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Abstract

Structural rearrangements at calorimetric glass transition are behind drastic changes of
material characteristics, causing differences between glasses and melts. Structural descrip-
tion of materials includes both species (atoms, molecules) and connecting bonds, which are
directly affected by changing conditions such as the increase of temperature. At and above
the glass transition a macroscopic percolation cluster made up of configurons (broken
bonds) is formed, an account of which enables unambiguous structural differentiation
of glasses from melts. Connection of transition caused by configuron percolation is also
discussed in relation to the Noether theorem, Anderson localisation, and melting criteria of
condensed matter.

Keywords: glass; melt; glass transition; configuron; Anderson localization; percolation;
Hausdorff–Besicovitch dimension

1. Introduction
While the calorimetric glass transition in amorphous materials is an obvious effect

mechanically expressed by the solid-like behaviour, such as the brittleness of glasses,
against the liquid-like behaviour, including the plasticity of the molten state, the underlying
microscopic, atomic-size mechanisms and structural rearrangements responsible for the
transition itself are still poorly understood. This resulted in widely spread affirmations
that there is no structural difference between glasses and liquids and that both glasses
and liquids are the same fluid state of matter which differ from each other only by the
magnitude of viscosity or relaxation times [1]. Apart from the fact that the viscosity being
even used on the logarithmic scale cannot serve as a criterion of glass transition—see e.g.,
Table 4 of Ref. [2] which shows that the viscosity at the calorimetric glass transition spans
over four orders of magnitude from 108.8 to 1013 Pa·s—it is now acknowledged that “the
treatment of vitrification as a process of continuously breaking ergodicity with entropy
loss and a residual entropy tending to zero in the limit of zero absolute temperature is in
disagreement with the absolute majority of experimental and theoretical investigations of
this process and the nature of the vitreous state”, a conclusion which has been explicitly
illustrated by model computations [3].

This overview outlines the importance of distinguishing structural differences of
amorphous materials below and above the glass transition temperature and highlights
the role of the system in understanding the nature of the transformation of glasses into
melts. The focus is on utilisation of configuron percolation theory (CPT), aiming to use
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it on treating experimental data. The term configuron was introduced by Angell and
co-authors, who proposed the congruent bond lattice model with the aim of replacing
the set of strongly interacting atoms in the condensed matter with a congruent structure
of weakly interacting chemical bonds that is easier to analyse [4–7]. At temperatures
T > 0, some of the chemical bonds are broken due to thermal fluctuation: the higher T, the
more bonds are broken. Each broken bond, along with the associated strain-releasing local
adjustment of centres of atomic vibrations, is treated following Angell as an elementary
excitation termed a configuron. The notion of configuron is universal, as illustrated by
Table 1 (modified after [8]).

Table 1. Examples of materials with different types of bonding and the corresponding configurons.

Bond Type Substance Bond Energy
(kJ/mol) Configuron Description Microscopic Result of

Configuron Formation

Covalent SiO2 443 A Si–O broken bond with
neighbouring adjustments

A shift by one or more
atoms from the first
coordination shell

Ionic CuF2 2591 A Cu–F broken bond with
neighbouring adjustments Same as above

Metallic Fe 407
A displacement of an atom out
of the first coordination shell

with neighbouring adjustments
Same as above

Van der Waals Ar 7.6 A broken Ar–Ar bond with
neighbouring adjustments Same as above

Hydrogen H2O 50 A broken hydrogen bond with
neighbouring adjustments Same as above

The configurons formed do not support atoms/molecules bound to each other. On
an increase of either temperature or intensity of radiation, which also effectively breaks
chemical bonds [9], the concentration of configurons can become so high that percolation via
broken bonds occurs. Kantor and Webman [10] have proved that the rigidity threshold of
an elastic percolating network is identical to the percolation threshold. Thus, the formation
of the percolation cluster made of configurons results in the full loss of rigidity, which
is the transformation of a solid into a liquid and which, in the case of amorphous solids,
is treated as a glass–liquid transition. Considering glass–liquid transition as melting
of amorphous solids, we formulate the melting criterion of solids as the condition of
increase of Hausdorff–Besicovitch dimensionality of the set (SB) of configurons (broken
bonds) from zero to DH = dimH |SB| ≥ 2.5. The constant volume jump of heat capacity
at the glass transition then closely follows the equipartition theorem resulting from the
change of dimensionality of configurons set from 0 in the glassy phase to DH in the liquid
∆CV ≈ ∆Ctrans

V = 0.5DH R, where R is the gas constant.

2. Structural Differences Between Glasses and Melts
Glasses drastically differ from liquids structurally—thermally disrupted bonds in

glasses constitute a small and often negligible fraction of the total number of chemical
bonds which provide the integrity and rigidity of condensed matter, while liquids are
overloaded by broken bonds. Obviously, the materials become gaseous if all chemical
bonds between atoms or molecules are broken, while we expect that they will melt when
a significant and well-determined threshold fraction of bonds is broken [11]. Melting is
accompanied by a clearly seen change of atomic arrangements in crystalline materials
which transform from solid to liquid state via the first-order phase transformation in the
Ehrenfest sense, while for glasses the rearrangements of initially disorderedly distributed
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species (atoms, molecules) are almost undetectable. In the meantime, it is well recognised
that the topology of the phase space of glasses drastically changes at the glass transition by
reducing its dimensionality [12–16]. One can also state that, topologically, glasses differ
from liquids in real space, which is characterised by the set theory via a fractal Hausdorff–
Besicovitch (HB) dimensionality (set dimension) DH equal to ≈ 2.5, while glasses hold
an integer DH which is equal to the dimension of physical space d = 3 [8,11,17–21]. The
dimension of the set of chemical bonds of materials {SB} is determined by Minkowski
box-covering of the set by boxes with side ε via limit:

dimH(SB) = DH = lim
ε→0

log N(SB, ε)

log(1/ε)
(1)

where N(SB,ε) is the number of boxes of the grid intersecting {SB} [22]. The structural
difference between glasses and liquids is hence schematically illustrated by Figure 1.

Figure 1. Schematic of interphases between the crystalline, vitreous and molten states of Me2O3

condensed matter, where Me is a three-valent metal: (A): Crystal–glass interface; (B) Crystal–melt
interface; (C): Glass–melt interphase. Both crystals and glasses are fully polymerised practically
without any broken bonds at low temperatures. Melts are much less polymerised, containing many
finite-sized clusters and many broken bonds compared to solids, where these are not present. Most
publications, including recognised handbooks, attribute the same schematic image to both glasses and
liquids, erroneously not revealing the large fraction of broken bonds in liquids compared to glasses.

This contributed to a misleading belief that glasses having a disordered distribution
of atoms similarly to liquids are just liquids but having a very high viscosity, which is
arbitrarily set to be higher than about 1012 Pa·s, aiming to consider an amorphous material
in the glassy state [1,23–33]. The belief that glasses are the same liquids but at high viscosity
is amplified by relatively small differences in the X-ray and neutron diffraction patterns
exhibited by glasses and liquids, as illustrated by Figure 2, with details provided in [34]
(see also Figure 2 of ref. [35]).

In the meantime, not the changes in viscosity but rather the connectivity between
species (atoms and molecules) constituting the condensed matter is the governing pa-
rameter dictating the state of condensed matter [11,21,36–39]. Indeed, the viscosity at the
calorimetric glass transition can be significantly larger or many orders of magnitude smaller
than 1012 Pa·s [2,40–42], whilst ordered liquid crystals flow at a quite low viscosity, being
an ordered state of matter. Table 2 from [39] illustrates this statement by characterising
phase states of condensed matter as a function of ordering and connectivity.
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Figure 2. The pair-distribution function PDF of liquid and vitreous Ni with the inset showing a bulk
Ni supercell obtained using molecular dynamic simulations (adapted with permission from Ref. [34],
AIP Publishing).

Table 2. Phases of materials as a function of connectivity and ordering of atomic constituents.

Degree of Ordering
Degree of Connectivity

Low High

High Liquid crystals; Liquid
quasi-crystals Crystals; Quasi-crystals

Medium Liquid glasses Glass–crystalline materials
Low Melts Glass 1

1 The connectivity between atomic species can be diminished not only by an increase of temperature: the
irradiation of glasses, which breaks the interatomic chemical bonds, leads to fluidisation of glasses [9,43–45].

Direct visualisation of the oxide glass structure in line with the existing modified
random network model [37] is available [46,47]. Structural differences between glasses and
melts were revealed a long time ago, with Wendt and Abraham pioneering the identifica-
tion of Tg based on them [48]. They have observed the different temperature behaviour of
pair distribution functions (PDF) g(r) below and above the glass transition and proposed an
empirical (statistically based) criterion for the glass transition by defining the empirical pa-
rameter RWA = gmin/gmax, where gmin and gmax are the magnitudes of the first minimum and
first maximum of the PDF. It was found that the glass transition caused by changes of tem-
perature (T), pressure (P), or both T and P always occurs when RWA ≈ 0.139–0.142. It was
shown later that this threshold coincides with the percolation threshold RWA = ϕc [49] given
by the universal Scher–Zallen critical density in the 3D space ϕc = θc = 0.15 ± 0.01 [50,51].
Among the most important experimental works confirming the structural differences be-
tween glasses and melts was the work by Mattern et al. [52], which analysed the thermal
behaviour of the structure of Pd40Cu30Ni10P20 bulk metallic glass using high-temperature
X-ray synchrotron diffraction. The temperature dependence of structure factor S(q) fol-
lowed the Debye theory up to the Tg, while above it was altered, indicating structural
changes in the liquid. The temperature dependence of structural parameters is different in
glass and in supercooled liquid (see Figure 3a), whilst the atomic pair correlation functions
PDF(r) = g(r) reveals changes in short-range-order parameters of the first and the second
neighbourhood with temperature. Figure 3b demonstrates that for amorphous Ni.

Whilst Figure 2 demonstrated the fact that the PDFmin always increases on an increase
of temperature. Figure 3a shows an evident kink of structure factor S(q) at Tg. Figure 3b
demonstrates that the rate of increase of PDFmin has the same kink at Tg and becomes
higher exactly above it. The changes in the structure of amorphous material at Tg cause
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these changes in the macroscopic properties of the material and, first of all, in its thermal
expansion—the thermal expansion coefficient of liquid is larger compared to that of glass.

 

 

(a) (b) 

Figure 3. Variation with temperature of structural factor and pair distribution function on crossing
the glass transition temperature: (a) the first maximum of the structure factor S(q)max and its shifting
position q1 reflecting the thermal expansion of Pd40Cu30Ni10P20 bulk metallic glass (reprinted
with permission from Ref. [52], AIP Publishing). (b) the first sharp diffraction minimum PDFmin
of amorphous Ni near Tg = 930 K (adapted with permission from [49]). Copyright 2020 American
Chemical Society).

In addition to the well-recognised short-range order (SRO), the medium-range order
(MRO) is revealed in both glasses and liquids, where it is emphasised that the atomic
pair-distribution function of simple liquids and glasses shows exponentially decaying
oscillations beyond the first peak as a representative of MRO [53–56]. The structural
coherence length that characterises the exponential decay freezes at the glass transition and
attenuates on increase of temperature [54].

3. Role of Configurons in the Phase Transformation
A straightforward description of glass transition as a percolation-type phase trans-

formation between the highly connected glassy state and the less connected liquid phase
(see Table 1) is provided by the configuron percolation theory (CPT) [17–21], which can be
considered as one of the variants of the well-known two-state model, also referred to as a
two-level system, which has been successfully used by glass researchers [57–60]. The liquid
phase is typically treated in the two-state models as a mixture of two types of structural
units, with the internal variable being the molar fraction of one or the other type of them,
where the CPT uses as units the chemical bonds either intact or broken (configurons—see
Table 1), which provide one or another state of matter—see Table 2. Notably, the coupling of
the two-state model with well-investigated relaxation models has also been demonstrated
in many works [61–67]. Benigni [57] has accounted for vibrational contributions to the
thermodynamic functions using weighted sums of Einstein functions and configurational
contributions to the liquid and glass phase functions, applying a single internal variable,
the freezing kinetics of which on cooling are calculated with an Adam–Gibbs logarithmic
relaxation law [68]. The main conclusions of CPT of glass transition are as follows [69]:

• Universality—All disordered systems should exhibit percolation-type transformations
from solid-like at higher degrees of connectivity (e.g., at lower temperatures) to fluid-
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like (plastic) at lower degrees of connectivity (e.g., at higher temperatures or intensity
of irradiation).

• Singularities for derivative parameters—Thermal expansion, heat capacity, shear mod-
ulus, and other properties of glasses show a relatively sudden change at the glass
transition temperature. Derivative parameters of amorphous materials thus show
typical features of second-order phase transformations, e.g., theoretically, they diverge
at Tg.

• Dimensionality change—The HB dimensionality of the system of configurons (broken
chemical bonds) changes at Tg from 0 in glasses to fractal DH ≈ 2.5 (the experiment
shows 2.4–2.8 [69–72]) for melts.

• Dynamic (twinkling) fractals—The glass–liquid transition is accompanied by the for-
mation of a percolation macroscopic cluster made up of broken chemical bonds—
configurons. This cluster is similar to Wool’s twinkling fractals [70–72]. The percola-
tion cluster is dynamic and changes with time due to configuron migration controlled
by diffusion. Nonetheless, at any moment of time there is a percolating cluster made
of configurons above the Tg, whereas such macroscopic clusters do not exist in the
glassy state (below the Tg). The characteristic linear scale that describes the branch
sizes of dynamic clusters formed by configurons is the correlation length ξ(T);

• Fractal medium-range order—The higher the cooling rate, the larger are the remnant frac-
tal clusters frozen at liquid–glass transition. The correlation length gives the average
size of clusters made out of broken bonds at T < Tg. At T > Tg, the correlation length
gives the average size of atomic clusters formed. Second-order phase transitions in
ordered substances are typically associated with a change in the crystal lattice symme-
try, and the symmetry is lower in the ordered phase than in the less ordered phase.
In the spirit of Landau’s ideas, the transition from a glass to a liquid spontaneously
breaks the symmetry of bonds that is of the system of configurons. At the glass–liquid
transition the amorphous material changes the group of isometries from the Euclidean
to the fractal space group of isometries at length scales smaller than ξ(T).

• Two activation energies of viscosity—The viscous flow has a variable activation en-
ergy above the glass transition temperature Q(T), which becomes lower at higher
temperatures (Table 3).

Table 3. Viscous flow types and the CPT universal viscosity equation, also known as the DDO
model [73,74].

Table 1.
Low

(in the Glass)
T < Tg

Intermediate
(in the Supercooled

Melt)
Tg < T < TA

High
(in the Melt)

T > TA = (1.10 ± 0.15) Tm

Extremely High

Viscous flow type
Arrhenian with
high activation

energy QH

Non-Arrhenian,
apparent variable

activation energy Q(T)

Arrhenian with
low activation energy QL

Non-activated,
growing with

temperature rise

CPT universal
viscosity equation 1 η(T) = A1T

[
1 + A2exp

(
QL
RT

)][
1 + Cexp

(
QH−QL

RT

)]
1 The universal viscosity equation resulting from CPT correctly predicts the minima of viscosities at very high
temperatures [75]. The DDO viscosity model based on CPT is also supported by experimental data on the
transition of flow of vitreous materials to a low activation mode under electron irradiation [9,43–45].

Fractal structures formed near the glass transition are dynamic structures. On melting,
glasses transform to melts, which are supercooled melts above the Tg, and transform to
real melts at higher temperatures, i.e., at and above the melting temperature, Tm (Figure 4).
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Figure 4. Temperature dependence of density and Hausdorff–Besicovitch (HB) dimensionalities of
chemical bonds in materials following CPT.

The CPT approach also provides an explicit picture of the melting of solids, enabling
the reason for first-order solid-to-liquid phase transformation for crystalline solids and
second-order continuous solid-to-liquid transformation for amorphous materials to be
revealed [11,69]. The mechanism behind one or another type of melting lies in the mobility
of configurons, which is high for crystals because of the periodicity of the crystalline lattice
resulting in the equivalence of their positions within the lattice and is low within the disor-
dered lattice of amorphous materials due to the fast localisation of excitations following
Anderson’s localisation mechanism [76–79]. Due to their high mobility in crystals, config-
urons are quickly migrating to areas of already formed liquid near impurities or surfaces
where they condense or partly recombine, adding the heat of condensation and recombi-
nation and thus effectively arresting the temperature referred to as the melting point Tm,
whereas configurons are highly localised (almost immobile) in amorphous materials, form-
ing geometrically clysters when their concentration becomes high enough without practical
release of any heat due to the absence of condensation and recombination processes. In
crystals that resemble the boiling process for water when the temperature is arrested at the
boiling temperature, with the difference that configurons rather than vapour bubbles are
moving through the structure of crystals and are localised in amorphous substances.

Symmetry changes are characteristic for all phase transformations, including the
melting of materials, which is the transition from their solid to liquid form. Crystalline
materials obey this law with obvious changes of symmetry group from that of a crystal
to that of the group of Euclidean isometries of a Euclidean space En, comprising all
translations, rotations, and reflections and arbitrary finite combinations of them where
n = 3 for 3D space [80]. Symmetry changes are not so obvious for the glass transition, i.e.,
the transition of amorphous materials from the vitreous to molten state, because both these
states belong to the E(3). Symmetry changes become evident for the phase space, which
accounts not only for the space location but also for momentum. The breaking of symmetry
during phase transitions plays a crucial role in determining the system’s behaviour and
the nature of the glass transition [81–83]. Within the CPT the main symmetry change is
the change of dimensionality of space accessible to configurons from 0 in the glass to the
fractal one DH in the liquid—i.e., here, we observe an increase of dimensionality which
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can be linked with the new degrees of freedom related to translational motion. Following
many publications such as [2,8,9,11–21,36–42,49,57,69–74,84,85], we therefore conclude
that the glass transition is a true phase transformation—a specific case within critical
phenomena generically termed topological phase transitions, which are amenable to the
scaling approach and characterised by diverging length and time at the transition.

4. The Jump of Heat Capacity
In the experiment the calorimetric glass transition is always observed as a second-

order phase transformation following the Ehrenfest classifications of phase transitions:
there is a continuity of material volume and entropy (although with a kink at Tg), and
there is a discontinuity of their derivatives at the transition. That specifically allowed the
International Union of Pure and Applied Chemistry (IUPAC) to define the glass transition
as a second-order transition in which a supercooled melt yields, on cooling, a glassy
structure so that below the glass-transition temperature the physical properties vary in a
manner similar to those of the crystalline phase [86]. In practice, namely the kinks and
discontinuities observed using, e.g., DSC, are used to detect the Tg; hence, most of the data
published are those which belong to the so-called calorimetric glass transition [87].

Observing that the melting of substances has only small effects on the volume, cohesive
forces, and specific heat, which permitted Frenkel to conclude that “the character of the
heat motion in liquid bodies, at least near the crystallization point, remains fundamentally
the same as in solid bodies, reducing mainly to small vibrations about certain equilibrium
positions” [88]. Moreover, he has also argued that these equilibrium positions are irregular
in a liquid, just as in an amorphous solid, but while the equilibrium positions are permanent
in a solid, they are not so in a liquid; rather, each liquid atom oscillates for a time about
the same equilibrium position, then jumps to a new one [89]. Wallace has refined Frenkel’s
qualitative picture of the liquid state of matter by formulating the hypothesis that the
liquid contains a universal ion-motional disordering entropy of NkB∆W relative to the solid,
where kB is the Boltzmann constant and ∆W = 0.80 [90]. He observed from the experiment
that, for large-N systems, the constant-density entropy of melting contains the universal
disordering contribution of NkB∆W, suggesting that the random structural valleys, which
are static structure potentials as sums of harmonic normal modes, are of universal number
wN, where ln(w) = ∆W and the experimental estimate for ∆W is 0.80. Thus, the Hamiltonian
of the structural valley in materials is the static structure potential, a sum of harmonic
normal modes, and an anharmonic correction [91]. Using this approach, he has shown that
in quasi-harmonic approximation, the liquid theory for entropy agrees with the experiment
at elevated temperatures, to within 1–2% of the total entropy [90,91]. Based on the CPT
picture of melting (see below), we conclude that the Wallace parameter ∆W is equal to the
HB dimensionality of percolation clusters formed by configurons at melting DH divided by
the dimensionality of space d, i.e., that ∆W = DH/d ≈ 0.8.

The glass transition in amorphous materials is typically revealed using differential
scanning calorimetry (DSC), which always reveals a jump of constant pressure and constant
volume heat capacity ∆Cp, ∆Cv at the glass transition temperature Tg [87]. The appearance
of this jump, which is an obvious and generally accepted indication of a phase transforma-
tion, is well understood and confirmed as an appearance in the system of new translational
degrees of freedom for atomic or molecular constituents of matter [92,93]. We note that
always Cp > Cv due to the relationship Cp = Cv + Vα2B, where V is the molar volume, α is
the coefficient of thermal expansion (CTE), and B is the bulk modulus, and thus always
∆Cp > ∆Cv. Typically one holds ∆Cv ≈ 0.85∆Cp [93]. Recent computer experiments by
Cockrell and Grimes [94] have unambiguously confirmed that immediately above the glass
transition temperature effectively all atoms in inorganic glasses are mobile, while in the
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glassy state the fraction of mobile atoms is negligible, which stands in line with the CPT of
glass transition and its conclusions. They concluded that the atomic mobility is a universal
marker of the glass transition which emphasises the role of structural changes resulting in
mobilisation of atoms at the glass transition. Moreover, molecular dynamic simulations
by [95] have revealed that the jump ∆Cp of amorphous silica at the glass transition is
entirely determined by the component of structural energy.

The heat capacity behaviour at glass transition generically has two prominent features:
(i) it diverges on the increase of temperature towards Tg and (ii) has a distinct jump from
the lower heat capacity of glass, which is almost the same as that of a crystal, to that of a
liquid [96]. Figure 5, modified from [91], shows both these features.

 

Figure 5. The jump of constant pressure heat capacity at the glass transition of diopside. Courtesy of
Reinhard Conrad.

The first feature—the divergence of heat capacity—is given within CPT as a universal
law, so on approaching the glass transition temperature, the heat capacity follows the
dependence [18–21]:

∆CV ∝ 1/
∣∣T − Tg

∣∣1−β (2)

where β = 0.41 is the critical index in the 3D space [51]. One can note that experimentally
measured critical exponents α for several metallic glasses varied from 0.16 to 0.54 [97], with
deviations of α from 1-β possibly resulting from a more complex percolating scheme of
these metallic systems.

The magnitude of the jump of heat capacity at glass transition is dictated by the liberation
of new degrees of freedom, including translational (trans), which can also be related to structural
changes, vibrational (vib), and rotational (rot) ones: ∆CV = ∆Ctrans

V + ∆Cvib
V + ∆Crot

V , the main
component of which is typically the translational one ∆CV ≈ ∆Ctrans

V [92]. In principle, at
the transition from one phase (glassy) to another (liquid), some vibrational degrees can be
lost; thus, the jump can effectively be diminished, which may be the case for some materials,
oxides, and even metallic materials. Within CPT, the constant volume heat capacity jump
at the glass transition is directly related to structural changes and to the appearance of new
translational degrees of motion and is as follows:

∆Ctrans
V = DH R/2 (3)
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Reflecting the equipartition theorem for the change of HB dimensionality of con-
figurons from 0 in the glassy phase to DH in the liquid (Figure 4). Experimentally it
was found that the constant pressure jump of heat capacity at glass transition ∆Cp in a
variety of metallic glasses is almost an invariable value (13.69 J/mol·K) and is close to
3R/2 = 12.47 J/mol·K (where R = 8.3145 J/mol·K is the gas constant), which can be quanti-
tatively described by the atomic transitional diffusion [93].

Additionally, it was found that the ratio ∆Cv/∆Cp does not change with the liquid
fragility and almost keeps a constant: 0.85. Hence, the jump of constant volume heat capacity
at glass transition of metallic systems is almost constant, ∆Cv = 0.85·∆Cp = 11.64 J/mol·K.
We observe from CPT that this jump is slightly smaller, namely DHR/2 = (2.55 ±
0.05)·8.3145/2 = (10.6 ± 0.2) J/mol·K. The constant volume heat capacity jump at glass
transition is illustrated in Table 4.

Table 4. Comparison of some constant volume heat capacity jumps at calorimetric glass transition
with CPT value ∆Cv = 10.4–10.8 J/mol·K.

Alloy, Compound Tg, K ∆Cv, J/mol·K
La55Al25Ni20 465 12.31

Zr65Al7.5Ni10Cu17.5 653 11.02

Mg65Cu25Y10 380 10.06

Zr41.2Ti13.8Cu12.5Ni10Be22.5 623 11.95

Pd77.5Cu6Si16.5 625 10.33

Pd40Cu30Ni10P20 525 10.89

Pd40Ni40P20 551 11.02

Zr55Al10Ni5Cu30 653 11.32

We also note that Table II of reference [92] demonstrated that for most of the substances
at glass transition hold 2∆Cp/R ≈ 3, the validity of Equation (3) is confirmed because it
is known from [93] that ∆Cv/∆Cp ≈ 0.85, so that we obtain ∆Cv/∆Cp ≈ DH/d in line
with (3). Similarly, data from [95] have shown that for amorphous silica the constant
pressure jump of heat capacity per atom ranges from 0.50 R to 0.68 R, which means that
the jump of constant volume heat capacity is ∆Cv ≈ 0.85∆Cp = 10.6–14.4 J/mol·K in line
with CPT estimation (10.4–10.8 J/mol·K). It should be noted that Equation (3) is a rough
estimation and cannot be universally valid for the overall heat capacity jump at glass
transition, having well-known deviations [98,99], and it is only approximately giving the
contribution to the overall heat capacity due to liberation at the phase transformation of
translational degrees of motion and in this sense is somehow similar in its nature to the
Dulong–Petit law. Table 3 demonstrates a deviation of approximately 1 J/mol·K between
the calculated and the experimental values, and the source of the errors can be due to
the contribution of vibration/rotational degrees of freedom as well as due to changes
occurring in the electronic system based on quantum mechanical calculation of electronic
density of states (see e.g., Equation (1) of [100]), such as the recently reported localised
electronic states which enhance magnetoelectric effects [101]. We emphasise hence that
we consider only structural changes related to the calorimetric glass transition, where we
have to conclude that no phase transformation occurs in the Ehrenfest sense if neither
thermodynamic functions nor their derivatives exhibit any peculiarities.

5. Melting Criteria
Melting is defined as a physical process that results in the phase transition of a

substance from a solid to a liquid, where the melting point of crystalline solids is the
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temperature at which a solid changes its state into a liquid at atmospheric pressure, so
at the melting point the solid and liquid phases coexist in equilibrium [102]. Encyclopae-
dia Britannica specifies that amorphous (non-crystalline) substances melt by gradually
decreasing in viscosity as temperature is raised without a sharp transition from solid to
liquid [103]. We note, however, that melts are much less polymerised compared to glasses,
which have a similar structure to that of liquids. Instead of a well-connected network like
in solids, they contain many finite-sized clusters as well as many broken bonds, whereas in
solids, the latter are almost not present at all or occur as point defects generated by thermal
fluctuations (Figure 1) and are characterised by a different dimensionality of the set of
configurons (broken chemical bonds).

Lindemann’s and Born’s criteria of melting are the two most frequently used as a basis
to analyse the melting conditions [104–106]. The Lindemann criterion states that melting
occurs because of vibrational instability when the root of mean square vibration amplitude〈

u2〉1/2 exceeds a threshold value taken as a fraction δL = (
〈
u2〉1/2/a) of interatomic

distance a [96,107–110]. Lindemann supposed that δL should be about 0.5, which was later
revised, observing that it is within the range between 0.068 and 0.114 [110]. The analysis of
experimental data of elements determined that the Lindemann melting coefficient δL is in
fact an exact value for each element belonging to a given periodic group of Mendeleev’s
periodic table of elements [102]. Although it is considered that the Lindemann criterion is
supported by data for glass transition, the parameter δL is not the same as for the melting of
crystals [35,111–113]. Finally, we note that Khrapak has shown that Lindemann’s criterion
of melting can be formulated for 2D classical solids using statistical mechanics arguments
with an expression for the melting temperature derived

(
c2

t /v2
T
)(

1 − c2
t /c2

t
) ∼= const, which

is valid for both three and two dimensions [114]. Here, vT = (T/m)1/2 is the thermal velocity,
cl is the longitudinal and ct is the transverse sound velocity. The expression is reduced to
the condition of constant transverse-to-thermal velocity ratio at the melting of the materials,
accounting for cl ≫ ct.

The Born criterion of melting [105,106] is based on a rigidity catastrophe caused
by the vanishing elastic shear modulus so that the crystal spontaneously changes its
crystallographic symmetry or becomes fully amorphous, which in many cases can be
the melted state, although not necessarily, as amorphisation does not really envisage
transition to a molten state. Born’s stability condition is formulated as the condition that
det|Cijkl | ≥ 0, where Cijkl is the (second-order) elastic constant tensor which determines the
stress tensor Tij = CijklEkl as a linear function of the infinitesimal strain tensor Ekl. Naturally,
for glasses, which are considered isotropic solid materials, the elasticity tensor has only
two independent components, which are the bulk (K) and shear (µ) moduli. We further use
an orthonormal Cartesian coordinate basis with no distinction between upper and lower
indices. The elastic constant tensor is then written in terms of Lame’s first and second
parameters, λ and µ, correspondingly: Cijkl = λδijδkl + µ(δikδjl + δilδkj), where δij are the
Kronecker’s deltas. The bulk modulus K = −∂p/∂lnV, where p is pressure and V is volume,
is then K = λ + 2µ/3. The instability of lattices when Born’s criterion is breached does not
necessarily cause melting, as it can be due to either a change of lattice symmetry class or
amorphisation without melting. It is also worth noting that Born’s criterion was specified
for homogeneous lattices under a constant uniform load to be det|B| = 0, where B is the
four-rank elastic stiffness tensor [115]. Here, we note that instabilities under pressure may
also occur for the amorphous state, leading to its phase decomposition; see [116] and the
references there.

There is a substantial reason initially outlined by Angell [7] to analyse the distribution
and behaviour of broken chemical bonds termed configurons in condensed matter rather
than of atoms or electrons since the former are weakly interacting with each other whilst the
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latter are strongly interacting and form either clusters or are integral parts of the network
of material. A configuron is formed by the breaking of a chemical bond, followed by the
associated strain-releasing local adjustment of centres of atomic vibration. The Hamiltonian
of configurons in the first approximation is that of almost free boson (apart from spin
glasses) particles in the periodic (for crystals) or aperiodic (for glasses and liquids) potential

created by atoms of material V(
→
r) so that the Schrodinger equation for the wave function

of a configuron φi(
→
r ) is as follows:

(
− ℏ2

2m △+V(
→
r )

)
φi(

→
r ) = iℏ

∂φi

(→
r
)

∂t . In crystalline
materials, the potential repeats the symmetry of the lattice; therefore, the wave function of

configurons following the Bloch theorem can be represented as φi(
→
r ) = ui(

→
r )·exp(i

→
k ·→r ),

where ui(
→
r ) has the period of the crystal lattice and the exponent is the running wave

that carries the momentum
→
p = ℏ

→
k . The configurons are almost freely moving, at least at

small wavenumbers k with energy E = ℏ2k2

2m∗ , where m* is the effective mass. The situation
for wave propagation drastically changes for disordered lattices amenable to Anderson
localisation of configurons instead of almost free motion [75–79]. Indeed, instead of almost
free propagation due to identical positions of configurons in the crystal lattice, they quickly
localise, which in turn affects the melting process [69]. Once configurons are weakly
interacting in the first approximation, they can be considered as almost non-interacting
with a random spatial distribution, and for their description, the two-level system can be
used, applying the standard apparatus of statistical physics [18,19].

The mutual interaction between bonds and configurons at distances exceeding their
sizes, which are approximately equal, can be practically neglected. In this case, the asso-
ciation and formation of clusters of configurons is purely geometrical, depending only
on the volume fraction occupied by them, which is well described by the percolation
theory [51,117–119]. It means that knowing the temperature dependence of the relative con-
centration of configurons c (0 ≤ c ≤ 1), one can estimate the probability of cluster formation
purely geometrically using c as the occupation probability p = c. It is known that p plays
the same role as the temperature in thermal phase transitions, being the control parameter
of the formation of percolation clusters, which are fractal above the percolation threshold
p > pc with HB dimension DH = d − β/ν [51], where d is the dimension of space and critical
exponents β and ν describe the critical behaviour associated with the percolation transition
and are universal, not depending at all on the structure of the lattice and on the type of
percolation, which can be either site, bond or even continuum [51,117–119]. For d = 3
these are approximately as follows: β = 0.41, ν = 0.88 [51]. The order parameter P∞ of the
system describes the probability that a configuron belongs to the percolation cluster [18,19].
Classical percolation exhibits all the characteristics of a continuous phase transition. For
p ≥ pc, the order parameter P∞, which is identified in the CPT as the power of the percola-
tion cluster (fraction of configurons as a part of the largest cluster) made up of configurons,
increases with p by a power law P∞ ∝ (p − pc)β (see e.g., Figure 5 of Ref. [19]), while the
correlation length describing the inhomogeneities of structure diverges as ξ ∝ (p − pc)−ν.

Instead of using the lattice-specific parameter p, one can refer to Scher and Zallen [50],
who have found that for each dimension there exists an invariant that is almost independent
of the type of lattice. This Invariant ϕc = Fpc is the critical fraction of space occupied by
spheres (discs in 2D) of the bond length diameter, positioned in the occupied sites of the
lattice. The quantity f is called the “filling factor” of the lattice and denotes the volume
fraction occupied by mutually touching spheres positioned at each site. The critical space
occupation probability equals ϕc = 0.44 + 0.02 in two dimensions and ϕc = 0.15 ± 0.01 in
three dimensions [49,50]. This permits us to calculate the glass transition temperature,
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Tg, for simple systems such as amorphous silica with only one type of bond (and thus
configurons) based on thermodynamic parameters of bonds [17–19]:

Tg =
Hd

Sd + Rln(1 − ϕc)/ϕc
(4)

where Hd and Sd are the enthalpy and entropy of connecting bonds (configuron forma-
tion), R is the universal gas constant, and ϕc is the percolation threshold volume invariant
approximately equal to 0.15 [44,49,50]. Equation (4) can be used utilising this invariant
for simple systems such as amorphous silica, giving for the glass transition temperature
Tg = 1482 K [19] compared with the experimental Tg value of 1480 K measured by drop
calorimetry [120]. Generically, Equation (4) reflects that the more refractory the material,
the higher the Tg, including the case of high-entropy metallic glasses, which are charac-
terised by stronger interatomic bonding in the system of different atoms with varying sizes.
High-entropy metallic glasses, or glasses without a principal component, sometimes have
better mechanical properties than conventional metallic glasses, but finding deep eutectics
is more difficult because the multi-component phase diagrams are not available, so the
glass-forming ability is reduced [121,122]. Equation (4) can be simplified by neglecting the
logarithmic term [11] and reducing it to a view similar to Dienne’s ratio for melting tem-
peratures of substances (presumably crystalline) [123,124], which contains thermodynamic
characteristics of joining bonds rather than the enthalpy and entropy of the activated state.

What happens at the transition of condensed matter from a solid to a liquid state,
i.e., on melting, e.g., when an amorphous solid (glass) transforms into a liquid? In solids,
including glasses, there are both longitudinal and transverse (shear) sound waves, the latter
one having two polarisations. Sound waves are characterised by the acoustic dispersion
relations ωl(k) = kcl, whereas shear waves have ωt(k) = kct, where k is the wavenumber.
These are found from equalities ρc2

l = K + 4µ
3 and ρc2

t = µ. In the liquid state the shear
modulus becomes nil (below the Frenkel line [125–127]); thus, there are only longitudinal
modes for sound waves in the molten state. This makes it different from the point of view
of stress reaction, although the condition that µ = 0 applies only below the Frenkel line,
which is at frequencies ω < ωF = 1/τM determined by the Maxwell relaxation time τM.
At high frequencies, when ω > ωF, all liquids behave solid-like, with both longitudinal
and transverse waves propagating with sound velocities given by the same expressions
as for solids, where parameters used are the high-frequency adiabatic bulk modulus K∞

and shear modulus µ∞. This well-known property does not result by any means in the
conclusion that the liquid state is the same as the solid state of matter. In the meantime, the
disappearance of transverse waves means a topological change in the phase space, which
is supported by many findings [11–19,128]. Loss of transverse momentum signals that
one of the symmetries of amorphous materials below the Frenkel line is broken at Tg. A
symmetry is a property which will remain the same even after some kind of transformation
is applied. Among known symmetries, the dimensionality of the bonding system which
provides the condensed character (either solid or liquid) of matter unambiguously changes
on passing through the glass transition temperature [21]: the broken bonds of materials
(termed configurons [7]) are point-like entities (defects of the glass network) below the Tg,
whereas above the glass transition temperature, they form percolating clusters. Denoting
the set of broken bonds as {SB}, we see that dimH |SB| = 0 at T < Tg and dimH |SB| = 2.5 at
T > Tg, where dimH denotes the HB dimension of the set of configurons {SB}, coinciding in
our case with the well-known Minkowski box-counting dimension of the set. Configurons,
which are bound to their locations in glasses, cannot freely move except by changing their
location by thermal hopping through the glass network (disordered lattice of bonds [7]),
but they become mobile above the Tg, freely moving via percolating clusters made up of
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configurons, as any site within it is equivalent for their location. Hence, the configurons
acquire new degrees of freedom on passing the Tg. Finally, on transition from the melt
to the gaseous phase at higher temperatures dimH |SB| = 3, that is, the dimension of
space available for configuron motion equalises with the dimension of 3D space with all
degrees of freedom acquired. The dimensionality of space is connected with conservation
of momentum through the concept of translational symmetry, which implies that the
physical laws governing the system remain unchanged everywhere in space on moving the
system from one location to another. Noether’s theorem formalises this idea by stating that
every continuous symmetry of a physical system’s action corresponds to a conservation
law [129–131]. For translational symmetry, this conservation law is the conservation of
momentum. If we consider the configuron moving through the space of percolation clusters,
its momentum remains conserved because the percolation cluster space itself does not
impose any preferred locations or directions within it, which is true in any number of spatial
dimensions. The condition for the transformation of a solid into a liquid and vice versa
(when crystallisation or vitrification occurs [132,133]) can be mathematically formulated
based on these observations as follows. Namely, one can add a melting criterion based on
set theory, which, for 3D materials, can be formally based on the following equation:

dimH |SB| ≥ 2.5 (5)

The fractal dimension DH of a percolation cluster is always smaller than the dimen-
sion d of the ambient space, due to numerous “holes” in the cluster. In two dimensions,
DH = 91/48 = 1.90; for d =3, DH =2.5 [51]. The condition (5) also follows from the Kantor–
Webman theorem, which states that the rigidity threshold is identical to the geometrical
threshold, and on the equivalence of the elasticity of random percolating networks to
regular bond percolation systems [10]. To prove that Kantor and Webman have used the
framework of the Born model for the microscopic elasticity of a lattice with elasticity energy
given by Hamiltonian: He =

1
2 ∑ i,j

nn
Ki,j

[
α
(
ui − uj

)2
∥ + βα

(
ui − uj

)2
⊥

]
with nn denoting the

nearest neighbours,
(
ui − uj

)
∥ giving the relative displacement of the site j in the direction

parallel to the bond (ij),
(
ui − uj

)
⊥ giving the relative displacement in the perpendicular

direction, and Ki,j being a random variable which assumes values 1 and 0 with probabilities
p and (1-p), respectively. Kantor and Webman found that the rigidity threshold is identical
to the geometrical threshold, which allows us to use in practice the well-known properties
of percolating clusters; namely, their well-known volume-invariant independence on the
type of lattice, valid for disordered lattices of amorphous materials, which, once exceeded,
achieves percolation [50,51].

6. Importance of Bond Breakage
The distribution of species (atoms, molecules) in amorphous materials looks simi-

lar both for glasses, which are solid, and for melts, which are liquid. However, not the
species distribution but the degree of connectivity between them determines the state
of matter, i.e., the bonding system is crucial so that for more tightly connected atoms,
more durable substances occur. The structure of materials is thus presented not solely by
atomic distribution but has an integral part in the bonds between them. From this point of
view, the structure of glasses is different from the structure of liquids because glasses do
not substantially contain broken bonds apart from some remnant defects of temperature-
induced breakages, while liquids have a significant part of bonds disrupted, which allows
species to exhibit a much higher degree of freedom in motion. Moreover, the structural
differences between glasses and melts composed of the same species were noted a long
time ago and are readily identified using standard X-ray or neutron scattering techniques
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based on scattering patterns utilising structure factor S(q) or pair distribution functions
g(r) [2,48,49,52]. Notable is the approach developed by Stoch and Krakowiak [134], who
proposed to analyse the temperature changes of radial distribution functions within the
whole range of sizes in oxide glasses. In this approach the changes in the further coordina-
tion due to other glass constituents are also taken into consideration, which resulted in a
better description of the glass–liquid transition and have again confirmed that the transition
temperature depends on the glass structure and its thermal changes. Nevertheless, despite
this, many works, including university handbooks, focus on just species, affirming that
there is no structural difference between a material below and above the glass transition
temperature. With an increase of temperature (or other external action on matter, such as
pressure and intensity of radiation), chemical bonds between species are broken, and the
connectivity gradually decreases until reaching a well-defined threshold level when the
bonding system cannot sustain the solid-like behaviour, such as preservation of shape, pres-
ence of yield stress for deformation, etc., and the material melts. The transition from solid
(vitreous) state to liquid (molten) state is continuous in amorphous materials, and, because
of that, the transition is a second-order thermodynamical transition following Ehrenfest
classification, although it occurs in a metastable system of topologically disordered species,
which, by the total energy, is less favourable compared to an ordered (crystalline) distribu-
tion of the same species, which would otherwise minimise it. In contrast with equilibrium
phase transitions, which are well understood within statistical mechanics [135,136], the
nonequilibrium phase transformations (to which the glass transition undoubtedly belongs)
are in reality quite common across many branches of science and technology, ranging from
biological systems to cosmology and galactic patterns [137–140]. The transition from the
metastable glass to a stable (or still metastable but with a lower energy) crystalline phase is
kinetically impeded, and in many, if not most, natural glasses at room temperature would
require times exceeding the lifetime of the universe, which makes these considerations out
of any practical sense.

Consideration of bonding systems equally with species (atomic and molecular systems)
became routine after Angell introduced the concept of configurons as elementary excitations
in condensed matter formed by breaking a chemical bond, followed by the associated strain-
releasing local adjustment of centres of atomic vibration. In contrast to strongly interacting
species, which constitute the matter, the configurons can be, in the first approximation,
considered as non-interacting and subject to ideal mixing. In such an approximation,
the well-developed apparatus of two-level systems applies, and the glass transition is a
percolation effect in the system of configurons—the amorphous material is in the vitreous
state until the percolation threshold is reached. The behaviour of percolating systems is
universal; thus, it becomes possible to calculate the glass transition temperature, describe
diverging heat capacity and CET at glass transition, estimate the constant volume jump
of heat capacity, and universally describe the viscosity of material across all temperature
intervals from the glass through the melt and gas phases [21,74,75], as well as to understand
the kinetic aspect of glass transition [141] and to model it [18–20,40,41]. Additionally, it is
possible to formalise the melting criterion using the concepts of set theory as the condition of
achieving a certain degree of disruption of the bonding system when the HB dimensionality
DH exceeds that of a percolating cluster, which is known for 3D space to be larger or
about 2.5 (Figure 6).

Characterising the predictive ability of models, Doremus emphasised that the bonding
between molecules, defects, and the structure are much more important than the free
volume [142]. In contrast with known free volume or mode coupling models of glass
transition [143–145], the CPT relies on and operates with the effective volume of chemical
bonds and configurons [8,19] rather than with the excess or free volume of the material
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that is found as the difference between the specific volume of the material and the vol-
ume of atoms/molecules involved. It bases its conclusions on a percolation-type phase
transformation at the calorimetric glass transition with supporting evidence on phase
transformation through observation of massive fluctuations of derivative parameters of
the system—see e.g., Ref. [146]. Notably also that in line with CPT conclusions for both
physical and computer-based experiments, the results are affected by the size of the system
under consideration [18–22,147,148].

Figure 6. Schematic of “fragmentation” of solids by breaking bonds in the cases when they have 1D
(linear), 2D (surface) or 3D (body) dimensionalities of bonds after [2]. Broken bond sets are shown
here in red colour and are schematically characterised by 0D (a point), 1D (a line and a curve) or 2D
(a plane or a curved surface) dimensionalities. In the case of a 3D amorphous solid material (glass),
the structure formed out of configurons at the glass transition temperature is a percolation cluster
(a macroscopic fractal structure) which has a dimensionality exceeding 2.5.

7. Conclusions
While the calorimetric glass transition in amorphous materials is an obvious effect

mechanically expressed by the solid-like behaviour, such as the brittleness of glasses,
against liquid-like behaviour, including the plasticity of the molten state, the underlying
atomic-size mechanisms and structural rearrangements responsible for the transition itself
are still poorly understood. This resulted in widely spread claims that there is no structural
difference between glasses and liquids. In the meantime, the viscosity being even used on
the logarithmic scale cannot serve as a criterion of glass transition because the viscosity
of materials at the calorimetric glass transition temperature spans over four orders of
magnitude. Moreover, the treatment of vitrification as a process of continuously breaking
ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero
absolute temperature disagrees with most experimental and theoretical investigations.
Structural rearrangements at calorimetric glass transition are behind drastic changes of
material characteristics, causing differences between glasses and melts. The structural
description of materials includes both species (atoms, molecules) and connecting bonds,
which are directly affected by changing conditions such as the increase of temperature
when the bonding system becomes softer. At and above the glass transition a macroscopic
percolation cluster made up of configurons (broken chemical bonds) is formed which
causes changes in the physical properties of the material from those of a solid to those of a
liquid. An account of a percolation cluster made out of configurons enables the structural
differentiation of glasses from melts. Here, we have highlighted the role of the bonding
system in understanding the nature of the transformation of glasses into melts. Considering
glass–liquid transition as the melting of amorphous solids, we formulated the melting
criterion of solids as the condition of increase of Hausdorff–Besicovitch dimensionality of
the set of configurons from zero to 2.5.
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