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Quote 

‘Such a comprehensive phenotyping effort revealed an unexpectedly high diversity in various key 

C4 components.’ 

 

Main text 

Retracing the origins of novel adaptations is a major challenge in evolutionary biology. This 

problem is best addressed by detailed comparative studies using lineages bearing the ancestral and 

derived phenotypes. In plants, one of the most well-studied examples is C4 photosynthesis. The trait 

has repeatedly emerged in several families of eudicots and monocots through anatomical, 

ultrastructural and biochemical modifications to the ancestral C3 physiology that concentrate CO2 

around Rubisco. This mechanism largely suppresses Rubisco’s oxygenase activity, therefore 

reducing carbon and energy waste from photorespiration. Identifying the key components of the C4 

trait, including their genetic basis and adaptive significance, can advance our understanding of how 

complex traits emerge during evolution, and is critical for efforts to engineer C4 photosynthesis into 

C3 crops. These goals have been greatly facilitated by genetic and phenotypic studies conducted 

within an evolutionary framework. 

C4 species are often nested within clades that also contain non-C4 plants that have adapted to 

efficiently refix the CO2 derived from photorespiration. These so-called C2 plants have C4-like 

modifications to leaf structure and gene expression, which together with their close relatedness with 



C4 lineages suggest they represent evolutionary intermediates in the transition to a C4 physiology 

(Sage et al., 2012) (although it is important to note the evolutionary stability of ‘C3-C4 

intermediates’ in several clades; see Lundgren & Christin, 2017). For this reason, such clades 

containing C4 and C2 species have been chosen as the main models for comparative studies on C4 

evolution. These include the well-studied genera Flaveria (Asteraceae) (e.g. Adachi et al., 2023), 

and the grasses Alloteropsis (e.g. Pereira et al., 2023) and Neurachne (e.g. Khoshravesh et al., 

2020), among others. Together, these studies have revealed a large diversity of C4-related traits, 

which have been fundamental to disentangling adaptive changes associated with the C4 mechanism 

from other lineage-specific traits. In this issue, Stata et al. contribute to this effort by revealing the 

vast diversity of photosynthetic traits in the eudicot genus Blepharis (Acanthaceae), establishing it 

as a new model system to understand the evolution of C4 photosynthesis. 

 The genus Blepharis includes 128 species that occur in seasonally dry and arid areas across 

Africa, the Middle East and southeastern Asia. The existence of different photosynthetic types in 

Blepharis had been previously reported (Fisher et al., 2015), but the diversity of intermediate 

phenotypes and their evolutionary significance remained unexplored. To address these gaps, Stata 

and colleagues conducted an extensive sampling of 29 Blepharis species, including several 

independent populations for some of them, and quantified biochemical, anatomical and leaf-level 

photosynthesis parameters. 

 Such a comprehensive phenotyping effort revealed an unexpectedly high diversity in various 

key C4 components. To shed light on general patterns across species, the authors used a multivariate 

statistical approach to discriminate the different samples across physiological space. This suggested 

that Blepharis species can be grouped into five main clusters, which the authors interpreted as 

different stages along the evolutionary transition from C3 to C4 physiology. The first cluster 

corresponded to typical C3 species with low activity of C4-related enzymes, such as 

phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK), and CO2 

compensation point (CCP) above 50 μmol mol-1. This group is sister to the remaining C4 and 

intermediate lineages, and likely retains the photosynthetic characteristics of the common ancestor 

of all Acanthaceae. A second well-defined group corresponded to the C4 species, which exhibited 

the highest activity of C4-related enzymes, the lowest CCP values, and carbon isotope signatures 

(δ13C) that are diagnostic of C4 plants. Surprisingly, the phylogenetic distribution of these species 

suggested five independent C4 clades in Blepharis, which is the highest number of transitions to the 

C4 state so far reported for a single genus. The remaining species were assigned to three additional 

categories. The first was to a large extent similar to the C4 type, although with significantly lower 

PEPC activity and lower leaf-level carboxylation efficiency, which were associated with δ13C 

values at the upper limit of usual C4 values. The three species displaying this phenotype were 



classified as C4-, what the authors described as species with an incomplete expression of C4 

characters, such as absence of a full compartmentalization of Rubisco to the bundle sheath tissue. 

The two other categories included all species with key diagnostic features of C2 plants, including 

the restriction of GDC to the bundle sheath tissue, and intermediate CCP values between C3 and C4 

plants. One of the C2 groups, named as C2+, was composed by a single species, B. mitrata, which 

displayed higher activity of some C4-related enzymes and low CCP, although with C3-like δ13C 

values. 

 One particular aspect of this study is the large intraspecific variation in δ13C observed in 

herbarium specimens of three species - B. furcata, B. macra and B. mitrata -, with values spanning 

typical C3 and C4 values. This suggests that the three species contain recently diverged C4 and non-

C4 populations, a finding that has been so far limited to the grass Alloteropsis semialata. Although a 

phylogenetic assessment of the specimens analysed is necessary to rule out taxonomic issues, this 

would not be surprising given the high diversity in C4-related traits in Blepharis. This highlights the 

importance of sampling multiple populations for trait evolution studies, particularly in cases of 

complex traits such as C4 photosynthesis. 

 C4 research has diversified over the past twenty years from physiological and anatomical 

descriptions into phylogenetically controlled investigations, often accompanied by genetic insights 

from comparative genomic and transcriptomic analyses. This has created a broad understanding of 

the circumstances of C4 repeated evolution, and was fundamental for developing the initial 

strategies to engineer the C4 trait in C3 crops. However, two major gaps in our knowledge still 

remain. First, although some regulatory mutations linked to C4 anatomy and gene expression have 

been identified (e.g. Swift et al., 2024; Vlad et al., 2025), our knowledge of the genetic control of 

the C4 trait is largely limited to a few models, particularly maize. The second major gap is the lack 

of a consensus on the minimum set of components necessary for a full C4 physiology. The latter in 

particular is a difficult task because the phenotype we observe in living species is a result of 

lineage-specific constraints and increments, that might be adaptive or not, and might have evolved 

after the trait was first put in place. The genus Blepharis provides a new opportunity to reassess 

these problems under a new perspective. 

 Another important shift in C4 research regards the adoption of experimental strategies using 

controlled crosses and genetic transformation. These are powerful tools not only to dissect the 

genetic basis of C4 components (Simpson et al., 2022), but also to experimentally investigate 

longstanding hypotheses on C4 evolution from modelling studies (e.g. Mallmann et al., 2014), an 

effort that has been long missing. Nonetheless, progress has been slow due to the current lack of an 

ideal experimental model. In the grass A. semialata, for example, which includes closely related C3, 

C4 and intermediates, although F1 photosynthetic hybrids were obtained (Bianconi et al., 2022), the 



generation of segregating F2 hybrids has been proven challenging. Likewise, tissue culture 

protocols for the species have not advanced, which limits the implementation of genetic 

transformation approaches. Nonetheless, population-level genome sequencing across the species 

range allowed a genome-wide association study (GWAS) that identified several genomic regions 

underlying C4 features (Alenazi et al., 2024). The genus Blepharis, particularly if C2 and C4 

phenotypes are confirmed within B. furcata, B. macra and B. mitrata, provides a new opportunity 

for GWAS and genetic approaches to identify loci controlling C4 traits. Similarly, crossing between 

photosynthetic types could also be explored, although different chromosome number among species 

has been reported to the genus (Ranganath & Krishnappa, 1982), which might complicate such 

efforts. Finally, the fast germination and growth rates as Stata et al. reported for some Blepharis 

species are desirable characteristics for a genetic model, and these might provide a promising 

alternative for establishing such a long-awaited model for experimental investigations. 
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Figure 1. Diversity of photosynthetic phenotypes in the genus Blepharis (Acanthaceae). Phylogeny 

redrawn from Stata et al. (2025), with representative species shown for each clade. Photographs of 

Blepharis species reproduced with permission from Stata et al. (2025). 
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