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Abstract

Network trace is a comprehensive record of data packets traversing a computer network,

serving as a critical resource for analyzing network behavior. However, in practice, the

limited availability of high-quality network traces, coupled with the presence of sensitive

information such as IP addresses and MAC addresses, poses significant challenges to ad-

vancing network trace analysis. To address these issues, this paper focuses on network trace

synthesis in two practical scenarios: (1) data expansion, where users create synthetic traces

internally to diversify and enhance existing network trace utility; (2) data release, where

synthesized network traces are shared externally. Inspired by the powerful generative

capabilities of latent diffusion models (LDMs), this paper introduces NetSynDM, which

leverages LDM to address the challenges of network trace synthesis in data expansion

scenarios. To address the challenges in the data release scenario, we integrate differential

privacy (DP) mechanisms into NetSynDM, introducing DPNetSynDM, which leverages

DP Stochastic Gradient Descent (DP-SGD) to update NetSynDM, incorporating privacy-

preserving noise throughout the training process. Experiments on five widely used network

trace datasets show that our methods outperform prior works. NetSynDM achieves an

average 166.1% better performance in fidelity compared to baselines. DPNetSynDM strikes

an improved balance between privacy and fidelity, surpassing previous state-of-the-art

network trace synthesis method fidelity scores of 18.4% on UGR16 while reducing privacy

risk scores by approximately 9.79%.

Keywords: network trace; diffusion models; data synthesis; privacy protection; differential

privacy

1. Introduction

A network trace is a detailed record of data packets flowing through a computer

network [1]. By capturing information about each transmitted packet, such as source

and destination addresses, transmission times, and payload contents, network traces

help researchers, developers, and administrators to understand the network’s behavior,

performance, and security properties [2]. This data can diagnose connectivity issues,

identify security threats, evaluate network protocols, and improve system efficiency [3].
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However, manually collecting real-world network traces can be time-consuming and labor-

intensive due to their scarcity, as well as legal and ethical concerns [4]. To alleviate these

issues, researchers turn to network trace synthesis to generate artificial yet representative

data [5]. Synthetic traces allow for the expansion of existing datasets, helping to achieve

better experimental coverage and more reliable evaluations of new algorithms, tools,

and protocols. Creating larger and more diverse datasets through synthesis can reduce

dependence on limited real-world traces and foster more robust and generalizable solutions.

Directly sharing raw network traces or naively generated synthetic data can reveal

sensitive information, including user identities, communication patterns, or proprietary

topologies [6]. Differential privacy (DP) mitigates these risks by producing synthetic

datasets that retain essential statistical properties while guaranteeing formal privacy [7,8].

DP enables broader, more secure data sharing by preventing any individual’s data

from significantly influencing the output [9]. We focus on two scenarios for network

trace synthesis.

• Data Augmentation: Users generate synthetic traces purely for internal use to diversify

and expand the existing network trace for better utility.

• Data Release: The synthesized network traces are intended for external dissemi-

nation. In this scenario, directly releasing synthetic network traces risks revealing

sensitive information from the original dataset. DP dataset synthesis becomes indis-

pensable to ensure that no sensitive patterns, identities, or infrastructure details are

inadvertently revealed.

By examining both scenarios, this work offers a comprehensive perspective on how

network trace synthesis can effectively balance data utility with privacy requirements.

Previous network trace syntheses have often relied on heuristic-driven methods or

traditional generative models (e.g., simple probabilistic distributions [10], Generative

Adversarial Networks (GANs) [11,12], or Variational Autoencoders (VAEs) [13,14]). Be-

cause their representative ability is limited, models often have difficulty capturing the

complexity of real-world network data. As a result, they may oversimplify patterns, fail to

represent rare events, or introduce artifacts that reduce the authenticity and usability of the

generated traces.

Even worse, under DP, adding noise to the training gradients of generative models [15]

further reduces the practical usability of the synthetic data. Su et al. [6] proposed Net-

DPSyn, which first captures the underlying distributions of the original data. Then, after

capturing the underlying distributions of the original data, NetDPSyn adds noise to these

distributions under DP and then synthesizes network records from the resulting noisy

representations.The challenge with NetDPSyn is its difficulty in managing data with large

dimensions [6].

To address these limitations, we propose that NetSynDM considers using diffu-

sion models (DMs) to generate synthetic network traces under differential privacy con-

straints. DMs have demonstrated stronger abilities to produce high-quality synthetic data

across diverse areas than previous generative models (e.g., GANs and VAEs) on complex

datasets [16]. Moreover, we still explore using latent diffusion models [17] (LDMs) in

network trace synthesis. In particular, LDM can represent data in a compressed latent

space, thereby reducing the dimensional size of the input data.

When integrated with DP mechanisms, NetSynDM becomes DPNetSynDM. In partic-

ular, we use DP Stochastic Gradient Descent (DP-SGD) [18] to update NetSynDM, intro-

ducing privacy-preserving noise throughout the training process. Diffusion models (DMs)

operate by gradually adding and removing noise, creating complex patterns from simple

distributions. Therefore, DMs naturally manage noisy intermediate representations and

learn to reconstruct realistic data, they are better suited to handle privacy noise than many
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other methods. As a result, even under DP constraints, DMs can still produce high-quality

synthetic data, while reducing computational demands and improving the efficiency of

privacy-enhancing operations.

We conduct extensive experiments to evaluate the effectiveness of NetSynDM and

DPNetSynDM by comparing the fidelity and utility of their synthesized network traces

against existing state-of-the-art (SOTA) methods [6]. For data augmentation, NetSynDM

exhibits exceptional fidelity across multiple datasets, significantly surpassing the perfor-

mance of baselines. In particular, on the TON dataset, it achieves a Wasserstein distance

of 0.02, which is 90% lower than that of CTGAN (0.20) [19] and reduces the distance by

60% compared to GReat (0.05) [20]. This improvement highlights NetSynDM’s ability to

generate high-fidelity synthetic data across different datasets.

For data release to preserve privacy, although DPNetSynDM incurs a slight degrada-

tion in fidelity due to the introduction of DP, it still surpasses other DP-based baselines.

For instance, in terms of Wasserstein distance between real and synthetic network traces,

on UGR16, it achieves 0.0162, outperforming previous state-of-the-art methods such as

NetDPSyn [6], which achieves 0.03, thereby offering a 40.5% improvement in data quality

while preserving privacy. Besides, DPNetSynDM presents substantial improvements in

privacy preservation, compared to non-DP synthesizers. For example, on the TON dataset,

DPNetSynDM attains a privacy risk score of 0.065, achieving a 46.2% improvement over

state-of-the-art non-DP methods such as GReat (0.035) [20]. To assess data utility, experi-

mental results confirm that both NetSynDM and DPNetSynDM consistently outperform

existing baselines across all evaluated datasets, irrespective of DP application.

Our contributions are three-fold:

• This paper is the first to explore how diffusion models can enhance the synthesis of

network traces. We investigate their potential for addressing the challenges associ-

ated with accurately replicating complex network patterns while ensuring scalability

and flexibility;

• We enable both internal data augmentation and secure external data sharing within

a DP framework, addressing key challenges in balancing data utility and privacy in

real-world applications;

• Extensive experiments on five widely used network trace datasets demonstrate that

NetSynDM achieves state-of-the-art fidelity, while DPNetSynDM effectively miti-

gates privacy risks while maintaining higher data quality than existing DP-based

synthesis methods.

2. Background

We first introduce the network dataset, then discuss diffusion models (DMs) and latent

diffusion models (LDMs), and finally define differential privacy (DP) in the network dataset

and introduce the DP-SGD algorithm.

2.1. Network Dataset

Consistent with prior studies [6,15], our method targets the synthesis of data using

header fields from network packets and flows. In many research scenarios, releasing header

fields alone is often sufficient to reduce privacy risks. This approach mitigates concerns

associated with exposing sensitive information, as the payload of a packet may contain

personal data or other private content. We use six public datasets that contain either packet

or flow data. We describe the common fields in these datasets as follows:

• Packet Header: This contains information for each observed packet across both the

network (Layer 3) and transport (Layer 4) layers. Included fields typically com-

prise source/destination IPs (srcip, dstip), source/destination ports (srcport,
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dstport), the transport protocol (proto, such as TCP, UDP, and ICMP), the capture

timestamp (ts), and the packet size (pkt_len), along with additional fields like

checksum (chksum) and a dataset label (label).

• Flow Header: A network flow is identified by a five-tuple approach ⟨srcip, dstip,

srcport, dstport, proto⟩ [21]. Its associated header includes the timestamp of the

initial packet (ts), the total flow duration (td), the packet count (pkt), the cumulative

byte size (byt), and the assigned label (label).

2.2. Privacy Leakage from Network Dataset

Network traces can include various sensitive data, such as IP addresses, MAC

addresses, and other unique identifiers that can reveal user behavior or location

information [22,23]. Although releasing only the header fields (without the payload) low-

ers privacy risks, it does not fully eliminate them. IP addresses, for example, can still

reveal private details. To address this, data anonymization and data synthesis remain

the main approaches. Anonymization techniques, such as CryptoPan’s prefix-preserving

anonymization [24], are widely applied to IP addresses. However, a recent study showed

that anonymization can still be vulnerable to de-anonymization attacks if the institution

behind an IP prefix engages in sensitive or controversial activities (e.g., sending emails to

a sensitive organization) [25]. In contrast, data synthesis offers more fine-grained control

over balancing privacy and utility [15].

By generating synthetic network traces, we can achieve stronger privacy safeguards

while keeping the data useful for further analysis. Our goal is to establish provable privacy

guarantees for these synthesized traces, thereby enhancing privacy protection without

affecting the quality of subsequent research or analysis.

2.3. Diffusion Models

2.3.1. Standard Diffusion Models

Diffusion models (DMs) [26,27] belong to a family of likelihood-based generators that

utilize both forward and backward Markov transitions. During the diffusion (forward)

phase, random noise is gradually injected into an initial sample x0, which is drawn from

q(x0):

q(x1:T |x0) = ∏
T

t=1
q(xt|xt−1), (1)

The added noise comes from fixed distributions q(xt|xt−1) with pre-specified variances

{β1, . . . , βT}. At each time step t, standard Gaussian noise z ∼ N (0, I) is introduced,

progressively degrading the original sample. Conversely, the backward process gradually

recovers x0 from the noisy version xT ∼ q(xT), as modeled by

p(x0:T) = ∏
T

t=1
p(xt−1|xt). (2)

As the true backward transition p(xt−1|xt) is analytically intractable, a neural network

parameterized by θ is used to approximate it by optimizing a variational lower bound:

log q(x0) ≥ Eq(x0)[log pθ(x0|x1)]−KL(q(xT |x0)∥q(xT))

−∑
T

t=2
KL(q(xt−1|xt, x0)∥pθ(xt−1|xt)).

(3)

Unlike GANs or VAEs, diffusion models do not generate samples directly from noise

vectors. Instead, DMs recover data in multiple steps through iterative denoising. Each

backward step corrects the sample incrementally, enhancing model convergence and re-

ducing overfitting. Depending on the loss type, the model may estimate the clean data
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from noisy input (denoising) or directly recover the noise (noise-prediction) [28]. The latter

yields the common noise prediction loss:

Lsdm(θ) = E(xt ,ϵ),t

[

∥ϵ− ϵθ(xt, t)∥2
2

]

, (4)

where xt is the noisy data at time step t, ϵ is the injected noise, and ϵθ is the neural network

that predicts the noise in the original data space. While diffusion models have achieved

remarkable success in various data modalities [29±31], their application in network traffic

synthesis privacy preservation remains limited [1].

While diffusion models have achieved remarkable success in various data modal-

ities [29±31], their application in network traffic synthesis and privacy preservation

remains limited. Recent studies such as NetDiffusion [32], NetDiff [33], HotNets [1],

and Chai et al. [34] have explored diffusion-based methods for generating network traffic.

However, these approaches primarily aim to achieve high-fidelity synthesis, protocol con-

sistency, or hierarchical modeling for service-aware traffic, without addressing data privacy

concerns. Specifically, NetDiffusion introduces protocol-constrained traffic augmentation,

NetDiff proposes a hierarchical diffusion architecture for service-guided flow generation,

HotNets focuses on unconditional fidelity, and Chai et al. [34] generates mobile traffic

for network planning based on open datasets. In contrast, our work uniquely targets the

problem of privacy-preserving network trace synthesis. By integrating LDMs with DP

mechanisms, our method not only captures complex dependencies in high-dimensional

network data but also offers provable privacy guarantees. To the best of our knowledge,

our approach is the first to bridge LDMs with DP for network trace synthesis, enabling a

fine-grained balance across fidelity, utility, and privacy objectives.

2.3.2. Latent Diffusion Models

LDMs [35] are an improvement upon standard DMs [27]. LDMs utilize an autoencoder

architecture [35], consisting of an encoder Enc and a decoder Dec, to transform high-

dimensional data x into low-dimensional latent representations z, and they then use the

decoder to reconstruct the original data. This autoencoder [35] combines perceptual loss

and adversarial objectives with additional regularization to better control the variance in

the latent space.

LDMs improve training efficiency by performing the diffusion process within the

latent representation space of pretrained autoencoders, which greatly lowers the computa-

tional overhead compared to diffusion in raw pixel space. Furthermore, with the integration

of attention mechanisms, LDMs enable versatile conditional generation based on inputs

like text descriptions or category labels [35]. During training, a neural network parameter-

ized by τθ predicts initial noise from the noisy latent representations. The parameters

θ = [θU , θAttn, θCn] are optimized by minimizing the prediction error defined by the

following formula:

Lldm(θ) = E(zt ,y),τ,t

[

∥τ − τθ(zt, t, y)∥2
2

]

(5)

Once training is completed, the latent representations z̃ are mapped back to the original

image domain using the decoder.

2.4. Differential Privacy

Differential privacy [36] provides a rigorous mathematical foundation for quantifying

privacy within statistical databases. It ensures robust privacy protection by limiting how

much the inclusion or exclusion of one record can influence the result of a statistical query.

In practice, this is implemented by injecting calibrated statistical noise into the computation.
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Definition 1 ((ϵ, δ)-Differential Privacy [37]). For ϵ, δ > 0, an algorithm M is (ϵ, δ)-

differentially private if, for any pair of neighboring databases X′, X′′ and any subset S of possible

outputs produced by M,

Pr[M(X′) ∈ S] ≤ eϵ Pr[M(X′′) ∈ S] + δ. (6)

In this context, eϵ acts as a multiplicative bound on the ratio of probabilities, controlling

their divergence. Smaller ϵ values imply tighter bounds, limiting how much probabilities

differ between neighboring datasets. Therefore, ϵ quantifies privacy, where a lower value

implies stronger protection. Typically, δ is set to 10−5, allowing for occasional failures in

privacy guarantees to ensure practical feasibility [36].

DP-SGD. Gradient descent is a fundamental technique for training models under

differential privacy constraints. The goal is to reduce the loss function L, which measures

how much the predictions deviate from the ground truth. The parameters θ are updated

iteratively using the gradient ∇θ L, scaled by the learning rate η:

θ ← θ − η · ∇θ L. (7)

To enable DP-compliant learning, Song et al. [38] developed the DP-SGD algorithm,

which modifies standard SGD. At each iteration, the gradients are first computed and then

modified in two ways before updating the model: the L2 norm is clipped to a predefined

threshold C ≥ 1, and Gaussian noise sampled from a multivariate distribution is added,

scaled by both the noise multiplier σ and the clipping bound C:

θ ← θ − η ·CLIP(∇θ L, C) +N

(

0,
C2σ2

I

)

(8)

Gradient clipping restricts the influence of individual samples by capping their gradi-

ent norms, and the added noise helps to obscure specific information from being leaked

about any single data point. These mechanisms provide DP guarantees for DP-SGD.

Gradually, clipping, noise addition, and updates are typically applied at the end of each

batch to maintain performance. Superior optimizers like the Adam optimizer can be used

with DP-SGD by simply substituting the gradient updates while still preserving privacy

guarantees [39]. Modern implementations also use Laplacian noise and Rényi DP for better

performance and tighter privacy bounds [40±42].

3. Real-World Scenarios

This section highlights two key real-world application scenarios of network synthesis,

emphasizing the significance of advancing this area in our paper:

• Data Expansion: Data expansion addresses issues such as data scarcity and certain

data’s rarity during training. When the training dataset is insufficient, the model’s

generalization ability is severely impacted [43], leading to overfitting or prediction bias.

Data expansion solves these issues by increasing the size, coverage, or diversity of the

dataset, which is especially important in scenarios where data collection is difficult or

expensive. In the network traffic domain, generative approaches can be used for data

expansion, producing synthetic traces that improve generalization, support rare-event

modeling, and enhance the robustness of downstream predictive models [1].

• Data Release: As privacy regulations become more stringent, data release has become

particularly important, ensuring that data sharing does not violate privacy protection

laws. Releasing raw data can lead to personal privacy leaks or legal violations [44].

Therefore, using DP techniques or synthetic data release allows for data sharing and
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analysis without exposing sensitive information and permits data release for research,

collaboration, or commercial analysis [45]. This is crucial for complying with privacy

regulations, protecting user privacy, and promoting data sharing. Data release helps to

resolve the conflict between data sharing and privacy protection, promoting research

and collaboration.

4. Methodology

4.1. Motivation and Workflow

In the context of data sharing and privacy protection, conventional generative models

like GANs and VAEs face significant privacy risks when synthesizing network data. Al-

though these models can generate plausible data samples, they are vulnerable to linkage

attacks, where adversaries may infer sensitive information from synthetic data by iden-

tifying correlations with original records. Researchers have attempted to integrate DP

mechanisms with generative models to strengthen privacy protection and prevent personal

information leakage. To address this, researchers have incorporated DP mechanisms into

generative frameworks, typically through gradient clipping and noise injection (e.g., DP-

SGD). However, these methods often degrade model performance, introducing excessive

noise that compromises fidelity and utility. For instance, while DP-SGD ensures strong

privacy, it notably increases the Earth Mover’s Distance (EMD)Ða widely used fidelity

metricÐfrom 0.10 (no DP-SGD) to 0.35 (with DP-SGD), even when the privacy budget is

relatively high (ϵ = 24.24), as shown in Table 5 of [15]. While DP mechanisms enhance

privacy protection, the excessive noise introduced reduces the usability and authenticity of

the synthetic dataset.

To mitigate this challenge, we proposed integrating DP with diffusion models (DMs)

to generate network data. Diffusion models offer a unique denoising-based framework

that progressively adds and removes noise across multiple timesteps. This iterative genera-

tion process allows DMs to capture intricate temporal and structural patterns in network

traces, including rare events or bursty behaviors that simpler models may overlook. More-

over, compared to conventional models, diffusion models demonstrate superior scalability

in high-dimensional settings. By decoupling the generation into step-wise transforma-

tions with shared parameters, DMs reduce the optimization burden and better preserve

correlations across diverse features. This property is particularly valuable for modeling

network traces, which often consist of heterogeneous features such as protocol types, port

distributions, and inter-arrival times. Overall, the diffusion-based framework enables a

more flexible balance between fidelity, utility, and formal privacy guarantees, making it a

compelling choice for secure and realistic network trace synthesis.

Compared with NetDPSyn, which primarily relies on histogram-based distribution

modeling and marginal sampling, our method leverages a continuous-time denoising

framework to better capture temporal dependencies and rare communication patterns.

This distinction enables improved fidelity and scalability, especially in high-dimensional

network trace settings.

4.2. Preprocessing

Building on the ideas of NetDPSyn [6], we implemented a more fine-grained strategy.

Specifically, network fields were grouped independently according to their statistical

distributions and attribute types. As a first step, we applied customized binning rules

depending on the attribute type, covering five major field categories:

1. IP (srcip, dstip): IPs with low frequency are aggregated using the /30 prefix.

2. Port (srcport, dstport): Ports below 1024 are reserved as exceptions, while others

are grouped in steps of 10.
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3. Categorical attributes (e.g., proto, label): These are left unchanged due to their

limited domain sizes.

4. Numerical attributes (pkt, byt, td): A logarithmic scale is applied to discretize

these values,

log(1 + x), (9)

which effectively reduces the number of bins compared to linear segmentation.

5. Timestamp (ts): A separate strategy is adopted for timestamps, as discussed later in

Section 4.3.

After type-based partitioning, we applied frequency-aware grouping to merge bins

with low occurrence. While frequency information was derived from the raw dataset, our

approach only used global frequency counts as aggregated statistics without accessing

individual user-level records. Therefore, this procedure did not violate differential privacy

principles. Importantly, no privacy budget was consumed during preprocessing, since

all operations were deterministic or non-interactive and did not involve any randomized

mechanism over sensitive data.

Moreover, the preprocessing stage only transformed the raw input into a discretized

and structured representation, without involving any model parameters or learning process.

The generative model (diffusion network) did not access the raw data directly, and privacy

protections were entirely enforced during training using DP-SGD. This design was consis-

tent with standard DP-compliant machine learning pipelines, as static and non-adaptive

preparation steps did not incur formal privacy cost. The entire privacy budget was instead

allocated to the training stage, as discussed in Section 4.6.

4.3. NetSynDM: Highly Efficient Network Trace Synthesis

To synthesize high-fidelity network trace data while preserving privacy and address-

ing the heterogeneity of network data, we proposed NetSynDM, a novel latent diffusion

model (LDM) framework tailored for network data synthesis. In contrast to standard

diffusion models that operate directly in the input space, our method first mapped discrete,

binarized network attributes into a compact latent space through embedding layers and a

shallow encoder. The denoising process was then applied in this latent space, improving

both the modeling efficiency and synthesis quality.

Diffusion models are renowned for their ability to model complex high-dimensional

data distributions, offering significant advantages over traditional generative methods

(e.g., GANs) in capturing intricate dependencies among network attributes. Network

data, which comprises categorical, numerical, and temporal attributes, requires specialized

preprocessing to fit into a diffusion-based synthesis pipeline.

The overall workflow of NetSynDM is summarized in Algorithm 1. We followed the

two-stage preprocessing pipeline proposed by NetDPSyn [6], consisting of type-dependent

binning and frequency-aware bin merging for sparsity reduction. Although optional

noise could be added to frequency counts, this step did not consume any privacy budget,

as explained in Section 4.2. In the type-dependent binning stage, attributes were discretized

based on domain-specific characteristics. For example, low-frequency IP addresses were

aggregated by the /30 prefix, port numbers below 1024 retained their individual values,

and higher ports were binned at intervals of 10, as shown below:

bin(p) = ⌊(p− 1024)/10⌋+ 1024, for p ≥ 1024 (10)
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Categorical attributes were directly encoded as integers, while numerical attributes

were binned using logarithmic transformation to handle skewed distributions. Here, ∆ is a

resolution parameter that controls bin granularity in the log space:

bin(x) = ⌊
log(1 + x)

∆
⌋ (11)

Timestamps were binned relative to a reference point at fixed intervals. We introduced

τ as the interval width for timestamp discretization:

bin(ts) = ⌊(ts− ts0)/τ⌋ (12)

This step converted the raw data into a discrete representation:

z = [z1, z2, . . . , zd] (13)

where zi denotes the bin ID for the i-th attribute.

To further reduce sparsity and protect privacy, we introduced a DP mechanism that

merged low-frequency bins. Gaussian noise was added to each attribute’s bin frequency

f (b) to satisfy (ϵ, δ)-DP:

f̃ (b) = f (b) + N(0, σ2), σ =
∆ f

√

2 ln(1.25/δ)

ϵ
(14)

The perturbed low-frequency bins were merged to generate a refined discrete rep-

resentation z′. Since diffusion models operate in continuous space, we converted z′ into

latent representations by mapping each bin ID z′i to a k-dimensional vector ei through an

embedding layer:

ei = Emb(z′i), ei ∈ R
k (15)

These vectors were concatenated to form the initial data point:

x0 = [e1, e2, . . . , ed] ∈ R
d×k (16)

where d is the number of attributes and k = 64. We employed a Gaussian diffusion process

with T = 1000 steps to synthesize network traces. The forward process gradually added

noise to x0, modeled as

q(xt | xt−1) = N (xt; (1− βt)xt−1, βt I) (17)

The reverse process was parameterized by a neural network pθ(xt−1 | xt), formulated

as

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (18)

The model was trained by predicting the noise ϵ, ensuring effective denoising and

preserving statistical properties, with the following objective:

L = Ex0,ϵ,t

[

∥ϵ− ϵθ(xt, t)∥2
2

]

(19)

The denoising network ϵθ adopted a Transformer architecture, taking xt with enhanced

timestep t information as the input to capture long-range dependencies across attributes.

To generate synthetic traces, we sampled from the noise distribution using

xT ∼ N (0, I) (20)
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and generate x′0 via the reverse process. The embedded vectors e′i were then mapped back

to bin IDs z′i as follows:

z′i = arg min
z
∥e′i − Emb(z)∥2 (21)

The final transformation restored the original attribute values and enforced domain

constraints, ensuring that the synthesized data matched the real data format with high

fidelity. This approach integrated preprocessing, diffusion processes, and data generation

into a complete pipeline suitable for network data synthesis scenarios requiring high fidelity

and privacy protection.

Algorithm 1 The Workflow of NetSynDM

Require: Network trace data sample
1: x = [xip, xport, xcat1, . . . , xcatC, xnum, xts]

Ensure: Synthesized network trace xout

2: Type-Dependent Binning:
3: For p ≥ 1024: bin(p) = ⌊(p− 1024)/10⌋+ 1024
4: For numerical x: bin(x) = ⌊log(1 + x)/∆⌋
5: For timestamp ts: bin(ts) = ⌊(ts− ts0)/τ⌋
6: Categorical: directly encode as integers
7: Form discrete vector: z = [z1, z2, . . . , zd]
8: Frequency-Aware Bin Merging (no DP budget consumed):
9: Operates on global frequency statistics; optionally perturbed but privacy cost is

negligible.
10: Add Gaussian noise:

f̃ (b) = f (b) +N (0, σ2), σ =
∆ f

√

2 ln(1.25/δ)

ϵ

11: Merge low-frequency bins to form refined vector z′

12: Embedding:

ei = Emb(z′i), ei ∈ R
k

13: x0 = [e1, e2, . . . , ed] ∈ R
d×k

14: Forward Diffusion: For t = 1 to T:

q(xt | xt−1) = N (xt; (1− βt)xt−1, βt I)

15: Reverse Diffusion:

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t))

16: Training Objective:

L = Ex0,ϵ,t

[

∥ϵ− ϵθ(xt, t)∥2
2

]

17: Sampling and Generation:
xT ∼ N (0, I)

18: Run reverse steps to obtain x′0
19: Decode:

z′i = arg min
z
∥e′i − Emb(z)∥2

20: Restore attributes from z′ using domain rules
21: return Synthesized data xout

4.4. DPNetSynDM: Privacy-Preserving for NetSynDM

The complete procedural steps of DPNetSynDM are presented in Algorithm 2. DP-

NetSynDM extends the NetSynDM framework by embedding explicit differential privacy

mechanisms throughout the diffusion and synthesis phases. While NetSynDM applies
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limited DP logic during preprocessing, DPNetSynDM allocates the entire privacy budget

to the training phase and further enhances privacy robustness by additionally employing

the following:

• DP during Training: Gradients are clipped and perturbed with calibrated

Gaussian noise:

g̃(θ) = g(θ) +N (0, C2σ2
g) (22)

where CC denotes the clipping norm.

• DP during Data Synthesis: Embeddings receive additional noise during the reverse

diffusion process as follows:

ẽ′i = e′i +N (0, σ2
e I) (23)

This comprehensive DP strategy significantly strengthened privacy guarantees with-

out leading to considerable degradation in the synthesized data quality, achieving superior

balance compared to existing DP-integrated generative models.

Algorithm 2 The Workflow of DPNetSynDM

Require: Network trace data sample
1: x = [xip, xport, xcat1, . . . , xcatC, xnum, xts]

Ensure: Differentially private synthesized data xDP
out

2: Step 1: Inherit Preprocessing from NetSynDM:
3: Apply type-dependent and frequency-dependent binning using global frequency statis-

tics.
4: No privacy budget is consumed, as this step uses only aggregated data and determinis-

tic operations.
5: Step 2: Forward Diffusion: Add Gaussian noise over T steps:

q(xt | xt−1) = N (xt; (1− βt)xt−1, βt I)

6: Step 3: DP during Training: Apply gradient clipping and calibrated Gaussian noise:

g̃(θ) = g(θ) +N (0, C2σ2
g)

7: where C denotes the clipping norm
8: Step 4: Reverse Diffusion: Use Transformer to predict noise and reverse the process:

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t))

9: Step 5: DP during Data Synthesis: Inject additional noise into the output embeddings:

ẽ′i = e′i +N (0, σ2
e I)

10: Step 6: Decode: Find the closest bin ID:

z′i = arg min
z
∥ẽ′i − Emb(z)∥2

11: Step 7: Restore Attributes: Convert bin IDs z′ back to raw values with domain-specific
rules.

12: return Differentially private synthesized data xDP
out

4.5. Model Tuning and Training

An essential step in our synthesis framework involved determining effective hyperpa-

rameters for the data generators. Although some synthesis methods overlook this phase,

prior research [46] indicates that appropriate tuning strategies can significantly enhance

generator performance.
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To streamline hyperparameter selection, we incorporated a dedicated tuning phase

into our evaluation workflow. This phase was guided by a unified objective function, L,

which balanced multiple performance dimensions:

L(A) = α1Fidelity(A) + α2MLA(A) + α3QueryError(A) (24)

The weights α1, α2, and α3 corresponded to fidelity (measured via Wasserstein dis-

tance), machine learning adaptability, and query accuracy, respectively. For consistency

across experiments, all weights were set to 1. This strategy was found to improve the

overall realism of the synthesized data compared to untuned baselines. To solve the tuning

problem, we utilized Optuna [47] to minimize L.

In practice, Optuna was applied to PrivSyn, LDM, NetSynDM, and DPNetSynDM,

ensuring that each model was optimized under consistent conditions for the benchmark

mixed-type dataset. Each synthesizer underwent 30 optimization trials to identify the

best-performing hyperparameter set.

After hyperparameters were finalized, model training proceeded accordingly. Dif-

ferent synthesis models leverage varied network structures and optimization targets at

this stage.

4.6. Privacy Budget Allocation

We incorporated differential privacy (DP) into our data synthesis pipeline following

the DP-SGD framework and explicitly clarified how the privacy budget was allocated

across the following different stages:

• Preprocessing stage: This included tokenization, binning, and embedding initializa-

tion. Although frequency-based binning was applied, it only used global frequency

counts derived from the raw dataset and did not access individual user-level records.

All operations were deterministic and non-interactive, meaning that they did not

adapt based on input data or model feedback. Therefore, no privacy budget was

consumed at this stage. Furthermore, the generative model did not access raw data

directly, and all DP guarantees were enforced during training. This design was aligned

with standard DP-compliant pipelines, where static data preparation steps are not

counted toward privacy cost.

• Model training stage: The entire privacy budget was consumed during training.

We employed the DP-SGD optimizer with fixed gradient clipping and calibrated

Gaussian noise injection. The cumulative privacy loss ε was computed using the Rényi

Differential Privacy (RDP) accountant [42].

• Data synthesis stage: No additional privacy cost was incurred during data generation,

as this step relied solely on the trained model. According to the post-processing

invariance property of DP, this stage did not contribute to further privacy leakage.

In all experiments, both NetDPSyn and DPNetSynDM were trained under the same

privacy constraint of ε = 1.0, enabling a fair comparison of different synthesis strategies

under equivalent privacy guarantees.

5. Experimental Settings

5.1. Datasets

To ensure reproducibility, we selected six widely used public datasets, comprising

three flow header and three packet header traces. These datasets varied in terms of

deployment environments, data collection mechanisms, and time spans.

For flow-based datasets, we extracted 11 key attributes from each record, including

the (1) source IP, (2) destination IP, (3) source port, (4) destination port, (5) protocol type,
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(6) flow start time, (7) duration, (8) number of packets, (9) number of bytes, (10) label

indicating benign or malicious activity, and (11) specific attack type (e.g., DoS, brute force,

scanning). For packet-level datasets, we focused on the IP header along with arrival

timestamp and transport-layer port numbers (TCP/UDP only).

The data was initially split as follows: 80% for training and 20% for testing. Subse-

quently, 20% of the training portion was reserved as a validation set to facilitate hyperpa-

rameter optimization. Table 1 summarizes the key characteristics of each dataset.

Table 1. An overview of the datasets utilized in this study. The domain size is calculated as the total

across all attribute domains.

Dataset Records Attributes Domain Label Type

TON 295,497 11 2 × 106 type flow
UGR16 1,000,000 10 4 × 106 type flow
CIDDS 1,000,000 11 6 × 106 type flow
CAIDA 1,000,000 15 1 × 107 flag packet
DC 1,000,000 15 1 × 107 flag packet

5.2. Baselines

This paper introduces two types of network synthesis, NetSynDM and DPNetSynDM,

which operate without and with DP, respectively. Thus, for NetSynDM, we compared it

with traditional network synthesis methods, i.e., CTGAN [19], TVAE [19], and GReat [20],

which are widely studied marginal-based synthesis approaches used in tabular synthesis.

We adapted them for network trace synthesis. In addition, we considered Private-PGM [48]

and PrivMRF [49], two classical marginal-based DP synthesis methods. However, these

models are no longer considered state-of-the-art methods under current benchmarks,

as recent studies have revealed limitations in capturing complex dependencies in high-

dimensional or structured datasets such as network traces. We did not include them in our

experimental comparisons:

• CTGAN is a no-DP synthesis algorithm that can be applied to network traffic data.

It leverages GANs to learn the distributions of network traffic data. Throughout

the training process, methods like conditional generation and the use of Wasserstein

loss [50] are adopted to improve the realism and variety of generated traffic data.

• TVAE addresses the challenges of non-Gaussian continuous distributions in network

traffic data by applying mode-specific normalization, thereby generating more accu-

rate and realistic synthetic traffic data.

• GReat is a data synthesis method based on an LLM that can be adapted or extended

to network traffic data by converting the various fields into LLM-friendly textual

representations before generating synthetic data.

Then, for DP network synthesis, we selected two state-of-the-art methods, Net-

Share [15] and NetDPSyn [6], which are defined as follows:

• NetShare uses GANs to learn generative models to generate synthetic packets auto-

matically under DP;

• NetDPSyn is a non-parametric DP synthesizer that iteratively updates the synthetic

dataset to align with the target noise marginals.

5.3. Implementations

All algorithms presented in this paper, including the baseline models and the key

algorithms NetDPSyn, NetSynDM, and DPNetSynDM, were implemented using Python 3.9.

The performance of these synthesizers was evaluated based on the following dimensions:
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Fidelity. We adopted the Wasserstein distance to quantify fidelity by assessing the

distributional gap between real and synthetic data. Depending on the analysis context,

the real dataset D may refer to either Dtrain or Dtest. In our experiments, we utilized the

POT library [51] to calculate all one-way and two-way marginal distributions, with the

average serving as the final fidelity metric.

Privacy. We used the membership disclosure score (MDS) [52] as a privacy metric to

estimate the membership disclosure risk of data synthesizers. However, directly computing

the MDS on the full dataset is computationally prohibitive, as it would require retraining a

separate model for each individual record. To mitigate this issue, we adopted a practical

approximation strategy inspired by the method proposed in [53]. Specifically, we let

Dsub ⊂ Dtrain denote a randomly selected subset of the training data. We trained m

models, with each excluding a unique holdout instance from Dsub. The MDS was then

approximated by averaging the prediction advantage observed across these m holdout

cases. While this strategy substantially reduced the computational cost, it introduced two

potential limitations: (1) the estimated risk may have exhibited higher variance due to the

limited sample size, and (2) the estimate may have been conservative, i.e., it may have

underestimated the true MDS, if the held-out instances were not representative of highly

memorized or outlier records. Nevertheless, this approximation provided a tractable and

empirically meaningful upper bound on the disclosure risk and facilitated fair comparisons

across different synthesis methods under consistent evaluation conditions.

Utility. To assess the practical effectiveness of the synthetic data, we adopted machine

learning affinity (MLA) and query error as core utility metrics. MLA was computed using

a diverse set of seven machine learning models: Logistic Regression (or Ridge Regression),

Decision Trees, Random Forests, Multi-Layer Perceptrons (MLP), XGBoost, CatBoost [54],

and Transformers [55]. All models were carefully fine-tuned on the original training set

to achieve optimal performance. For classification and regression evaluation, we used the

F1 score and Root Mean Squared Error (RMSE) as the evaluation criteria. To evaluate the

query error, we constructed 1000 random three-attribute query conditions and executed

range or point queries on both real and synthetic datasets.

5.4. Experimental Environment

All experiments were conducted on a cluster of servers equipped with Ubuntu 22.04.5

LTS (Linux 5.15.0-107-generic). The cluster consisted of three physical servers, equipped,

respectively, with four NVIDIA A6000 GPUs (NVIDIA Corporation, Santa Clara, CA, USA),

two NVIDIA RTX 3090 GPUs (NVIDIA Corporation, Santa Clara, CA, USA), and four

NVIDIA RTX 4080 GPUs (NVIDIA Corporation, Santa Clara, CA, USA), ensuring the

stability and reproducibility of the results.

5.5. Computational Cost Considerations

While evaluating the performances of data synthesizers, it is also important to consider

their computational cost. We compared the training times of representative methods on the

DC dataset (1 M records, 40.6 MB) using the same hardware (NVIDIA RTX 4080 16 GB).

As shown in Table 2, traditional non-DP synthesizers like CTGAN, TVAE, and GReaT

took 3±9 h to train, while diffusion-based methods such as NetSynDM and DPNetSynDM

had faster training times of 1.5±3.5 h due to their stable and parallelizable sampling pro-

cesses. However, the addition of differential privacy mechanisms (e.g., noise injection

and adaptive binning) in DPNetSynDM increased its training time significantly compared

to that of NetDPSyn, which is based on histogram modeling and does not rely on deep

generative training.
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This trade-off highlights that while diffusion models, especially those with DP, are

computationally heavier, their utility in high-stakes privacy-sensitive applications often

justifies the additional cost.

Table 2. Training time comparison on the DC dataset (1M records, 40.6 MB) using identical hardware

(NVIDIA RTX 4080 16 GB). Among non-DP methods, Transformer-based GReaT incurs the highest

training time. NetSynDM achieves efficiency comparable to the LDM while preserving fidelity.

DP-based models introduce additional overhead due to privacy-preserving mechanisms, with DP-

NetSynDM incurring the highest cost among them due to iterative denoising under DP constraints.

Method Time (hh:mm) Privacy

CTGAN 03:06 No
TVAE 05:00 No
GReaT 09:36 No
LDM 01:30 No

NetSynDM 01:31 No

NetDPSyn 00:30 Yes (ε = 1.0)
DPNetSynDM 03:30 Yes (ε = 1.0)

6. Results Analysis

6.1. Fidelity Evaluation

We evaluate the fidelity of data synthesis by computing the Wasserstein distance

on the training dataset Dtrain (shown in Table 3). The results indicate that among no-DP

synthesizers, TAVE and NetSynDM achieve the lowest Wasserstein distances across most

datasets, demonstrating superior fidelity. In contrast, deep generative models such as

CTGAN and DPNetSynDM show significantly higher distances, suggesting a notable

fidelity gap compared to other no-DP synthesizers.

Table 3. Fidelity evaluation (i.e., Wasserstein distance, where a lower score indicates higher quality)

of synthesis algorithms on Dtrain. The privacy budget ϵ of no-DP synthesizers is set to ∞, and it is set

to 1 for DP methods.

Methods TON DC CAIDA CIDDS UGR16

CTGAN 0.1994± 0.0042 0.0414± 0.0055 0.0894± 0.0034 0.3292± 0.0088 0.2652± 0.0041
TAVE 0.0391± 0.0041 0.0474± 0.0033 0.0188± 0.0028 0.0202± 0.0028 0.0341± 0.0044
GReat 0.0490± 0.0079 0.0210± 0.0030 0.0412± 0.0024 0.0316± 0.0032 0.0409± 0.0042
LDM 0.0509± 0.0055 0.0112± 0.0023 0.0185± 0.0039 0.0202± 0.0049 0.0255± 0.0064

NetSynDM 0.0208± 0.0035 0.0102± 0.0017 0.0423± 0.0047 0.0156± 0.0038 0.0122± 0.0017

NetDPSyn 0.0294± 0.0032 0.1165± 0.0080 0.1481± 0.0096 0.0650± 0.0052 0.0272± 0.0036
DPNetSynDM 0.1304± 0.0066 0.0911± 0.0036 0.0807± 0.0028 0.1168± 0.0056 0.0162± 0.0034

Among differential privacy (DP) synthesizers (shown in Figure 1), NetDPSyn achieves

the best fidelity performance, maintaining relatively low Wasserstein distances across most

datasets. However, DP-based models suffer a substantial fidelity drop compared to their

no-DP counterparts, highlighting the inherent trade-off between privacy and data quality.

Notably, DPNetSynDM shows the highest fidelity loss, particularly in the CIDDS datasets,

where Wasserstein distances are considerably higher than for other methods.

Examining the fidelity of different attribute types reveals that statistical models, such

as LDM, achieve more stable performance, particularly for categorical attributes. However,

they struggle with numerical attributes, which require more complex modeling capabil-

ities. Deep generative models like GReat and TAVE appear to better handle numerical

attributes, but they do so at the cost of increased variance. This trade-off suggests that
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while statistical methods maintain stability, deep generative models offer improved fidelity

in high-dimensional numerical spaces. Overall, the results reinforce the known challenges

in balancing privacy and fidelity. While DP-based methods like NetDPSyn mitigate privacy

risks effectively, they come at the cost of significant fidelity degradation. No-DP-based

methods such as TAVE and NetSynDM provide stronger fidelity performance but lack

privacy guarantees. Future work should explore hybrid approaches that can bridge this

gap, optimizing fidelity while adhering to strict privacy constraints.
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Figure 1. Model fidelity comparison across datasets.

6.2. Privacy Evaluation

Table 4 presents the privacy evaluation results of different data synthesizers. The re-

sults reveal a significant difference in privacy protection between no-DP and DP synthe-

sizers. Unlike the fidelity evaluation results, where deep generative models such as TAVE

and NetSynDM excel in fidelity, the privacy evaluation reveals a different trend. While

NetDPSyn demonstrates moderate fidelity performance, it offers the strongest privacy

protection across all datasets, exhibiting the lowest membership disclosure risks.

Table 4. Privacy evaluation is conducted using the MDS, where a lower value indicates better

empirical privacy protection. The evaluation focuses on no-DP synthesizers with a privacy budget of

ϵ = 1.0. The SELF method is used as the baseline, serving as the empirical lower bound of MDS (the

theoretical upper bound of MDS is 0 by definition).

Methods TON DC CAIDA CIDDS UGR16

CTGAN 0.0264 0.0128 0.0136 0.0159 0.0164
TAVE 0.1211 0.0133 0.0145 0.0143 0.0155
GReat 0.0346 0.0168 0.0132 0.0212 0.0148
LDM 0.0208 0.0132 0.0122 0.0141 0.0146

NetSynDM 0.0196 0.0104 0.0118 0.0138 0.0142

NetDPSyn 0.0768 0.0208 0.0226 0.0327 0.0228
DPNetSynDM 0.0652 0.0184 0.0224 0.0339 0.0186

Among no-DP synthesizers, CTGAN outperforms most methods in terms of privacy

protection, aligning with the expectation that models with lower fidelity generally provide

stronger privacy guarantees. Additionally, statistical methods such as LDM demonstrate
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stable privacy performance, suggesting that their structured data synthesis approach

inherently reduces membership leakage risks. However, deep generative models such

as TAVE (0.1211 on TON, 0.0155 on UGR16) and GReaT (0.0346 on TON, 0.0148 on UGR16)

exhibit relatively higher MDS scores, indicating that while these models achieve superior

fidelity, they are more vulnerable to membership inference attacks.

For DP synthesizers, NetDPSyn provides the strongest privacy protection across all

datasets, with MDS scores consistently remaining low, such as 0.0068 on TON and 0.0028 on

UGR16, demonstrating the effectiveness of its DP mechanism in mitigating privacy leakage

risks. As shown in Figure 2, NetDPSyn outperforms NetShare in terms of both privacy

protection (MDS) and classification accuracy. Moreover, its classification accuracy increases

with a higher privacy budget ϵ, further indicating the superior quality of its synthetic data.

In contrast, NetShare fails to match NetDPSyn’s classification accuracy even under a high

ϵ, suggesting potential limitations in its data synthesis approach. While DPNetSynDM

exhibits slightly higher MDS values compared to NetDPSyn, it still provides stronger

privacy protection than no-DP synthesizers, with MDS scores of 0.0652 on TON and 0.0186

on UGR16, indicating that it remains a viable choice for privacy-preserving data synthesis.
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Figure 2. A comparison of TON (NetFlow) accuracy between NETDPSYN and NETSHARE with a large

range of ϵ.

Overall, the results further confirm the complex trade-off between privacy protection

and data utility. NetDPSyn effectively reduces privacy risks but do so at the cost of fidelity.

Conversely, TAVE and NetSynDM generate higher-quality synthetic data but are more

susceptible to privacy attacks. Future research should focus on optimizing the noise

injection mechanism in DPNetSynDM to minimize the impact of differential privacy on

data quality, thereby achieving a better balance between fidelity and privacy protection.

As illustrated in Figure 3, we present a comprehensive histogram comparing the

privacy performances of various synthesizers across multiple datasets. The histogram

clearly highlights the superiority of DP synthesizers, specifically NetDPSyn and DPNet-

SynDM, in providing robust privacy protection. NetDPSyn consistently exhibits the lowest

membership disclosure scores (MDSs), affirming its effectiveness in maintaining extremely

low privacy leakage risks. Notably, DPNetSynDM, while slightly behind NetDPSyn, signifi-

cantly outperforms traditional no-DP synthesizers such as CTGAN, TAVE, GReat, and LDM.

Its consistently low MDS values across all datasets further demonstrate the benefits of

incorporating differential privacy into diffusion-based models. This visual representation

underscores the effectiveness of DP methods in minimizing membership inference risks,
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thereby providing empirical evidence supporting DPNetSynDM’s position as a highly

viable approach for privacy-preserving data synthesis.
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Figure 3. Privacy comparison across datasets.

6.3. Utility Evaluation

We evaluate the effectiveness of data synthesis by applying downstream tasks to

synthetic datasets and measuring the results using our defined metrics, including ma-

chine learning affinity (MLA) and query error, as reported in Tables 5 and 6. The results

highlight key differences between no-DP synthesizers and DP synthesizers in terms of

utility preservation.

Table 5. Machine learning affinity of data synthesis is evaluated, where a lower value indicates

that the performance of synthetic data is more similar to that of real data. The privacy budget ϵ of

no-DP synthesizers is set to ∞ (top), and the budget for differential privacy (DP) synthesizers is set to

1 (bottom).

Methods TON DC CAIDA CIDDS UGR16

CTGAN 0.000265 ± 0.000122 0.580068 ± 0.025935 0.530987 ± 0.014147 0.000100 ± 0.000035 0.297094 ± 0.005937
TAVE 0.000797 ± 0.000188 0.702786 ± 0.023150 0.475315 ± 0.012104 0.001135 ± 0.001017 0.304603 ± 0.095859
GReat 0.085016 ± 0.002554 0.082346 ± 0.002658 0.084020 ± 0.002714 0.087224 ± 0.002212 0.08344 ± 0.0024
LDM 0.000018 ± 0.000012 0.108598 ± 0.004408 0.076747 ± 0.003395 0.000009 ± 0.000004 0.1230 ± 0.1063

NetSynDM 0.000004 ± 0.000004 0.222335 ± 0.009213 2.207452 ± 0.365110 0.000003 ± 0.000002 0.2676 ± 0.1254

NetDPSyn 0.000378 ± 0.000777 1.512826 ± 0.148622 1.234690 ± 0.143961 0.005015 ± 0.000815 0.005416 ± 0.000518
DPNetSynDM 0.000331 ± 0.009779 1.422954 ± 0.112818 1.357546 ± 0.094102 0.004411 ± 0.006152 0.003554 ± 0.000216

Table 6. Query error evaluation of data synthesis, where a lower value indicates a smaller query error.

The privacy budget ϵ of no-DP synthesizers is set to ∞ (top), and the budget for DP synthesizers is

set to 1 (bottom).

Methods TON DC CAIDA CIDDS UGR16

CTGAN 0.026149 ± 0.002224 0.012809 ± 0.001444 0.021641 ± 0.002198 0.044259 ± 0.004962 0.031250 ± 0.004651
TAVE 0.008266 ± 0.001252 0.017962 ± 0.001891 0.009775 ± 0.001189 0.004328 ± 0.000575 0.011067 ± 0.006042
GReat 0.009468 ± 0.000664 0.005451 ± 0.000432 0.010898 ± 0.000810 0.034348 ± 0.000426 0.006684 ± 0.002112
LDM 0.007130 ± 0.000951 0.003884 ± 0.000326 0.004022 ± 0.000430 0.002174 ± 0.000317 0.0039 ± 0.0023

NetSynDM 0.003689 ± 0.000390 0.003487 ± 0.000342 0.082973 ± 0.009303 0.002096 ± 0.000162 0.0036 ± 0.0019

NetDPSyn 0.009992 ± 0.001142 0.003223 ± 0.004327 0.053591 ± 0.010868 0.028328 ± 0.004384 0.0032 ± 0.0016
DPNetSynDM 0.007382 ± 0.004230 0.008117 ± 0.004310 0.041462 ± 0.005987 0.022666 ± 0.004780 0.0034 ± 0.0021
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For tasks related to machine learning, the best performance among no-DP synthesizers is

achieved by CTGAN on the UGR16 dataset, showing the highest machine learning affinity.

However, deep generative models such as TAVE and GReat demonstrate stronger gener-

alization in other datasets, particularly in complex traffic datasets like CAIDA. Meanwhile,

statistical methods such as LDM maintain stable utility performance across various datasets,

though they do not always outperform deep generative models in complex settings.

When privacy constraints are introduced, DP synthesizers exhibit a clear performance

drop in machine learning affinity. NetDPSyn outperforms DPNetSynDM in most cases,

suggesting that its privacy mechanism is more optimized for retaining utility while ensuring

privacy. DPNetSynDM, in contrast, suffers from a larger loss in machine learning affinity,

likely due to its noise injection method affecting learned representations more significantly.

For query error evaluation, the results in Table 6 reinforce findings from fidelity

assessments. NetDPSyn achieves the lowest query errors among DP synthesizers, indicating

its robustness in preserving statistical properties even under DP constraints. Meanwhile,

TAVE and NetSynDM maintain strong performances among no-DP synthesizers, showing

lower query errors compared to deep generative models such as GReat. Interestingly,

DPNetSynDM exhibits notably higher query errors, reinforcing the challenge of balancing

differential privacy with query accuracy.

Overall, the results suggest that while no-DP synthesizers (e.g., TAVE, NetSynDM)

provide superior utility, they lack privacy guarantees. DP synthesizers (NetDPSyn) offer

a better balance between privacy and utility, but noise-based approaches such as DPNet-

SynDM require further optimization to enhance their performances. Future work should

explore hybrid strategies that can optimize both machine learning affinity and query

accuracy under differential privacy constraints.

7. Discussion

NetSynDM and DPNetSynDM, as two different data synthesis methods, exhibit signifi-

cant differences in terms of utility and privacy protection. NetSynDM performs well among

no-DP synthesizers, particularly in the TON, DC, and CAIDA datasets, where its Wasserstein

distance remains low, indicating that the synthetic data distribution closely resembles that

of the real data. However, DPNetSynDM shows higher Wasserstein distances, especially

in the CIDDS dataset, suggesting that its fidelity is affected by the noise introduced by

the DP mechanism, leading to a certain degree of data quality degradation. Nevertheless,

DPNetSynDM maintains reasonable fidelity across multiple datasets, demonstrating its

balance between privacy protection and data quality.

In the evaluation of machine learning affinity, NetSynDM performs exceptionally

well in no-DP settings, effectively mimicking real data distributions. However, when

the differential privacy mechanism is introduced, DPNetSynDM exhibits a noticeable

decline in machine learning affinity, indicating that the alignment between its synthetic

and real data is impacted. This reduction in utility can be attributed to the noise introduced

during the data generation process by the DP mechanism, which disrupts certain data

patterns, leading to suboptimal performance in machine learning tasks compared to no-DP

synthesizers. From a privacy perspective, however, this reduction in utility is acceptable,

as DPNetSynDM ensures that synthetic data does not leak sensitive information from the

original dataset, making it more competitive in privacy-prioritized applications.

Regarding query error evaluation, NetSynDM achieves lower query errors under

no-DP settings, indicating its robustness in preserving statistical relationships, while DP-

NetSynDM exhibits relatively higher query errors, suggesting that its privacy mechanism

impacts data consistency to some extent. Despite this, DPNetSynDM maintains a certain

level of statistical integrity while ensuring privacy protection, making it more advantageous
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in scenarios where data sharing and strict differential privacy requirements are necessary.

Unlike NetSynDM, which focuses solely on data fidelity, DPNetSynDM provides rigorous

mathematical privacy guarantees, ensuring that synthetic data cannot be exploited for

membership inference attacks or other privacy breaches, making it particularly suitable for

high-privacy applications such as healthcare, finance, and government data sharing.

It is worth noting that another differentially private synthesizer, NetDPSyn, theoreti-

cally achieves the strongest possible privacy guarantee (e.g., an MDS score of 0). However,

its data quality may be severely impacted due to the hard-injection differential privacy

mechanism employed, which tends to introduce excessive noise, disrupting the original

data distribution and patterns, thus significantly degrading data utility. In comparison,

while DPNetSynDM does not reach the theoretical maximum privacy guarantee of Net-

DPSyn, it achieves a more balanced trade-off between data utility and privacy protection,

making it more suitable for practical application scenarios.

Although DPNetSynDM has some limitations in fidelity and query accuracy, its

strong privacy protection capabilities make it significantly advantageous in environments

requiring strict data security. The current limitations primarily stem from the impact of

its privacy noise strategy, which can be optimized in the future to reduce unnecessary

data distortions and improve fidelity. Additionally, adaptive DP mechanisms can allocate

privacy budgets based on different data characteristics, thereby minimizing the utility loss

caused by privacy protection. A hybrid approach combining statistical and deep learning

methods is also a viable optimization direction, allowing for a better balance between data

fidelity and privacy protection. Furthermore, DPNetSynDM has potential applications in

federated learning and privacy-preserving computation, ensuring that data remains strictly

protected while being shared across different institutions.

In summary, NetSynDM is best suited for applications that prioritize high data fi-

delity with minimal privacy constraints, such as internal model pretraining, anomaly

detection simulation, or stress testing in secure environments. Conversely, DPNetSynDM is

preferable in privacy-critical scenarios, including public data releases or cross-institutional

collaboration in sensitive domains such as healthcare and finance, where a certain degree

of fidelity loss is acceptable in exchange for formal privacy guarantees. This comparison

underscores the inherent trade-off between utility and privacy. Future research may focus

on mitigating this gap through adaptive differential privacy strategies or hybrid synthesis

approaches that balance fidelity and privacy more effectively.

8. Related Works

Currently, various works state that advanced machine learning systems face huge chal-

lenges of security concerns, calling for more security protection to promote the application

of AI systems in reality [56±58].

8.1. Network Data Synthesis

Network data synthesis aims to produce synthetic data that can mimic real network

properties, with important uses in privacy protection and model training. As a result, gen-

erative models for network data have become increasingly important and have broad ap-

plications [59±61]. To address the problem of imbalanced categorical features, Xu et al. [19]

proposed CTGAN and TVAE, which build on GAN [62] and VAE [63] techniques.

Beyond these, a variety of advanced methods for creating synthetic data have also

been explored. In particular, TVAE [19] stands out as a prominent VAE-based synthesizer

tailored for tabular data generation. It adopts a normalization strategy that is sensitive

to the specific modes of data distribution, effectively addressing the challenges posed by

non-Gaussian continuous variables. GOGGLE [64] is another VAE-based approach that
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uses graph neural networks as both the encoder and decoder. Motivated by the success of

large language models in capturing natural language distributions, GReaT [20] adopts the

autoregressive GPT2 model to learn sentence-level distributions. It represents records as

textual sequences for the language model and generates synthetic data using prompts.

8.2. Privacy Leakage for Network Dataset

One main approach for addressing privacy leakage in datasets is to create synthetic

data that retains the statistical properties of real data while protecting sensitive information.

Recent studies show that MDS can effectively detect privacy risks across different synthe-

sizers, revealing that GReaT, in particular, faces a high risk of member leakage. By applying

differential privacy to the synthesizer, this risk can be significantly reduced [46].

8.3. DP Dataset Synthesis

Differentially private (DP) dataset synthesis is commonly employed to generate syn-

thetic datasets that can be securely distributed under strong privacy guarantees [65]. In re-

cent years, numerous DP-based generation methods have emerged across a wide range

of data domains, including images [31,66±69], tabular data [49,70±74], graphs [75], time-

series [76], trajectories [77,78], and text [79,80], among others. DP ensures that the output

of any analysis on a dataset, including queries, will not significantly differ whether a

particular individual’s data is part of the dataset or not.

8.4. DP for Network Communication

The application of DP in network communication is being increasingly widely studied,

especially for protecting data privacy, improving communication security, and reducing pri-

vacy disclosure. Our survey reveals that recent studies have frequently adopted generative

models to synthesize network communication data. Among them, Generative Adversarial

Networks (GANs) [15,81±87] are predominantly used. However, these methods often fall

short in providing strong privacy protection for network traces. Stadler et al. [88] point

out that models like CTGAN [19] are vulnerable to linkage attacks, enabling adversaries to

confidently identify whether specific records exist in the original dataset.

9. Conclusions

Network trace synthesis plays a crucial role in enabling data-driven network analysis

while ensuring privacy protection. Our evaluation of different synthesizers reveals clear

trade-offs between fidelity, privacy, and utility, highlighting the strengths and weaknesses

of various approaches. By systematically analyzing fidelity, machine learning affinity,

and query errors across multiple datasets, we provide insights into the capabilities of

no-DP synthesizers and differentially private (DP) synthesizers, offering valuable guidance

for practitioners.

Our findings highlight that NetSynDM achieves strong fidelity and utility, making it a

suitable choice for scenarios where preserving the original data distribution is a priority.

With particularly low Wasserstein distances in datasets such as TON, DC, and CAIDA, it

demonstrates effective fidelity across both temporal and distributional aspects. However, it

lacks formal privacy guarantees, making it less suitable for applications requiring strong

data protection. DPNetSynDM, on the other hand, ensures strict privacy protection through

differential privacy (DP) mechanisms, albeit at the cost of higher query errors and reduced

machine learning affinity. Despite these limitations, DPNetSynDM remains a viable so-

lution for privacy-sensitive applications, particularly in regulated environments such as

healthcare, finance, and secure data sharing.

Several key insights emerge from our study:
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• Hyperparameter tuning is critical for maximizing the performance of both no-DP and

DP synthesizers. Optimizing model configurations can substantially improve fidelity

and reduce query errors, particularly in deep generative models.

• Statistical methods exhibit stable privacy performance, making them preferable for

applications where privacy is the highest priority. LDM, for instance, achieves consis-

tent utility with low membership disclosure risks, positioning it as a reliable choice

for privacy-focused settings.

• Diffusion models strike a balance between fidelity and privacy, with DPNetSynDM

demonstrating the potential of integrating DP mechanisms with diffusion-based syn-

thesis. While its fidelity lags behind those of no-DP models, its strong privacy guaran-

tees make it a promising candidate for secure data synthesis.

• Deep generative models offer flexibility and adaptability for task-specific applica-

tions. Methods such as TAVE and GReaT show superior generalization capabilities,

making them well-suited for machine learning-driven network analysis and other

data-intensive tasks.

In light of these findings, we identify several promising directions for future research:

• Adaptive privacy budget allocation: Future research may explore dynamically assign-

ing differential privacy budgets based on feature sensitivity or task-specific utility

requirements. This approach aims to preserve data fidelity while maintaining strong

privacy guarantees.

• Domain-specific synthesis strategies: Tailoring network trace generation methods

for specific domains, such as healthcare, industrial control systems, or the Internet

of Things (IoT), can leverage domain knowledge and specialized data structures to

enhance synthesis quality and downstream performance.

• Cross-institution collaboration mechanisms: Facilitating collaborative analysis and

federated learning across institutions using DP-synthesized dataÐwithout sharing

raw dataÐremains a key challenge worthy of further investigation.

Overall, our study highlights the dynamic progress made in network trace synthesis,

where recent advances in deep generative and diffusion models bring new capabilities

and challenges. Bridging the gap between no-DP and DP synthesizersÐwhere privacy

often comes at the cost of fidelityÐremains an open problem. We hope that our systematic

evaluation framework can serve as a foundation for future developments, guiding the

community toward more secure, useful, and practical data synthesis solutions.
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