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Abstract

A wide range of strategies have been developed to modulate dysfunctional brain activities.
This narrative review provides a comparative analysis of biophysical, genetic, and biological
neuromodulation approaches with an emphasis on their known or unknown molecular
targets and translational potential. The review incorporates data from both preclinical
and clinical studies covering deep brain stimulation, transcranial electrical and magnetic
stimulation, focused ultrasound, chemogenetics, optogenetics, magnetogenetics, and toxin-
based neuromodulation. Each method was assessed based on specificity, safety, reversibility,
and mechanistic clarity. Biophysical methods are widely used in clinical practice but often
rely on empirical outcomes due to undefined molecular targets. Genetic tools offer cell-type
precision in experimental systems but face translational barriers related to delivery and
safety. Biological agents, such as botulinum neurotoxins, provide long-lasting yet reversible
inhibition via well-characterized molecular pathways. However, they require stereotaxic
injections and remain invasive. To overcome individual limitations and improve targeting,
delivery, and efficacy, there is a growing interest in the synthesis of multiple approaches.
This review highlights a critical gap in the mechanistic understanding of commonly used
methods. Addressing this gap by identifying molecular targets may help to improve
therapeutic precision. This concise review could be valuable for researchers looking to
enter the evolving field of the neuromodulation of brain function.

Keywords: neuromodulation; deep brain stimulation; transcranial electrical stimulation;
transcranial magnetic stimulation; focused ultrasound stimulation; chemogenetics;
magnetogenetics; optogenetics; toxins

1. Introduction

A growing variety of neuromodulation strategies are used to interrogate and modify
brain activity across experimental and clinical settings. These approaches can be broadly
categorized into biophysical, genetic, and biological methods—each with distinct mecha-
nisms of action and translational challenges. In this narrative review, a critical comparative
analysis of the current neuromodulation techniques, evaluating their molecular specificity,
safety, reversibility, and translational potential, is provided. Emphasizing mechanistic
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clarity may help guide future combinations of methods, improve therapeutic design, and
support the development of more targeted neuromodulatory strategies. This perspective
may be particularly valuable for researchers aiming to choose their direction within the
evolving field of neuromodulation.

2. Biophysical Methods

Biophysical methods (Figure 1) for modulating neuronal activity include invasive
deep brain stimulation (DBS) as well as non-invasive techniques such as transcranial
direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and focused
ultrasound stimulation (FUS). These approaches are currently the most clinically established
neuromodulation strategies.

Deep brain stimulation Transcranial direct current Transcranial magnetic Transcranial focused
stimulation stimulation ultrasound stimulation
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Figure 1. Schematic representation of main biophysical neuromodulation techniques (created in
BioRender, Zhantleuova, A. (2025), https:/ /BioRender.com/q3pnqqn) (accessed on 23 July 2025).

2.1. Deep Brain Stimulation

Deep brain stimulation is an invasive neuromodulatory technique that was approved
by the US Food and Drug Administration (FDA) nearly three decades ago (Table 1). It
involves the surgical implantation of bipolar electrodes (typically 1.27 mm in diameter
and 1.5 mm in height) into specific subcortical brain regions to deliver electrical pulses
(commonly 1-3.5 V, 60-210 ps, and 130-185 Hz for voltage, pulse width, and frequency,
respectively) [1,2]. The applied electric field, controlled by the patient, affects neuronal
activity by influencing the opening and closing of voltage-gated ion channels, thereby
modulating neuronal excitability. In addition to ion channel modulation, DBS affects
key neurotransmitter systems, including dopaminergic, glutamatergic, and GABAergic
pathways. It also influences non-neuronal elements of the brain microenvironment, such as
glial and endothelial cells, and is associated with long-term plasticity and neuroprotective
effects, including the upregulation of neurotrophic factors like BDNF and GDNF [3].

DBS is a well-established standard of care for movement disorders such as Parkinson’s
disease, essential tremor, and dystonia, and is currently under active investigation for a
range of neuropsychiatric and neurodegenerative disorders, including treatment-resistant
depression and Alzheimer’s disease [4-6]. It has also been used for pain conditions such as
refractory cluster headache, with good outcomes [7,8].

The application of DBS is limited by its invasive nature, requiring stereotactic neuro-
surgery and long-term device management, leading to high costs. The economic burden
is substantial: the average cost of the DBS device is approximately USD 21,500 + 8900,
the cost of surgery is USD 40,942.85 + 17,987.43, and the total cost of treatment may reach
USD 47,600 £ 23,000 during the first year of care [9]. Additional challenges include the risk
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of surgical complications, such as infection or hemorrhage, that could even lead to death,
and the potential for adverse neuropsychiatric side effects, including mood alterations or
cognitive changes [10-13].

Recent developments have aimed to overcome these limitations through adaptive
deep brain stimulation (aDBS), a closed-loop system that dynamically adjusts stimulation
parameters based on real-time neural biomarkers reflecting the patient’s condition. Tech-
nological progress in signal processing, artifact filtering, and neural data integration has
contributed to more precise and energy-efficient stimulation [14]. Early trials demonstrated
that personalized aDBS may lead to better motor outcomes and quality of life in patients
with Parkinson’s disease compared to conventional open-loop DBS [15]. Although the full
results have not yet been published, it was reported that approximately 98% of partici-
pants in the ADAPT-PD trial opted to continue with adaptive DBS rather than revert to
conventional stimulation [16].

While DBS was initially conceptualized as a reversible functional lesion, it is now
evident that its therapeutic effects extend well beyond simple neuronal inhibition. The
technique reshapes network dynamics, modifies neurotransmitter turnover, and influences
non-neuronal brain components, namely glial and endothelial cells. Emerging studies
also point to intracellular signaling cascades and neurotrophic regulation as plausible
molecular targets. Understanding molecular targets is essential for expanding clinical use

and optimizing DBS.

Table 1. Clinical approval of neuromodulation methods.

Method Clinical Indication Target Brain Region Approval Year
Essential tremor, Ventral intermediate nucleus 1997 [17]
Parkinsonian tremor of thalamus
. ;. Internal globus pallidus, 2002 [18],
Parkinson’s disease subthalamic nucleus 2025 [19]—aDBS !
Deep brain stimulation . . 5 Internal globus pallidus,
Primary dystonia (under HDE ) subthalamic nucleus 2003 [20]
Obsessive-compulsive disorder Anterior limb of the internal
2 2009 [21]
(under HDE <) capsule
Epilepsy Anterior nucleus of thalamus 2018 [22]
Major depressive disorder Prefrontal cortex 2015 [23]
Transcranial direct Chroni - 4 h
current stimulation ronic pain syndromes such as Primary motor cortex 2016 [24]

fibromyalgia and migraine

Transcranial magnetic
stimulation

Major depressive disorder

Cerebral cortex

2008 [25,26],
2021 [27]—with
comorbid anxiety

Transcranial focused
ultrasound stimulation

Headache (migraine with aura) Occipital cortex 2013 [28]
Obsessive—compulsive disorder Prefrontal cortex 2017 [29]
Smoking cessation Prefrontal cortex, insula 2020 [30]
Essential tremor Ventral intermediate nucleus 2016 [31]

of the thalamus

Parkinson’s disease

Ventral intermediate nucleus
of the thalamus

2018 [32]—tremor; MRgFUS 3
2021 [33]—mobility, rigidity,
or dyskinesia;
MRgFUS 3

1 aDBS—adaptive deep brain stimulation; 2 HDE—Humanitarian Device Exemption; and > MRgFUS—magnetic
resonance image-guided focused ultrasound stimulation.
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2.2. Transcranial Direct Current Stimulation

Transcranial direct current stimulation is a non-invasive procedure in which electrodes
are placed on the scalp to deliver low-intensity electrical currents (typically 1-2 mA, and
up to 4 mA under controlled conditions [34]) that modulate neuronal activity. The most
common electrode sizes range from 25 to 35 cm?, producing current densities of approxi-
mately 0.28-0.80 A/m?, and stimulation is typically applied for 20-40 min, depending on
the protocol [35].

Transcranial direct current stimulation allows for the modulation of neuronal firing
via excitatory or inhibitory mechanisms depending on the stimulation polarity. Specifi-
cally, anodal stimulation influences the resting membrane potential toward depolarization,
whereas cathodal tDCS shifts it toward hyperpolarization [36]. These effects can persist for
up to 90 min after a single session; longer-lasting effects are typically achieved only after
repeated applications [37]. Synaptic mechanisms resembling long-term potentiation and
long-term depression have been proposed as contributors to the after-effects of tDCS [38].

Two-directional stimulation has shown benefits for the treatment of patients with
major depressive disorder [39]. Frontal lateralization has been extensively studied using
fMRI and EEG measurements of brain activity during the resting state and cognitive task
performance [40—42]. Depressed patients are characterized by hypoactivity of the left dor-
solateral prefrontal cortex (DLPFC) and hyperactivity of the right DLPFC. For that reason,
opposite stimulation of the left and right DLPFC helps to balance brain activity between
hemispheres [43,44]. Despite the fact that tDCS has shown efficacy in treating patients with
acute depression, it has demonstrated little to no benefit in treatment-resistant depression.
Assuming that DBS of the subgenual gyrus (BA 25) has yielded effective results for such
patients [45], technical advancements in the spatial resolution of tDCS could offer potential
advantages. tDCS has been shown to offer therapeutic benefits for patients with treatment-
resistant epilepsy [46,47], migraine, and children and adolescents with attention-deficit
hyperactivity disorder [48]. Patients with Parkinson’s disease may benefit from tDCS in im-
proving cognitive functions, even if motor function remains unchanged [49]. In Parkinson’s
disease rat models, tDCS has been shown to alleviate depression-like behaviors [50].

The integration of neuromodulation techniques with neuroimaging may provide
efficacy information simultaneously (online) or post stimulation (offline). In particular,
the combination of tDCS with functional near-infrared spectroscopy (fNIRS) delivered an
evaluation of cortical hemodynamic responses to neurostimulation. The effects of neuro-
modulation were evaluated via changes in EEG rhythms in patients after stroke during
rehabilitation. An increasing number of integrated neuroimaging and neuromodulation
(fNRIS-tDCS, EEG-tDCS) studies confirmed the significant impact of neurostimulation on
brain activation [51,52].

A major strength of tDCS is its non-invasive nature, which confers a favorable safety
profile compared to invasive neuromodulatory approaches. Additionally, the simplicity
and portability of the technique enable its implementation in home-based environments,
thereby enhancing its feasibility for widespread use. From an economic perspective, tDCS
remains one of the most cost-effective neuromodulatory interventions. Hospital-based tDCS
programs for depression have been estimated at EUR 1555.60 per patient [53]. Although not
approved by the FDA, tDCS has received approval in the European Union for conditions
such as depression and chronic pain (Table 1).

Nevertheless, the clinical efficacy of tDCS remains limited by several technical and
biological factors. A major constraint is its low spatial resolution and diffuse current
distribution, which is strongly influenced by electrode size, placement, and inter-electrode
distance. To address this, newer electrode montages have been developed. For instance,
high-definition tDCS utilizes small circular electrodes (~1 cm diameter) in a 4 x 1 ring
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configuration, significantly improving the focality of stimulation compared to conventional
pad montages [54]. Furthermore, some researchers have proposed 4 mA protocols or
individualized electric field dosing to enhance clinical effects, especially in patients who
may be underdosed at standard 2 mA settings [34]. However, these approaches introduce
their own challenges. Higher intensities increase the risk of scalp discomfort, burning
sensations, and may raise concerns about safety in self-administered contexts. Moreover,
electric field personalized dosing often requires MRI scans, complicating home-based
implementation [55].

Compounding these issues, a wide range of different stimulation protocols have
been employed, making it even more challenging to conclude on its actual therapeutic
efficacy [56]. While tDCS remains the primary focus here, transcranial electrical stimulation
also encompasses transcranial alternating current stimulation, transcranial random noise
stimulation, and transcranial pulsed current stimulation, each of which modulates neural
activity via distinct types of currents.

Ongoing research continues to explore the molecular mechanisms underlying tDCS to
refine biomarkers of responsiveness and develop personalized protocols that can improve
reproducibility and clinical outcomes across diverse populations.

2.3. Transcranial Magnetic Stimulation

Transcranial magnetic stimulation is a technique that uses rapidly changing magnetic
fields to induce small electric currents that can modulate the activity of the underlying
cortex. The main types of TMS are single-pulse TMS (sTMS), which produces a single
magnetic pulse per application, and repetitive TMS (rTMS), which produces multiple
magnetic pulses per application.

Clinically, sTMS delivered via a portable, FDA-approved (Table 1), hand held device
has been shown to be effective in alleviating migraine attacks [57], while its long-term
use has been shown to have preventive effects in reducing the frequency severity of
migraines [58]. Preclinically, it has been shown to reduce cortical excitability and the
induction of cortical spreading depression [59,60]. Interestingly, it has also been shown
to modulate the excitatory activity of third-order trigeminothalamic neurons through the
modulation of GABAergic activity that suppresses corticothalamic inputs [60].

rTMS can produce both inhibitory and excitatory effects depending on the frequency
and pattern of stimulation. rTMS typically runs at 10 Hz; however, low-frequency TMS
(LF-TMS; <1 Hz) is also widely used and typically induces inhibitory effects [61]. Inhibitory
LE-TMS protocols have been applied in both research and clinical settings to modulate hy-
peractive brain regions associated with psychiatric and neurological disorders. For example,
stimulation of the right DLPFC has been shown to reduce cortical excitability and is associ-
ated with antidepressant effects [62]. Similarly, LF-TMS of the left temporoparietal cortex
has been used to alleviate auditory hallucinations in schizophrenia, with meta-analyses
reporting significant reductions in symptom severity [63]. Clinical studies also report that
LF-TMS applied to the right DLPFC can reduce panic-related symptoms in patients with
panic disorder [64]. A meta-analysis showed that LF-TMS applied to the right DLPFC was
as effective as high-frequency (10-20 Hz) rTMS applied to the left DLPFC in treating major
depressive disorder; however, LF right-sided rTMS produced fewer side effects and had
less risk of seizures [65]. Furthermore, brain oscillation-synchronized stimulation using
real-time EEG-triggered TMS shows efficacy in neuromodulation [66]. Real-time EEG-TMS,
by providing continuous effects of stimulation, may help to optimize protocol depending
on the ongoing individual’s brain functional state. In addition, integrated fNIRS with TMS
provides quantification of stimulation effects [67]. Both online (real-time) and offline (post
hoc) measurements of responses to TMS were considered part of a “closed-loop” system.
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Recent engineering has produced other rTMS modalities, such as theta-burst TMS with
the typical theta burst stimulation protocol running at 50 Hz every 200 ms. A protocol of
intermittent theta burst stimulation has been FDA-approved (Table 1) for treating major
depressive disorder in adults [68-70].

Despite the vast number of clinical applications showing therapeutic effects, TMS
efficacy is limited by its low spatial resolution, shallow depth of penetration, interindividual
variability, and the need for repeated sessions to maintain therapeutic effects. Treatment
efficacy is strongly correlated with the number of cumulative sessions, and protocols often
require 20-30 daily sessions, with some extending to 50 sessions, each costing approximately
USD 300, although this cost varies widely by region [71,72].

TMS with neuronavigation significantly improves spatial resolution compared to
traditional TMS. Neuronavigation, using real-time brain imaging, enables the precise
targeting of specific brain regions in MNI space and allows for a more accurate delivery of
stimulation. For instance, precise rTMS of the left DLPFC has shown clinical efficacy, and
its effectiveness was found to depend on subgenual connectivity, assessed via resting-state
functional MRI [73].

Future efforts should focus on refining stimulation protocols and improving the ac-
curacy of cortical targeting by incorporating complementary techniques. Additionally, a
deeper understanding of the molecular pathways affected by TMS may support the discov-
ery of predictive biomarkers and facilitate the development of targeted neuromodulation.

2.4. Focused Ultrasound Stimulation

Low-intensity transcranial-focused ultrasound is a non-invasive neuromodulation
technique that delivers focused ultrasound waves through the skull to modulate neuronal
activity within specific brain regions [74]. The acoustic waves used in FUS typically operate
within a frequency range of 250700 kHz, allowing for the modulation of both cortical and
deep subcortical structures with spatial precision in the range of 1-5 mm [75]. The intensity
of the acoustic energy remains below 100 W/cm? [76].

FUS has shown promise in preliminary clinical studies for modulating mood and
emotional networks, and improving conditions such as chronic pain, minimal consciousness
state, and drug-resistant temporal lobe epilepsy [77]. This technique, approved by the
FDA for the treatment of essential tremor and Parkinson’s disease (Table 1), recently
showed promising results in clearing amyloids from the brain in patients with Alzheimer’s
disease [78]. FUS can facilitate the penetration of monoclonal antibodies, such as an anti-
Alzheimer’s drug aducanumab, into brain tissue, resulting in the clearance of amyloids
plaques [79]. Since FUS can lead to some changes in local temperature, the modern approach
suggests simultaneous thermometry [80]. Even though the primary target cells for FUS
are not fully established, the beneficial action of FUS is currently related to the opening of
the blood-brain barrier (BBB) [81,82]. Recently discovered highly mechanosensitive Piezol
channels were proposed as the main molecular targets of FUS [83,84].

A key limitation of FUS is imprecise targeting due to skull variability, which could
be solved by a combination of FUS with imaging techniques (magnetic resonance image-
guided focused ultrasound stimulation or MRgFUS). Acoustic coupling through hair also
poses challenges, though recent studies show that using oil as a coupling medium can
improve effectiveness and patient comfort without requiring hair removal [85].

2.5. Multi-Physical-Factor Stimulation Techniques

Given the limitations of single-modality neuromodulation methods in terms of spa-
tial precision, penetration depth, and temporal specificity, there is growing interest in
approaches that combine multiple physical modalities. One such technique is transcra-
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nial magnetoacoustic stimulation (TMAS), which integrates ultrasound waves with static
magnetic fields. TMAS can achieve millimeter-level targeting even in deep brain re-
gions, offering up to a tenfold better focus compared to conventional stimulation [86].
TMAS has shown promise in preclinical models, such as improving cognitive perfor-
mance in mice with Parkinson’s disease [86]. Additionally, combining different biophysical
techniques—for example, cathodal tDCS with low-frequency TMS—provided stronger and
more sustained inhibitory effects in motor cortical excitability, highlighting the therapeutic
potential of multi-modal neuromodulation strategies [87].

Although not a neuromodulation technology per se, recent developments in high-
resolution brain—computer interfaces (BCls) such as those from Neuralink and Synchron
demonstrate the potential for future integration with modulatory systems. In the ongoing
PRIME Study, Neuralink’s fully implantable device, featuring a skull-mounted chip and
flexible electrode threads, has enabled paralyzed individuals to control digital interfaces
with high precision through cortical activity alone [88]. Meanwhile, Synchron’s endovascu-
lar BCI, implanted via blood vessels, has shown promising results in early clinical trials,
offering a less invasive alternative [89]. While the current application is limited to neural
decoding and external device control, the underlying platform offers a foundation for
future bidirectional systems that could combine recording with targeted stimulation, thus
blurring the boundary between BCIs and therapeutic neuromodulation. However, the
deployment of such high-risk intracranial devices has raised legal and ethical concerns
regarding patient protection, especially in light of limited recourse mechanisms following
device-related harm. A recent policy analysis proposed the establishment of a no-fault
compensation framework to address these gaps, emphasizing the need for regulatory
tools that balance innovation with the protection of patients in the context of experimental
neurotechnology [90].

3. Genetic Methods

Genetic neuromodulation (Figure 2) techniques aim to achieve high cellular specificity
by introducing genetically encoded, stimulus-sensitive protein receptors into neural tissue
using viral vectors or similar gene delivery technologies. Upon successful transduction,
these molecules can be selectively activated by specific external stimuli such as designer
ligands (chemogenetics), magnetic fields (magnetogenetics), or light (optogenetics). While
these methods have revolutionized preclinical neuroscience, their translational potential
remains constrained. A major limitation lies in the need for the genetic manipulation of
target brain cells, which raises significant concerns regarding health, safety, and ethical
acceptability in human applications. Genetic neuromodulation strategies remain far from
clinical implementation and require significant technological advances before broader
application can be implemented.

3.1. Chemogenetics

Chemogenetics relies on genetically introduced effectors that are selectively responsive
to specific ligands and induce a physiologically or biochemically meaningful response
upon ligand binding [91]. The most widely used chemogenetic tool is DREADDs (Designer
Receptors Exclusively Activated by Designer Drugs), which are activated exclusively by
synthetic ligands such as clozapine-N-oxide (CNO). DREADD:s offer several benefits: they
do not require specialized equipment or invasive procedures for activation, and their
ligands can penetrate deep brain regions. For instance, inhibitory DREADDs (e.g., hM4Di)
have been successfully used to reduce excessive neuronal activity in the CA1 region of the
mouse hippocampus. This suppression of neural activity not only alleviated hyperactivity,
but also mitigated Alzheimer’s disease-like pathology in preclinical animal models [92].
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Despite their advantages, DREADDs present certain limitations, since effective stimulation
requires high doses of ligands. CNO is now known to undergo reverse metabolism into
clozapine—a compound with broad affinity for endogenous receptors. This conversion
contributes significantly to DREADD activation, but also introduces off-target effects [93].
To address these concerns, next-generation ligands such as deschloroclozapine (DCZ) have
been developed [94]. At low doses, DCZ showed high specificity without off-target effects
in DREADD-naive primates performing cognitive tasks [95]. Importantly, the use of viral
vectors to stereotaxically deliver and express designer receptors poses safety challenges,
potentially limiting their therapeutic applicability in clinical settings. To date, no DREADD-
based system has entered human trials, and additional work is required to develop safer
ligands and targeted delivery systems for future applications.

Magnetogenetics
Chemogenetics

Optogenetics

Figure 2. Genetic techniques—chemogenetics, optogenetics, and magnetogenetics—allow for modu-
lation of neuronal activity using chemical agents (e.g., clozapine-N-oxide), light, or magnetic particles
(created in BioRender, Zhantleuova, A. (2025), https://BioRender.com/fsp8kcp).

3.2. Magnetogenetics

Magnetogenetics, the magnetic control of genetically targeted cells, has developed into
two mechanistically distinct approaches. One strategy utilizes magnetic nanoparticles to
deliver localized mechanical or thermal stimuli that activate mechano- or thermosensitive
ion channels such as Piezol or TRPV1, enabling the precise control of cell signaling without
ligand-receptor interactions. The second approach involves the expression of magnetically
responsive proteins, such as the electromagnetic perceptive gene (EPG), which allows
specific neuronal populations to respond to external magnetic fields. For instance, the
activation of EPG in inhibitory interneurons has been shown to reduce seizure frequency
in rodent models [96]. Both approaches offer non-invasive modulation with deep tissue
penetration, but they face significant limitations, including unclear molecular mechanisms
(particularly in EPG-based systems), reliance on head-mounted resonant coils, technical
challenges in generating safe and effective alternating magnetic fields for whole-body
applications, and limited temporal resolution [97]. The use of viral vectors to deliver
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magnetically responsive proteins also brings about safety challenges, potentially limiting
their therapeutic applicability in clinical settings.

3.3. Optogenetics

Optogenetics is a set of techniques that use light in the visible spectrum to control the
functional activity of cells through light-sensitive proteins, such as opsins, whose genes
are introduced into the biological system in advance. The delivery and expression of opsin
effectors can be achieved either through transient expression in specific neuronal popula-
tions using viral vectors carrying opsin genes or through stable expression in the brains of
transgenic animals [98]. Optogenetic tools have enabled neuroscientists to manipulate the
activity of neurons and glial cells with high temporal and spatial precision in experimental
animals. For instance, the optogenetic inhibition of targeted axonal projections from the
lateral orbitofrontal cortex (IOFC) to the striatum in mice reduced spiking in medium
spiny neurons and alleviated obsessive-compulsive behavior, confirming the critical role
of the IOFC—striatal pathway in this disorder [99]. Another study demonstrated that the
optogenetic inhibition of mouse striatal GABAergic neurons increased microvessel density
and growth factor expression in the peri-infarct region [100]. In a therapeutic context,
the optogenetic inhibition of the subthalamic nucleus by Yoon et al. led to significant
improvement in forelimb akinesia in a unilateral mouse model of Parkinson’s disease [101].
However, this method has some limitations when considering its use both in preclinical
research and as a potential human therapeutic. Overexpression of microbial opsins in
neural tissue can adversely affect neuronal physiology, and light activation may cause
phototoxicity. The need for complex fiber-optic devices that must be securely attached to
the animal’s skull is another drawback. Additionally, the precise control of optogenetic
stimulation intensity can be challenging, especially due to the heterogeneous expression
of opsins.

4. Biological Methods

Biological neuromodulation approaches (Figure 3) involve the use of natural or engi-
neered toxins to selectively inhibit neuronal activity following a local injection. These meth-
ods are primarily applied in preclinical research and rely on invasive intracerebral delivery
to achieve focal effects. A key advantage of this approach lies in the well-characterized
molecular mechanisms of toxin agents. Depending on the molecular construct, the ef-
fect can be irreversible or reversible, lasting from days to several months. This flexibil-
ity enables both the temporary silencing and permanent ablation of defined neuronal
populations. However, the necessity of stereotactic injections and the potential for off-
target distribution remain important limitations. Despite these challenges, biological
methods hold translational promise when combined with refined targeting strategies and
delivery systems.

4.1. Protein Synthesis Inhibiting Toxins: Saporin and Diphtheria Toxin

Toxins that inhibit protein synthesis, such as saporin and diphtheria toxin (DT), are
widely used in experimental neuroscience to achieve the irreversible silencing of defined
neuronal populations. These agents act by disrupting the translational machinery, leading
to apoptotic cell death. Saporin is a type I ribosome-inactivating protein that depurinates a
specific adenine residue within 285 rRNA, thereby halting ribosomal activity and protein
synthesis [102]. DT, in contrast, enters cells via receptor-mediated endocytosis and delivers
its catalytic domain into the cytosol, where subsequent ADP-ribosylation of elongation
factor 2 (EF-2) effectively blocks translational elongation, thereby inducing cell death [103].
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Figure 3. Mechanisms of action of selected toxins in experimental neuromodulation. Botulinum
toxins cleave neuronal SNARE proteins to inhibit neurotransmission, whereas diphtheria toxin
and saporin inhibit ribosomal protein synthesis (created in BioRender, Zhantleuova, A. (2025),
https:/ /BioRender.com/igz5igh).

Modified saporin can be targeted to specific neurons via genetic fusion with cell-
specific ligands. For example, 192IgG-saporin, an antibody conjugate targeting cholinergic
neurons, has been used to selectively ablate cholinergic neurons in the basal forebrain [104].
This approach induces cognitive impairments, including deficits in memory and learn-
ing [105,106], mimicking the cholinergic dysfunction observed in Alzheimer’s disease. In
Parkinson’s disease modeling, the targeted delivery of saporin conjugated to a monoclonal
antibody to the dopamine transporter in the left striatum or lateral ventricle of adult male
rats resulted in selective dopaminergic neuron destruction in the ipsilateral substantia
nigra, with no off-target effects [107]. The local injection of saporin conjugated with quan-
tum dots into the substantia nigra led to dopaminergic neuron loss, microglial activation,
and impaired motor coordination, providing a model of Parkinson’s disease [108]. Apart
from neurodegenerative disease models, saporin conjugates have been used to study sleep
regulation. The targeted elimination of orexin 2 receptor-expressing neurons in the hypotha-
lamus using orexin-saporin induces narcolepsy-like behavior [109], while their ablation in
the substantia nigra or the ventrolateral preoptic nucleus caused insomnia [110,111].

A recent study used native DT to investigate the role of glutamatergic neurons in the
sub-laterodorsal tegmental nucleus; neuronal ablation abolished REM sleep and enhanced
fear memory [112]. Various modifications of diphtheria toxin have been developed to
selectively target specific neuronal populations. For example, to model Alzheimer’s dis-
ease, a nerve growth factor-diphtheria toxin conjugate was used to deplete basal forebrain
cholinergic neurons [113]. The development of a DT-urotensin-II fusion toxin [114] allowed
for the selective ablation of cholinergic neurons in the pedunculopontine tegmental nu-
cleus, revealing their limited role in reward processing, learning, or locomotion [115-117].
Tf-CRM107, a conjugate of transferrin and a mutated DT, showed promise in treating
malignant brain tumors, although systemic toxicity limited its potential [118]. Other stud-
ies incorporated DT constructs targeting glioblastoma cells, achieving significant tumor
regression in preclinical models [119,120].

4.2. Neurotransmission Inhibiting Toxins: Botulinum Neurotoxins

Botulinum neurotoxins represent a class of biological agents with unique properties of
reversible neuronal inhibition. Several BoNT serotypes (A-H) exist in nature, differing in
their duration of inhibitory effects, ranging from weeks to months, due to their intricate
mechanism of action in the presynaptic endings of neurons [121]. BoNTs exert their effects
by blocking neurotransmitter release through the cleavage of SNARE proteins, preventing
synaptic vesicle fusion [122]. This temporary inhibition of neurotransmission allows for the
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precise modulation of neuronal activity, enabling researchers to investigate both normal
and pathological brain function.

The intracerebral administration of BoNTs has been extensively studied experimentally
to model neurological disorders. Early studies demonstrated that BONT/B injections into
the entorhinal cortex led to cognitive deficits, impaired learning, and reduced long-term
potentiation in aged rats [123]. Subsequent research showed that intracerebroventricular
BoNT/A administration caused persistent memory retrieval impairments [124]. Intrastri-
atal BONT/A injections in normal rats revealed minimal cognitive effects, though treated
animals exhibited reduced anxiety [125]. BoNT has been used to either model or treat
epilepsy preclinically, depending on the site of injection. While intrahippocampal BoNT/B
infusion induced proconvulsant effects, including a reduced seizure threshold and spon-
taneous seizures [126], other studies demonstrated antiseizure properties when injected
into the hippocampus or amygdala in the models of chemically induced epilepsy [127-129].
A modified botulinum molecule, BiTox, with reduced paralytic properties, was used to
inhibit neuronal firing in the suprachiasmatic nucleus of the hypothalamus, highlighting
the potential of re-engineered BoNTs to modulate specific brain circuits [130].

BoNT/A has shown therapeutic potential in the 6-OHDA rat model of Parkinson’s
disease, where intrastriatal injections significantly reduced apomorphine-induced rota-
tions [131,132]. The BoNT/A2 variant proved more effective than BoNT/Al, offering
greater efficacy with fewer side effects [133,134]. Repeated BoNT/ A injections produced
stronger and longer-lasting effects, improving motor function, gait, and dynamic locomo-
tion [135-138]. Additionally, BONT/A demonstrated antidepressant-like effects, enhanced
olfactory performance, and modulated receptor binding in the striatum by normalizing
D, /D3 receptor availability and reducing D; receptor binding [139-144]. Importantly,
observational studies in human patients have shown that BoNT/A injected into the
sphenopalatine ganglion can be effective in trigeminal neuralgia, cluster headaches, and
migraines [145,146].

The stereotaxic injection of BONT/E into the primary motor cortex of rats 24 h prior
to middle cerebral artery occlusion provided neuroprotection in ischemic brain injury by
inhibiting glutamate release and preventing neuronal loss [147]. In exploratory studies,
the transient silencing of the striate cortex via BONT/E injection at the peak of the critical
period (postnatal day 14) led to impaired visual maturation, reduced acuity, and prolonged
plasticity, with deficits persisting even after recovery [148]. Similarly, a BONT/A recom-
binant construct, when delivered to the adult visual cortex, modulated visual function,
highlighting the potential of botulinum neurotoxin for studying both brain development
and functional plasticity in adulthood [149]. The injected volume (1 pL) led to toxin spread
confined to a volume of less than 1 mm? from the injection site, providing a useful measure
for future interventions. The absence of neuronal loss has been confirmed in histological
studies following intrastriatal BONT/A injection [150]. Interestingly, BONT/A exhibited
bidirectional axonal and transsynaptic transport, with cleaved SNAP-25 detected in mul-
tiple brain regions. This distribution depended on the distance from the injection site
and connectivity to the striatum, and botulinum-cleaved SNAP-25 persisted for at least a
year [151].

Recent advances in bioengineering have led to the development of chimeric botulinum
molecules targeting specific neuronal subpopulations. These constructs typically combine
the catalytic light chain of botulinum neurotoxins with customized receptor-binding do-
mains. One example is the opioid receptor-targeted botulinum molecule, Dermorphin-Bot
(Derm-Bot) [152]. In preclinical studies, this engineered construct selectively silenced
nociceptive neurons and produced long-lasting analgesia in mouse models of chronic
pain, without affecting motor function or causing systemic toxicity. Following intrathe-
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cal administration, Derm-Bot inhibited neurons in the spinal cord, expressing p-opioid
receptors and producing analgesic effects similar to conventional opioids, but at doses
nearly a thousand times lower. Derm-Bot effectively alleviated mechanical hypersensitivity
in inflammatory pain models induced by CFA injection into the ankle joint or hind paw.
Further work demonstrated that a Substance P-botulinum conjugate, SP-Bot, could mediate
the persistent silencing of pain pathways, with re-inducible effects upon repeated injection,
providing a basis for long-term, reversible neuromodulation [153]. The Substance P part of
the molecule allowed it to enter neurons that express neurokinin-1 receptors, which play a
key role in transmitting pain signals in the spinal cord.

Together, these studies exemplify the potential of designer BoNT-based therapeutics
to achieve the specific, reversible, and long-lasting inhibition of neuronal activity. However,
their use remains limited by the need for invasive delivery and the potential for remote
spread via transsynaptic transport, warranting the further refinement of delivery methods
and safety assessment for clinical translation.

5. Future Directions

Despite decades of research and growing clinical applications, neuromodulation
remains an evolving field with considerable conceptual and mechanistic gaps. While
various techniques—including biophysical, genetic, and biological approaches—have
demonstrated potential for modulating neural circuits, their therapeutic precision is still
limited by an insufficient understanding of molecular targets and intracellular signaling
pathways. Our comparative analysis (Table 2) reveals a consistent trade-off between the
advantages and disadvantages of each neuromodulation technique.

Table 2. Comparison of advantages and disadvantages of neuromodulation methods.

Method

Advantage

Disadvantage

Deep brain stimulation

Adjustable and
reversible effects

Invasive procedure with surgical risks; high
financial cost and maintenance burden;
potential side effects

Transcranial direct
current stimulation

Non-invasive; portable; safe

Low spatial resolution; shallow penetration;
variable efficacy

Biophysical . . . . Limited depth and spatial precision; high
Transcranial magnetic Non-invasive; . .. 1 .
. . o inter-individual variability; potential
stimulation protocol flexibility .
side effects
Transcranial focused Non-invasive; high spatial
ultrasound stimulation precision; capable of deep Low temporal accuracy; early clinical stage
brain targeting
. Requi iral vector deli ; high ligand
. High cell-type specificity; no equires viral vector _e ivery; hig . igan
Chemogenetics . doses may cause off-target effects; low
need for external devices . .
time precision
Unclear molecular mechanisms; technical
. Magnetogenetics Good targeting precision complexity; requires genetic modification via
Genetic viral vectors
Requires genetic modification; light delivery
Optogenetics Extremely high temporal and via implanted optical fibers; potential
ptog spatial precision phototoxicity; heterogeneous
opsin expression
. . Flexible targeti i . o .
Protein synthesis- Sabe targenng via Requires stereotaxic injection; irreversible
L : conjugation with ligands
inhibiting toxins S neuronal loss
Biological or antibodies

Neurotransmission-inhibiting
toxins

Reversible inhibition;
modifiable duration

Requires stereotaxic injection; potential
off-target transport
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Despite significant advances in basic research, some of these technologies are still far
from clinical translation, primarily due to issues related to biosafety, delivery complex-
ity, and insufficient mechanistic understanding. Genetic methods—such as optogenetics,
chemogenetics, and magnetogenetivs—offer unparalleled cell-type specificity and well-
defined intracellular mechanisms, making them powerful tools for dissecting neural circuits.
However, their clinical utility is hampered by several barriers: the requirement for viral
vector delivery, the risk of immune responses, the cytotoxic potential of magnetic nanopar-
ticles, and ethical concerns associated with long-term genetic modification. Moreover,
preclinical studies increasingly reveal that these technologies may induce off-target and
systemic effects, especially when applied at therapeutic dosages. Future directions should
focus on enhancing the safety of these tools through improved vector engineering and the
development of cell-type-specific ligands. Minimally invasive delivery strategies, such
as systemic administration with targeted transport across the BBB, may hold promise for
reaching deep brain structures without invasive procedures.

In parallel, biological toxins offer an alternative route to targeted neuronal inhibition
with defined intracellular action, such as the disruption of SNARE proteins or ribosomal
function. Botulinum toxins A and B have been approved for clinical use to treat many
bodily functions, but not brain-specific applications. Currently, their application remains
limited by delivery challenges and concerns regarding off-target transport. Furthermore,
unlike other techniques, these agents do not allow for real-time modulation or adaptation
to dynamic neural states, making them less suited for flexible or responsive therapeu-
tic designs. By designing chimeric toxins with tailored binding and catalytic domains,
researchers can achieve higher specificity and reversibility, enabling cell-type-selective
silencing with minimal off-target effects.

In contrast, biophysical neuromodulation techniques have already reached clinical ap-
plication in several psychiatric and neurological disorders. However, these methods often
suffer from poor spatial specificity, shallow penetration, and most notably, a lack of clearly
defined molecular targets. As a result, their therapeutic effects remain empirical, with
high inter-individual variability and limited predictability. Moreover, although generally
considered safe, the long-term effects of repeated stimulation remain poorly understood.
Potential delayed or cumulative adverse effects—such as structural, metabolic, or immuno-
logical changes—have not been systematically evaluated in most clinical protocols, raising
concerns about their widespread use without robust long-term safety data. Future efforts
should focus on hybrid stimulation paradigms that integrate multiple physical modalities
to enhance efficacy. For example, FUS-mediated opening of the blood-brain barrier may
facilitate the targeted delivery of designer neurotoxins, genetic vectors, or nanocarriers to
deep brain structures.

Critically, future innovation must emphasize the identification and validation of
molecular targets—such as ion channels, neurotransmitter systems, and mechanosensitive
proteins like Piezol—that mediate the effects of neuromodulatory interventions. Defin-
ing these targets will not only improve mechanistic understanding, but also support the
rational design of combined or synergistic therapies. Integrating molecular insights with
multimodal neuromodulation platforms will be key to developing personalized treatment
strategies. Further studies of the molecular mechanisms of neuromodulation methods,
in addition to a deeper understanding of their long-term action, provide prospects for a
possible beneficial combination of methods. Multimodal integration can help improve
therapeutic outcomes by using the advantages of some methods and leveling their dis-
advantages with the help of other methods, or mutually enhancing the desired effect by
combining methods.
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6. Limitations

This review does not provide a systematic summary of all available neuromodulation
studies. Instead, it adopts a narrative format, deliberately focusing on the comparative
evaluation of mechanistic specificity, safety, and translational feasibility across the main
representative techniques. No formal inclusion or exclusion criteria were applied; rather,
studies were selected to illustrate conceptual advances, clinical relevance, or unresolved
mechanistic issues.

While the general advantages and limitations of neuromodulation strategies have been
addressed in previous reviews, the distinctive contributions of this work lie in its wider
coverage of neuromodulation approaches and emphasis on molecular targets highlighting
the potential translational significance of mechanistic precision. Additionally, the review
draws attention to underexplored intersections between modalities that are often over-
looked in conventional frameworks. This perspective may inform future mechanistic and
translational research, particularly where neuromodulation remains empirically guided.
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Abbreviations

The following abbreviations are used in this manuscript:

6-OHDA 6-hydroxydopamine
ADAPT-PD  Adaptive DBS Algorithm for Personalized Therapy in Parkinson’s Disease

aDBS Adaptive deep brain stimulation
ADP Adenosine diphosphate

BBB Blood-brain barrier

BCIs Brain—computer interfaces

BDNF Brain-derived neurotrophic factor
BoNTs Botulinum neurotoxins

CFA Complete Freund’s Adjuvant

CNO Clozapine-N-oxide

DBS Deep brain stimulation

DCZ Deschloroclozapine

Derm-Bot Dermorphin-botulinum neurotoxin
DLPFC Dorsolateral prefrontal cortex
DREADDs  Designer Receptors Exclusively Activated by Designer Drugs
DT Diphtheria toxin

EEG Electroencephalogram

EF-2 Elongation factor 2

EPG Electromagnetic perceptive gene

FDA US Food and Drug Administration



Biomedicines 2025, 13, 1889 15 of 22

fMRI Functional magnetic resonance imaging

fNIRS Functional near-infrared spectroscopy

FUS Focused ultrasound stimulation

GABA Gamma-aminobutyric acid

GDNF Glial cell line-derived neurotrophic factor

HDE Humanitarian Device Exemption

LE-TMS Low-frequency transcranial magnetic stimulation
10FC Lateral orbitofrontal cortex

MRgFUS Magnetic resonance image-guided focused ultrasound stimulation
MRI Magnetic resonance imaging

rRNA Ribosomal ribonucleic acid

rTMS Repetitive transcranial magnetic stimulation
SNAP-25 Synaptosomal-associated protein 25

SP-Bot Substance P-botulinum neurotoxin

sTMS Single pulse transcranial magnetic stimulation
tDCS Transcranial direct current stimulation

TMAS Transcranial magnetoacoustic stimulation

TMS Transcranial magnetic stimulation
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