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 A B S T R A C T

The advent of 5G drives the growth of multi-access edge computing (MEC), a revolutionary paradigm 
that utilises edge resources to enable low-latency mobile access and support complex service execution. 
Deploying services across geographically distributed edge nodes challenges providers to optimise performance 
metrics like end-to-end latency and resource efficiency, impacting user experience, operational cost, and 
environmental footprint. The energy harvesting (EH) technology provides clean and renewable energy at the 
edge, promoting the MEC system to minimise the impacts on the environment. However, the integration of EH 
can introduce energy limits and uncertainty to the powered devices. In the context of service scheduling with 
data flow dependencies, we propose two offline and heuristic-based service placement algorithms that balance 
minimising latency and maximising resource efficiency with fast execution. The two algorithms, evaluated in 
a simulated environment using state-of-the-art workload benchmarks, achieve significant energy consumption 
improvements while maintaining comparable latency. Based on the designed algorithms, we take a step further 
by developing an online dynamic resource scheduling and service offloading approach for MEC systems with 
EH capabilities. Simulation results demonstrate that the proposed strategy effectively utilise the harvested 
energy while granting a low user-experienced latency and low operational cost.
1. Introduction

Driven by the rise of fifth generation (5G) network, Multi-access 
Edge Computing (MEC), a network architecture that integrates com-
puting and storage capabilities into Micro Data Centers (MDCs) located 
near base stations, emerges as a transformative paradigm. Leveraging 
network and computing resources at the network edge offers low-
latency access for mobile subscribers while facilitating the execution 
of complex, computationally intensive applications [1]. However, ef-
fectively orchestrating custom applications in MEC requires strategic 
allocation of resources. In the context of resource scheduling, this in-
volves managing computation and network resources distributed across 
heterogeneous edge nodes to efficiently serve user requests originating 
nearby, and balancing the demands of both users (fast response) and 
providers (resource efficiency, cost, etc.)

User-submitted jobs may encompass IoT data processing, health-
care, Augmented Reality-based experiences, and financial services. Plat-
form providers must allocate adequate edge resources to ensure the 
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successful execution of applications while balancing the demands of 
both users and providers.

Multi-access edge computing (MEC) operates in a dynamic environ-
ment characterised by high user capacity and fluctuating user location. 
This necessitates adaptive task coordination to handle requests from 
numerous mobile subscribers as their positions change. Compared to 
centralised cloud datacenters, MEC faces limitations in communication, 
computation, and storage capacity due to the smaller physical footprint 
of edge nodes. Additionally, edge devices within the resource pool may 
have limited energy capacity and power limits. Furthermore, managing 
geographically dispersed edge devices requires constant monitoring 
of their status changes, including outages, network fluctuations, and 
even user location changes. Therefore, effectively allocating limited 
resources and ensuring a stable user experience within this dynamic 
edge environment presents a significant challenge for MEC systems.

With the growing trend of low-carbon edge computing, to use the 
resources in a more sustainable and environmental-friendly way, the 
energy harvesting (EH) technology can be considered an approach 
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to harness renewable energy from sources such as solar, wind, and 
suitable energy sources. MEC systems equipped with EH devices is able 
to power the computing devices with clean energy and enable green 
communications [2]. Moreover, EH devices can harvest energy from 
ambient sources to power MEC systems in remote regions, reducing 
reliance on traditional power infrastructure and promoting sustainable 
edge computing. However, the energy generation of such sources may 
be stochastically affected by environmental conditions like weather and 
season, and the total available energy is also limited by the device’s 
battery storage capacity. Therefore, it is crucial to coordinate task 
scheduling and energy management to maximise system performance.

Quality of Service (QoS), a crucial measure of service effective-
ness, is paramount for service providers in MEC. Delivering optimal 
QoS involves meeting multiple objectives, such as minimising latency 
and maximising availability. Providers achieve this through meticulous 
coordination of network and computing resources, including the al-
location of individual tasks [3]. Beyond QoS, profitability remains a 
key concern. Minimising server rental costs and power consumption 
directly impact profits and contribute to a more sustainable industry. 
However, achieving these goals often involves trade-offs [4]. Balanc-
ing user experience and provider profits presents a complex multi-
objective optimisation problem. While existing research offers solutions 
for various scenarios, there is a need for more universal and flexible 
approaches to address the dynamic nature of MEC environments and 
the complexity of modern applications.

Beyond managing the distributed nature of MEC resources, the 
placement of applications presents an additional challenge. In real-
world applications, numerous interdependent components frequently 
collaborate [5]. Those underlying components, often referred to as 
services, each executes a specific task such as data extraction, trans-
formation, loading, or integration. The optimal placement of these 
services has to fulfil the requirements of each one with dependency 
guarantees. The Distributed Dataflow (DDF) paradigm offers a well-
suited approach for structuring these applications, as it provides a clear 
representation of data flow and processing steps. It utilises a Directed 
Acyclic Graph (DAG) to represent the flow of data and processing steps 
within an application, so that inter-service dependencies and the order 
of execution can be depicted.

Existing service placement strategies in edge computing struggle 
to effectively handle these complex, dependency-aware applications. 
Traditional methods established the importance of properly allocating 
computing resources to applications, but often overlook the inter-
dependencies of application modules, or leverage a specific architecture 
or model, thus may falter when task dependencies are present, ren-
dering them unsuitable for such scenarios. To address this gap, we 
propose service placement approaches specifically designed for Cloud-
MEC environments, aiming at efficiently allocate resources for complex 
service execution and fulfil both user and provider demands. Offloading 
occurs at edge nodes located close to user devices, where computational 
tasks are transferred to reduce latency. Computation-intensive tasks 
may also be offloaded to powerful cloud datacenters, ultimately en-
abling the fulfilment of customised user requirements. Since finding the 
provably optimal resource schedule in a dynamic MEC environment is 
computationally intractable (NP-hard) [3], we employ heuristic-based 
algorithms, aiming to find high-quality, practical solutions within a 
reasonable time frame by using efficient rules or approximations, rather 
than guaranteeing optimality.

This work addresses the service placement problem with precedence 
constraints among service applications. Our objective is to improve 
quality of service (QoS), specifically minimising latency, and optimise 
resource efficiency, measured by energy consumption and operational 
cost. The inherent complexity of considering these multiple factors 
motivates our development of two novel heuristic-based placement 
algorithms and an extended online resource scheduling strategy for 
dependent services. These algorithms strive to achieve a balance be-
tween different optimisation goals. Our contributions in this work are 
threefold:
2 
• Dependency-aware Service Placement Algorithms: We propose 
two novel service placement algorithms specifically designed for 
the multi-access edge computing (MEC) environment. These al-
gorithms consider precedence constraints between service com-
ponents to optimise both end-to-end latency and dynamic energy 
consumption.

• Online Dynamic Service Offloading and Resource Scheduling Al-
gorithm: Building upon the two algorithms and incorporating the 
EH technology, we proposed an online dynamic service offloading 
and resource scheduling strategy for EH-enabled MEC system. Our 
approach takes the energy limitation and deadline constraints into 
account, maximising the utilisation of renewable energy while 
granting the end-to-end latency.

• YAFS Platform Extension: To support the evaluation of our al-
gorithms, we developed an extension1 to the YAFS simulation 
platform [6]. This extension enables the modelling of sequential 
task processing, a crucial aspect of service execution in MEC.

The remainder of this paper is organised as follows. Section 2 briefly 
summarises existing approaches and identifies the research gap. Sec-
tion 3 describes the system models and problem formulation. Section 4 
proposes our two offline algorithms in detail. Section 5 introduced our 
online scheduling strategies based on the two placement algorithms. 
Simulation results are presented in Section 6, and the paper concludes 
in Section 7.

2. Related work

The multi-objective placement problem has attracted significant re-
search attention, with solutions targeting diverse deployment scenarios 
and optimisation goals. Thorough survey of the literature on placement 
problems across various computing paradigms can be found in [3].

Researchers have developed a variety of resource management 
approaches for application placement by integrating specific platforms 
and architectures. For example, [7] solves the joint user association and 
service function chain (SFC) placement problem in 5G networks, [8] 
proposed Kubernetes-based container resource management schemes 
for Industrial IoT applications in Cloud-Edge networks. [9] introduced 
an architectural approach for placing services onto cluster nodes that 
offer lower end-to-end latency. [10] designed a resource manage-
ment scheme for Industrial IoT applications in Edge-Cloud networks, 
and [11] proposed a container-base scheduling strategy in Cloud-IoT 
environment to find suitable containers for task processing. However, 
leveraging specific architecture limits the applicability of those ap-
proaches. Consequently, their direct application or adaptation to our 
context is not feasible.

Existing task placement research often focuses on coarse-grained 
abstractions of applications, overlooking task dependencies. While this 
approach may suffice for workloads with less stringent latency require-
ments, several methods adopt fine-grained service placement strategies 
that consider inter-service dependencies, enabling more precise control 
for latency-sensitive applications. For instance, [12] leverages analysis 
tools to extract function-level dependencies from applications, aiming 
to minimise overall service delay. Similarly, [13] explores the offload-
ing of dependent sub-tasks and communication resource allocation in 
unmanned aerial vehicle-assisted MEC systems, targeting a reduction in 
average user latency. However, the above approaches primarily focus 
on optimising a single metric or incorporate specific techniques such as 
service replication. In contrast, our work seeks to minimise both total 
energy consumption and latency during application execution, without 
relying on service replication.

Service placement solutions typically target various objectives, in-
cluding minimising end-to-end latency [7,16], reducing costs [5], low-
ering energy consumption [22], and improving resource utilisation

1 https://github.com/Sukiiichan/YAFS_MEC.
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Table 1
Comparison of related placement algorithms in the literature.
 Work Platform Algorithm Dependency Latency Energy Cost Throughput 
 [14] Fog Genetic ! !  
 [15] Fog-Cloud Meta-heuristic ! !  
 [4] MEC-EH Lyapunov optimisation ! !  
 [16] Edge Heuristic ! !  
 [17] Edge Meta-heuristic ! ! !

 [7] 5G networks Heuristic ! !  
 [18] MEC Learning-based ! !  
 [19] MEC Heuristic ! ! !  
 [20] MEC-EH Lyapunov optimisation ! ! !  
 [21] MEC-EH Lyapunov optimisation ! ! !  
 [22] Fog-Cloud Heuristic ! ! !  
 [5] MEC Heuristic ! ! !  
 [12] MEC Heuristic ! !  
 [13] Fog/Edge Heuristic ! ! !  
 [23] Edge-EH Meta-heuristic !  
 [24] Edge-EH Lyapunov optimisation ! !  
 [25] Edge-EH Learning-based !  
 [26] MEC-EH Meta-heuristic ! !  
 This work MEC-EH Heuristic ! ! ! !  
[14]. To provide a clear and intuitive comparison, Table  1 summarises 
the differences between our proposed approach and existing service 
placement strategies in edge computing systems. In the context of 
multi-objective optimisation problems, researchers have explored a 
wide range of methodologies, including heuristics, meta-heuristics, and 
deep reinforcement learning, to achieve a balance between different 
objectives. For example, [18] proposes a joint placement algorithm 
for non-scalable services, balancing latency and deployment cost. Sim-
ilarly, work in [17] target joint optimisation of throughput, latency, 
and deployment cost for parallelisable stream processing tasks based 
on meta-heuristics. Integrating with edge intelligence, work in [25] 
consider the joint service placement and request scheduling problem 
optimising the intelligence model accuracy and the service delay at the 
same time. The two placement algorithms we propose aim at optimising 
both user experience and energy efficiency. We strive to minimise the 
end-to-end latency and reduce the dynamic energy consumption at the 
server caused by computations.

Several prior studies have explored optimisation objectives that 
converge with those targeted by our proposed approach. While work 
like [4] explore the energy-delay trade-off using monolithic task
scheduling, it lacks dependency awareness. Similarly, [15] proposes an 
energy-delay balanced placement strategy for multiple services without 
considering dependencies. More recently, [5] presents a task offloading 
scheme for dependent tasks, jointly optimising latency and energy. 
However, their focus is on local execution vs. edge offloading, while 
ours leverages both Multi-access Edge Computing (MEC) and cloud 
resources. Similarly, regarding the energy consumption optimisation 
in dependency-aware placement strategies, [13,19] primarily focus on 
minimising energy consumption at the user device level.

The conference-version of this work [27] further distinguishes itself 
by tackling a more realistic and complex Cloud-MEC scenario. To sum 
up, unlike approaches tied to specific architectures that can limit ap-
plicability, our methodology is designed for broader use. Furthermore, 
while many studies overlook inter-service dependencies or address 
them by focusing on single objectives or requiring techniques like 
service replication, our work directly incorporates these dependencies. 
We introduce two heuristic-based algorithms tailored for rapid execu-
tion, which simultaneously optimise both user-perceived latency (QoS) 
and total energy consumption (sustainability). Critically, whereas prior 
studies with similar objectives often focused on simpler local-vs-edge 
offloading decisions, our algorithms address the more granular and 
practical problem of detailed service placement within the MEC in-
frastructure alongside cloud offloading. This comprehensive approach, 
balancing multiple objectives while managing dependencies in a flexi-
ble architecture, highlights the novelty and practical significance of our 
3 
contribution for system-wide optimisation in heterogeneous Cloud-MEC 
environments.

Integrating the energy harvesting technique into the MEC system 
is becoming a popular trend in the academia to pursue a sustainable 
operation of the micro datacenters. Work from [20] equipped EH de-
vices at the base station to capture renewable energy as a complement 
for the grid hybrid electricity, and aim at minimising the electricity 
cost of base stations and the cloud offloading cost while maintaining 
the stability of the task queue. Work from [26] designed a partial task 
offloading strategy in energy-harvesting-enabled MEC, optimising both 
the task execution time and the grid energy cost. When the operation 
of the whole system solely rely on the harvested energy, the amount of 
available energy is limited, and the energy consumption of each device 
involved need to be properly monitored and managed to stay within the 
budget. In studies from [21,23], MEC servers and IoT devices are purely 
powered by the EH devices. [21] partitions individual tasks and select 
whether to process them partially on the IoT devices or offload them to 
the MEC servers, while no cloud computing resources are introduced. 
To process as many tasks at the edge as possible in a limited time 
period, and to minimise the fee charged by the cloud operator, [23] 
developed a meta-heuristics to assign the tasks to homogeneous servers 
and scales down the server operating frequencies to reduce energy 
consumption. [24] work on the dynamic task offloading for multiple 
terminal devices and edge servers in IIoT using Lyapunov optimisation, 
assuming that terminal devices harvest energy and store locally.

Our work addresses a more challenging and realistic problem for-
mulation than typically found in the literature surveyed above, focusing 
on task graphs with general dependencies deployed across heteroge-
neous infrastructure. The complexity inherent in managing precedence 
constraints means prior methods for latency and deadline control are 
often no longer applicable. Effectively handling such dependencies is 
vital for accurately modelling and optimising many real-world work-
flows (e.g., complex data analytics pipelines, microservice chains). To 
meet this challenge, building upon [27], we introduce a novel online 
strategy that is capable of co-optimising efficient (renewable) energy 
usage and SLA compliance under these demanding conditions. The 
novelty is embodied in the integration of three: decomposing end-to-
end deadlines into manageable sub-deadlines across dependency paths, 
employing dynamic frequency scaling at the edge, and offloading tasks 
to cloud adaptively. This approach provides a necessary advancement 
for scheduling complex, dependency-laden applications effectively in 
practical, heterogeneous Cloud-MEC systems.
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Fig. 1. An example Cloud-MEC network with energy-harvesting enabled.

3. System model and problem formulation

In this section, we formally describe the service placement and 
resource scheduling problem in the MEC system. The system offers the 
potential for low-latency processing close to users; however, with the 
integration of energy harvesting techniques, its operation may depend 
on variable energy sources (e.g., solar power) and finite battery storage 
at the edge. This introduces a fundamental challenge: the need to 
reduce service latency and meet strict deadline constraints (when they 
exist) often conflicts with the conservation of limited energy. Executing 
tasks faster or more frequently consumes more energy, potentially 
depleting reserves, whereas aggressive energy conservation can result 
in deadline violations. This creates a trade-off that strongly influences 
task placement decisions. Executing a task on edge nodes can offer 
low latency but is only feasible when sufficient harvested or stored 
energy is available; otherwise, scaling down server processing speeds or 
offloading tasks to the remote cloud becomes necessary, each impacting 
latency and energy consumption differently. Thus, effectively managing 
the interplay between deadlines, dynamic energy availability across 
heterogeneous nodes, and resource allocation strategies is essential 
to ensure both Quality of Service (QoS) and the sustainability of the 
EH-MEC system. The following models formalise the system variables, 
constraints, objectives, and decision variables. Table  2 presents the list 
of key symbols used in the formulation.

3.1. MEC network model

Our work considers a multi-tier Cloud-MEC network infrastructure 
where micro datacenters (MDCs) act as resource pools at the edge, 
residing at interconnected mobile stations. Within each MDC, two key 
entities exist: computing servers available for service deployment and 
execution, and data sources that provide data flow from sources like 
databases, sensors, and IoT devices without performing computations 
themselves. User equipment (UE) may connect to the local network of 
MDCs through radio access network (RAN) and submit service requests. 
The multi-access edge network is connected to a resource-rich cloud 
datacenter (Cloud DC). Fig.  1 shows an example of the Cloud-MEC 
system we consider in this work.

Each MDC maintains its energy harvesting (EH) devices that capture 
the renewable energy sources from the nature and supply the com-
puting servers, as illustrated in the figure. The harvested energy will 
be stored in the local battery of the EH device, and the servers are 
able to consume the energy from the battery. Besides, if the harvested 
energy cannot satisfy the energy demand of MDC, extra energy can be 
purchased from the power grid. The cloud DC, on the contrary, is fully 
powered by the power grid.

We use 𝐺 = (𝑀,𝐶,𝐿) to denote the Cloud-MEC network. The set 
of MDCs is expressed as 𝑀 =

{

𝑚1, 𝑚2,… , 𝑚𝑛
}

, while 𝐶 represents the 
Cloud DC. 𝐿 =

{

𝑙 , 𝑙 ,… , 𝑙
} is set of network connections between the 
1 2 𝑝
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Fig. 2. An example application graph.

MDCs. For each link in 𝐿, the transmission bandwidth is 𝑏𝑤(𝑙), and the 
propagation delay is set to be a constant value 𝑝𝑟𝑜𝑝(𝑙).

For every MDC 𝑚𝑖, the set of computing servers maintained by it 
is referred to as 𝑆𝑖 =

{

𝑠1, 𝑠2,… , 𝑠𝑚
}

, and the data sources connected 
to the local network of 𝑚𝑖 is expressed as 𝐷𝑖 =

{

𝑑1, 𝑑2,… , 𝑑𝑘
}

. For 
each server 𝑠𝑖 ∈ 𝑆, we symbolise the maximum processing frequency 
of its CPU as 𝑓𝑠𝑖 . The Cloud DC charges based on the total amount of 
workload, i.e. number of operations, with a unit rate of 𝑐𝑝. Inside the 
MEC network, we denoted the routing path between any pair of servers 
(𝑠𝑖, 𝑠𝑗 ) as 𝑝𝑎𝑡ℎ(𝑠𝑖, 𝑠𝑗 ) =

{

𝑙1, 𝑙2...𝑙𝑛
}

.

3.2. Application model

Our processing model adapts the directed acyclic graph (DAG) 
model. Let 𝐴 = (𝑉 ,𝐸) represent the application graph, where the set 
of application modules is denoted by 𝑉 = {𝐷,𝑂,𝑈}, and the set of di-
rected edges representing dataflow dependencies is 𝐸 =

{

𝑒1, 𝑒2,… , 𝑒𝑜
}

. 
𝐷 =

{

𝑑1, 𝑑2,… , 𝑑𝑚
} represents the data source modules, while 𝑂 =

{

𝑜1, 𝑜2,… , 𝑜𝑛
} represents the service modules. The end receiver, re-

ferred to as 𝑈 , is the user equipment. An example DAG application 
graph containing two source modules, four service modules and one 
end user can be seen in Fig.  2.

For any service module 𝑜, the amount of workload it requires to 
execute each task is denoted by 𝑤𝑙(𝑜). We use 𝑝𝑟𝑒𝑑(𝑜) and 𝑠𝑢𝑐𝑐(𝑜) to 
denote the predecessor and successor modules of 𝑜.

Execution results will be generated and sent away by service mod-
ules through dependency edges. The application 𝐴 will be triggered to 
process tasks continuously. Here we use 𝑟𝑎𝑡𝑒 to define the task arrival 
rate of 𝐴. Besides, a deadline 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) may be set as the maximum 
acceptable task completion time of the application.

An application needs to be deployed on computing servers to run. 
Here we use 𝑃 (𝑜) to represent the deployment plan of any service 
module 𝑜.

Our application model adheres to the following assumptions: (i) 
a service is triggered only when it has received inputs from all its 
predecessors, (ii) each task represents the minimal unit of work and is 
indivisible, and (iii) after finishing the task processing, a service node 
sends the corresponding results to all its successors simultaneously.

3.3. Problem formulation

3.3.1. Communication and computation model
The transmission delay 𝑇 𝑡𝑟𝑎𝑛 for a data packet 𝑝𝑘𝑡 through network 

link 𝑙 can be calculated by: 
𝑇 𝑡𝑟𝑎𝑛 = 𝑠𝑖𝑧𝑒(𝑝𝑘𝑡)∕𝑏𝑤(𝑙) (1)

The communication delay during this process is composed of the trans-
mission delay and propagation delay: 
𝑇 𝑐𝑜𝑚𝑚 = 𝑠𝑖𝑧𝑒(𝑝𝑘𝑡)∕𝑏𝑤(𝑙) + 𝑝𝑟𝑜𝑝(𝑙) (2)

For a directed edge 𝑒, when the start module 𝑒𝑠𝑟𝑐 is offloaded to server 
𝑠  and the destination module 𝑒𝑑𝑠𝑡 is deployed on 𝑠 , the delay of this 
𝑖 𝑗
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edge is composed of the communication delay of each network hop it 
takes to forward a data packet 𝑝𝑘𝑡 to the receiver: 

𝑇 𝑐𝑜𝑚𝑚(𝑒) =
∑

𝑙∈𝑝𝑎𝑡ℎ(𝑠𝑖 ,𝑠𝑗 )

𝑠𝑖𝑧𝑒(𝑝𝑘𝑡)
𝑏𝑤(𝑙)

+ 𝑝𝑟𝑜𝑝(𝑙) (3)

Additionally, between two services deployed in the same MDC, we 
assume a constant network delay.

When computing server 𝑠𝑖 runs at frequency 𝑓𝑠𝑖  to process tasks, 
given the workload required by a service module 𝑜: 𝑤𝑙(𝑜), the execution 
time can be calculated by: 
𝑇 𝑒𝑥𝑒𝑐 (𝑜, 𝑠𝑖) = 𝑤𝑙(𝑜)∕𝑓𝑠𝑖 (4)

We also define the overhead coefficient for the multi-tenancy scenario 
of 𝑛 service modules deployed on one server: 𝐾(𝑛). When 𝑛 service 
modules including 𝑜 are co-located by one server, the task processing 
time of 𝑜 becomes: 
𝑇 𝑒𝑥𝑒𝑐 (𝑜|𝑛) = 𝑇 𝑒𝑥𝑒𝑐 (𝑜) ∗ 𝐾(𝑛) (5)

For service modules with multiple predecessor nodes, the service 
module will not start the task execution until all its predecessors have 
finished their task processing and delivered the results to it. Therefore, 
for a service module 𝑜, the earliest time it starts task processing 
is decided by its most time-consuming predecessor. For 𝑜 with its 
predecessors 𝑝𝑟𝑒𝑑(𝑜), we obtain its Earliest Start Time (EST) by: 
𝐸𝑆𝑇 (𝑜) = max

𝑜𝑖∈𝑝𝑟𝑒𝑑(𝑜)

{

𝐸𝑆𝑇 (𝑜𝑖) + 𝑇 𝑒𝑥𝑒𝑐 (𝑜𝑖) + 𝑇 𝑐𝑜𝑚𝑚(𝑜𝑖, 𝑜)
}

(6)

Similarly, the Earliest Finish Time (EFT), a value denoting the earliest 
time a service module 𝑜 finish its task processing, can be obtained by: 
𝐸𝐹𝑇 (𝑜) = 𝐸𝑆𝑇 (𝑜) + 𝑇 𝑒𝑥𝑒𝑐 (𝑜) (7)

And therefore the end-to-end latency experienced by user 𝑈 can be 
expressed as 𝐸𝑆𝑇 (𝑈 ).

When deadline constraints of application 𝐴 exist, each service re-
quest sent to the system is supposed to be finished in a time no longer 
than 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴). In such situation, we define the term Latest Start 
Time (LST): the latest point in time a service module can start without 
delaying the overall application or violating the deadline, and similarly 
the Latest Finish Time (LFT): the time point that a service can complete 
its task processing such that the overall latency in not lagged. Therefore 
for any module 𝑜, we can obtain recursively: 

𝐿𝐹𝑇 (𝑜) =

{

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) if o=U
min𝑜𝑖∈𝑠𝑢𝑐𝑐(𝑜)

{

𝐿𝑆𝑇 (𝑜𝑖) − 𝑇 𝑐𝑜𝑚𝑚(𝑜, 𝑜𝑖)
}

otherwise
(8)

and 
𝐿𝑆𝑇 (𝑜) = 𝐿𝐹𝑇 (𝑜) − 𝑇 𝑒𝑥𝑒𝑐 (𝑜) (9)

3.3.2. Energy consumption model
The main energy consumption of each edge computing server is 

expressed as the sum of static energy consumption and dynamic energy 
consumption. The dynamic power consumption of the CMOS circuits 
is more dominant and significant comparing to the static power con-
sumption, and is our main focus. Given the supply voltage of the CMOS 
circuits 𝑣 and the CPU operating frequency 𝑓 , the dynamic power 
consumption can be obtained by: 𝑃 = 𝑘𝑣2𝑓 , where 𝑘 represents a 
device-related coefficient. Here we assume that 𝑣 and 𝑓 are linearly 
dependent, therefore: 𝑃 = 𝛽𝑓 3, where 𝛽 represents a device related 
factor.

We drive the dynamic energy consumption of each server 𝑠 by 
calculating its dynamic power consumption over time, expressed by: 

𝐸𝐶(𝑠) = ∫ 𝑃𝑠 𝑑𝑡 = ∫ 𝛽𝑠𝑓𝑠
3 𝑑𝑡 (10)

During the processing of a type 𝑜 task, if the CPU frequency remains 
unchanged, combining with (4), the total dynamic energy consumption 
can be approximated by: 
𝐸𝐶(𝑠, 𝑜) = 𝛽 𝑓 2𝑤𝑙(𝑜) (11)
𝑠 𝑠

5 
Below we discuss the energy models surrounding the energy-
harvesting devices. For an energy harvesting device 𝐸𝐻𝑚𝑖

 power MDC 
𝑚𝑖, we use 𝑃ℎ𝑎𝑟𝑣𝑒𝑠𝑡 to denote its charging power. The total instant power 
consumption of MDC 𝑚𝑖 can be expressed as: 

𝑃𝑚𝑖
=

∑

𝑠∈𝑆𝑖

𝛽𝑠𝑓𝑠
3 (12)

Similarly, the total energy consumption of MDC 𝑚𝑖 is: 

𝐸𝐶(𝑚𝑖) =
∑

𝑠∈𝑆𝑖
∫ 𝛽𝑠𝑓𝑠

3 𝑑𝑡 (13)

3.4. Battery model

The energy harvesting device powering a MDC 𝑚 is denoted by 
𝐸𝐻𝑚, and the energy storage capacity of 𝐸𝐻𝑚’s battery is expressed 
as 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚). We partition the time into a continuous series of time 
slices 1, 2, 3,… , 𝑛, with equal lengths 𝛥𝑡. A new task may be generated 
in each time slice. We use 𝐵𝑚(𝑘) to represent the remaining power in 
the battery of the energy harvesting device 𝐸𝐻𝑚 at the beginning of 
the 𝑘th time slice.

During the 𝑘th time period, assuming that the operating frequency 
of each active server remain constant, we can drive that: 

𝐵𝑚(𝑘 + 1) = 𝐵𝑚(𝑘) + 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑
𝑚 (𝑘) − 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚 (𝑘) (14)

Also, the remaining power in the battery must satisfy the following at 
any time: 

0 ≤ 𝐵𝑚(𝑘) ≤ 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚) (15)

Use 𝐵𝑖𝑛𝑖
𝑚  to denote the initial remaining power of battery 𝐵𝑚. Since 

MDCs purely rely on the harvested energy, combining with Eq. (14), 
the energy stored in 𝐵𝑚 at the beginning of time slot 𝑘 is: 

𝐵𝑚(𝑘) = 𝐵𝑖𝑛𝑖
𝑚 +

𝑘−1
∑

𝑛=1
(𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑

𝑚 (𝑛) − 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
𝑚 (𝑛)) (16)

Since the energy consumed by all MDC servers during the time slice 
cannot exceed the energy stored in the battery, we also have: 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚
(𝑘) ≤ 𝐵𝑚(𝑘).

In scenarios where the harvested energy is insufficient to support 
the task processing during one time slice, the cloud offloading will be 
triggered.

3.5. Cloud offloading and cost models

If tasks to be processed by service 𝑜 are offloaded to the cloud, with 
knowledge of the workload demands per task and the unit pricing of 
the cloud service, the computational cost to process one task can be 
expressed as: 

𝐶𝑜𝑠𝑡𝑐𝑙𝑜𝑢𝑑𝑜 = 𝑤𝑙(𝑜) ∗ 𝑐𝑝 (17)

During the 𝑘th time slice, let 𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗  denote the total number of 
subtasks processed by service module 𝑜𝑗 . Cloud offloading for service 
module 𝑜𝑗 may be triggered at certain time points, incurring cloud 
execution costs. We use the binary variable 𝑥𝑘𝑖𝑗 to indicate whether 
the 𝑖th subtask (where 𝑖 = 1,… , 𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗 ) is executed on the cloud. If 
the subtask id executed on the cloud, 𝑥𝑘𝑖𝑗 = 1; otherwise, 𝑥𝑘𝑖𝑗 = 0. By 
summing up the costs corresponding to the computation offloaded to 
the cloud, the total cloud fee for 𝑜𝑗 during the 𝑘th time slice can be 
expressed as: 

𝐶𝑜𝑠𝑡𝑐𝑙𝑜𝑢𝑑 (𝑘) =
𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗
∑

𝑛
∑

𝑥𝑘𝑖𝑗 ∗ 𝑤𝑙(𝑜𝑖) ∗ 𝑐𝑝 (18)

𝑗=1 𝑖=1
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3.6. Placement problem formulation

The objective of this problem is to meet the service latency deadline 
while maximising renewable energy utilisation and minimising total 
cost. The solution should be an appropriate initial mapping from the 
service nodes to the servers, followed by server frequency scaling or 
module offloading decisions that will be made dynamically.

We call a placement plan valid only if all the service modules are 
assigned to servers with sufficient resources and all the constraints are 
met. In light of this, we formulate the conditions that make a placement 
plan valid and our optimisation goals:

(i) Given the set of service modules 𝑂 to place and the set of 
available servers in the Cloud-MEC environment 𝐺, each service in O 
should be mapped to a server in 𝐺. We formulate such a progress as a 
mapping function 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, let S denote the set of all servers in the 
network, then 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ∶ 𝑂 → 𝑆 indicates a complete deployment of 
all services.

(ii) As explained in [27], provided that (i) is satisfied and the 
summation of resource occupancy for all assigned modules does not 
violate the capacity of the server, the optimisation objective is to 
minimise the user-experienced latency and the overall dynamic energy 
consumption jointly, formulated as: 
𝑃1 ∶ 𝑚𝑖𝑛 𝐸𝑆𝑇 (𝑈 ), 𝑚𝑖𝑛

∑

𝑠∈𝑆
𝐸𝐶𝑠 (19)

(iii) If the deadline of an application is pre-defined in the service-
level agreements, it must not be violated, therefore the tackle time for 
every task arrived at the 𝑘th time slice should always be within the 
deadline: 𝑇𝑑𝑒𝑙𝑎𝑦 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴).

(iv) In the energy-harvesting scenario, provided that (i) and (iii) 
are satisfied, the optimisation goal to minimise the cloud fee can be 
expressed as: 

𝑃2 ∶𝑚𝑖𝑛
𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗
∑

𝑗=1

𝑛
∑

𝑖=1
𝑥𝑘𝑖𝑗 ∗ 𝑤𝑙(𝑜𝑖) ∗ 𝑐𝑝,

𝑠.𝑡.(𝑖), (𝑖𝑖)

0 ≤ 𝐵𝑚(𝑘) ≤ 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚), 𝑚 ∈ 𝑀

0 ≤ 𝑓𝑠(𝑘) ≤ 𝑓𝑠, 𝑠 ∈ 𝑆

𝑥𝑜(𝑘) ∈ {0, 1} , 𝑜 ∈ 𝑂

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
𝑚 (𝑘) ≤ 𝐵𝑚(𝑘), 𝑚 ∈ 𝑀

(20)

4. Energy-and-latency-aware placement algorithms in MEC

4.1. Energy-aware delay-experienced minimisation algorithm

The proposed service placement algorithm, energy-aware delay-
experienced minimisation (EDEM), adopts a two-stage approach to 
achieve a balance between latency minimisation and energy consump-
tion reduction. The flow of the EDEM algorithm is illustrated in Figs. 
3, 4, 5. The coarse-grain stage (Figs.  3 and 4) runs first, followed 
by the fine-grain stage (Fig.  5). In the coarse-grained stage, EDEM 
determines a service-to-MDC deployment plan that prioritises reducing 
end-to-end latency. Subsequently, the fine-grain stage refines the server 
deployment plan within each MDC, focusing on optimising energy 
consumption without affecting the overall latency.

Coarse-grain scheduler: Base on the critical path method (CPM), 
the coarse-grain scheduler seeks a balanced configuration with minimal 
transmission latency and maximised processing efficiency, leading to 
the lowest approximated end-to-end latency. The pseudo-code of the 
coarse-grain scheduler is presented in Algorithm 1.

We use 𝑆(𝐴) to denote the state space of services in application 
𝐴, consisting of all service-to-MDC placement options. The scheduler 
explores 𝑆(𝐴) by post-order traversing all placement options of the 
service modules in 𝐴. According to Eq. (6), the calculation of 𝐸𝑆𝑇
6 
Algorithm 1: EDEM
Data: App. 𝐴 = (𝑉 ,𝐸), MEC 𝐺 = (𝑀,𝐿)
Result: Server placement map 𝑃 ∶ 𝑂 → 𝑆
1. Coarse-grain stage:
Initiate 𝑆(𝐴) ∀𝑣 ∈ 𝑉 ,∀𝑚 ∈ 𝑀 ; CP = ∅;
Explore 𝑆(𝐴) using post-order traversal:
for 𝑣.𝑝𝑟𝑒𝑑 ∈ 𝑣.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do

for 𝑚 ∈ 𝑀 do
Compute EST(v.pred,m);

end 
Select (v.pred,m) with min EST(v.pred,m);

end 
CP ← (v.pred,m) with max(EST(v.pred,m));
Compute Criticality(v);
2. Fine-grain stage:
for (𝑣, 𝑚) ∈ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ do

Initiate 𝑆(𝑉 ) ∀𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠;
for 𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do

if 𝐸𝑆𝑇 (𝑣, 𝑠) ≤ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑣) then
Compute EC(v,s);

end 
Assign v to s with min EC(v,s);
Update load status of s;

end 
for (𝑣, 𝑚) ∉ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ do

Initiate 𝑆(𝑉 ) ∀𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠;
for 𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do

if 𝐸𝑆𝑇 (𝑣, 𝑠) + 𝑇𝑐𝑜𝑚𝑚(𝑣, 𝑣.𝑠𝑢𝑐𝑐) ≤ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑣.𝑠𝑢𝑐𝑐) then
Compute EC(v,s);

end 
Assign v to s with min EC(v,s);
Update load status of s;

end 

Table 2
Table of key notations
 Indices Description  
 𝐺 = (𝑀,𝐶,𝐿) Cloud-MEC network  
 𝑀∕𝐶∕𝐿 Set of MDCs /Cloud DC/network connections  
 𝑏𝑤(𝑙), 𝑝𝑟𝑜𝑝(𝑙) Bandwidth and propagation delay of 𝑙  
 𝑆𝑖 Computing servers in MDC 𝑚𝑖  
 𝑓𝑠𝑖 Maximum CPU frequency of server 𝑠𝑖  
 𝑐𝑝 Unit price of cloud DC  
 𝐸𝐻𝑚 EH device of MDC 𝑚  
 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚) Battery capacity of 𝐸𝐻𝑚  
 𝐸𝐶(𝑠) Energy consumption of server 𝑠  
 𝑝𝑎𝑡ℎ(𝑠𝑖 , 𝑠𝑗 ) Routing path between two servers  
 𝐵𝑚 Battery level of EH device of MDC 𝑚  
 𝐴 Application graph  
 𝑆(𝐴) State space of services in 𝐴  
 𝐷∕𝑂 Set of data sources/service modules in 𝐴  
 𝑤𝑙(𝑜) Workload of single task processed by module 𝑜 
 𝐸 Set of dependency edges in 𝐴  
 𝑝𝑟𝑒𝑑(𝑜), 𝑠𝑢𝑐𝑐(𝑜) Set of predecessor and successor modules of 𝑜  
 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) Maximum task completion time of 𝐴  
 𝑠𝑑(𝑜) Sub-deadline of module 𝑜  
 𝐸𝑆𝑇 (𝑜) Earliest processing start time of module 𝑜  
 𝐿𝑆𝑇 ∕𝐿𝐹𝑇 (𝑜) Latest processing start/finish time of module 𝑜  
 𝐴𝑆𝑇 ∕𝐴𝐹𝑇 (𝑜) Actual processing start/finish time of module 𝑜 

for any service 𝑣 rely on the 𝐸𝑆𝑇  value of all its predecessor modules 
𝑣.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠. Following such rule, the scheduler can estimate the 
𝐸𝑆𝑇  value for each service, paving the way for critical-path selection.

The critical path selection works in a greedy and optimistic fashion. 
As shown in Fig.  3, the bottom-up latency approximation identifies 
a critical path, highlighted with a red stroke, from the original ap-
plication graph. Starting with the bottom-most modules that directly 
interface with the data sources, for each visited service 𝑣, given the 
set of available MDCs 𝑀 , the value of 𝐸𝑆𝑇 (𝑣) will be approximated 
assuming 𝑣 resides at the least-loaded server 𝑚.𝑙𝑒𝑎𝑠𝑡𝑙𝑜𝑎𝑑𝑒𝑑 in each MDC 
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Fig. 3. The coarse-grain stage of EDEM: critical path selection.

Fig. 4. The coarse-grain stage of EDEM: service-to-MDC mapping.

𝑚 ∈ 𝑀 . For each predecessor 𝑣.𝑝𝑟𝑒𝑑 of 𝑣, knowing its estimated EST val-
ues [𝐸𝑆𝑇 (𝑣.𝑝𝑟𝑒𝑑, 𝑚1), 𝐸𝑆𝑇 (𝑣.𝑝𝑟𝑒𝑑, 𝑚2),…

]

, the predecessor-MDC pair 
(𝑣.𝑝𝑟𝑒𝑑, 𝑚) yielding the minimum estimated EST is identified. Among 
all the selected predecessor-MDC pairs, the pair with the maximum EST 
is designated as the critical node. Subsequently, the criticality of non-
critical modules within the same hierarchical level is determined by 
calculating the EST difference between the module and the identified 
critical node. This process is iteratively repeated until the final exit 
node of the application is reached.

The coarse-grain stage of the algorithm goes on as illustrated in Fig. 
4. The previous phase establishes the critical path, aligning with the 
MDC allocation plan for the critical modules. Non-critical modules re-
main without assigned MDCs at this point. Subsequently, the load status 
of the MDCs participating in the critical path allocation plan is updated, 
as is the least-loaded server 𝑚.𝑙𝑒𝑎𝑠𝑡𝑙𝑜𝑎𝑑𝑒𝑑 within each MDC 𝑚 ∈ 𝑀 . The 
max–min procedures then resume, focusing on allocating non-critical 
modules until their MDC assignments are finalised. With the service 
modules mapped to different MDCs, as indicated by black links in the 
figure, the algorithm proceeds to the next step of module-to-server 
allocation.

Fine-grain scheduler: Following the determination of the service-
to-MDC placement plan during the coarse-grained stage, for each MDC 
involved, a fine-grain scheduler runs to drive the module-to-server 
placement solution. As can be seen in Fig.  5, in this stage, the server 
selection for service modules is performed independently within each 
MDC. The fine-grained scheduler prioritises placing modules on less 
power-consuming servers while ensuring that the end-to-end latency of 
critical nodes remains unaffected. Critical modules will take priority 
in placement, followed by non-critical modules. The pseudo-code of 
the fine-grain scheduler is presented as Step 2 in Algorithm 1. Similar 
7 
Fig. 5. The fine-grain stage of EDEM: service-to-server mapping.

Fig. 6. The phase one of DEM: greedy initialisation.

to the design of the coarse-grain scheduler, the fine-grained scheduler 
thoroughly evaluates all service-to-server placement options. For each 
module and every available server within the local MDC, the scheduler 
estimates the earliest start time. Subject to the constraint that the 𝐸𝑆𝑇
value of modules on non-critical branches must not exceed the 𝐸𝑆𝑇
of critical modules within the same hierarchical level, we evaluate 
the EST value 𝐸𝑆𝑇 (𝑣, 𝑠) for each potential placement option (𝑣, 𝑠). 
Placement options that violate this constraint are discarded, while the 
remaining options are deemed valid. From these valid options, the 
placement with the lowest energy consumption 𝐸𝐶(𝑣, 𝑠), as approxi-
mated by Section 3.3.2, is selected and incorporated into the placement 
plan. Upon finalising a service placement decision, the load status of 
the designated server is updated, and the estimated 𝐸𝑆𝑇  values of 
all affected placement options are recalculated. This iterative process 
continues until all service modules are assigned to specific servers.

4.2. Delay-Aware Energy Minimisation algorithm (DEM)

In contrast to EDEM, which prioritises latency minimisation, the 
proposed delay-aware energy minimisation (DEM) algorithm priori-
tises energy efficiency. DEM initially seeks an energy-saving server 
placement plan. Subsequently, a refinement stage fine-tunes this plan 
to optimise latency while strictly adhering to established energy con-
straints. DEM can be broken down into the 3 steps, in order as shown 
in Figs.  6, 7, 8:

Step 1: Greedy initialisation. All available servers within the MEC 
network are sorted by their device-related energy consumption coef-
ficients, in ascending order, as illustrated in Fig.  6. Then a level-order 
traversal of the application graph starts from the entry modules. At each 
layer of the traversal, as split with dashed box in the figure, modules are 
randomly assigned resources from the pre-ranked server list. Following 
the assignment, DEM estimates the 𝐸𝑆𝑇  value for each module, using 
Eq. (6).

Step 2: Service-to-MDC placement alteration. While Step 1 pri-
oritises energy-efficient servers, it might not necessarily achieve the 



S. Chen et al. Future Generation Computer Systems 174 (2026) 108009 
Fig. 7. The phase two of DEM: Adjust the service-to-MDC mapping.

absolute minimum total energy consumption. This is because geo-
graphically distant placements of interdependent modules can result in 
prolonged data transmission times and increased idle energy consump-
tion at servers awaiting packets. To address this, a refinement stage 
iteratively explores alternative placements for each service module, as 
presented in Fig.  7. For each module, all unexplored MDCs (excluding 
its current location) are considered. Within each unexplored MDC, the 
least power-consuming server is evaluated as a potential reassignment 
target. As indicated by the dotted arrows, the algorithm estimates the 
total energy consumption 𝐸𝐶 after each potential reassignment, and 
updates the placement plan if a more energy-efficient configuration is 
identified. Finally, the refined placement’s overall latency 𝐸𝑆𝑇 (𝑈 ) and 
total energy consumption ∑𝑠∈𝑆 𝐸𝐶(𝑠) are calculated and stored for the 
next stage.

Algorithm 2: DEM
Data: Application 𝐴 = (𝑉 ,𝐸), MEC network 𝐺 = (𝑀,𝐿)
Result: Server placement map 𝑃 ∶ 𝑂 → 𝑆
1. Server sorting and initial service assignment:
Sort all servers 𝑠 ∈ 𝐺 by coeff (𝑠);
curServerIdx ← 0;
Group service from level 𝑛 to 0 and shuffle each set 𝑆𝑛, ...𝑆0
for service 𝑣 ∈ 𝑆𝑛, ..., 𝑆0 do

Assign 𝑣 to server with index curServerIdx;
curServerIdx++;

end 
for 𝑣 ∈ 𝑉  do

Compute EST(v,P(v)) using Eqs;
end 
2. Energy-aware reassignment:
for 𝑣 ∈ 𝑉  do

for 𝑚 ∈ 𝑀 do
if 𝑃 (𝑣) ∉ 𝑚 then

s = argmin𝑠′∈𝑚.servers coeff(𝑠′);
if EST(v,s)<EST(v,P(v)) then

Assign server 𝑠 to 𝑣;
end 

end 
Compute EST(U) using Eqs;
Sum up 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐸𝐶(𝑣, 𝑃 (𝑣)) ∀ 𝑣 ∈ 𝑉 ;
3. Latency-aware reassignment:
Identify critical_path of A under placement 𝑃 ;
for (𝑣, 𝑃 (𝑣)) ∈ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ do

for 𝑠 ∈ 𝑃 (𝑣).𝑚𝑑𝑐.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do
if 𝐸𝑆𝑇 (𝑈 ) > 𝐸𝑆𝑇 (𝑈 |𝑃 (𝑣) = 𝑠) then

Assign server 𝑠 to 𝑣;
Re-identify critical_path of 𝐴;

end 
end 
8 
Fig. 8. The phase three of DEM: Fine-tune the service-to-server mapping.

Step 3: Service-to-server placement fine-tuning. Building upon the 
refined resource allocation from (Step 2), DEM also focuses on improv-
ing user-experienced latency. Similar to EDEM’s fine-tuning approach, 
it identifies critical modules within the application’s critical path. Fig. 
8 illustrates this phase of DEM. For each critical module, potential 
reassignments to alternative servers are explored with the aim of re-
ducing critical path latency. For each reassignment option, indicated 
by a dotted arrow, the end-to-end latency is re-approximated and 
compared against that of the current assignment plan. After each 
reassignment, the critical path is recalculated to assess potential latency 
improvements. This iterative process continues until no further latency 
reductions are achievable. The resulting placement plan, effectively 
balancing energy efficiency and latency, is then utilised to generate the 
final module-to-server mapping. The pseudo-code of DEM is presented 
in Algorithm 2.

5. Dynamic resource scheduling and service offloading (DSO) al-
gorithm in EH-MEC

After integrating the energy harvesting technique with the MEC 
system, deadline constraints and energy budgets must be considered 
throughout the application execution.

Therefore, with the two offline placement algorithms in hand, we 
decided to design an online scheduling strategy that monitors the 
status of the MEC-EH system and continuously makes decisions for 
server operating frequency scaling and cloud offloading. Our online 
scheduling algorithm can be divided into three phases:

Phase 1. Initial energy-latency-aware service placement. At the 
initialisation stage, we pass the edge network information and the 
application to the EDEM or DEM algorithm to generate a service-to-
server assignment plan. Service modules will be deployed on MEC edge 
servers, after which application execution will begin.

Phase 2.  Deadline constraints breakdown. Given the deadline 
constraint of the application, and with knowledge of the app graph 
structure as well as the task size and workload of every service, we 
calculate a sub-deadline for each module. Inspired by the deadline 
decomposition method from [28], we traverse all modules in a top-
down order and determine the value of 𝐿𝑆𝑇 (𝑜) and 𝐿𝐹𝑇 (𝑜) of each 
module 𝑜 ∈ 𝑂 according to Eqs.  (8) and (9). Starting from the overall 
deadline and working backward, we use the upward rank 𝑟𝑎𝑛𝑘(𝑜) to 
quantify the impact of the module to the entire schedule: the longer it 
takes to process sub-tasks and transmit data from the module to the end 
user, the higher the 𝑟𝑎𝑛𝑘(𝑜) value becomes. Finally, The sub-deadlines 
of every module 𝑜, denoted as 𝑠𝑑(𝑜), are calculated as proportions of 
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴).

The relations between the rank of a module 𝑜 and its successor 
modules can be expressed as: 
𝑟𝑎𝑛𝑘(𝑜) = max

𝑜𝑖∈𝑠𝑢𝑐𝑐(𝑜)

{

𝑟𝑎𝑛𝑘(𝑜𝑖) + 𝑇 𝑐𝑜𝑚𝑚(𝑜, 𝑜𝑖)
}

+ 𝑇 𝑒𝑥𝑒𝑐 (𝑜) (21)

Therefore the highest rank belongs to the entry source modules, calcu-
lated as: 
𝑟𝑎𝑛𝑘𝐷 = max

{

𝑟𝑎𝑛𝑘(𝑑𝑖)
}

(22)

𝑑𝑖∈𝐷
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and the sub-deadline of module 𝑜 can be calculated as follows: 

𝑠𝑑(𝑜) =
𝑟𝑎𝑛𝑘𝐷 − 𝑟𝑎𝑛𝑘(𝑜) + min𝑠𝑖∈𝑆

{

𝑇 𝑒𝑥𝑒𝑐 (𝑜, 𝑠𝑖)
}

𝑟𝑎𝑛𝑘𝐷
∗ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) (23)

These sub-deadlines indicate the maximum flexibility each service has 
before impacting the overall schedule, providing room for further 
resource optimisation and scheduling.

Algorithm 3: DSO
Data: Application 𝐴 = (𝑉 ,𝐸), 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴), EH-MEC network 

𝐺 = (𝑀,𝐿)
Result: Server placement map 𝑃 ∶ 𝑂 → 𝑆, scaling and offloading 

decisions
1. Initial service assignment using our algorithms:
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝐴,𝐺) = 𝑃 ∶ 𝑂 → 𝑆
for 𝑜 ∈ 𝑂 do

Deploy 𝑜 to server 𝑃 (𝑜);
end 
2. Deadline constraints breakdown:
Explore 𝐴 using level-order traversal:
for 𝑣 ∈ 𝐴.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 do

Compute 𝐿𝑆𝑇 (𝑣) and 𝐿𝐹𝑇 (𝑣);
end 
for 𝑣 ∈ 𝑉  do

Compute 𝑟𝑎𝑛𝑘(𝑣) and 𝑠𝑑(𝑣);
end 
3. Server scaling and service offloading:
while 𝐴.𝑎𝑐𝑡𝑖𝑣𝑒 do

for 𝑚 ∈ 𝑀 do
if 𝐵(𝑚) == 0 then

for 𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do
𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 ← {𝑜|𝑃 (𝑜) = 𝑠};

end 
end 
for 𝑜 ∈ {

𝑂 − 𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑
} do

if 𝐴𝐹𝑇 (𝑜) − 𝐴𝐹𝑇 (𝑜.𝑝𝑟𝑒𝑑) > 𝑠𝑑(𝑜) then
𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 ←

{

𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 + 𝑜
}

;
else

Compute 𝑟𝑎𝑡𝑖𝑜(𝑃 (𝑜));
𝑃 (𝑜).𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛()

end
end 
for 𝑜 ∈ 𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 do

Undeploy 𝑜 from server 𝑃 (𝑜);
Redeploy 𝑜 to cloud 𝐶;

end 
end 
Phase 3.  Scaling and offloading decision making. The third phase 

is the online resource scheduling process, which runs continuously as 
the application actively receives new data. The scheduler monitors 
the system’s real-time status, including the battery levels of energy-
harvesting devices and the latency between service modules. We use 
𝐴𝐹𝑇 (𝑜) to denote the actual finish time of service module 𝑜, and use 
E(𝐹𝑇 (𝑜)) to represent the expected finish time of 𝑜. According to the 
deadline constraints breakdown in Phase 2, we have: 
0 ≤ E(𝐹𝑇 (𝑜)) ≤ 𝑠𝑑(𝑜) (24)

When the actual finish time of a service 𝑜 is earlier than its sub-
deadline, slack time is available. This creates an opportunity to scale 
down the operating frequency of the edge server, reducing energy con-
sumption within an acceptable range and avoid draining the battery. 
The service time needed for 𝑜 to process a task can be calculated by 
the difference between its actual start time and actual finish time, 
expressed as: 
𝑇 𝑒𝑥𝑒𝑐 (𝑜, 𝑃 (𝑜)) = 𝐴𝐹𝑇 (𝑜) − 𝐴𝑆𝑇 (𝑜) (25)

We use 𝑟𝑎𝑡𝑖𝑜(𝑠𝑖) to denote the scaling ratio of the CPU operating 
frequency of server 𝑠𝑖, and combining Eq. (24) we have: 
𝐴𝐹𝑇 (𝑜) < E(𝐹𝑇 (𝑜)) ≤ 𝑠𝑑(𝑜) (26)
9 
Assume the finish time of service o equals the sub-deadline, regarding 
the theoretical minimum allowed operating frequency we have: 
𝑤𝑙(𝑜)∕𝑓𝑚𝑖𝑛 = 𝑠𝑑(𝑜) − 𝐴𝑆𝑇 (𝑜) (27)

and so the theoretical minimum allowed value of the scaling ratio 
equals: 

𝑟𝑎𝑡𝑖𝑜(𝑠𝑖)𝑚𝑖𝑛 =
𝑓𝑚𝑖𝑛

𝑓 (𝑠𝑖)
=

𝐴𝐹𝑇 (𝑜) − 𝐴𝑆𝑇 (𝑜)
𝑠𝑑(𝑜) − 𝐴𝑆𝑇 (𝑜)

, 𝑃 (𝑜) = 𝑠𝑖 (28)

Taking the midpoint between the minimum and maximum scaling ratio 
we get: 

𝑟𝑎𝑡𝑖𝑜(𝑠𝑖) =
𝑠𝑑(𝑜) + 𝐴𝐹𝑇 (𝑜) − 2𝐴𝑆𝑇 (𝑜)

2 ∗ (𝑠𝑑(𝑜) − 𝐴𝑆𝑇 (𝑜))
, 𝑃 (𝑜) = 𝑠𝑖 (29)

and the operating frequency of server 𝑠𝑖 will be scaled down by 𝑟𝑎𝑡𝑖𝑜(𝑠𝑖).
Conversely, when the actual finish time of a service 𝑜 exceeds its 

sub-deadline, or the battery of the local EH device is depleted, cloud 
offloading for the service module is triggered. The module will be 
undeployed from the MDC and redeployed to the cloud, at which point 
cloud billing will commence.

The pseudo-code of the strategy is presented in Algorithm 3.

6. Experimental evaluation

6.1. Performance indicators & setup

We employed simulation to evaluate the performance of the pro-
posed placement algorithms (DEM and EDEM) and the dynamic re-
source scheduling algorithm (DSO). The YAFS fog simulator [6] was 
used and extended to support sequential processing of dependent tasks. 
The edge network topologies were created using the NetworkX li-
brary2 with different random graph generation models: Barabasi–Albert 
(B-A) [29], Watts–Strogatz (W-S) [30], and ring topology.

To obtain more generalisable results, real-world workloads were 
employed from the Alibaba cluster trace dataset.3 This dataset provides 
DAG information of production batch workloads from a large-scale 
cluster. To model the user-submitted jobs consisting of services such 
as video stream processing, image recognition, machine learning in-
ference, real-time analytics, and large-scale data preprocessing, we 
randomly selected 10 applications for evaluation from those exceeding 
10 modules, the characteristics of which are listed in Table  4. Module 
resource requirements were configured based on the provided traces. 
Within the simulation’s temporal settings, tasks arrive periodically, 
with a constant interval of 100 global timestamps, as new data con-
tinuously flows in from IoT sensors. For each experiment set, system 
events were simulated for 20,000 global timestamps and repeated 5 
times with identical configurations to generate statistically significant 
averages. The simulations were conducted on a server with 4x Intel 
Xeon Gold 6230N CPU, 256 GB of RAM and Ubuntu 20.04 operating 
system.

6.1.1. Service placement experiment setup
To evaluate the proposed service placement algorithms (DEM and 

EDEM), we constructed heterogeneous MEC-Cloud topologies consisted 
of up to 20 micro edge datacenters and one cloud datacenter using 
the three different models mentioned above. Each MDC housed up 
to 5 computing servers. Details regarding the specific MEC network 
configurations are provided in Table  3. To model a heterogeneous 
computing environment, we configured distinct resource characteris-
tics for cloud and edge servers.Cloud servers, representing powerful 
centralised resources, were assigned CPU frequencies of 3–5 GHz and 
RAM of 32–64 GB, reflecting common virtual machine instance types 
in public clouds (e.g. Amazon EC2, Azure and Google Cloud). In 

2 https://networkx.org/.
3 https://github.com/alibaba/clusterdata.

https://networkx.org/
https://github.com/alibaba/clusterdata


S. Chen et al. Future Generation Computer Systems 174 (2026) 108009 
Table 3
MEC-Cloud environment configurations.
 Cloud MDC 
 CPU frequency (GHz) [3,5] [1,2] 
 RAM (GB) [32,64] [1,4] 
 Propagation delay (ms) 8 1  
 Bandwidth (Gbps) 10 2  

Table 4
Application characteristics.
 Job id |𝑉 | |𝐸| Max degree Average transfer volume Average workload
 1 12 9 3 39.33 9.50  
 2 16 17 6 29.00 257.88  
 3 16 17 7 23.63 40.50  
 4 17 17 5 42.82 13.53  
 5 16 17 3 46.06 35.75  
 6 12 11 6 38.67 8.17  
 7 10 10 4 44.30 14.40  
 8 10 9 5 35.60 7.10  
 9 16 16 2 47.19 1.00  
 10 10 9 4 43.40 32.70  

contrast, edge servers featured more constrained resources (1–3 GHz 
CPU, 1–4 GB RAM), typical of edge hardware deployed closer to users 
under power and cost limitations, including ARM-based platforms and 
compact x86 systems. Network connectivity also differed: the link 
to the cloud had high bandwidth (10 Gbps) but also higher latency 
(10 ms one-way delay), representing a WAN connection over larger 
geographical distances. The edge network link offered lower bandwidth 
but minimised latency, characteristic of local access networks like 5G 
or LANs. These parameters were chosen to create a realistic testbed 
contrasting centralised and edge capabilities.

The two algorithms were evaluated based on four key metrics: (a) 
Overall Energy Consumption (𝐸𝐶): This metric represents the total 
power consumed by all servers during the execution period, estimated 
from CPU usage data according to 3.3.2. (b) Average User-Experienced 
Latency (𝐿𝑇 ): This metric is the mean response time of user requests, 
calculated from raw timestamps recorded by the simulator during 
network transmissions. (c) Edge prioritisation (𝐸𝑃 ): This metric re-
flects the percentage of services deployed at the Edge. (d) Algorithm 
Execution Time (𝐸𝑇 ): This metric indicates the time required for 
the algorithm to generate a placement, i.e. the wall clock time for 
executing each algorithm. The performance of DEM and EDEM was 
compared against four state-of-the-art service placement algorithms: 
Response Time Aware (RTA) [16], Genetic Algorithm (GA) [31], Max-
imise Reliability Offloading (MROA) [19] and Energy-Makespan Multi-
objective Optimisation (EM-MOO) [22]. We selected these algorithms 
for their varying levels of complexity, computational overhead, and 
optimisation goals. By comparing our proposed algorithms with these 
diverse alternatives, we gain a broader understanding of their strengths 
and weaknesses, enabling a more robust assessment of their overall 
performance and efficiency.

6.1.2. Dynamic scheduling experiment setup
To evaluate the performance of our online resource scheduling 

strategy (DSO), unlike the previous experimental settings, we con-
structed MEC-Cloud environments featuring energy-harvesting-enabled 
base stations. The network topology generation used the Barabasi–
Albert (B-A) model, and each MDC is purely powered by an energy 
harvesting device with a battery storage. Detailed configurations of the 
MEC-EH environment are shown in Table  5, similar to Table  3, with 
specs commonly observed in cloud and edge computing scenarios. The 
algorithm receives the result from either the EDEM or DEM algorithm 
as the initial service placement plan and makes server frequency scaling 
or service offloading decisions dynamically.

We evaluated the algorithm based on five key metrics: (a) Number 
of Processed Requests (𝑇𝑃 ): the amount of use requests that have been 
10 
Table 5
EH-enabled MEC-Cloud environment configurations.
 Cloud MDC-EH 
 CPU frequency (GHz) 4 [1,2.5]  
 Propagation delay (ms) 50 5  
 Bandwidth (Gbps) 10 1  
 Renting fee ($ per s) 0.01 N/A  
 Battery capacity (Wh) N/A 10  
 EH device charging rate (W) N/A 1  
 Device power factor 10−27 10−27  

successfully processed, recorded after the receiving of each result at 
the user side. (b) Average User-Experienced Latency (𝐿𝑇 ): the mean 
response time of user requests processed, extracted from the message 
timestamps stored in the simulation traces. (c) The Acceptance Rate 
of Processed Requests (𝐴𝐶): the proportion of successfully processed 
requests that meet the deadline constraint, recorded after the arrival 
of results. (d) Overall Energy Consumption (𝐸𝐶): the total power 
consumed by edge and cloud datacenters during the task processing, 
estimated from CPU usage history using 3.3.2. (e) Cloud Renting Cost 
(𝐶𝑅𝐶): the total fee charged by the cloud datacenter for task execution, 
calculated based on billing time.

We compared the performance of DSO-DEM and DSO-EDEM against 
three different scheduling options: (a) 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔, a policy that dy-
namically offloads every service of the application to the Cloud, (b) 
𝑠𝑐𝑎𝑙𝑖𝑛𝑔, a policy that makes server frequency scaling if there is enough 
slack time between service’s finish time and sub-deadline, and (c) 
𝑛𝑜𝑛𝑒, a static baseline policy that takes no subsequent action after the 
initial placement. For all scheduling variations, we assume that each 
datacenter is connected to a renewable energy source and is equipped 
with a battery storage. Green energy will be harvested to power the 
datacenter continuously. We aim to evaluate how different scheduling 
strategies impact user experience, energy usage and operational costs 
through our experiments.

6.2. Performance assessment

6.2.1. Service placement algorithm evaluation
To evaluate the performance of the EDEM and DEM algorithm, a 

total of 8100 experiments were conducted. For each of the 10 appli-
cations, 5 experiments were performed for each of the 6 algorithms. 
The number of MDCs (denoted by 𝑛) was varied across [5, 10, 20]. 
Similarly, the number of servers (denoted by 𝑚) within each MDC 
was varied across [2, 4, 8]. Furthermore, three different network 
topologies were utilised in the experiments. All figures presented in this 
section demonstrate the normalised performance of both 𝐸𝐶 and 𝐿𝑇
metrics. We set the source data emission interval to 100 ms and the 
simulated duration to 100 s and plot the performance of the proposed 
algorithms in terms of the aforementioned metrics. In Fig.  9, we show 
the normalised energy consumption results for all algorithms.

It can be seen that during the experiments across various applica-
tions and network topologies, the DEM algorithm achieves significantly 
lower energy consumption compared to other algorithms. In contrast, 
RTA and MROA exhibit the highest energy consumption. RTA, by 
primarily focusing on minimising end-to-end latency, often selects less 
energy-efficient servers, resulting in higher overall energy consump-
tion. MROA, on the other hand, primarily focuses on reducing energy 
consumption at the user equipment, neglecting the energy consumption 
of the servers involved in task offloading, leading to high overall energy 
consumption for task processing. DEM, on the contrary, tends to allo-
cate services to edge servers with higher energy efficiency. Following 
DEM, EDEM also achieves energy consumption levels comparable to 
GA and EM-MOO. Across diverse network topologies, DEM and EDEM 
exhibit stable performance in terms of normalised energy consumption, 
while EM-MOO falter under the Watts–Strogatz network model. This 
proves that DEM and EDEM are robust to network variations.
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Fig. 9. Normalised Energy Consumption (EC), 𝑛 = 20 𝑚 = 4.

Fig. 10. Normalised user-experienced latency (LT), 𝑛 = 20 𝑚 = 4.

Fig.  10 illustrates the normalised latency performance across all 
algorithms. RTA, EDEM, and MROA consistently achieve the lowest 
latency across all scenarios. However, it should be highlighted that RTA 
and MROA achieve these low latency values at the expense of signifi-
cantly higher energy consumption, whereas EDEM maintains metrics. 
GA generally exhibits the poorest performance for all network topolo-
gies while EDEM excels in certain applications. Particularly, in the ring 
topology, where network latency can be a significant bottleneck, EDEM 
demonstrates superior latency performance. Combining the results from 
Figs.  9 and 10, it becomes evident DEM and EDEM exhibit distinct 
preferences in optimising for energy consumption and latency. EDEM 
effectively balances overall energy consumption with latency perfor-
mance. On the other hand, DEM prioritises energy-saving placement 
plans,potentially resulting in some sacrifice of latency performance.

Figs.  12, 13 demonstrate that for the energy consumption metric, 
the DEM and GA algorithms show the most significant improvements 
and efficiency gains as the number of MDCs or servers increases, while 
MROA consistently underperforms. EMMOO shows a slight decrease in 
energy consumption as the number of resources grows. While not the 
most energy-efficient, EDEM demonstrates stable performance, making 
it a viable option. For the latency metric, RTA, EMMOO, and DEM 
perform better when increasing the number of MDCs, with EDEM 
following closely behind (Fig.  11). In contrast, GA and MROA struggle 
to effectively reduce latency as the system complexity increases.

In Fig.  14, we observe that increasing the number of servers gener-
ally leads to a degradation in latency performance for most algorithms. 
11 
Fig. 11. Normalised user-experienced latency (LT), 𝑛 = [5,10,20].

Fig. 12. Normalised Energy Consumption (EC), 𝑛 = [5,10,20].

Fig. 13. Normalised Energy Consumption (EC), 𝑚 = [2,4,8].

Although GA shows some improvement as the number of servers in-
creases, it still fails to effectively optimise latency as the system scales 
up compared to other algorithms. In contrast, EDEM, mirroring its sta-
ble performance in terms of energy consumption, maintains a consistent 
level of performance. This makes EDEM the most suitable candidate 
when the number of servers per MDC exceeds four. These findings 
suggest that both EDEM and DEM exhibit good scalability and maintain 
stable performance as the system scales and the network topology 
expands.

Table  6 presents the percentage of services deployed at edge servers, 
providing insights into the service placement strategies of different 
algorithms. The results of MROA align with our analysis, demon-
strating a preference for non-local, powerful machines. Consequently, 
around 40% of the services are offloaded to the cloud, leading to the 
highest observed energy consumption. RTA and EDEM have similar 
preferences in resource allocation, deploying 75%–85% of services at 
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Fig. 14. Normalised user-experienced latency (LT), 𝑚 = [2,4,8].

Table 6
Edge prioritisation, 𝐸𝑃 .
 RTA GA MROA EMMOO DEM EDEM 
 B-A 85.86 97.75 58.52 98.80 98.24 85.70  
 RING 76.61 89.79 57.90 99.66 95.19 84.24  
 W-S 76.85 89.69 60.40 99.13 94.04 84.46  

Table 7
Execution time (ms), 𝐸𝑇 .
 RTA GA MROA EMMOO DEM EDEM  
 B-A 45.35 4110.22 3.13 1077.88 224.91 138.63 
 RING 42.79 4475.50 3.37 1066.64 315.66 173.59 
 W-S 45.96 4407.99 3.15 1064.44 290.66 161.51 

edge facilities and the remaining tasks in the cloud. Such approach 
achieves a well-balanced outcome in terms of both latency and energy 
consumption by minimising transmission and energy costs while lever-
aging cloud resources for computationally intensive tasks. In contrast, 
DEM, EMMOO, and GA exhibit a strong preference for edge resource 
utilisation, deploying over 95% of services at the edge. Prioritising edge 
placement leads to the lowest energy consumption, but as a conse-
quence of the energy-latency trade-off, the task execution time may 
be slightly higher compared to cloud execution, potentially impacting 
user-perceived latency.

Table  7 presents the execution time of each algorithm. As expected, 
GA exhibit the longest execution times (∼4 s) due to its population-
based search strategy. EMMOO follows with execution times (∼1 s) due 
to its iterative nature. Conversely, MROA achieves the fastest execution 
times across all topologies as it skips operations related to latency 
and energy consumption limitations when no deadlines are imposed. 
RTA, focusing solely on a single objective, achieves the second-fastest 
execution times across all topologies. EDEM and DEM demonstrate 
execution times comparable to RTA, making them suitable for real-
time and time-sensitive applications in the MEC environment. We also 
conducted an additional set of experiments to assess the impact of a 
MEC environment. In these experiments, we assumed a setup compris-
ing 4 MDCs, 1 Cloud DC, and a BA topology. The results show that, 
on average, latency is reduced by 46.8% and energy consumption by 
32.9% when scheduling decisions select resources from the edge-cloud 
continuum instead of relying solely on cloud resources.

6.2.2. Dynamic resource scheduler evaluation
Similar to the performance evaluation of the offline placement algo-

rithms, we conducted experiments for the four different scheduling al-
gorithms using two distinct applications from the dataset. User requests 
were generated every 30 ms, and the schedulers were triggered at 
the same interval. The deadline for each application is pre-determined 
based on the method proposed in [28], with a deadline factor (𝛾) equals 
to 3.
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Fig.  15 demonstrate the total number of request processing com-
pletions. The results for application jobs 3 and 10 show that the 
baseline scheduler, labelled as none, can process less than half of the 
user requests received due to insufficient power supply at the edge. 
Under the same conditions, the scaling-only scheduler occasionally 
fails to process some requests but still achieves a significantly higher 
throughput than the baseline. The offloading-only scheduler, as ex-
pected, offloads all computation jobs to the cloud and successfully 
processes all user requests. Meanwhile, our dynamic scaling and of-
floading scheduler, labelled as DSO, achieves the same throughput level 
as the offloading-only scheduler.

Fig.  16 demonstrates the average user-experienced latency of the 
processed requests. In both scenarios, the baseline scheduler results 
in extremely high latency due to the waiting time required for the 
batteries of the EH devices to recharge, causing task processing to 
be paused. The offloading-only scheduler achieves the lowest mean 
latency by processing all tasks on powerful machines in the cloud 
datacenter. This is followed by the dynamic scaling and offloading 
scheduler, which strikes a balance between cloud offloading and edge 
execution. The scaling-only scheduler performs similarly to the baseline 
when it fails to address the battery shortage during the processing of job 
3. However, in the remaining experiments, it achieves a mean latency 
slightly higher than the DSO scheduler.

Fig.  17 illustrates the number of requests processed that meet 
the deadline. The results for the baseline scheduler reveal that with-
out performing further actions, energy shortages not only reduce the 
throughput of request processing but also result in a low acceptance 
rate for responses. By scaling down the operating frequency of edge 
servers or offloading computations to the cloud, the system becomes 
more capable of processing requests within acceptable latency. How-
ever, the acceptance ratio for the scaling-only-EDEM case remains 
relatively low.

By analysing Figs.  15, 16, 17 alongside the conclusions from the 
offline algorithm evaluations, the difference between scaling-only-DEM 
and scaling-only-EDEM when processing job 3 becomes clear. DEM 
prioritises energy saving, enabling it to perform better under energy 
constraints. In contrast, EDEM focuses more on processing requests 
quickly, which leads to poorer performance compared to DEM when 
energy supply is insufficient.

Fig.  18 shows the total energy consumption resulting from the 
computations in the servers. Since the edge datacenters are entirely 
powered by EH equipment, only harvested energy is consumed by the 
baseline and scaling-only schedulers. The baseline scheduler, lacking 
any scaling policy, consumes a significant amount of edge energy while 
processing fewer requests. As previously explained, the scaling policy 
dynamically adjusts the operating frequency of edge machines during 
slack time. This ensures that when the response times of requests 
remain within an acceptable range, energy consumption is significantly 
reduced. Consequently, the edge energy consumed per request by the 
scaling-only scheduler is much lower than that of the baseline sched-
uler. The DSO scheduler, unlike the scaling-only policy, utilises cloud 
servers when necessary. As a result, it consumes additional energy by 
offloading part of the computations to the cloud. However, compared 
to the offloading-only scheduler, the energy consumption of the DSO 
scheduler is substantially lower.

Next, we demonstrate energy savings in terms of carbon footprint 
reductions and for that we study the case of Job 3 using the results 
obtained from policies (a) Dynamic Scaling and Offloading (DSO) and 
(b) Offloading-only after applying DEM and EDEM algorithms (results 
were averaged).

During the 20000 timestamps simulated, our proposed strategy DSO 
resulted in an average energy consumption of 8.825 kWh, compared 
to 28.79 kWh consumed by the offloading-only approach under the 
same workload. This represents a grid energy saving of 19.97 kWh. 
To quantify the environmental benefit, we use the average US grid 
carbon intensity factor of 0.37 kg CO2e/kWh (based on EPA eGRID 
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Fig. 15. Number of processed requests (𝑇𝑃 ).
Fig. 16. Average user-experienced latency (𝐿𝑇 ).
Fig. 17. The acceptance rate of processed requests (𝐴𝐶).
Fig. 18. Overall energy consumption (𝐸𝐶). The first row shows the energy consumption at the edge, while the second row shows the consumption at the cloud.
data for 2023 [32]). This translates to an estimated carbon footprint 
reduction of 7.39 kg CO2e achieved by our algorithm compared to the 
offloading-only strategy.

Fig.  19 compares the cloud rental costs of the offloading-only sched-
uler and the DSO scheduler. The figure shows that the DSO scheduler 
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incurs significantly lower operational costs while maintaining strong 
performance in both response latency and throughput. Although its 
average latency is slightly higher than that of the offloading-only 
scheduler, it still meets the deadline constraints and ranks as the second 
lowest in latency.
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Fig. 19. Cloud Renting Cost (𝐶𝑅𝐶).
In summary, these evaluations demonstrate that the DSO scheduler 
effectively balances energy efficiency, performance, and cost. Unlike 
the baseline scheduler, which suffers from low throughput and high 
latency due to edge energy shortages, the DSO scheduler achieves full 
request processing throughput while maintaining latency within the 
deadlines. It outperforms the scaling-only scheduler by leveraging both 
cloud offloading and edge execution, resulting in significantly lower 
energy consumption compared to the offloading-only scheduler. Fur-
thermore, the DSO scheduler reduces cloud rental costs while delivering 
comparable performance in response latency and throughput. These 
results prove the DSO scheduler’s ability to provide a sustainable and 
cost-effective solution for managing workloads in energy-constrained 
environments.

6.2.3. Further discussion
While our results demonstrate that the proposed algorithms out-

perform state-of-the-art approaches and exhibit relative stability as 
network complexity increases, suggesting good scalability potential, it 
is important to acknowledge that these evaluations were conducted 
under specific assumed conditions. These included relatively constant 
task arrival rates, typical energy harvesting availability, and average 
workload characteristics. However, real-world scenarios often involve 
extreme conditions, such as sudden traffic spikes or prolonged periods 
of low renewable energy availability (e.g., due to adverse weather). 
Considering these cases provides further insight into the robustness of 
our solutions.

If task arrival rates or computational demands fluctuate rapidly, our 
heuristic-based algorithms are designed to react quickly by generating 
new placement decisions upon detecting sub-deadline violations. De-
spite this rapid reaction capability, overall end-to-end latency could 
still degrade due to the potential backlog of subtasks accumulating 
during the time required for service module migration. This suggests 
that incorporating techniques such as service replication, potentially as 
future work, could enhance load balancing and responsiveness under 
such highly dynamic conditions.

Similarly, concerns arise under conditions where renewable energy 
sources become unavailable for extended periods and battery reserves 
are low. In such situations, the current algorithms would likely priori-
tise cloud offloading to maintain service availability where possible. 
While this preserves functionality, it would inevitably increase end-to-
end latency and operational costs due to cloud usage. This highlights 
the importance of incorporating energy prediction and potentially more 
sophisticated energy management techniques—planned enhancements 
for future work—to enable our strategies to adapt more gracefully and 
efficiently to variable energy supply conditions.

7. Conclusions and future work

This paper firstly introduces EDEM and DEM, two heuristic-based 
algorithms for service module placement in MEC networks that con-
sider dependencies between service modules. EDEM prioritises energy 
efficiency while maintaining low latency impact on users. DEM, on the 
other hand, achieves significant energy reductions by allowing for a 
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more flexible trade-off with increased latency. Based on the two algo-
rithms developed, we integrate the energy-harvesting technique in the 
MEC-Cloud environment, and designed an online resource scheduling 
strategy that considers energy and latency constraints and dynamically 
makes server frequency scaling and service offloading decisions. Sim-
ulation results showed that our scheduler effectively balances energy 
efficiency, cost savings, and performance, making it a more sustainable 
and practical approach for handling user requests in energy-constrained 
environments.

Our future work will incorporate user mobility models. While the 
current system focuses on scenarios with static users—common in many 
edge computing applications—extending it to support mobile users will 
broaden its applicability to dynamic contexts such as connected vehi-
cles or mobile augmented reality. Developing mobility-aware schedul-
ing algorithms can enable the system to maintain performance and ser-
vice continuity as user devices roam in the network, thereby enhancing 
its robustness and scalability in dynamic environments.

Another key direction for future research is incorporating energy 
prediction models into our scheduler. The instability of energy supplies 
is a common challenge in real-world edge deployments relying on 
renewable sources like solar power. Based on sources like historical 
data and weather forecasts, the scheduler may proactively adjust the re-
source allocation plan beforehand. This would significantly enhance the 
applicability of our solution to energy-constrained or off-grid scenarios.
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