williams et al. 2019). Nevertheless, substantial climate-change-attributable heat-related 
mortality continues to occur in Zürich. Under both ‘constant vulnerability’ and ‘evolving 
vulnerability’ scenarios, attributable heat-related mortality constitutes an increasing portion 
of all-cause summer mortality at higher levels of regional warming (Fig. 3c).

We found that an average of 19 (−24−47) heat-related deaths attributable to anthropo-
genic climate change occurred each summer in 1969–1985, rising to 47 (21–92) since 2004, 
a 250% increase over a period when population increased by just 40% (Federal Statistical 
Office 2024; Wikipedia 2025). A simple method for allocating contributions to impacts that 
is commonly used in legal settings is the ‘market-share approach’ that estimates individual 
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entities’ contributions to losses as the product of the entity’s proportional contribution to 
greenhouse gas emissions and the total impacts attributable to climate change (Stuart-Smith 
et al. 2021). Applying this approach here indicates that cumulative greenhouse gas emis-
sions of each of the top six highest-emitting investor and state-owned companies globally 
(Heede 2014) caused, on average, at least one additional death per summer in Zürich since 
2004 (estimates for the ten highest-emitting companies globally, for 1969–2018 are pro-
vided in Table S7). Similar findings would be expected for many other locations worldwide.

Above, we explain that different approaches to conducting climate change attribution 
studies have different applications depending on the relationship between climatic hazards 
and their impacts. The method described here does not require additional data relative to the 
commonly used approach described in Vicedo-Cabrera et al. (2021). However, our analy-
ses do require data that are not available worldwide, including daily all-cause mortality 
and temperature observations. Limited availability and quality of granular health data and 
long-term climate observations (although satellite observations can fill this gap in recent 
years for weather observations) present challenges for deriving location-specific relation-
ships between climate variables and health outcomes, or in evaluating human influence on 
these climate variables.

Our results are consistent with previous analyses (Vicedo-Cabrera et al. 2021). They 
demonstrate the scale of impacts already occurring because of o5bserved climate change 
and indicate the risk of worsening impacts under further heating, with global implications. 
The approach described could be applied elsewhere and adapted to evaluate the effect of 
climate change on other health risks or economic impacts and could be compared to expo-
sure over time to other known hazards such as tobacco smoke for further contextualization. 
The methods employed here could be adjusted to make greater use of reanalysis data in 
lieu of direct meteorological observations, in regions where these are limited or absent, and 
estimate exposure-response associations based on available health data in conjunction with 
socioeconomic, institutional, climatological, demographic, and environmental information. 
Further methodological developments are required to enable detection of hard limits to 
adaptation to enable for evidence-based adaptation planning. These methodological altera-
tions could support evidence-based actions to reduce climate change impacts on health such 
as improved early warning systems to enable early action, strengthened health system pre-
paredness, and improved health workforce and emergency response capacity. These impacts 
disproportionately affect vulnerable groups, such as those living in poverty and urban areas 
(The Lancet 2022). Nevertheless, as the health effects of climate change continue to worsen 
globally, location-specific analyses like the case study reported here provide important data 
points for understanding the extent of climate change impacts on human health and the 
consequences of vulnerability and its changes over time. Results like ours underline the 
heightened importance of work to prepare, adapt, respond, and improve resilience in the 
face of rising exposure to worsening impacts of climate change.
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