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AbstractÐMassive MIMO systems rely on accurate Channel
State Information (CSI) feedback to enable high-gain beam-
forming. However, the feedback overhead scales linearly with
the number of antennas, presenting a major bottleneck. While
recent deep learning methods have improved CSI compres-
sion, most overlook the impact of quantization and entropy
coding, limiting their practical deployability. In this work, we
propose an end-to-end CSI compression framework that inte-
grates a Spatial Correlation-Guided Attention Mechanism with
quantization and entropy-aware training. Our model effectively
exploits the spatial correlation among the antennas, thereby
learning compact, entropy-optimized latent representations for
efficient coding. This reduces the required feedback bitrates
without sacrificing reconstruction accuracy, thereby yielding a
superior rate-distortion trade-off. Experiments show that our
method surpasses existing end-to-end CSI compression schemes,
exceeding benchmark performance by an average of 21.5% on
indoor datasets and 18.9% on outdoor datasets. The proposed
framework results in a practical and efficient CSI feedback
scheme.

Index TermsÐSTQENet, CSI feedback, attention mechanism,
entropy encoding, quantization, massive MIMO.

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) systems

have emerged as a cornerstone of next-generation wireless

communication networks, offering significant gains in spectral

and energy efficiency. A critical enabler of these gains is the

availability of accurate Channel State Information (CSI) at the

base station (gNB). However, in Frequency Division Duplex

(FDD) massive MIMO systems, obtaining CSI feedback from

the receiver to the transmitter introduces a prohibitive overhead

which scales linearly with the number of antennas, thus posing

a major bottleneck for practical deployments.

To address the CSI feedback problem, various approaches

have been explored. Classical Compressive Sensing (CS)

methods leverage the sparsity of the wireless channel to reduce

feedback requirements [1] but often struggle under practical

channel conditions and require complex recovery algorithms.

Deep Learning (DL) techniques, particularly autoencoders,

have shown significant promise in learning compact CSI rep-

resentations. CsiNet [2] pioneered Convolutional Neural Net-

work (CNN)-based CSI compression using an Auto-Encoder

(AE), with an encoder at the UE and a decoder at the gNB.

However, CNN performance heavily depends on the size of

the receptive field (or convolutional kernel). To address this,

CsiNet+ [3] enhances the original CsiNet by enlarging the

receptive field, better exploiting CSI sparsity in the angular-

delay domain, while small kernels capture fine details more

effectively. Based on this, CRNet [4] introduces a multi-

resolution design, using different kernel sizes in both the

encoder and decoder, enabling more adaptive and effective CSI

feedback. Nevertheless, they still perform poorly in outdoor

scenarios with high compression ratios (CRs), a common

issue for existing algorithms. To address this, CsiNet+DNN

[5] introduces additional layers and incorporates a different

activation function to acquire more knowledge to enhance the

performance of the RefineNet.

While many deep learning-based CSI compression methods

enhance performance through architectural modifications, the

CSI matrix is often treated as an unstructured data, thus

neglecting the spatial correlations between antennas induced

by the propagation environment. The attention mechanisms

offer a more adaptive solution by explicitly modeling these

correlations, enabling the network to focus on the most infor-

mative features. Notably, Attention-CSINet [6] pioneered the

integration of attention mechanism into CNN-based CSI com-

pression by introducing a module that generates a vector to de-

scribe the importance of each feature map, leading to superior

performance. A two-layer transformer model, TransNet [7],

demonstrated significant performance improvements but was

ultimately deemed impractical due to its high computational

complexity. To address this, CSIFormer [8] proposed a more

efficient architecture employing locally grouped (windowed)

self-attention, which lowered the computational burden, al-

beit with some reduction in performance. Furthermore, [9]
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Fig. 1: STQENet architecture for CSI feedback. ªCONVº and ªCONVTº denote convolutional and transposed convolutional layers,
respectively. ªSTBº refers to a spatially separable attention transformer block. ªCR Blockº represents the multi-resolution CNN module

from CRNet (see Fig. 2c.)

addresses the generalizability challenge of CSI compression

by introducing AiANet, an attention-infused autoencoder that

captures both global and local spatial features through self-

attention mechanisms.

In practical systems, CSI is fed back as bitstreams. Directly

transmitting 32-bit floating-point codewords from the encoder

would incur excessive overhead. To reduce this, codewords

are quantized before feedback [10], using uniform or non-

uniform schemes to balance compression and accuracy. In

[11], the authors propose a bit-level CSI feedback framework

that compresses downlink CSI using an encoder, followed by

non-uniform quantization to produce a discrete bitstream. To

mitigate quantization noise, a quantizer-dequantizer pair is in-

troduced, along with an offset neural network that reconstructs

the compressed CSI before decoding. This approach improves

feedback accuracy but involves a complex three-stage training

process, including pre-training the autoencoder, training the

offset network while freezing other parameters, and a final

fine-tuning phase. [12] introduces a quantization module with

bit allocation and propose a joint training method with an

adaptive loss that balances quantization and reconstruction

errors.

Beyond quantization, entropy coding is an essential step

for further reducing the bitrate by exploiting the statistical

redundancy in quantized outputs. By assigning shorter codes

to more probable symbols, entropy codingÐsuch as Huffman

or arithmetic codingÐenables bit-level compression without

information loss. While such frameworks mark a step toward

practical CSI feedback, they typically treat quantization and

entropy coding as separate post-processing steps, disconnected

from the encoder-decoder training. This suboptimal separation

can lead to performance degradation, as the encoder is not

optimized to produce quantized representations that are both

compact and entropy-efficient. [13] introduces a simple AE-

based CSI compression framework incorporating an entropy

bottleneck to optimize quantization, entropy coding, and re-

construction quality jointly. Although effective, our method

surpasses theirs in terms of reconstruction accuracy at lower

bit rates.

To address these limitations, we propose an end-to-end CSI

compression framework, Spatially separable Transformer with

Quantization and Entropy encoding Network (STQENet), that

combines attention-based encoding, quantization, and entropy

modeling to reduce feedback overhead in massive MIMO sys-

tems. The attention module captures inter-antenna correlations

via spatially informative features, while quantization produces

low-bit codewords for efficient transmission. A learned entropy

model guides the compression by estimating the bit cost and

introducing an entropy loss during training, enabling compact

and accurate CSI representations.

The main difference between our work and the state-of-the-

art lies in the joint integration of attention-based encoding,

quantization, and entropy modeling within a single end-to-

end trainable framework. Unlike AiANet [9], which focuses

solely on attention mechanisms for spatial feature extraction

without addressing quantization or entropy efficiency, our



method incorporates both, enabling practical low-bitrate feed-

back. Compared to [13], which applies an entropy bottleneck

to a standard autoencoder without attention modeling, our

approach employs a spatially separable transformer to better

capture antenna-domain correlations. Experiments show that

our method achieves superior rate-distortion performance com-

pared to state-of-the-art transformer-based approaches, with

lower bitrate and complexity.

The remainder of the paper is structured as follows. Sec-

tion II introduces the system model. Section III describes

the proposed architecture in detail. Section IV presents the

experimental results along with a comprehensive discussion.

Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider an FDD system where the gNB is equipped

with Nt ≫ 1 transmit antennas and a single receiver antenna

at a User Equipment (UE). The system operates in Orthogonal

Frequency Division Multiplexing (OFDM) with Ñc subcarri-

ers. The received signal at the n-th subcarrier is provided as

follows:

yn = h̃H
n vnxn + zn, (1)

where h̃n ∈ C
Nt×1, vn ∈ C

Nt×1, xn ∈ C, zn ∈ C

denote the channel vector, precoding vector, data-bearing

symbol, and additive noise of the n-th subcarrier, respectively.

The CSI matrix in the spatial-frequency domain is given by

H̃ = [h̃1, h̃2, . . . , h̃Ñc
]H ∈ C

Ñc×Nt . The number of feedback

parameters is 2ÑcNt. To reduce feedback overhead, we adopt

the compression approach from [2], which sparsifies H̃ in the

angular-delay domain using a 2D Discrete Fourier Transform

(DFT):

H̄ = FdH̃F
H

a
, (2)

where Fd and Fa are 2D DFT matrices of dimensions Ñc×Ñc

and Nt × Nt, respectively. In the delay domain, the time

delay between multipath arrivals is typically confined to a

limited range, resulting in most of the significant energy

being concentrated in the first Nc ≤ Ñc rows of the channel

matrix H̄. Assuming H̄ is complex-valued and exhibits similar

sparsity, we retain its first Nc rows and then concatenate the

real and imaginary parts to construct a real-valued matrix H ∈
R

2Nc×Nt . With the sparsified channel matrix H obtained, it is

processed through the encoder-decoder architecture depicted in

Fig. 1 In this stage, H is compressed into a one-dimensional

vector of size M × 1. The compression ratio is defined as

γ = M
2NcNt

. To reduce the bitrate and prepare for practical

transmission, the continuous-valued latent vectors are passed

through a quantization module. This step maps the continuous

values to discrete symbols. After quantization, the discrete

symbols are entropy encoded using Huffman coding. Huffman

encoding assigns shorter codewords to more frequent symbols,

minimizing the average code length. This lossless compression

step ensures that the quantized data is stored or transmitted

with minimal redundancy.

This compressed representation is then transmitted from the

UE to the gNB over the uplink. Upon reception, Huffman

decoding and de-quantization are first applied to recover the

compressed latent features, which are then passed through the

decoder to reconstruct the channel matrix, denoted as Ĥ. The

encoding and decoding processes are defined as follows:

s = fe(H), Ĥ = fd(s),

where fe and fd represent the functions of the encoder

and decoder, respectively. Here, s denotes the compressed

codeword, and Ĥ is the reconstructed channel matrix estimated

by the model.

III. STQENET ARCHITECTURE

We implement the CSI encoder and decoder within

STQENet, as shown in Fig. 1, drawing inspiration from the

STNet architecture [14]. Leveraging the attention mechanism,

STNet achieves high performance in CSI feedback tasks.

It effectively reduces the amount of feedback data while

aggregating spatial-frequency domain CSI features. Moreover,

its architecture captures long-range dependencies and exploits

inter-antenna correlations within the channel matrix, enhancing

the accuracy of the reconstructed CSI. [14] presents a detailed

description of the STNet architecture. In this Section we

explain each block in the architecture.

A. Spatially Separable Attention Transformer Block (STB)

The STB incorporates a hybrid attention mechanism con-

sisting of three main stages: Locally-grouped Self-Attention

(LSA), Global Sub-sampled Attention (GSA), and Multi-Layer

Perceptron (MLP).

1) LSA: In the LSA stage, the input channel matrix (of

size L × L) is divided into non-overlapping windows of

size W × W , where W = L/m and m is the number of

partitions along each spatial dimension. Attention is computed

independently within each window, reducing the complexity

from O(L4d) to O( L4

m4 d), where d is the feature dimension.

However, because attention is local and restricted to each

window, global dependencies across windows are lost.

2) GSA: To address this limitation without reverting to

full global attention, the GSA mechanism is introduced. The

output from LSA is passed through a CNN layer with stride

W , effectively summarizing each window into a single spatial

token and producing a feature map of size m×m. This map

serves as the keys and values for another layer of attention,

while the LSA output continues to serve as the queries. The

GSA thus reintroduces global context in a computationally

efficient manner, with a complexity of O(m2L2d). The total

complexity of the full attention mechanism becomes:

O

(

L4

m4
d+m2L2d

)

(3)

3) MLP block: MLPs are essential for feature transforma-

tion and nonlinear mixing across channels (not across spatial

locations, which is done by attention layers). This block has a

linear layer followed by a Gaussian Error Linear Unit (GELU)

non-linearity and another linear layer.
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Fig. 2: Detailed blocks of the STQENet architecture, adopted from the STNet architecture [14].

B. CR Block

Beyond the attention block, the overall decoder architecture

consists of two parallel stems: one transformer-based and the

other convolution-based. This dual-branch design is intended

to leverage the strengths of both componentsÐwhile the

transformer branch effectively captures global dependencies,

the convolutional branch focuses on modeling local spatial

features and enhances generalization through weight sharing

and spatial invariance. As illustrated in Fig. 2c, the convo-

lutional branch integrates multi-kernel convolutions to extract

spatial features at multiple scales, further enriching the feature

representation.

C. Quantization and Entropy

To enable end-to-end differentiable training while preserv-

ing the benefits of entropy coding, we adopt a learned proba-

bilistic quantization model based on µ-law companding [15].

To address the non-differentiability of the quantization func-

tion, which poses a challenge for training neural networks via

backpropagation, we employ the Straight-Through Estimator

(STE) technique. In this approach, the true gradient is replaced

with a constant during backpropagation, effectively enabling

gradients to pass through the quantization step [16]. For a

normalized output of the encoder, the µ-law compression

function is defined as:

f(s) = sgn(s)
ln(1 + µ|s|)

ln(1 + µ)
. (4)

Entropy is computed as the expected negative log-likelihood

of the quantized latent variables given ŝ:

R = EH∼pH
[− log

2
p̂s(ŝ)] , (5)

where pH is the true distribution of CSI tensors and p̂s models

the probability of each quantized value. In our implementation,

we adopt a factorized prior for the quantized latent variables.

Specifically, p̂s is modeled using an empirical histogram of

symbol frequencies, and entropy coding is performed with

Huffman coding.

IV. EXPERIMENTS AND NUMERICAL RESULTS

We examine a system configuration featuring 32 antennas

at the gNB and a single antenna at the UE. For performance

evaluation, we utilize the COST2100 dataset [17], focusing

on two specific scenarios: an indoor picocellular environment

operating at 5.3GHz, and an outdoor rural setting at 300MHz.

The number of subcarriers is set to Nc = 32, with a window

size W = 8, and the multi-head attention mechanism employs

P = 4 heads. The dataset is divided into 100,000 samples for

training, 30, 000 for validation, and 20,000 for testing. We use

a batch size of 200 and train the model for 1000 epochs. The

optimization process is carried out using the Adam optimizer

with a learning rate of 0.001, and the Mean Squared Error

(MSE) and entropy loss are used as the loss function, as

follows;

L(θe, θd, ϕ) =
1

B

B
∑

i=1

∥Hi − Ĥi∥
2 + λR, (6)

where H is the input channel matrix, Ĥ is the reconstructed

channel matrix, and B is the batch size. θe, θd, and ϕ are the

parameters of the encoder, decoder, and the entropy bottleneck,

respectively. λ is the regularization parameter that decides the

rate±distortion tradeoff, which is set to 10−3. We adopt the

Normalized Mean Squared Error (NMSE) as the evaluation

metric defined as follows:

NMSE = E

{

∥H− Ĥ∥2

∥H∥2

}

. (7)

We apply 10 log
10
(·) to the expectation in Eq. 7 and report

the NMSE in decibels (dB). Entropy is expressed in Bits Per

Pixel (BPP), calculated by dividing the entropy value from

Eq. 5 by 2 × 322 (2 refers to the real and imaginary part of

the CSI data), which represents the spatial dimension of the

CSI tensors. For the results in Fig. 4, the BPP is computed as:

BPP =
k ×N

2× 322
, (8)
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Fig. 3: NMSE vs. SNR at different quantization bit-rates.

where N and k are the number of quantization bits, and

encoder output dimension. The source code for the simulation

of our approach is available in [18].

A. Result Analysis

We evaluate the reconstruction quality using the NMSE

metric across a range of Signal-to-Noise Ratio (SNR) values

from 0 dB to 20 dB. The evaluation is performed on both

indoor and outdoor datasets under different quantization bit-

rates (2, 4, 6, and 8 bits), as shown in Fig. 3.

We observe in Fig. 3a that as the quantization bit-rate

increases, the NMSE improves consistently across all SNR

values. For example, the 8-bit quantization significantly out-

performs the 2-bit version, especially at higher SNRs, confirm-

ing that finer quantization granularity leads to better channel

reconstruction. For a fixed bit-rate, the NMSE decreases as

SNR increases. This indicates that the model benefits from

better signal quality, leading to more accurate CSI recovery.

The curve corresponding to 2-bit quantization exhibits a per-

formance floor, especially at higher SNRs. This suggests that

coarse quantization becomes the dominant source of distortion,

limiting the benefits from improved SNR. The trends observed

in Fig. 3b for the outdoor dataset align closely with the

indoor scenario, with some noticeable differences: The NMSE

values in the outdoor dataset are generally higher than those

of the indoor dataset at the same bit-rate and SNR. This is

due to the more complex and variable propagation conditions

in outdoor environments, which increases the difficulty of

accurate CSI recovery. The performance gap between different

quantization levels is more pronounced in the outdoor dataset.

For example, the improvement from 2 bits to 8 bits is larger in

the outdoor case compared to the indoor case, highlighting the

importance of sufficient quantization resolution in challenging

environments.

Figure 4 shows the NMSE performance versus BPP for var-

ious methods evaluated on both indoor and outdoor datasets.

The compared models include Baseline 1 [13], Baseline 2

[11], CSRNet [4], and the proposed STQENet architecture. To

ensure a fair comparison, we integrated an entropy bottleneck

into Baseline 2 and CSRNet, enabling them to function as

end-to-end frameworks similar to our approach. For indoor

dataset in Fig. 4a, STQENet consistently outperforms all

baseline methods across most BPP values, especially in the

mid-to-low rate region (0.5±1.5 BPP). This indicates that our

method, achieves superior compression efficiency without sac-

rificing reconstruction quality. STQENet outperforms Baseline

1, which uses a simple autoencoder with different quantization

but the same entropy model, by an average of 17.72%,

demonstrating the benefits of using attention mechanisms in

the autoencoder for better feature representation. Baseline 2,

focusing solely on quantization without an entropy model,

performs significantly worse, which STQENet outperforms

it by 27.48%. This confirms the critical role of entropy

modeling in achieving efficient compression. CSRNet with

an entropy bottleneck shows competitive performance but

still lags behind STQENet, which beats it by an average

of 19.32%. This suggests that while CSRNet benefits from

added entropy modeling, its underlying autoencoder may not

be as expressive or adaptive as the attention-based design in

STQENet. In the outdoor dataset, shown in Fig. 4b, STQENet

once again delivers top-tier performance at low BPP levels

(around 0.75), demonstrating strong robustness in handling

more challenging compression scenarios. It exhibits a signif-

icant NMSE reduction as BPP rises, highlighting its effec-

tiveness in environments with limited bandwidth. STQENet

delivers moderate to substantial average improvements across

benchmarks: 8.79% over Baseline 1, 40.11% over Baseline

2, and 7.68% over CSRNet with entropy bottleneck. The

largest gain is observed against Baseline 2, highlighting the

significant advantage of integrating entropy modeling with

learned attention-based compression.
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V. CONCLUSION

In this paper, we introduced STQENet, an end-to-end

CSI compression framework designed to address the feed-

back bottleneck in massive MIMO systems. By leveraging

a Spatial Correlation-Guided Attention Mechanism alongside

quantization-aware and entropy-aware training, our approach

effectively captures antenna dependencies and produces com-

pact, efficiently coded representations. Experimental results

across diverse datasets demonstrate that STQENet consistently

outperforms existing compression methods. Our analysis re-

veals that performance improves steadily with finer quanti-

zation and higher SNR, while coarse quantization introduces

distortion floors, especially in high-SNR or complex propa-

gation scenarios. Compared to baselines with similar entropy

modeling, STQENet achieves superior rate-distortion trade-

offs due to its attention-based architecture and learned coding

pipeline. These findings underscore the importance of jointly

optimizing neural compression models with practical coding

constraints in mind. Our work offers a promising step toward

scalable and deployable CSI feedback solutions for next-

generation wireless networks.
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