
Future Generation Computer Systems 174 (2026) 108009

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

QoS-aware placement of interdependent services in

energy-harvesting-enabled multi-access edge computing
Shuyi Chen a,b , Panagiotis Oikonomou c , Zhengchang Hua a,b , Nikos Tziritas c ,
Karim Djemame b , Nan Zhang a , Georgios Theodoropoulos a ,∗

a Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518000, Guangdong, China
b School of Computer Science, University of Leeds, Leeds, LS2 9JT, West Yorkshire, UK
c Department of Informatics and Telecommunications, University of Thessaly, Lamia, 35100, Greece

A R T I C L E I N F O

Keywords:
Service placement
Multi-access edge computing
Energy harvesting
Task dependency graph

 A B S T R A C T

The advent of 5G drives the growth of multi-access edge computing (MEC), a revolutionary paradigm
that utilises edge resources to enable low-latency mobile access and support complex service execution.
Deploying services across geographically distributed edge nodes challenges providers to optimise performance
metrics like end-to-end latency and resource efficiency, impacting user experience, operational cost, and
environmental footprint. The energy harvesting (EH) technology provides clean and renewable energy at the
edge, promoting the MEC system to minimise the impacts on the environment. However, the integration of EH
can introduce energy limits and uncertainty to the powered devices. In the context of service scheduling with
data flow dependencies, we propose two offline and heuristic-based service placement algorithms that balance
minimising latency and maximising resource efficiency with fast execution. The two algorithms, evaluated in
a simulated environment using state-of-the-art workload benchmarks, achieve significant energy consumption
improvements while maintaining comparable latency. Based on the designed algorithms, we take a step further
by developing an online dynamic resource scheduling and service offloading approach for MEC systems with
EH capabilities. Simulation results demonstrate that the proposed strategy effectively utilise the harvested
energy while granting a low user-experienced latency and low operational cost.
1. Introduction

Driven by the rise of fifth generation (5G) network, Multi-access
Edge Computing (MEC), a network architecture that integrates com-
puting and storage capabilities into Micro Data Centers (MDCs) located
near base stations, emerges as a transformative paradigm. Leveraging
network and computing resources at the network edge offers low-
latency access for mobile subscribers while facilitating the execution
of complex, computationally intensive applications [1]. However, ef-
fectively orchestrating custom applications in MEC requires strategic
allocation of resources. In the context of resource scheduling, this in-
volves managing computation and network resources distributed across
heterogeneous edge nodes to efficiently serve user requests originating
nearby, and balancing the demands of both users (fast response) and
providers (resource efficiency, cost, etc.)

User-submitted jobs may encompass IoT data processing, health-
care, Augmented Reality-based experiences, and financial services. Plat-
form providers must allocate adequate edge resources to ensure the

∗ Corresponding author.
E-mail address: theogeorgios@gmail.com (G. Theodoropoulos).

successful execution of applications while balancing the demands of
both users and providers.

Multi-access edge computing (MEC) operates in a dynamic environ-
ment characterised by high user capacity and fluctuating user location.
This necessitates adaptive task coordination to handle requests from
numerous mobile subscribers as their positions change. Compared to
centralised cloud datacenters, MEC faces limitations in communication,
computation, and storage capacity due to the smaller physical footprint
of edge nodes. Additionally, edge devices within the resource pool may
have limited energy capacity and power limits. Furthermore, managing
geographically dispersed edge devices requires constant monitoring
of their status changes, including outages, network fluctuations, and
even user location changes. Therefore, effectively allocating limited
resources and ensuring a stable user experience within this dynamic
edge environment presents a significant challenge for MEC systems.

With the growing trend of low-carbon edge computing, to use the
resources in a more sustainable and environmental-friendly way, the
energy harvesting (EH) technology can be considered an approach
https://doi.org/10.1016/j.future.2025.108009
Received 21 January 2025; Received in revised form 29 April 2025; Accepted 30 J
vailable online 11 July 2025
167-739X/Crown Copyright © 2025 Published by Elsevier B.V. This is an open access
une 2025

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0003-0745-4083
https://orcid.org/0000-0002-5564-2591
https://orcid.org/0000-0002-3970-6129
https://orcid.org/0000-0002-2091-2037
https://orcid.org/0000-0001-5811-5263
https://orcid.org/0000-0002-5728-0440
https://orcid.org/0000-0002-7448-5886
mailto:theogeorgios@gmail.com
https://doi.org/10.1016/j.future.2025.108009
https://doi.org/10.1016/j.future.2025.108009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.108009&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
to harness renewable energy from sources such as solar, wind, and
suitable energy sources. MEC systems equipped with EH devices is able
to power the computing devices with clean energy and enable green
communications [2]. Moreover, EH devices can harvest energy from
ambient sources to power MEC systems in remote regions, reducing
reliance on traditional power infrastructure and promoting sustainable
edge computing. However, the energy generation of such sources may
be stochastically affected by environmental conditions like weather and
season, and the total available energy is also limited by the device’s
battery storage capacity. Therefore, it is crucial to coordinate task
scheduling and energy management to maximise system performance.

Quality of Service (QoS), a crucial measure of service effective-
ness, is paramount for service providers in MEC. Delivering optimal
QoS involves meeting multiple objectives, such as minimising latency
and maximising availability. Providers achieve this through meticulous
coordination of network and computing resources, including the al-
location of individual tasks [3]. Beyond QoS, profitability remains a
key concern. Minimising server rental costs and power consumption
directly impact profits and contribute to a more sustainable industry.
However, achieving these goals often involves trade-offs [4]. Balanc-
ing user experience and provider profits presents a complex multi-
objective optimisation problem. While existing research offers solutions
for various scenarios, there is a need for more universal and flexible
approaches to address the dynamic nature of MEC environments and
the complexity of modern applications.

Beyond managing the distributed nature of MEC resources, the
placement of applications presents an additional challenge. In real-
world applications, numerous interdependent components frequently
collaborate [5]. Those underlying components, often referred to as
services, each executes a specific task such as data extraction, trans-
formation, loading, or integration. The optimal placement of these
services has to fulfil the requirements of each one with dependency
guarantees. The Distributed Dataflow (DDF) paradigm offers a well-
suited approach for structuring these applications, as it provides a clear
representation of data flow and processing steps. It utilises a Directed
Acyclic Graph (DAG) to represent the flow of data and processing steps
within an application, so that inter-service dependencies and the order
of execution can be depicted.

Existing service placement strategies in edge computing struggle
to effectively handle these complex, dependency-aware applications.
Traditional methods established the importance of properly allocating
computing resources to applications, but often overlook the inter-
dependencies of application modules, or leverage a specific architecture
or model, thus may falter when task dependencies are present, ren-
dering them unsuitable for such scenarios. To address this gap, we
propose service placement approaches specifically designed for Cloud-
MEC environments, aiming at efficiently allocate resources for complex
service execution and fulfil both user and provider demands. Offloading
occurs at edge nodes located close to user devices, where computational
tasks are transferred to reduce latency. Computation-intensive tasks
may also be offloaded to powerful cloud datacenters, ultimately en-
abling the fulfilment of customised user requirements. Since finding the
provably optimal resource schedule in a dynamic MEC environment is
computationally intractable (NP-hard) [3], we employ heuristic-based
algorithms, aiming to find high-quality, practical solutions within a
reasonable time frame by using efficient rules or approximations, rather
than guaranteeing optimality.

This work addresses the service placement problem with precedence
constraints among service applications. Our objective is to improve
quality of service (QoS), specifically minimising latency, and optimise
resource efficiency, measured by energy consumption and operational
cost. The inherent complexity of considering these multiple factors
motivates our development of two novel heuristic-based placement
algorithms and an extended online resource scheduling strategy for
dependent services. These algorithms strive to achieve a balance be-
tween different optimisation goals. Our contributions in this work are
threefold:
2
• Dependency-aware Service Placement Algorithms: We propose
two novel service placement algorithms specifically designed for
the multi-access edge computing (MEC) environment. These al-
gorithms consider precedence constraints between service com-
ponents to optimise both end-to-end latency and dynamic energy
consumption.

• Online Dynamic Service Offloading and Resource Scheduling Al-
gorithm: Building upon the two algorithms and incorporating the
EH technology, we proposed an online dynamic service offloading
and resource scheduling strategy for EH-enabled MEC system. Our
approach takes the energy limitation and deadline constraints into
account, maximising the utilisation of renewable energy while
granting the end-to-end latency.

• YAFS Platform Extension: To support the evaluation of our al-
gorithms, we developed an extension1 to the YAFS simulation
platform [6]. This extension enables the modelling of sequential
task processing, a crucial aspect of service execution in MEC.

The remainder of this paper is organised as follows. Section 2 briefly
summarises existing approaches and identifies the research gap. Sec-
tion 3 describes the system models and problem formulation. Section 4
proposes our two offline algorithms in detail. Section 5 introduced our
online scheduling strategies based on the two placement algorithms.
Simulation results are presented in Section 6, and the paper concludes
in Section 7.

2. Related work

The multi-objective placement problem has attracted significant re-
search attention, with solutions targeting diverse deployment scenarios
and optimisation goals. Thorough survey of the literature on placement
problems across various computing paradigms can be found in [3].

Researchers have developed a variety of resource management
approaches for application placement by integrating specific platforms
and architectures. For example, [7] solves the joint user association and
service function chain (SFC) placement problem in 5G networks, [8]
proposed Kubernetes-based container resource management schemes
for Industrial IoT applications in Cloud-Edge networks. [9] introduced
an architectural approach for placing services onto cluster nodes that
offer lower end-to-end latency. [10] designed a resource manage-
ment scheme for Industrial IoT applications in Edge-Cloud networks,
and [11] proposed a container-base scheduling strategy in Cloud-IoT
environment to find suitable containers for task processing. However,
leveraging specific architecture limits the applicability of those ap-
proaches. Consequently, their direct application or adaptation to our
context is not feasible.

Existing task placement research often focuses on coarse-grained
abstractions of applications, overlooking task dependencies. While this
approach may suffice for workloads with less stringent latency require-
ments, several methods adopt fine-grained service placement strategies
that consider inter-service dependencies, enabling more precise control
for latency-sensitive applications. For instance, [12] leverages analysis
tools to extract function-level dependencies from applications, aiming
to minimise overall service delay. Similarly, [13] explores the offload-
ing of dependent sub-tasks and communication resource allocation in
unmanned aerial vehicle-assisted MEC systems, targeting a reduction in
average user latency. However, the above approaches primarily focus
on optimising a single metric or incorporate specific techniques such as
service replication. In contrast, our work seeks to minimise both total
energy consumption and latency during application execution, without
relying on service replication.

Service placement solutions typically target various objectives, in-
cluding minimising end-to-end latency [7,16], reducing costs [5], low-
ering energy consumption [22], and improving resource utilisation

1 https://github.com/Sukiiichan/YAFS_MEC.

https://github.com/Sukiiichan/YAFS_MEC

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Table 1
Comparison of related placement algorithms in the literature.
 Work Platform Algorithm Dependency Latency Energy Cost Throughput
 [14] Fog Genetic ! !
 [15] Fog-Cloud Meta-heuristic ! !
 [4] MEC-EH Lyapunov optimisation ! !
 [16] Edge Heuristic ! !
 [17] Edge Meta-heuristic ! ! !

 [7] 5G networks Heuristic ! !
 [18] MEC Learning-based ! !
 [19] MEC Heuristic ! ! !
 [20] MEC-EH Lyapunov optimisation ! ! !
 [21] MEC-EH Lyapunov optimisation ! ! !
 [22] Fog-Cloud Heuristic ! ! !
 [5] MEC Heuristic ! ! !
 [12] MEC Heuristic ! !
 [13] Fog/Edge Heuristic ! ! !
 [23] Edge-EH Meta-heuristic !
 [24] Edge-EH Lyapunov optimisation ! !
 [25] Edge-EH Learning-based !
 [26] MEC-EH Meta-heuristic ! !
 This work MEC-EH Heuristic ! ! ! !
[14]. To provide a clear and intuitive comparison, Table 1 summarises
the differences between our proposed approach and existing service
placement strategies in edge computing systems. In the context of
multi-objective optimisation problems, researchers have explored a
wide range of methodologies, including heuristics, meta-heuristics, and
deep reinforcement learning, to achieve a balance between different
objectives. For example, [18] proposes a joint placement algorithm
for non-scalable services, balancing latency and deployment cost. Sim-
ilarly, work in [17] target joint optimisation of throughput, latency,
and deployment cost for parallelisable stream processing tasks based
on meta-heuristics. Integrating with edge intelligence, work in [25]
consider the joint service placement and request scheduling problem
optimising the intelligence model accuracy and the service delay at the
same time. The two placement algorithms we propose aim at optimising
both user experience and energy efficiency. We strive to minimise the
end-to-end latency and reduce the dynamic energy consumption at the
server caused by computations.

Several prior studies have explored optimisation objectives that
converge with those targeted by our proposed approach. While work
like [4] explore the energy-delay trade-off using monolithic task
scheduling, it lacks dependency awareness. Similarly, [15] proposes an
energy-delay balanced placement strategy for multiple services without
considering dependencies. More recently, [5] presents a task offloading
scheme for dependent tasks, jointly optimising latency and energy.
However, their focus is on local execution vs. edge offloading, while
ours leverages both Multi-access Edge Computing (MEC) and cloud
resources. Similarly, regarding the energy consumption optimisation
in dependency-aware placement strategies, [13,19] primarily focus on
minimising energy consumption at the user device level.

The conference-version of this work [27] further distinguishes itself
by tackling a more realistic and complex Cloud-MEC scenario. To sum
up, unlike approaches tied to specific architectures that can limit ap-
plicability, our methodology is designed for broader use. Furthermore,
while many studies overlook inter-service dependencies or address
them by focusing on single objectives or requiring techniques like
service replication, our work directly incorporates these dependencies.
We introduce two heuristic-based algorithms tailored for rapid execu-
tion, which simultaneously optimise both user-perceived latency (QoS)
and total energy consumption (sustainability). Critically, whereas prior
studies with similar objectives often focused on simpler local-vs-edge
offloading decisions, our algorithms address the more granular and
practical problem of detailed service placement within the MEC in-
frastructure alongside cloud offloading. This comprehensive approach,
balancing multiple objectives while managing dependencies in a flexi-
ble architecture, highlights the novelty and practical significance of our
3
contribution for system-wide optimisation in heterogeneous Cloud-MEC
environments.

Integrating the energy harvesting technique into the MEC system
is becoming a popular trend in the academia to pursue a sustainable
operation of the micro datacenters. Work from [20] equipped EH de-
vices at the base station to capture renewable energy as a complement
for the grid hybrid electricity, and aim at minimising the electricity
cost of base stations and the cloud offloading cost while maintaining
the stability of the task queue. Work from [26] designed a partial task
offloading strategy in energy-harvesting-enabled MEC, optimising both
the task execution time and the grid energy cost. When the operation
of the whole system solely rely on the harvested energy, the amount of
available energy is limited, and the energy consumption of each device
involved need to be properly monitored and managed to stay within the
budget. In studies from [21,23], MEC servers and IoT devices are purely
powered by the EH devices. [21] partitions individual tasks and select
whether to process them partially on the IoT devices or offload them to
the MEC servers, while no cloud computing resources are introduced.
To process as many tasks at the edge as possible in a limited time
period, and to minimise the fee charged by the cloud operator, [23]
developed a meta-heuristics to assign the tasks to homogeneous servers
and scales down the server operating frequencies to reduce energy
consumption. [24] work on the dynamic task offloading for multiple
terminal devices and edge servers in IIoT using Lyapunov optimisation,
assuming that terminal devices harvest energy and store locally.

Our work addresses a more challenging and realistic problem for-
mulation than typically found in the literature surveyed above, focusing
on task graphs with general dependencies deployed across heteroge-
neous infrastructure. The complexity inherent in managing precedence
constraints means prior methods for latency and deadline control are
often no longer applicable. Effectively handling such dependencies is
vital for accurately modelling and optimising many real-world work-
flows (e.g., complex data analytics pipelines, microservice chains). To
meet this challenge, building upon [27], we introduce a novel online
strategy that is capable of co-optimising efficient (renewable) energy
usage and SLA compliance under these demanding conditions. The
novelty is embodied in the integration of three: decomposing end-to-
end deadlines into manageable sub-deadlines across dependency paths,
employing dynamic frequency scaling at the edge, and offloading tasks
to cloud adaptively. This approach provides a necessary advancement
for scheduling complex, dependency-laden applications effectively in
practical, heterogeneous Cloud-MEC systems.

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 1. An example Cloud-MEC network with energy-harvesting enabled.

3. System model and problem formulation

In this section, we formally describe the service placement and
resource scheduling problem in the MEC system. The system offers the
potential for low-latency processing close to users; however, with the
integration of energy harvesting techniques, its operation may depend
on variable energy sources (e.g., solar power) and finite battery storage
at the edge. This introduces a fundamental challenge: the need to
reduce service latency and meet strict deadline constraints (when they
exist) often conflicts with the conservation of limited energy. Executing
tasks faster or more frequently consumes more energy, potentially
depleting reserves, whereas aggressive energy conservation can result
in deadline violations. This creates a trade-off that strongly influences
task placement decisions. Executing a task on edge nodes can offer
low latency but is only feasible when sufficient harvested or stored
energy is available; otherwise, scaling down server processing speeds or
offloading tasks to the remote cloud becomes necessary, each impacting
latency and energy consumption differently. Thus, effectively managing
the interplay between deadlines, dynamic energy availability across
heterogeneous nodes, and resource allocation strategies is essential
to ensure both Quality of Service (QoS) and the sustainability of the
EH-MEC system. The following models formalise the system variables,
constraints, objectives, and decision variables. Table 2 presents the list
of key symbols used in the formulation.

3.1. MEC network model

Our work considers a multi-tier Cloud-MEC network infrastructure
where micro datacenters (MDCs) act as resource pools at the edge,
residing at interconnected mobile stations. Within each MDC, two key
entities exist: computing servers available for service deployment and
execution, and data sources that provide data flow from sources like
databases, sensors, and IoT devices without performing computations
themselves. User equipment (UE) may connect to the local network of
MDCs through radio access network (RAN) and submit service requests.
The multi-access edge network is connected to a resource-rich cloud
datacenter (Cloud DC). Fig. 1 shows an example of the Cloud-MEC
system we consider in this work.

Each MDC maintains its energy harvesting (EH) devices that capture
the renewable energy sources from the nature and supply the com-
puting servers, as illustrated in the figure. The harvested energy will
be stored in the local battery of the EH device, and the servers are
able to consume the energy from the battery. Besides, if the harvested
energy cannot satisfy the energy demand of MDC, extra energy can be
purchased from the power grid. The cloud DC, on the contrary, is fully
powered by the power grid.

We use 𝐺 = (𝑀,𝐶,𝐿) to denote the Cloud-MEC network. The set
of MDCs is expressed as 𝑀 =

{

𝑚1, 𝑚2,… , 𝑚𝑛
}

, while 𝐶 represents the
Cloud DC. 𝐿 =

{

𝑙 , 𝑙 ,… , 𝑙
} is set of network connections between the
1 2 𝑝

4
Fig. 2. An example application graph.

MDCs. For each link in 𝐿, the transmission bandwidth is 𝑏𝑤(𝑙), and the
propagation delay is set to be a constant value 𝑝𝑟𝑜𝑝(𝑙).

For every MDC 𝑚𝑖, the set of computing servers maintained by it
is referred to as 𝑆𝑖 =

{

𝑠1, 𝑠2,… , 𝑠𝑚
}

, and the data sources connected
to the local network of 𝑚𝑖 is expressed as 𝐷𝑖 =

{

𝑑1, 𝑑2,… , 𝑑𝑘
}

. For
each server 𝑠𝑖 ∈ 𝑆, we symbolise the maximum processing frequency
of its CPU as 𝑓𝑠𝑖 . The Cloud DC charges based on the total amount of
workload, i.e. number of operations, with a unit rate of 𝑐𝑝. Inside the
MEC network, we denoted the routing path between any pair of servers
(𝑠𝑖, 𝑠𝑗) as 𝑝𝑎𝑡ℎ(𝑠𝑖, 𝑠𝑗) =

{

𝑙1, 𝑙2...𝑙𝑛
}

.

3.2. Application model

Our processing model adapts the directed acyclic graph (DAG)
model. Let 𝐴 = (𝑉 ,𝐸) represent the application graph, where the set
of application modules is denoted by 𝑉 = {𝐷,𝑂,𝑈}, and the set of di-
rected edges representing dataflow dependencies is 𝐸 =

{

𝑒1, 𝑒2,… , 𝑒𝑜
}

.
𝐷 =

{

𝑑1, 𝑑2,… , 𝑑𝑚
} represents the data source modules, while 𝑂 =

{

𝑜1, 𝑜2,… , 𝑜𝑛
} represents the service modules. The end receiver, re-

ferred to as 𝑈 , is the user equipment. An example DAG application
graph containing two source modules, four service modules and one
end user can be seen in Fig. 2.

For any service module 𝑜, the amount of workload it requires to
execute each task is denoted by 𝑤𝑙(𝑜). We use 𝑝𝑟𝑒𝑑(𝑜) and 𝑠𝑢𝑐𝑐(𝑜) to
denote the predecessor and successor modules of 𝑜.

Execution results will be generated and sent away by service mod-
ules through dependency edges. The application 𝐴 will be triggered to
process tasks continuously. Here we use 𝑟𝑎𝑡𝑒 to define the task arrival
rate of 𝐴. Besides, a deadline 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) may be set as the maximum
acceptable task completion time of the application.

An application needs to be deployed on computing servers to run.
Here we use 𝑃 (𝑜) to represent the deployment plan of any service
module 𝑜.

Our application model adheres to the following assumptions: (i)
a service is triggered only when it has received inputs from all its
predecessors, (ii) each task represents the minimal unit of work and is
indivisible, and (iii) after finishing the task processing, a service node
sends the corresponding results to all its successors simultaneously.

3.3. Problem formulation

3.3.1. Communication and computation model
The transmission delay 𝑇 𝑡𝑟𝑎𝑛 for a data packet 𝑝𝑘𝑡 through network

link 𝑙 can be calculated by:
𝑇 𝑡𝑟𝑎𝑛 = 𝑠𝑖𝑧𝑒(𝑝𝑘𝑡)∕𝑏𝑤(𝑙) (1)

The communication delay during this process is composed of the trans-
mission delay and propagation delay:
𝑇 𝑐𝑜𝑚𝑚 = 𝑠𝑖𝑧𝑒(𝑝𝑘𝑡)∕𝑏𝑤(𝑙) + 𝑝𝑟𝑜𝑝(𝑙) (2)

For a directed edge 𝑒, when the start module 𝑒𝑠𝑟𝑐 is offloaded to server
𝑠 and the destination module 𝑒𝑑𝑠𝑡 is deployed on 𝑠 , the delay of this
𝑖 𝑗

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
edge is composed of the communication delay of each network hop it
takes to forward a data packet 𝑝𝑘𝑡 to the receiver:

𝑇 𝑐𝑜𝑚𝑚(𝑒) =
∑

𝑙∈𝑝𝑎𝑡ℎ(𝑠𝑖 ,𝑠𝑗)

𝑠𝑖𝑧𝑒(𝑝𝑘𝑡)
𝑏𝑤(𝑙)

+ 𝑝𝑟𝑜𝑝(𝑙) (3)

Additionally, between two services deployed in the same MDC, we
assume a constant network delay.

When computing server 𝑠𝑖 runs at frequency 𝑓𝑠𝑖 to process tasks,
given the workload required by a service module 𝑜: 𝑤𝑙(𝑜), the execution
time can be calculated by:
𝑇 𝑒𝑥𝑒𝑐 (𝑜, 𝑠𝑖) = 𝑤𝑙(𝑜)∕𝑓𝑠𝑖 (4)

We also define the overhead coefficient for the multi-tenancy scenario
of 𝑛 service modules deployed on one server: 𝐾(𝑛). When 𝑛 service
modules including 𝑜 are co-located by one server, the task processing
time of 𝑜 becomes:
𝑇 𝑒𝑥𝑒𝑐 (𝑜|𝑛) = 𝑇 𝑒𝑥𝑒𝑐 (𝑜) ∗ 𝐾(𝑛) (5)

For service modules with multiple predecessor nodes, the service
module will not start the task execution until all its predecessors have
finished their task processing and delivered the results to it. Therefore,
for a service module 𝑜, the earliest time it starts task processing
is decided by its most time-consuming predecessor. For 𝑜 with its
predecessors 𝑝𝑟𝑒𝑑(𝑜), we obtain its Earliest Start Time (EST) by:
𝐸𝑆𝑇 (𝑜) = max

𝑜𝑖∈𝑝𝑟𝑒𝑑(𝑜)

{

𝐸𝑆𝑇 (𝑜𝑖) + 𝑇 𝑒𝑥𝑒𝑐 (𝑜𝑖) + 𝑇 𝑐𝑜𝑚𝑚(𝑜𝑖, 𝑜)
}

(6)

Similarly, the Earliest Finish Time (EFT), a value denoting the earliest
time a service module 𝑜 finish its task processing, can be obtained by:
𝐸𝐹𝑇 (𝑜) = 𝐸𝑆𝑇 (𝑜) + 𝑇 𝑒𝑥𝑒𝑐 (𝑜) (7)

And therefore the end-to-end latency experienced by user 𝑈 can be
expressed as 𝐸𝑆𝑇 (𝑈).

When deadline constraints of application 𝐴 exist, each service re-
quest sent to the system is supposed to be finished in a time no longer
than 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴). In such situation, we define the term Latest Start
Time (LST): the latest point in time a service module can start without
delaying the overall application or violating the deadline, and similarly
the Latest Finish Time (LFT): the time point that a service can complete
its task processing such that the overall latency in not lagged. Therefore
for any module 𝑜, we can obtain recursively:

𝐿𝐹𝑇 (𝑜) =

{

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) if o=U
min𝑜𝑖∈𝑠𝑢𝑐𝑐(𝑜)

{

𝐿𝑆𝑇 (𝑜𝑖) − 𝑇 𝑐𝑜𝑚𝑚(𝑜, 𝑜𝑖)
}

otherwise
(8)

and
𝐿𝑆𝑇 (𝑜) = 𝐿𝐹𝑇 (𝑜) − 𝑇 𝑒𝑥𝑒𝑐 (𝑜) (9)

3.3.2. Energy consumption model
The main energy consumption of each edge computing server is

expressed as the sum of static energy consumption and dynamic energy
consumption. The dynamic power consumption of the CMOS circuits
is more dominant and significant comparing to the static power con-
sumption, and is our main focus. Given the supply voltage of the CMOS
circuits 𝑣 and the CPU operating frequency 𝑓 , the dynamic power
consumption can be obtained by: 𝑃 = 𝑘𝑣2𝑓 , where 𝑘 represents a
device-related coefficient. Here we assume that 𝑣 and 𝑓 are linearly
dependent, therefore: 𝑃 = 𝛽𝑓 3, where 𝛽 represents a device related
factor.

We drive the dynamic energy consumption of each server 𝑠 by
calculating its dynamic power consumption over time, expressed by:

𝐸𝐶(𝑠) = ∫ 𝑃𝑠 𝑑𝑡 = ∫ 𝛽𝑠𝑓𝑠
3 𝑑𝑡 (10)

During the processing of a type 𝑜 task, if the CPU frequency remains
unchanged, combining with (4), the total dynamic energy consumption
can be approximated by:
𝐸𝐶(𝑠, 𝑜) = 𝛽 𝑓 2𝑤𝑙(𝑜) (11)
𝑠 𝑠

5
Below we discuss the energy models surrounding the energy-
harvesting devices. For an energy harvesting device 𝐸𝐻𝑚𝑖

 power MDC
𝑚𝑖, we use 𝑃ℎ𝑎𝑟𝑣𝑒𝑠𝑡 to denote its charging power. The total instant power
consumption of MDC 𝑚𝑖 can be expressed as:

𝑃𝑚𝑖
=

∑

𝑠∈𝑆𝑖

𝛽𝑠𝑓𝑠
3 (12)

Similarly, the total energy consumption of MDC 𝑚𝑖 is:

𝐸𝐶(𝑚𝑖) =
∑

𝑠∈𝑆𝑖
∫ 𝛽𝑠𝑓𝑠

3 𝑑𝑡 (13)

3.4. Battery model

The energy harvesting device powering a MDC 𝑚 is denoted by
𝐸𝐻𝑚, and the energy storage capacity of 𝐸𝐻𝑚’s battery is expressed
as 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚). We partition the time into a continuous series of time
slices 1, 2, 3,… , 𝑛, with equal lengths 𝛥𝑡. A new task may be generated
in each time slice. We use 𝐵𝑚(𝑘) to represent the remaining power in
the battery of the energy harvesting device 𝐸𝐻𝑚 at the beginning of
the 𝑘th time slice.

During the 𝑘th time period, assuming that the operating frequency
of each active server remain constant, we can drive that:

𝐵𝑚(𝑘 + 1) = 𝐵𝑚(𝑘) + 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑
𝑚 (𝑘) − 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚 (𝑘) (14)

Also, the remaining power in the battery must satisfy the following at
any time:

0 ≤ 𝐵𝑚(𝑘) ≤ 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚) (15)

Use 𝐵𝑖𝑛𝑖
𝑚 to denote the initial remaining power of battery 𝐵𝑚. Since

MDCs purely rely on the harvested energy, combining with Eq. (14),
the energy stored in 𝐵𝑚 at the beginning of time slot 𝑘 is:

𝐵𝑚(𝑘) = 𝐵𝑖𝑛𝑖
𝑚 +

𝑘−1
∑

𝑛=1
(𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑

𝑚 (𝑛) − 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
𝑚 (𝑛)) (16)

Since the energy consumed by all MDC servers during the time slice
cannot exceed the energy stored in the battery, we also have: 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚
(𝑘) ≤ 𝐵𝑚(𝑘).

In scenarios where the harvested energy is insufficient to support
the task processing during one time slice, the cloud offloading will be
triggered.

3.5. Cloud offloading and cost models

If tasks to be processed by service 𝑜 are offloaded to the cloud, with
knowledge of the workload demands per task and the unit pricing of
the cloud service, the computational cost to process one task can be
expressed as:

𝐶𝑜𝑠𝑡𝑐𝑙𝑜𝑢𝑑𝑜 = 𝑤𝑙(𝑜) ∗ 𝑐𝑝 (17)

During the 𝑘th time slice, let 𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗 denote the total number of
subtasks processed by service module 𝑜𝑗 . Cloud offloading for service
module 𝑜𝑗 may be triggered at certain time points, incurring cloud
execution costs. We use the binary variable 𝑥𝑘𝑖𝑗 to indicate whether
the 𝑖th subtask (where 𝑖 = 1,… , 𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗) is executed on the cloud. If
the subtask id executed on the cloud, 𝑥𝑘𝑖𝑗 = 1; otherwise, 𝑥𝑘𝑖𝑗 = 0. By
summing up the costs corresponding to the computation offloaded to
the cloud, the total cloud fee for 𝑜𝑗 during the 𝑘th time slice can be
expressed as:

𝐶𝑜𝑠𝑡𝑐𝑙𝑜𝑢𝑑 (𝑘) =
𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗
∑

𝑛
∑

𝑥𝑘𝑖𝑗 ∗ 𝑤𝑙(𝑜𝑖) ∗ 𝑐𝑝 (18)

𝑗=1 𝑖=1

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
3.6. Placement problem formulation

The objective of this problem is to meet the service latency deadline
while maximising renewable energy utilisation and minimising total
cost. The solution should be an appropriate initial mapping from the
service nodes to the servers, followed by server frequency scaling or
module offloading decisions that will be made dynamically.

We call a placement plan valid only if all the service modules are
assigned to servers with sufficient resources and all the constraints are
met. In light of this, we formulate the conditions that make a placement
plan valid and our optimisation goals:

(i) Given the set of service modules 𝑂 to place and the set of
available servers in the Cloud-MEC environment 𝐺, each service in O
should be mapped to a server in 𝐺. We formulate such a progress as a
mapping function 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, let S denote the set of all servers in the
network, then 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ∶ 𝑂 → 𝑆 indicates a complete deployment of
all services.

(ii) As explained in [27], provided that (i) is satisfied and the
summation of resource occupancy for all assigned modules does not
violate the capacity of the server, the optimisation objective is to
minimise the user-experienced latency and the overall dynamic energy
consumption jointly, formulated as:
𝑃1 ∶ 𝑚𝑖𝑛 𝐸𝑆𝑇 (𝑈), 𝑚𝑖𝑛

∑

𝑠∈𝑆
𝐸𝐶𝑠 (19)

(iii) If the deadline of an application is pre-defined in the service-
level agreements, it must not be violated, therefore the tackle time for
every task arrived at the 𝑘th time slice should always be within the
deadline: 𝑇𝑑𝑒𝑙𝑎𝑦 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴).

(iv) In the energy-harvesting scenario, provided that (i) and (iii)
are satisfied, the optimisation goal to minimise the cloud fee can be
expressed as:

𝑃2 ∶𝑚𝑖𝑛
𝑡𝑎𝑐𝑘𝑙𝑒𝑘𝑗
∑

𝑗=1

𝑛
∑

𝑖=1
𝑥𝑘𝑖𝑗 ∗ 𝑤𝑙(𝑜𝑖) ∗ 𝑐𝑝,

𝑠.𝑡.(𝑖), (𝑖𝑖)

0 ≤ 𝐵𝑚(𝑘) ≤ 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚), 𝑚 ∈ 𝑀

0 ≤ 𝑓𝑠(𝑘) ≤ 𝑓𝑠, 𝑠 ∈ 𝑆

𝑥𝑜(𝑘) ∈ {0, 1} , 𝑜 ∈ 𝑂

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
𝑚 (𝑘) ≤ 𝐵𝑚(𝑘), 𝑚 ∈ 𝑀

(20)

4. Energy-and-latency-aware placement algorithms in MEC

4.1. Energy-aware delay-experienced minimisation algorithm

The proposed service placement algorithm, energy-aware delay-
experienced minimisation (EDEM), adopts a two-stage approach to
achieve a balance between latency minimisation and energy consump-
tion reduction. The flow of the EDEM algorithm is illustrated in Figs.
3, 4, 5. The coarse-grain stage (Figs. 3 and 4) runs first, followed
by the fine-grain stage (Fig. 5). In the coarse-grained stage, EDEM
determines a service-to-MDC deployment plan that prioritises reducing
end-to-end latency. Subsequently, the fine-grain stage refines the server
deployment plan within each MDC, focusing on optimising energy
consumption without affecting the overall latency.

Coarse-grain scheduler: Base on the critical path method (CPM),
the coarse-grain scheduler seeks a balanced configuration with minimal
transmission latency and maximised processing efficiency, leading to
the lowest approximated end-to-end latency. The pseudo-code of the
coarse-grain scheduler is presented in Algorithm 1.

We use 𝑆(𝐴) to denote the state space of services in application
𝐴, consisting of all service-to-MDC placement options. The scheduler
explores 𝑆(𝐴) by post-order traversing all placement options of the
service modules in 𝐴. According to Eq. (6), the calculation of 𝐸𝑆𝑇
6
Algorithm 1: EDEM
Data: App. 𝐴 = (𝑉 ,𝐸), MEC 𝐺 = (𝑀,𝐿)
Result: Server placement map 𝑃 ∶ 𝑂 → 𝑆
1. Coarse-grain stage:
Initiate 𝑆(𝐴) ∀𝑣 ∈ 𝑉 ,∀𝑚 ∈ 𝑀 ; CP = ∅;
Explore 𝑆(𝐴) using post-order traversal:
for 𝑣.𝑝𝑟𝑒𝑑 ∈ 𝑣.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 do

for 𝑚 ∈ 𝑀 do
Compute EST(v.pred,m);

end
Select (v.pred,m) with min EST(v.pred,m);

end
CP ← (v.pred,m) with max(EST(v.pred,m));
Compute Criticality(v);
2. Fine-grain stage:
for (𝑣, 𝑚) ∈ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ do

Initiate 𝑆(𝑉) ∀𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠;
for 𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do

if 𝐸𝑆𝑇 (𝑣, 𝑠) ≤ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑣) then
Compute EC(v,s);

end
Assign v to s with min EC(v,s);
Update load status of s;

end
for (𝑣, 𝑚) ∉ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ do

Initiate 𝑆(𝑉) ∀𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠;
for 𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do

if 𝐸𝑆𝑇 (𝑣, 𝑠) + 𝑇𝑐𝑜𝑚𝑚(𝑣, 𝑣.𝑠𝑢𝑐𝑐) ≤ 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑣.𝑠𝑢𝑐𝑐) then
Compute EC(v,s);

end
Assign v to s with min EC(v,s);
Update load status of s;

end

Table 2
Table of key notations
 Indices Description
 𝐺 = (𝑀,𝐶,𝐿) Cloud-MEC network
 𝑀∕𝐶∕𝐿 Set of MDCs /Cloud DC/network connections
 𝑏𝑤(𝑙), 𝑝𝑟𝑜𝑝(𝑙) Bandwidth and propagation delay of 𝑙
 𝑆𝑖 Computing servers in MDC 𝑚𝑖
 𝑓𝑠𝑖 Maximum CPU frequency of server 𝑠𝑖
 𝑐𝑝 Unit price of cloud DC
 𝐸𝐻𝑚 EH device of MDC 𝑚
 𝐶𝑎𝑝𝑎(𝐸𝐻𝑚) Battery capacity of 𝐸𝐻𝑚
 𝐸𝐶(𝑠) Energy consumption of server 𝑠
 𝑝𝑎𝑡ℎ(𝑠𝑖 , 𝑠𝑗) Routing path between two servers
 𝐵𝑚 Battery level of EH device of MDC 𝑚
 𝐴 Application graph
 𝑆(𝐴) State space of services in 𝐴
 𝐷∕𝑂 Set of data sources/service modules in 𝐴
 𝑤𝑙(𝑜) Workload of single task processed by module 𝑜
 𝐸 Set of dependency edges in 𝐴
 𝑝𝑟𝑒𝑑(𝑜), 𝑠𝑢𝑐𝑐(𝑜) Set of predecessor and successor modules of 𝑜
 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) Maximum task completion time of 𝐴
 𝑠𝑑(𝑜) Sub-deadline of module 𝑜
 𝐸𝑆𝑇 (𝑜) Earliest processing start time of module 𝑜
 𝐿𝑆𝑇 ∕𝐿𝐹𝑇 (𝑜) Latest processing start/finish time of module 𝑜
 𝐴𝑆𝑇 ∕𝐴𝐹𝑇 (𝑜) Actual processing start/finish time of module 𝑜

for any service 𝑣 rely on the 𝐸𝑆𝑇 value of all its predecessor modules
𝑣.𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠. Following such rule, the scheduler can estimate the
𝐸𝑆𝑇 value for each service, paving the way for critical-path selection.

The critical path selection works in a greedy and optimistic fashion.
As shown in Fig. 3, the bottom-up latency approximation identifies
a critical path, highlighted with a red stroke, from the original ap-
plication graph. Starting with the bottom-most modules that directly
interface with the data sources, for each visited service 𝑣, given the
set of available MDCs 𝑀 , the value of 𝐸𝑆𝑇 (𝑣) will be approximated
assuming 𝑣 resides at the least-loaded server 𝑚.𝑙𝑒𝑎𝑠𝑡𝑙𝑜𝑎𝑑𝑒𝑑 in each MDC

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 3. The coarse-grain stage of EDEM: critical path selection.

Fig. 4. The coarse-grain stage of EDEM: service-to-MDC mapping.

𝑚 ∈ 𝑀 . For each predecessor 𝑣.𝑝𝑟𝑒𝑑 of 𝑣, knowing its estimated EST val-
ues [𝐸𝑆𝑇 (𝑣.𝑝𝑟𝑒𝑑, 𝑚1), 𝐸𝑆𝑇 (𝑣.𝑝𝑟𝑒𝑑, 𝑚2),…

]

, the predecessor-MDC pair
(𝑣.𝑝𝑟𝑒𝑑, 𝑚) yielding the minimum estimated EST is identified. Among
all the selected predecessor-MDC pairs, the pair with the maximum EST
is designated as the critical node. Subsequently, the criticality of non-
critical modules within the same hierarchical level is determined by
calculating the EST difference between the module and the identified
critical node. This process is iteratively repeated until the final exit
node of the application is reached.

The coarse-grain stage of the algorithm goes on as illustrated in Fig.
4. The previous phase establishes the critical path, aligning with the
MDC allocation plan for the critical modules. Non-critical modules re-
main without assigned MDCs at this point. Subsequently, the load status
of the MDCs participating in the critical path allocation plan is updated,
as is the least-loaded server 𝑚.𝑙𝑒𝑎𝑠𝑡𝑙𝑜𝑎𝑑𝑒𝑑 within each MDC 𝑚 ∈ 𝑀 . The
max–min procedures then resume, focusing on allocating non-critical
modules until their MDC assignments are finalised. With the service
modules mapped to different MDCs, as indicated by black links in the
figure, the algorithm proceeds to the next step of module-to-server
allocation.

Fine-grain scheduler: Following the determination of the service-
to-MDC placement plan during the coarse-grained stage, for each MDC
involved, a fine-grain scheduler runs to drive the module-to-server
placement solution. As can be seen in Fig. 5, in this stage, the server
selection for service modules is performed independently within each
MDC. The fine-grained scheduler prioritises placing modules on less
power-consuming servers while ensuring that the end-to-end latency of
critical nodes remains unaffected. Critical modules will take priority
in placement, followed by non-critical modules. The pseudo-code of
the fine-grain scheduler is presented as Step 2 in Algorithm 1. Similar
7
Fig. 5. The fine-grain stage of EDEM: service-to-server mapping.

Fig. 6. The phase one of DEM: greedy initialisation.

to the design of the coarse-grain scheduler, the fine-grained scheduler
thoroughly evaluates all service-to-server placement options. For each
module and every available server within the local MDC, the scheduler
estimates the earliest start time. Subject to the constraint that the 𝐸𝑆𝑇
value of modules on non-critical branches must not exceed the 𝐸𝑆𝑇
of critical modules within the same hierarchical level, we evaluate
the EST value 𝐸𝑆𝑇 (𝑣, 𝑠) for each potential placement option (𝑣, 𝑠).
Placement options that violate this constraint are discarded, while the
remaining options are deemed valid. From these valid options, the
placement with the lowest energy consumption 𝐸𝐶(𝑣, 𝑠), as approxi-
mated by Section 3.3.2, is selected and incorporated into the placement
plan. Upon finalising a service placement decision, the load status of
the designated server is updated, and the estimated 𝐸𝑆𝑇 values of
all affected placement options are recalculated. This iterative process
continues until all service modules are assigned to specific servers.

4.2. Delay-Aware Energy Minimisation algorithm (DEM)

In contrast to EDEM, which prioritises latency minimisation, the
proposed delay-aware energy minimisation (DEM) algorithm priori-
tises energy efficiency. DEM initially seeks an energy-saving server
placement plan. Subsequently, a refinement stage fine-tunes this plan
to optimise latency while strictly adhering to established energy con-
straints. DEM can be broken down into the 3 steps, in order as shown
in Figs. 6, 7, 8:

Step 1: Greedy initialisation. All available servers within the MEC
network are sorted by their device-related energy consumption coef-
ficients, in ascending order, as illustrated in Fig. 6. Then a level-order
traversal of the application graph starts from the entry modules. At each
layer of the traversal, as split with dashed box in the figure, modules are
randomly assigned resources from the pre-ranked server list. Following
the assignment, DEM estimates the 𝐸𝑆𝑇 value for each module, using
Eq. (6).

Step 2: Service-to-MDC placement alteration. While Step 1 pri-
oritises energy-efficient servers, it might not necessarily achieve the

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 7. The phase two of DEM: Adjust the service-to-MDC mapping.

absolute minimum total energy consumption. This is because geo-
graphically distant placements of interdependent modules can result in
prolonged data transmission times and increased idle energy consump-
tion at servers awaiting packets. To address this, a refinement stage
iteratively explores alternative placements for each service module, as
presented in Fig. 7. For each module, all unexplored MDCs (excluding
its current location) are considered. Within each unexplored MDC, the
least power-consuming server is evaluated as a potential reassignment
target. As indicated by the dotted arrows, the algorithm estimates the
total energy consumption 𝐸𝐶 after each potential reassignment, and
updates the placement plan if a more energy-efficient configuration is
identified. Finally, the refined placement’s overall latency 𝐸𝑆𝑇 (𝑈) and
total energy consumption ∑𝑠∈𝑆 𝐸𝐶(𝑠) are calculated and stored for the
next stage.

Algorithm 2: DEM
Data: Application 𝐴 = (𝑉 ,𝐸), MEC network 𝐺 = (𝑀,𝐿)
Result: Server placement map 𝑃 ∶ 𝑂 → 𝑆
1. Server sorting and initial service assignment:
Sort all servers 𝑠 ∈ 𝐺 by coeff (𝑠);
curServerIdx ← 0;
Group service from level 𝑛 to 0 and shuffle each set 𝑆𝑛, ...𝑆0
for service 𝑣 ∈ 𝑆𝑛, ..., 𝑆0 do

Assign 𝑣 to server with index curServerIdx;
curServerIdx++;

end
for 𝑣 ∈ 𝑉 do

Compute EST(v,P(v)) using Eqs;
end
2. Energy-aware reassignment:
for 𝑣 ∈ 𝑉 do

for 𝑚 ∈ 𝑀 do
if 𝑃 (𝑣) ∉ 𝑚 then

s = argmin𝑠′∈𝑚.servers coeff(𝑠′);
if EST(v,s)<EST(v,P(v)) then

Assign server 𝑠 to 𝑣;
end

end
Compute EST(U) using Eqs;
Sum up 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐸𝐶(𝑣, 𝑃 (𝑣)) ∀ 𝑣 ∈ 𝑉 ;
3. Latency-aware reassignment:
Identify critical_path of A under placement 𝑃 ;
for (𝑣, 𝑃 (𝑣)) ∈ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑝𝑎𝑡ℎ do

for 𝑠 ∈ 𝑃 (𝑣).𝑚𝑑𝑐.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do
if 𝐸𝑆𝑇 (𝑈) > 𝐸𝑆𝑇 (𝑈 |𝑃 (𝑣) = 𝑠) then

Assign server 𝑠 to 𝑣;
Re-identify critical_path of 𝐴;

end
end
8
Fig. 8. The phase three of DEM: Fine-tune the service-to-server mapping.

Step 3: Service-to-server placement fine-tuning. Building upon the
refined resource allocation from (Step 2), DEM also focuses on improv-
ing user-experienced latency. Similar to EDEM’s fine-tuning approach,
it identifies critical modules within the application’s critical path. Fig.
8 illustrates this phase of DEM. For each critical module, potential
reassignments to alternative servers are explored with the aim of re-
ducing critical path latency. For each reassignment option, indicated
by a dotted arrow, the end-to-end latency is re-approximated and
compared against that of the current assignment plan. After each
reassignment, the critical path is recalculated to assess potential latency
improvements. This iterative process continues until no further latency
reductions are achievable. The resulting placement plan, effectively
balancing energy efficiency and latency, is then utilised to generate the
final module-to-server mapping. The pseudo-code of DEM is presented
in Algorithm 2.

5. Dynamic resource scheduling and service offloading (DSO) al-
gorithm in EH-MEC

After integrating the energy harvesting technique with the MEC
system, deadline constraints and energy budgets must be considered
throughout the application execution.

Therefore, with the two offline placement algorithms in hand, we
decided to design an online scheduling strategy that monitors the
status of the MEC-EH system and continuously makes decisions for
server operating frequency scaling and cloud offloading. Our online
scheduling algorithm can be divided into three phases:

Phase 1. Initial energy-latency-aware service placement. At the
initialisation stage, we pass the edge network information and the
application to the EDEM or DEM algorithm to generate a service-to-
server assignment plan. Service modules will be deployed on MEC edge
servers, after which application execution will begin.

Phase 2. Deadline constraints breakdown. Given the deadline
constraint of the application, and with knowledge of the app graph
structure as well as the task size and workload of every service, we
calculate a sub-deadline for each module. Inspired by the deadline
decomposition method from [28], we traverse all modules in a top-
down order and determine the value of 𝐿𝑆𝑇 (𝑜) and 𝐿𝐹𝑇 (𝑜) of each
module 𝑜 ∈ 𝑂 according to Eqs. (8) and (9). Starting from the overall
deadline and working backward, we use the upward rank 𝑟𝑎𝑛𝑘(𝑜) to
quantify the impact of the module to the entire schedule: the longer it
takes to process sub-tasks and transmit data from the module to the end
user, the higher the 𝑟𝑎𝑛𝑘(𝑜) value becomes. Finally, The sub-deadlines
of every module 𝑜, denoted as 𝑠𝑑(𝑜), are calculated as proportions of
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴).

The relations between the rank of a module 𝑜 and its successor
modules can be expressed as:
𝑟𝑎𝑛𝑘(𝑜) = max

𝑜𝑖∈𝑠𝑢𝑐𝑐(𝑜)

{

𝑟𝑎𝑛𝑘(𝑜𝑖) + 𝑇 𝑐𝑜𝑚𝑚(𝑜, 𝑜𝑖)
}

+ 𝑇 𝑒𝑥𝑒𝑐 (𝑜) (21)

Therefore the highest rank belongs to the entry source modules, calcu-
lated as:
𝑟𝑎𝑛𝑘𝐷 = max

{

𝑟𝑎𝑛𝑘(𝑑𝑖)
}

(22)

𝑑𝑖∈𝐷

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
and the sub-deadline of module 𝑜 can be calculated as follows:

𝑠𝑑(𝑜) =
𝑟𝑎𝑛𝑘𝐷 − 𝑟𝑎𝑛𝑘(𝑜) + min𝑠𝑖∈𝑆

{

𝑇 𝑒𝑥𝑒𝑐 (𝑜, 𝑠𝑖)
}

𝑟𝑎𝑛𝑘𝐷
∗ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴) (23)

These sub-deadlines indicate the maximum flexibility each service has
before impacting the overall schedule, providing room for further
resource optimisation and scheduling.

Algorithm 3: DSO
Data: Application 𝐴 = (𝑉 ,𝐸), 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝐴), EH-MEC network

𝐺 = (𝑀,𝐿)
Result: Server placement map 𝑃 ∶ 𝑂 → 𝑆, scaling and offloading

decisions
1. Initial service assignment using our algorithms:
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝐴,𝐺) = 𝑃 ∶ 𝑂 → 𝑆
for 𝑜 ∈ 𝑂 do

Deploy 𝑜 to server 𝑃 (𝑜);
end
2. Deadline constraints breakdown:
Explore 𝐴 using level-order traversal:
for 𝑣 ∈ 𝐴.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑒𝑣𝑒𝑙 do

Compute 𝐿𝑆𝑇 (𝑣) and 𝐿𝐹𝑇 (𝑣);
end
for 𝑣 ∈ 𝑉 do

Compute 𝑟𝑎𝑛𝑘(𝑣) and 𝑠𝑑(𝑣);
end
3. Server scaling and service offloading:
while 𝐴.𝑎𝑐𝑡𝑖𝑣𝑒 do

for 𝑚 ∈ 𝑀 do
if 𝐵(𝑚) == 0 then

for 𝑠 ∈ 𝑚.𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do
𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 ← {𝑜|𝑃 (𝑜) = 𝑠};

end
end
for 𝑜 ∈ {

𝑂 − 𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑
} do

if 𝐴𝐹𝑇 (𝑜) − 𝐴𝐹𝑇 (𝑜.𝑝𝑟𝑒𝑑) > 𝑠𝑑(𝑜) then
𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 ←

{

𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 + 𝑜
}

;
else

Compute 𝑟𝑎𝑡𝑖𝑜(𝑃 (𝑜));
𝑃 (𝑜).𝑠𝑐𝑎𝑙𝑒_𝑑𝑜𝑤𝑛()

end
end
for 𝑜 ∈ 𝑂𝑜𝑓𝑓𝑙𝑜𝑎𝑑 do

Undeploy 𝑜 from server 𝑃 (𝑜);
Redeploy 𝑜 to cloud 𝐶;

end
end
Phase 3. Scaling and offloading decision making. The third phase

is the online resource scheduling process, which runs continuously as
the application actively receives new data. The scheduler monitors
the system’s real-time status, including the battery levels of energy-
harvesting devices and the latency between service modules. We use
𝐴𝐹𝑇 (𝑜) to denote the actual finish time of service module 𝑜, and use
E(𝐹𝑇 (𝑜)) to represent the expected finish time of 𝑜. According to the
deadline constraints breakdown in Phase 2, we have:
0 ≤ E(𝐹𝑇 (𝑜)) ≤ 𝑠𝑑(𝑜) (24)

When the actual finish time of a service 𝑜 is earlier than its sub-
deadline, slack time is available. This creates an opportunity to scale
down the operating frequency of the edge server, reducing energy con-
sumption within an acceptable range and avoid draining the battery.
The service time needed for 𝑜 to process a task can be calculated by
the difference between its actual start time and actual finish time,
expressed as:
𝑇 𝑒𝑥𝑒𝑐 (𝑜, 𝑃 (𝑜)) = 𝐴𝐹𝑇 (𝑜) − 𝐴𝑆𝑇 (𝑜) (25)

We use 𝑟𝑎𝑡𝑖𝑜(𝑠𝑖) to denote the scaling ratio of the CPU operating
frequency of server 𝑠𝑖, and combining Eq. (24) we have:
𝐴𝐹𝑇 (𝑜) < E(𝐹𝑇 (𝑜)) ≤ 𝑠𝑑(𝑜) (26)
9
Assume the finish time of service o equals the sub-deadline, regarding
the theoretical minimum allowed operating frequency we have:
𝑤𝑙(𝑜)∕𝑓𝑚𝑖𝑛 = 𝑠𝑑(𝑜) − 𝐴𝑆𝑇 (𝑜) (27)

and so the theoretical minimum allowed value of the scaling ratio
equals:

𝑟𝑎𝑡𝑖𝑜(𝑠𝑖)𝑚𝑖𝑛 =
𝑓𝑚𝑖𝑛

𝑓 (𝑠𝑖)
=

𝐴𝐹𝑇 (𝑜) − 𝐴𝑆𝑇 (𝑜)
𝑠𝑑(𝑜) − 𝐴𝑆𝑇 (𝑜)

, 𝑃 (𝑜) = 𝑠𝑖 (28)

Taking the midpoint between the minimum and maximum scaling ratio
we get:

𝑟𝑎𝑡𝑖𝑜(𝑠𝑖) =
𝑠𝑑(𝑜) + 𝐴𝐹𝑇 (𝑜) − 2𝐴𝑆𝑇 (𝑜)

2 ∗ (𝑠𝑑(𝑜) − 𝐴𝑆𝑇 (𝑜))
, 𝑃 (𝑜) = 𝑠𝑖 (29)

and the operating frequency of server 𝑠𝑖 will be scaled down by 𝑟𝑎𝑡𝑖𝑜(𝑠𝑖).
Conversely, when the actual finish time of a service 𝑜 exceeds its

sub-deadline, or the battery of the local EH device is depleted, cloud
offloading for the service module is triggered. The module will be
undeployed from the MDC and redeployed to the cloud, at which point
cloud billing will commence.

The pseudo-code of the strategy is presented in Algorithm 3.

6. Experimental evaluation

6.1. Performance indicators & setup

We employed simulation to evaluate the performance of the pro-
posed placement algorithms (DEM and EDEM) and the dynamic re-
source scheduling algorithm (DSO). The YAFS fog simulator [6] was
used and extended to support sequential processing of dependent tasks.
The edge network topologies were created using the NetworkX li-
brary2 with different random graph generation models: Barabasi–Albert
(B-A) [29], Watts–Strogatz (W-S) [30], and ring topology.

To obtain more generalisable results, real-world workloads were
employed from the Alibaba cluster trace dataset.3 This dataset provides
DAG information of production batch workloads from a large-scale
cluster. To model the user-submitted jobs consisting of services such
as video stream processing, image recognition, machine learning in-
ference, real-time analytics, and large-scale data preprocessing, we
randomly selected 10 applications for evaluation from those exceeding
10 modules, the characteristics of which are listed in Table 4. Module
resource requirements were configured based on the provided traces.
Within the simulation’s temporal settings, tasks arrive periodically,
with a constant interval of 100 global timestamps, as new data con-
tinuously flows in from IoT sensors. For each experiment set, system
events were simulated for 20,000 global timestamps and repeated 5
times with identical configurations to generate statistically significant
averages. The simulations were conducted on a server with 4x Intel
Xeon Gold 6230N CPU, 256 GB of RAM and Ubuntu 20.04 operating
system.

6.1.1. Service placement experiment setup
To evaluate the proposed service placement algorithms (DEM and

EDEM), we constructed heterogeneous MEC-Cloud topologies consisted
of up to 20 micro edge datacenters and one cloud datacenter using
the three different models mentioned above. Each MDC housed up
to 5 computing servers. Details regarding the specific MEC network
configurations are provided in Table 3. To model a heterogeneous
computing environment, we configured distinct resource characteris-
tics for cloud and edge servers.Cloud servers, representing powerful
centralised resources, were assigned CPU frequencies of 3–5 GHz and
RAM of 32–64 GB, reflecting common virtual machine instance types
in public clouds (e.g. Amazon EC2, Azure and Google Cloud). In

2 https://networkx.org/.
3 https://github.com/alibaba/clusterdata.

https://networkx.org/
https://github.com/alibaba/clusterdata

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Table 3
MEC-Cloud environment configurations.
 Cloud MDC
 CPU frequency (GHz) [3,5] [1,2]
 RAM (GB) [32,64] [1,4]
 Propagation delay (ms) 8 1
 Bandwidth (Gbps) 10 2

Table 4
Application characteristics.
 Job id |𝑉 | |𝐸| Max degree Average transfer volume Average workload
 1 12 9 3 39.33 9.50
 2 16 17 6 29.00 257.88
 3 16 17 7 23.63 40.50
 4 17 17 5 42.82 13.53
 5 16 17 3 46.06 35.75
 6 12 11 6 38.67 8.17
 7 10 10 4 44.30 14.40
 8 10 9 5 35.60 7.10
 9 16 16 2 47.19 1.00
 10 10 9 4 43.40 32.70

contrast, edge servers featured more constrained resources (1–3 GHz
CPU, 1–4 GB RAM), typical of edge hardware deployed closer to users
under power and cost limitations, including ARM-based platforms and
compact x86 systems. Network connectivity also differed: the link
to the cloud had high bandwidth (10 Gbps) but also higher latency
(10 ms one-way delay), representing a WAN connection over larger
geographical distances. The edge network link offered lower bandwidth
but minimised latency, characteristic of local access networks like 5G
or LANs. These parameters were chosen to create a realistic testbed
contrasting centralised and edge capabilities.

The two algorithms were evaluated based on four key metrics: (a)
Overall Energy Consumption (𝐸𝐶): This metric represents the total
power consumed by all servers during the execution period, estimated
from CPU usage data according to 3.3.2. (b) Average User-Experienced
Latency (𝐿𝑇): This metric is the mean response time of user requests,
calculated from raw timestamps recorded by the simulator during
network transmissions. (c) Edge prioritisation (𝐸𝑃): This metric re-
flects the percentage of services deployed at the Edge. (d) Algorithm
Execution Time (𝐸𝑇): This metric indicates the time required for
the algorithm to generate a placement, i.e. the wall clock time for
executing each algorithm. The performance of DEM and EDEM was
compared against four state-of-the-art service placement algorithms:
Response Time Aware (RTA) [16], Genetic Algorithm (GA) [31], Max-
imise Reliability Offloading (MROA) [19] and Energy-Makespan Multi-
objective Optimisation (EM-MOO) [22]. We selected these algorithms
for their varying levels of complexity, computational overhead, and
optimisation goals. By comparing our proposed algorithms with these
diverse alternatives, we gain a broader understanding of their strengths
and weaknesses, enabling a more robust assessment of their overall
performance and efficiency.

6.1.2. Dynamic scheduling experiment setup
To evaluate the performance of our online resource scheduling

strategy (DSO), unlike the previous experimental settings, we con-
structed MEC-Cloud environments featuring energy-harvesting-enabled
base stations. The network topology generation used the Barabasi–
Albert (B-A) model, and each MDC is purely powered by an energy
harvesting device with a battery storage. Detailed configurations of the
MEC-EH environment are shown in Table 5, similar to Table 3, with
specs commonly observed in cloud and edge computing scenarios. The
algorithm receives the result from either the EDEM or DEM algorithm
as the initial service placement plan and makes server frequency scaling
or service offloading decisions dynamically.

We evaluated the algorithm based on five key metrics: (a) Number
of Processed Requests (𝑇𝑃): the amount of use requests that have been
10
Table 5
EH-enabled MEC-Cloud environment configurations.
 Cloud MDC-EH
 CPU frequency (GHz) 4 [1,2.5]
 Propagation delay (ms) 50 5
 Bandwidth (Gbps) 10 1
 Renting fee ($ per s) 0.01 N/A
 Battery capacity (Wh) N/A 10
 EH device charging rate (W) N/A 1
 Device power factor 10−27 10−27

successfully processed, recorded after the receiving of each result at
the user side. (b) Average User-Experienced Latency (𝐿𝑇): the mean
response time of user requests processed, extracted from the message
timestamps stored in the simulation traces. (c) The Acceptance Rate
of Processed Requests (𝐴𝐶): the proportion of successfully processed
requests that meet the deadline constraint, recorded after the arrival
of results. (d) Overall Energy Consumption (𝐸𝐶): the total power
consumed by edge and cloud datacenters during the task processing,
estimated from CPU usage history using 3.3.2. (e) Cloud Renting Cost
(𝐶𝑅𝐶): the total fee charged by the cloud datacenter for task execution,
calculated based on billing time.

We compared the performance of DSO-DEM and DSO-EDEM against
three different scheduling options: (a) 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔, a policy that dy-
namically offloads every service of the application to the Cloud, (b)
𝑠𝑐𝑎𝑙𝑖𝑛𝑔, a policy that makes server frequency scaling if there is enough
slack time between service’s finish time and sub-deadline, and (c)
𝑛𝑜𝑛𝑒, a static baseline policy that takes no subsequent action after the
initial placement. For all scheduling variations, we assume that each
datacenter is connected to a renewable energy source and is equipped
with a battery storage. Green energy will be harvested to power the
datacenter continuously. We aim to evaluate how different scheduling
strategies impact user experience, energy usage and operational costs
through our experiments.

6.2. Performance assessment

6.2.1. Service placement algorithm evaluation
To evaluate the performance of the EDEM and DEM algorithm, a

total of 8100 experiments were conducted. For each of the 10 appli-
cations, 5 experiments were performed for each of the 6 algorithms.
The number of MDCs (denoted by 𝑛) was varied across [5, 10, 20].
Similarly, the number of servers (denoted by 𝑚) within each MDC
was varied across [2, 4, 8]. Furthermore, three different network
topologies were utilised in the experiments. All figures presented in this
section demonstrate the normalised performance of both 𝐸𝐶 and 𝐿𝑇
metrics. We set the source data emission interval to 100 ms and the
simulated duration to 100 s and plot the performance of the proposed
algorithms in terms of the aforementioned metrics. In Fig. 9, we show
the normalised energy consumption results for all algorithms.

It can be seen that during the experiments across various applica-
tions and network topologies, the DEM algorithm achieves significantly
lower energy consumption compared to other algorithms. In contrast,
RTA and MROA exhibit the highest energy consumption. RTA, by
primarily focusing on minimising end-to-end latency, often selects less
energy-efficient servers, resulting in higher overall energy consump-
tion. MROA, on the other hand, primarily focuses on reducing energy
consumption at the user equipment, neglecting the energy consumption
of the servers involved in task offloading, leading to high overall energy
consumption for task processing. DEM, on the contrary, tends to allo-
cate services to edge servers with higher energy efficiency. Following
DEM, EDEM also achieves energy consumption levels comparable to
GA and EM-MOO. Across diverse network topologies, DEM and EDEM
exhibit stable performance in terms of normalised energy consumption,
while EM-MOO falter under the Watts–Strogatz network model. This
proves that DEM and EDEM are robust to network variations.

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 9. Normalised Energy Consumption (EC), 𝑛 = 20 𝑚 = 4.

Fig. 10. Normalised user-experienced latency (LT), 𝑛 = 20 𝑚 = 4.

Fig. 10 illustrates the normalised latency performance across all
algorithms. RTA, EDEM, and MROA consistently achieve the lowest
latency across all scenarios. However, it should be highlighted that RTA
and MROA achieve these low latency values at the expense of signifi-
cantly higher energy consumption, whereas EDEM maintains metrics.
GA generally exhibits the poorest performance for all network topolo-
gies while EDEM excels in certain applications. Particularly, in the ring
topology, where network latency can be a significant bottleneck, EDEM
demonstrates superior latency performance. Combining the results from
Figs. 9 and 10, it becomes evident DEM and EDEM exhibit distinct
preferences in optimising for energy consumption and latency. EDEM
effectively balances overall energy consumption with latency perfor-
mance. On the other hand, DEM prioritises energy-saving placement
plans,potentially resulting in some sacrifice of latency performance.

Figs. 12, 13 demonstrate that for the energy consumption metric,
the DEM and GA algorithms show the most significant improvements
and efficiency gains as the number of MDCs or servers increases, while
MROA consistently underperforms. EMMOO shows a slight decrease in
energy consumption as the number of resources grows. While not the
most energy-efficient, EDEM demonstrates stable performance, making
it a viable option. For the latency metric, RTA, EMMOO, and DEM
perform better when increasing the number of MDCs, with EDEM
following closely behind (Fig. 11). In contrast, GA and MROA struggle
to effectively reduce latency as the system complexity increases.

In Fig. 14, we observe that increasing the number of servers gener-
ally leads to a degradation in latency performance for most algorithms.
11
Fig. 11. Normalised user-experienced latency (LT), 𝑛 = [5,10,20].

Fig. 12. Normalised Energy Consumption (EC), 𝑛 = [5,10,20].

Fig. 13. Normalised Energy Consumption (EC), 𝑚 = [2,4,8].

Although GA shows some improvement as the number of servers in-
creases, it still fails to effectively optimise latency as the system scales
up compared to other algorithms. In contrast, EDEM, mirroring its sta-
ble performance in terms of energy consumption, maintains a consistent
level of performance. This makes EDEM the most suitable candidate
when the number of servers per MDC exceeds four. These findings
suggest that both EDEM and DEM exhibit good scalability and maintain
stable performance as the system scales and the network topology
expands.

Table 6 presents the percentage of services deployed at edge servers,
providing insights into the service placement strategies of different
algorithms. The results of MROA align with our analysis, demon-
strating a preference for non-local, powerful machines. Consequently,
around 40% of the services are offloaded to the cloud, leading to the
highest observed energy consumption. RTA and EDEM have similar
preferences in resource allocation, deploying 75%–85% of services at

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 14. Normalised user-experienced latency (LT), 𝑚 = [2,4,8].

Table 6
Edge prioritisation, 𝐸𝑃 .
 RTA GA MROA EMMOO DEM EDEM
 B-A 85.86 97.75 58.52 98.80 98.24 85.70
 RING 76.61 89.79 57.90 99.66 95.19 84.24
 W-S 76.85 89.69 60.40 99.13 94.04 84.46

Table 7
Execution time (ms), 𝐸𝑇 .
 RTA GA MROA EMMOO DEM EDEM
 B-A 45.35 4110.22 3.13 1077.88 224.91 138.63
 RING 42.79 4475.50 3.37 1066.64 315.66 173.59
 W-S 45.96 4407.99 3.15 1064.44 290.66 161.51

edge facilities and the remaining tasks in the cloud. Such approach
achieves a well-balanced outcome in terms of both latency and energy
consumption by minimising transmission and energy costs while lever-
aging cloud resources for computationally intensive tasks. In contrast,
DEM, EMMOO, and GA exhibit a strong preference for edge resource
utilisation, deploying over 95% of services at the edge. Prioritising edge
placement leads to the lowest energy consumption, but as a conse-
quence of the energy-latency trade-off, the task execution time may
be slightly higher compared to cloud execution, potentially impacting
user-perceived latency.

Table 7 presents the execution time of each algorithm. As expected,
GA exhibit the longest execution times (∼4 s) due to its population-
based search strategy. EMMOO follows with execution times (∼1 s) due
to its iterative nature. Conversely, MROA achieves the fastest execution
times across all topologies as it skips operations related to latency
and energy consumption limitations when no deadlines are imposed.
RTA, focusing solely on a single objective, achieves the second-fastest
execution times across all topologies. EDEM and DEM demonstrate
execution times comparable to RTA, making them suitable for real-
time and time-sensitive applications in the MEC environment. We also
conducted an additional set of experiments to assess the impact of a
MEC environment. In these experiments, we assumed a setup compris-
ing 4 MDCs, 1 Cloud DC, and a BA topology. The results show that,
on average, latency is reduced by 46.8% and energy consumption by
32.9% when scheduling decisions select resources from the edge-cloud
continuum instead of relying solely on cloud resources.

6.2.2. Dynamic resource scheduler evaluation
Similar to the performance evaluation of the offline placement algo-

rithms, we conducted experiments for the four different scheduling al-
gorithms using two distinct applications from the dataset. User requests
were generated every 30 ms, and the schedulers were triggered at
the same interval. The deadline for each application is pre-determined
based on the method proposed in [28], with a deadline factor (𝛾) equals
to 3.
12
Fig. 15 demonstrate the total number of request processing com-
pletions. The results for application jobs 3 and 10 show that the
baseline scheduler, labelled as none, can process less than half of the
user requests received due to insufficient power supply at the edge.
Under the same conditions, the scaling-only scheduler occasionally
fails to process some requests but still achieves a significantly higher
throughput than the baseline. The offloading-only scheduler, as ex-
pected, offloads all computation jobs to the cloud and successfully
processes all user requests. Meanwhile, our dynamic scaling and of-
floading scheduler, labelled as DSO, achieves the same throughput level
as the offloading-only scheduler.

Fig. 16 demonstrates the average user-experienced latency of the
processed requests. In both scenarios, the baseline scheduler results
in extremely high latency due to the waiting time required for the
batteries of the EH devices to recharge, causing task processing to
be paused. The offloading-only scheduler achieves the lowest mean
latency by processing all tasks on powerful machines in the cloud
datacenter. This is followed by the dynamic scaling and offloading
scheduler, which strikes a balance between cloud offloading and edge
execution. The scaling-only scheduler performs similarly to the baseline
when it fails to address the battery shortage during the processing of job
3. However, in the remaining experiments, it achieves a mean latency
slightly higher than the DSO scheduler.

Fig. 17 illustrates the number of requests processed that meet
the deadline. The results for the baseline scheduler reveal that with-
out performing further actions, energy shortages not only reduce the
throughput of request processing but also result in a low acceptance
rate for responses. By scaling down the operating frequency of edge
servers or offloading computations to the cloud, the system becomes
more capable of processing requests within acceptable latency. How-
ever, the acceptance ratio for the scaling-only-EDEM case remains
relatively low.

By analysing Figs. 15, 16, 17 alongside the conclusions from the
offline algorithm evaluations, the difference between scaling-only-DEM
and scaling-only-EDEM when processing job 3 becomes clear. DEM
prioritises energy saving, enabling it to perform better under energy
constraints. In contrast, EDEM focuses more on processing requests
quickly, which leads to poorer performance compared to DEM when
energy supply is insufficient.

Fig. 18 shows the total energy consumption resulting from the
computations in the servers. Since the edge datacenters are entirely
powered by EH equipment, only harvested energy is consumed by the
baseline and scaling-only schedulers. The baseline scheduler, lacking
any scaling policy, consumes a significant amount of edge energy while
processing fewer requests. As previously explained, the scaling policy
dynamically adjusts the operating frequency of edge machines during
slack time. This ensures that when the response times of requests
remain within an acceptable range, energy consumption is significantly
reduced. Consequently, the edge energy consumed per request by the
scaling-only scheduler is much lower than that of the baseline sched-
uler. The DSO scheduler, unlike the scaling-only policy, utilises cloud
servers when necessary. As a result, it consumes additional energy by
offloading part of the computations to the cloud. However, compared
to the offloading-only scheduler, the energy consumption of the DSO
scheduler is substantially lower.

Next, we demonstrate energy savings in terms of carbon footprint
reductions and for that we study the case of Job 3 using the results
obtained from policies (a) Dynamic Scaling and Offloading (DSO) and
(b) Offloading-only after applying DEM and EDEM algorithms (results
were averaged).

During the 20000 timestamps simulated, our proposed strategy DSO
resulted in an average energy consumption of 8.825 kWh, compared
to 28.79 kWh consumed by the offloading-only approach under the
same workload. This represents a grid energy saving of 19.97 kWh.
To quantify the environmental benefit, we use the average US grid
carbon intensity factor of 0.37 kg CO2e/kWh (based on EPA eGRID

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 15. Number of processed requests (𝑇𝑃).
Fig. 16. Average user-experienced latency (𝐿𝑇).
Fig. 17. The acceptance rate of processed requests (𝐴𝐶).
Fig. 18. Overall energy consumption (𝐸𝐶). The first row shows the energy consumption at the edge, while the second row shows the consumption at the cloud.
data for 2023 [32]). This translates to an estimated carbon footprint
reduction of 7.39 kg CO2e achieved by our algorithm compared to the
offloading-only strategy.

Fig. 19 compares the cloud rental costs of the offloading-only sched-
uler and the DSO scheduler. The figure shows that the DSO scheduler
13
incurs significantly lower operational costs while maintaining strong
performance in both response latency and throughput. Although its
average latency is slightly higher than that of the offloading-only
scheduler, it still meets the deadline constraints and ranks as the second
lowest in latency.

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Fig. 19. Cloud Renting Cost (𝐶𝑅𝐶).
In summary, these evaluations demonstrate that the DSO scheduler
effectively balances energy efficiency, performance, and cost. Unlike
the baseline scheduler, which suffers from low throughput and high
latency due to edge energy shortages, the DSO scheduler achieves full
request processing throughput while maintaining latency within the
deadlines. It outperforms the scaling-only scheduler by leveraging both
cloud offloading and edge execution, resulting in significantly lower
energy consumption compared to the offloading-only scheduler. Fur-
thermore, the DSO scheduler reduces cloud rental costs while delivering
comparable performance in response latency and throughput. These
results prove the DSO scheduler’s ability to provide a sustainable and
cost-effective solution for managing workloads in energy-constrained
environments.

6.2.3. Further discussion
While our results demonstrate that the proposed algorithms out-

perform state-of-the-art approaches and exhibit relative stability as
network complexity increases, suggesting good scalability potential, it
is important to acknowledge that these evaluations were conducted
under specific assumed conditions. These included relatively constant
task arrival rates, typical energy harvesting availability, and average
workload characteristics. However, real-world scenarios often involve
extreme conditions, such as sudden traffic spikes or prolonged periods
of low renewable energy availability (e.g., due to adverse weather).
Considering these cases provides further insight into the robustness of
our solutions.

If task arrival rates or computational demands fluctuate rapidly, our
heuristic-based algorithms are designed to react quickly by generating
new placement decisions upon detecting sub-deadline violations. De-
spite this rapid reaction capability, overall end-to-end latency could
still degrade due to the potential backlog of subtasks accumulating
during the time required for service module migration. This suggests
that incorporating techniques such as service replication, potentially as
future work, could enhance load balancing and responsiveness under
such highly dynamic conditions.

Similarly, concerns arise under conditions where renewable energy
sources become unavailable for extended periods and battery reserves
are low. In such situations, the current algorithms would likely priori-
tise cloud offloading to maintain service availability where possible.
While this preserves functionality, it would inevitably increase end-to-
end latency and operational costs due to cloud usage. This highlights
the importance of incorporating energy prediction and potentially more
sophisticated energy management techniques—planned enhancements
for future work—to enable our strategies to adapt more gracefully and
efficiently to variable energy supply conditions.

7. Conclusions and future work

This paper firstly introduces EDEM and DEM, two heuristic-based
algorithms for service module placement in MEC networks that con-
sider dependencies between service modules. EDEM prioritises energy
efficiency while maintaining low latency impact on users. DEM, on the
other hand, achieves significant energy reductions by allowing for a
14
more flexible trade-off with increased latency. Based on the two algo-
rithms developed, we integrate the energy-harvesting technique in the
MEC-Cloud environment, and designed an online resource scheduling
strategy that considers energy and latency constraints and dynamically
makes server frequency scaling and service offloading decisions. Sim-
ulation results showed that our scheduler effectively balances energy
efficiency, cost savings, and performance, making it a more sustainable
and practical approach for handling user requests in energy-constrained
environments.

Our future work will incorporate user mobility models. While the
current system focuses on scenarios with static users—common in many
edge computing applications—extending it to support mobile users will
broaden its applicability to dynamic contexts such as connected vehi-
cles or mobile augmented reality. Developing mobility-aware schedul-
ing algorithms can enable the system to maintain performance and ser-
vice continuity as user devices roam in the network, thereby enhancing
its robustness and scalability in dynamic environments.

Another key direction for future research is incorporating energy
prediction models into our scheduler. The instability of energy supplies
is a common challenge in real-world edge deployments relying on
renewable sources like solar power. Based on sources like historical
data and weather forecasts, the scheduler may proactively adjust the re-
source allocation plan beforehand. This would significantly enhance the
applicability of our solution to energy-constrained or off-grid scenarios.

CRediT authorship contribution statement

Shuyi Chen: Software, Visualization, Writing – original draft,
Methodology. Panagiotis Oikonomou: Writing – original draft,
Methodology, Writing – review & editing, Validation, Visualization.
Zhengchang Hua: Software, Writing – review & editing, Investiga-
tion. Nikos Tziritas: Methodology, Supervision, Conceptualization.
Karim Djemame: Supervision, Investigation, Funding acquisition.
Nan Zhang: Writing – review & editing. Georgios Theodoropoulos:
Supervision, Project administration, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported in part by the Research Institute of
Trustworthy Autonomous Systems (RITAS), and in part by the Shen-
zhen Science and Technology Program (project No. GJHZ2021070
5141807022), and by the SUSTech-University of Leeds Joint PhD
Programme.

Data availability

Data will be made available on request.

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
References

[1] P. Oikonomou, A. Karanika, C. Anagnostopoulos, K. Kolomvatsos, On the use
of intelligent models towards meeting the challenges of the edge mesh, ACM
Comput. Surv. 54 (6) (2021) 1–42.

[2] F.K. Shaikh, S. Zeadally, E. Exposito, Enabling technologies for green internet of
things, IEEE Syst. J. 11 (2) (2015) 983–994.

[3] F.A. Salaht, F. Desprez, A. Lebre, An overview of service placement problem in
fog and edge computing, ACM Comput. Surv. 53 (3) (2020) 1–35.

[4] G. Zhang, W. Zhang, Y. Cao, D. Li, L. Wang, Energy-delay tradeoff for dynamic
offloading in mobile-edge computing system with energy harvesting devices, IEEE
Trans. Ind. Inform. 14 (10) (2018) 4642–4655.

[5] Y. Zhang, J. Chen, Y. Zhou, L. Yang, B. He, Y. Yang, Dependent task offloading
with energy-latency tradeoff in mobile edge computing, IET Commun. 16 (17)
(2022) 1993–2001.

[6] I. Lera, C. Guerrero, C. Juiz, YAFS: A simulator for IoT scenarios in fog
computing, IEEE Access 7 (2019) 91745–91758.

[7] D. Harutyunyan, N. Shahriar, R. Boutaba, R. Riggio, Latency and mobility–aware
service function chain placement in 5G networks, IEEE Trans. Mob. Comput. 21
(5) (2020) 1697–1709.

[8] K. Kaur, S. Garg, G. Kaddoum, S.H. Ahmed, M. Atiquzzaman, KEIDS: Kubernetes-
based energy and interference driven scheduler for industrial IoT in edge-cloud
ecosystem, IEEE Internet Things J. 7 (5) (2019) 4228–4237.

[9] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, D. Cassioli, Taming latency at
the edge: A user-aware service placement approach, Comput. Netw. 247 (2024)
110444.

[10] A. Lakhan, M.A. Mohammed, O.I. Obaid, C. Chakraborty, K.H. Abdulkareem,
S. Kadry, Efficient deep-reinforcement learning aware resource allocation in
SDN-enabled fog paradigm, Autom. Softw. Eng. 29 (2022) 1–25.

[11] M. Adhikari, S.N. Srirama, Multi-objective accelerated particle swarm opti-
mization with a container-based scheduling for Internet-of-Things in cloud
environment, J. Netw. Comput. Appl. 137 (2019) 35–61.

[12] J. Mo, J. Liu, Z. Zhao, Exploiting function-level dependencies for task offloading
in edge computing, in: IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops, INFOCOM WKSHPS, IEEE, 2022, pp. 1–6.

[13] L.X. Nguyen, Y.K. Tun, T.N. Dang, Y.M. Park, Z. Han, C.S. Hong, Dependency
tasks offloading and communication resource allocation in collaborative UAVs
networks: A meta-heuristic approach, IEEE Internet Things J. (2023).

[14] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, P. Leitner, Optimized IoT
service placement in the fog, Serv. Oriented Comput. Appl. 11 (4) (2017)
427–443.

[15] A. Mebrek, L. Merghem-Boulahia, M. Esseghir, Efficient green solution for a bal-
anced energy consumption and delay in the IoT-Fog-Cloud computing, in: 2017
IEEE 16th International Symposium on Network Computing and Applications,
NCA, IEEE, 2017, pp. 1–4.

[16] X. Cai, H. Kuang, H. Hu, W. Song, J. Lü, Response time aware operator placement
for complex event processing in edge computing, in: International Conference on
Service-Oriented Computing, Springer, 2018, pp. 264–278.

[17] Q. Peng, Y. Xia, Y. Wang, C. Wu, X. Luo, J. Lee, Joint operator scaling and
placement for distributed stream processing applications in edge computing, in:
International Conference on Service-Oriented Computing, Springer, 2019, pp.
461–476.

[18] X. Zhao, Y. Shi, S. Chen, MAESP: Mobility aware edge service placement in
mobile edge networks, Comput. Netw. 182 (2020) 107435.

[19] Y. Shang, J. Li, X. Wu, Dag-based task scheduling in mobile edge computing,
in: 2020 7th International Conference on Information Science and Control
Engineering, ICISCE, IEEE, 2020, pp. 426–431.

[20] F. Zhao, Y. Chen, Y. Zhang, Z. Liu, X. Chen, Dynamic offloading and resource
scheduling for mobile-edge computing with energy harvesting devices, IEEE
Trans. Netw. Serv. Manag. 18 (2) (2021) 2154–2165.

[21] H. Hu, Q. Wang, R.Q. Hu, H. Zhu, Mobility-aware offloading and resource
allocation in a MEC-enabled IoT network with energy harvesting, IEEE Internet
Things J. 8 (24) (2021) 17541–17556.

[22] S. Ijaz, E.U. Munir, S.G. Ahmad, M.M. Rafique, O.F. Rana, Energy-makespan
optimization of workflow scheduling in fog–cloud computing, Comput. 103
(2021) 2033–2059.

[23] M. Xu, W. Li, X. Zhang, Q. Su, A discrete dwarf mongoose optimization algorithm
to solve task assignment problems on smart farms, Clust. Comput. (2024) 1–20.

[24] J. Zhang, Y. Zhai, Z. Liu, Y. Wang, A Lyapunov based resource allocation method
for edge-assisted industrial internet of things, IEEE Internet Things J. (2024).

[25] N. Hudson, H. Khamfroush, M. Baughman, D.E. Lucani, K. Chard, I. Foster,
QoS-aware edge AI placement and scheduling with multiple implementations in
FaaS-based edge computing, Future Gener. Comput. Syst. 157 (2024) 250–263.
15
[26] Z. Niu, H. Liu, J. Du, Y. Ge, Partial task offloading for UAV-assisted mobile edge
computing with energy harvesting, IEEE Internet Things J. (2024).

[27] S. Chen, P. Oikonomou, Z. Hua, N. Tziritas, K. Djemame, N. Zhang, G. Theodor-
opoulos, Efficient placement of interdependent services in multi-access edge
computing, in: 20th Conference on the Economics of Grids, Clouds, Software,
and Services, Springer, 2024.

[28] X. Ma, H. Xu, H. Gao, M. Bian, Real-time multiple-workflow scheduling in cloud
environments, IEEE Trans. Netw. Serv. Manag. 18 (4) (2021) 4002–4018.

[29] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Sci. 286
(5439) (1999) 509–512.

[30] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nat.
393 (6684) (1998) 440–442.

[31] N. Sarrafzade, R. Entezari-Maleki, L. Sousa, A genetic-based approach for service
placement in fog computing, J. Supercomput. 78 (8) (2022) 10854–10875.

[32] United States Environmental Protection Agency (EPA), Emissions & generation re-
source integrated database (eGRID), 2023, https://www.epa.gov/egrid. (Accessed
14 April 2025).

Shuyi Chen is a Ph.D. candidate in the SUSTech-University
of Leeds Joint Ph.D. programme. Her research interests
include resource management, distributed systems, and
multi-access edge computing. She holds a BEng from the
Southern University of Science and Technology (SUSTech),
China.

Panagiotis Oikonomou received the diploma and M.Sc.
degrees from the Department of Electrical and Computer
Engineering, University of Thessaly, Greece, in 2008 and
2010, respectively, and the Ph.D. degree in Temporospatial
organisation of circuits and tasks over the Cloud from
the Department of Electrical and Computer Engineering,
University of Thessaly. He is currently a scientific schol-
arship holder and a postdoc researcher in scheduling and
orchestration of tasks in the cloud. His research interests
include CAD algorithms, optimisation algorithms, and cloud
computing.

Zhengchang Hua is a Ph.D. candidate in the SUSTech-
University of Leeds Joint Ph.D. programme. His research
interests include digital twin networks, agent-based systems,
and discrete event simulation. He holds a BEng from the
Southern University of Science and Technology, China.

Nikos Tziritas is an Associate Professor with the De-
partment of Informatics and Telecommunications at the
University of Thessaly, Greece, where he also obtained
his PhD. Prior to this he was an Associate Professor at
the Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, China. He is the recipient of the
2016 Award for Excellence for Early Career Researchers
in Scalable Computing from IEEE Technical Committee in
Scalable Computing.

Karim Djemame is a Professor of distributed systems in the
School of Computing at the University of Leeds, UK. His
research interests are distributed systems; cloud computing;
energy efficiency; heterogeneous parallel architectures; per-
formance evaluation. He holds a Ph.D. from the University
of Glasgow, UK.

http://refhub.elsevier.com/S0167-739X(25)00304-8/sb1
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb1
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb1
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb1
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb1
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb2
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb2
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb2
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb3
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb3
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb3
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb4
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb4
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb4
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb4
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb4
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb5
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb5
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb5
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb5
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb5
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb6
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb6
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb6
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb7
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb7
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb7
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb7
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb7
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb8
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb8
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb8
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb8
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb8
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb9
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb9
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb9
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb9
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb9
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb10
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb10
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb10
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb10
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb10
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb11
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb11
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb11
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb11
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb11
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb12
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb12
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb12
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb12
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb12
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb13
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb13
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb13
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb13
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb13
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb14
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb14
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb14
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb14
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb14
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb15
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb16
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb16
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb16
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb16
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb16
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb17
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb18
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb18
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb18
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb19
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb19
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb19
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb19
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb19
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb20
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb20
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb20
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb20
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb20
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb21
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb21
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb21
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb21
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb21
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb22
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb22
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb22
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb22
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb22
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb23
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb23
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb23
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb24
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb24
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb24
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb25
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb25
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb25
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb25
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb25
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb26
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb26
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb26
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb27
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb28
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb28
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb28
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb29
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb29
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb29
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb30
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb30
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb30
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb31
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb31
http://refhub.elsevier.com/S0167-739X(25)00304-8/sb31
https://www.epa.gov/egrid

S. Chen et al. Future Generation Computer Systems 174 (2026) 108009
Nan Zhang is a postdoctoral researcher in the Department
of Computer Science and Engineering at Southern University
of Science and Technology, China. His research interests in-
clude network digital twins, distributed systems, self-aware
and self-adaptive systems, and parallel and distributed simu-
lation. He holds a Ph.D. from the University of Birmingham,
UK, and a BEng from SUSTech, China.
16
Georgios Theodoropoulos is currently a Chair Professor
at the Department of Computer Science and Engineering
at SUSTech in Shenzhen. In the past he has held senior
appointments at Universities of Durham and Birmingham in
the UK, IBM Research, Ireland, and Nanyang Technological
University, Singapore. He holds a Ph.D. from the University
of Manchester, UK. He is a Member of the European
Academy of Sciences and Arts and a Fellow of the World
Academy of Art and Science.

	QoS-aware placement of interdependent services in energy-harvesting-enabled multi-access edge computing
	Introduction
	Related Work
	System Model and Problem Formulation
	MEC Network Model
	Application Model
	Problem Formulation
	Communication and Computation Model
	Energy Consumption Model

	Battery Model
	Cloud Offloading and Cost Models
	Placement Problem Formulation

	Energy-and-Latency-Aware Placement Algorithms in MEC
	Energy-Aware Delay-Experienced Minimisation Algorithm
	Delay-Aware Energy Minimisation Algorithm (DEM)

	Dynamic Resource Scheduling and Service Offloading (DSO) Algorithm in EH-MEC
	Experimental Evaluation
	Performance Indicators & Setup
	Service Placement Experiment Setup
	Dynamic Scheduling Experiment Setup

	Performance Assessment
	Service Placement Algorithm Evaluation
	Dynamic Resource Scheduler Evaluation
	Further Discussion

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

