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1. Introduction

Water resources are under pressure from population growth, pollutant emergence and
climate change (United Nations, 2019). The effects of climate change are likely to lead
to more frequent and intense extremes in rainfall and droughts (Caloiero et al., 2018,
Du et al., 2019). The implications for water resources include both increased
contaminant wash-off into river systems during rainfall events, and/or increasing
periods of low river flows with corresponding reduced capacity for dilution of
contaminants (Graydon et al., 2022). The likely increased pressure on surface raw
water treatment facilities during pollutant spikes in river systems will lead to increased
costs and higher risks of drinking water quality failures, which will in turn heighten risks

to human health (Swinamer et al., 2024).

Alongside emerging contaminants, the management of pesticide runoff to water supply
systems is a current and ongoing concern (Cooke et al., 2020). In the United Kingdom
and EU water supply regulations set the maximum current legal limit for drinking water
at 0.1 ug/l of one particular pesticide or not more than 0.5ug/l of all pesticides present
in total (European Commission, 2024). The effectiveness of pesticide removal from
surface water via treatment varies from country to country and several pesticides are
commonly found in drinking water (Troger et al. 2021). There is therefore an ongoing
need for cost effective mitigation strategies to reduce contamination risks to water

supply systems.

Previous studies have demonstrated that the spatial distribution of non-point sources
(NPS) and/or placement of remediation approaches within a catchment can have a
significant impact of pollutant loads at sensitive locations including abstraction sites
(Zhang et al. 2011, Brookes et al., 2015). Hence, simulation based spatial optimization

is seen as a useful method to inform catchment management strategies for the
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mitigation of non-point pollution of water resources (Srivastava et al., 2002; Arabi et
al., 2006, Dai et al., 2024). These techniques can guide catchment best management
practices (BMPs) and resources to be targeted to specific areas which are expected
to be most effective in reducing pollutant impacts at specific sites (e.g. at the river
basin outlet). BMP measures may include the efficient targeting of farmer subsidies to
remove or reduce contaminant sources (Cooke et al., 2020), or the implementation of

filter strips or riparian buffers (Schramm et al., 2024).

Simulation methodologies commonly involve an optimisation-based framework in
which an objective function defined based on an aspect of a water quality model output
is minimized as a function of the spatial (and/or other) properties of the pollutant
sources in the catchment. An important consideration is the selection of appropriate
inputs and a modelling approach which enables the optimization routine to produce

faithful outputs of the water quality dynamics under investigation.

For example, Srivastava et al., (2002) showed that the use of continuous time series
rainfall as a simulation input rather than combinations of design rainfall events
provided a superior performance when optimizing BMP placement in a 725 ha
agricultural catchment for yearly water quality improvement. In this case, the objective
functions were defined as the total pollutant load simulations of the annualised
AnnAGNPS model and net returns of a simple cost model. Numerous further examples
of land use and/or BMP targeting optimization methodologies are available in the
literature (Bodrud-Doza et al., 2023; Kaim et al., 2018), utilizing alternate optimization
algorithms (Kaim, et al, 2018), remediation techniques (Lui et al., 2019), as well as
coupled approaches that also consider cost or other functions (Arabi et al., 2006,
Jeong et al., 2024). However, the most commonly utilized water quality evaluation

criteria are total pollutant loadings which are normally seen as a general indicator of
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overall NPS impacts although some alternate metrics such as stream health have also
been explored (Herman et al., 2016). Further, for computational efficiency under
optimization, most approaches utilize lumped/or semi distributed water quality models
(such as SWAT) and calculate performance metrics based on simulated water quality
at daily or lower temporal resolutions. Hence existing approaches for simulation based
spatial optimization are rarely tailored for specific objectives related to water supply

systems.

When considering the case of impacts of specific pollutants on water resource
infrastructure such as abstraction systems, objective functions which consider specific
regulatory or operational target functions are likely to be more relevant when
developing spatial optimization approaches. For pesticides, these targets frequently
consider the duration in which concentrations remain above the regulatory threshold,
such that control/abstraction/pumping decisions can be optimized to achieve water
resource targets (Yassin et al., 2021, Ortiz-Lopez et al., 2022). Further, in many cases
relevant water quality dynamics are highly variable at sub-daily scales, being sensitive
to the spatial and temporal variability of surface rainfall runoff processes (Asfaw et al.
2018, Delpla et al., 2019, Suslovaite et al. 2024), and hence require a distributed
modelling approach operating at sub-daily (i.e. event based) temporal scales to

capture the necessary detail for appropriate spatial optimization.

Given the sensitivity to surface runoff dynamics, an additional challenge is to derive
suitable and computationally efficient rainfall inputs to any simulation/optimization
approach which account for the temporal and spatial variations in rainfall in the
catchment. Whilst the use of historical rainfall time series would naturally incorporate
such variations, the combination of a detailed/distributed model and extensive time

series inputs within an optimization routine would be computationally prohibitive.
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Optimization approaches which utilize more complex hydrodynamic or water quality
models are often required to develop appropriate rainfall sampling strategies, such
that a shorter subset of rainfall events can be derived which preserve the necessary

rainfall features for simulation (Mounce et al., 2020, Eulogi et al., 2022).

This study develops and tests a spatial high-risk land management optimization
approach appropriate to the reduction of acute pollutant pesticide concentrations, in
this case metaldehyde, from rainfall runoff at water abstraction sites. A novel
methodology to characterise rainfall inputs for optimisation-based approaches within
complex/distributed catchment models is developed for this purpose, and a
contaminant specific objective function based on threshold exceedance is used for the
proposed application. The technique is implemented in a UK test catchment with
historically high levels of observed metaldehyde concentrations, for which a validated
distributed water quality model currently exists. The land use optimization
methodology can be used to prioritize the mitigation of high-risk areas within the
catchment, and further investigates how removal of these areas (e.g. via a subsidy
scheme, as in Cooke et al., 2020) affects acute pollutant concentrations in river
systems under a historical rainfall time series when compared to alternate land use

mitigation strategies.

2. Methodology

This section describes the development of an inverse modelling methodology to be
applied to a case study catchment. In this work the land use optimization approach is
developed for the mitigation of a specific pesticide (metaldehyde), for which an event-
based transport model in the case study catchment has previously been developed,

calibrated, and validated. Based on the requirements of the water utility, an objective
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function related to concentration duration over a threshold is selected. The
methodology identifies priority high-risk fields in which pesticide has been applied to
crops to target for intervention, representing up to 5% of the total high-risk area.
However, the optimization approach is suitable for other cases, pollutants and target
area thresholds for which a distributed water quality model is required to consider
water quality dynamics at appropriate scales (i.e. at high/sub-daily resolutions).
Finally, the approach is then verified by the simulation of pollutant response under
historical measured rainfall record for the optimised land distribution vs comparable

alternate random and clustered field selection strategies.

2.1 Study site

At 300 km?, River Leam is a moderate size sub-catchment of River Severn. Catchment
elevation ranges between 46m to 232m above sea level. The abstraction site, where
surface water is abstracted for drinking water supply, is maintained by the utility who
carries out routine and regulatory monitoring of river water quality. A UK Environment
Agency flow gauging station is present on site with data available at 15 minute
intervals. Typical flow depth range is between 0.24 m and 1.16 m with mean flow of

1.57 m3/s and mean annual catchment rainfall of 649mm.

The utility has identified pesticides as a pollutant of concern at the abstraction site
through long-term routine monitoring. Within the case study catchment in 2018, 1114
‘high risk’ fields (i.e. to which metaldehyde was applied) were identified with a total
area of 88.76 km?. Utility collaborative programmes (Farm to Tap schemes) with the
farms are still ongoing to mitigate diffuse pollution from pesticides (Severn Trent
Water, 2024). The schemes are carried out annually at catchment level where
individual farms can apply for funding from the utility if they are eligible. Hence, in this

context of cooperative land management, it would be beneficial to develop an
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approach to facilitate identification of priority catchment areas to inform targeted

catchment management interventions.

2.2 Pesticide model

In this study we focus on the example mitigation of a specific pesticide (metaldehyde)
which is a soluble molluscicide used in agriculture to control slugs and snails (Li et al.,
2010). In the UK metaldehyde was historically applied to winter crops such as winter
wheat, potatoes and oilseed rape, between September and December, when the
conditions are most favourable for Mollusca (Asfaw, 2018). Its low sorption coefficient
of active ingredient to organic carbon (KOC) value (34 to 240 L/kg) (Kay and Grayson,
2014) combined with its relatively long half-life in soil (3.17 to 223 days) allows for it to
be readily leached into surface runoff during rainfall events. As such is poses
significant risks for water supply systems, with frequent observations of high
concentrations in arable catchments after rainfall. Metaldehyde has previously been
identified to be responsible for majority of all cases of pesticide exceedances in
drinking water in England and Wales. In 2016 it accounted for 87% of all pesticide
exceedances recorded that year (DWI, 2017). The utility has reported exceedances at
17% of water treatment works (WTW) in 2017 and at 8% of WTWs in 2018 (Cooke et

al., 2020).

Asfaw et al. (2018) presented a validated, travel time based, physically distributed
model used to predict metaldehyde levels after a rainfall event accounting for
variations in rainfall and distribution of land use. The model was tested/validated on
the same case study catchment based on hourly metaldehyde observations at the
catchment outlet following rainfall events. The model is comprised of surface runoff

generation, surface runoff routing and pollutant build-up/wash-off components. The



159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

surface runoff component calculates the cumulative excess rainfall depth I (mm) at
each timestep t based on the differential form of the Soil Conservation Service (SCS)
curve number (CN) method (Mancini and Rosso, 1989). The surface runoff routing
component uses a spatially distributed time variant direct runoff travel time technique
to account for spatial and temporal variability of runoff generation and flow routing
through overland flows and stream networks (Melesse and Graham, 2004; Du et al.,
2009). The pollutant build-up/wash-off component estimates metaldehyde build-up
through pesticide applications on identified high-risk areas. The model operates at 1
h time step, with input spatial rainfall data at 1 km?, and calculates runoff at 5m?
resolution. The model was validated via direct measurement during independent
rainfall runoff events (monitored between Oct 2014 - Feb 2017) during which
metaldehyde concentration was monitored at hourly intervals at the catchment outlet.
When compared to measured values, model simulations for the events all had
correlation coefficients of 0.70 or more, prediction error of peak metaldehyde
concentration less than 5% and time to peak concentration error of 6 or less hours.
Overall, model validation returned an average coefficient of determination of 0.75 and
model efficiency of 0.46. Further details of the model build, calibration and validation
can be found in Asfaw et al (2018). The model has since been used in drinking water
abstraction management at the utility to suspend abstraction from surface water when

a peak in metaldehyde concentrations is forecasted.

2.3 Development of inverse modelling method for designing catchment
management options

The inverse modelling approach searches for model input, in this case a distribution
of catchment high-risk fields (i.e. those which act as a significant source for pesticide,

based on seasonal distribution of crops as identified by land cover maps), that result
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in desired model output (defined pesticide levels in river water). The objective function
is set to be the number of predicted hours that pesticide levels exceed the specified
EU and UK threshold of 0.1 ug L™ in drinking water at the potable water abstraction
site situated at catchment outlet. This objective function is of specific relevance for
water supply systems with limited raw water storage or ability to blend with other

sources, in which abstracted water is directly treated and distributed to consumers.

There are vast amounts of possible catchment high-risk field distributions and so a
guided search algorithm is needed. In this case, genetic algorithm (GA) was selected
to carry out land use optimisation. GA is widely used to solve optimization problems in
water resources planning and management (Nicklow et al., 2010, Eulogi et al., 2022).
GA is an evolutionary search algorithm based on natural selection. It works with
parameter sets of a model while checking the outcome of the model as its objective
function. The parameter values that produce the most optimal model outcome are then
selected to produce the next set of parameters (‘offspring’) through crossover and
mutation. In many applications, there is a need to have several near optimal solutions
as alternatives because not all solutions can be implemented for practical reasons.
Hence, GA is especially suited to mitigation measure allocation searches (Srivastava
et al., 2003; Srivastava et al., 2002; Arabi et al., 2006; Perez-Pedini et al., 2005)
because it searches from populations rather than a single point and can provide more
than one solution. A more detailed summary of Genetic Algorithms and their

applications is detailed in Tang et al. (1996).

2.3.1 Zero-one integer programming
Combinatorial GA problems require an input as a list of values that can be presented
in different combinations which the algorithm can optimise. In this study, zero-one

integer programming is used to represent source fields within the catchment where
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the pesticide is present (1) or not present (0). The technique has been previously used
in solving similar allocation problems where the method (or land use) is either

implemented or not implemented (Wang et al., 2019, Aerts et al., 2002).

Since fields have a non-uniform area, maintaining the same total pesticide use area
for each iteration is not always possible. A targeted land use mitigation approach was
assumed in which up to 5% of the land area can be considered for intervention. In
practice this is likely to represent measures such as such as farmer subsidies paid by
the water utility to use alternate, less harmful alternatives (such as ferric phosphate)
at these locations (Cooke et al., 2020). Therefore, in this case the GA aims to find a
combination of high-risk (pesticide present) fields which constitutes a reduction of
high-risk field area by 5%+1% and minimises the number of hours that forecasted total
pesticide levels exceed the threshold of 0.1 ug L='. Hence, every new solution created

in GA contains at least 95%+1% of the total original (2018) high-risk field area.

To begin, an initial solution is created, based on the known 2018 distribution of fields
containing crops to which the target pesticide is applied. This is a list of 1's where the
total number of digits, represent all the fields present in the original 2018 high-risk
shapefile. Then, presence of pesticides is removed from a number of randomly
selected fields equalling 5%+1% of total area, with corresponding 1’s in the list
replaced by 0’s. This list is then used to create a shapefile of high-risk fields were
pesticides are present. The Asfaw et al. (2018) pesticide model is first run with the
initial solution land use shapefile and the outcome forms the initial objective function

that GA uses to compare to its subsequent objective functions.

All new solutions form a list of same length as the initial solution but where fields are

selected to be removed, the 1s are replaced with Os. For each iteration, a new high-
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risk shapefile is created and the resulting objective function value is determined based

on the water quality model and associated variables.

Genetic algorithm parameters are set out in table 1. Figure 1 shows a flow chart of
the GA method. The initial solution represents the current distribution of high risk land
use. Checking the objective function runs the model with the new high risk shapefile
and checks the resulting forecasted total hours pesticide levels are above threshold,

and redefines objective function.

Table 1 Parameter settings used in the genetic algorithm.

Parameter name Parameter setting

Probability of crossover 1
Probability of mutation 0.3
Tournament size 3
Population size 100
Number of generations 100
Stopping criteria 4.5 days runtime

2.3.2 Rainfall Inputs

A significant complicating factor is that the spatial and temporal variations in rainfall
have a significant effect on the dynamics of pesticide concentrations at the abstraction
site (Asfaw et al. 2018). Therefore, an appropriate model rainfall input for the inverse
modelling/optimisation approach needs to be carefully considered to account for these
processes when considering the spatial distribution of high-risk fields. Utilising
observed long-term rainfall datasets within the optimisation would be a valid approach,

as this would inherently capture the variations of temporal and spatial rainfall over the

11
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catchment area. However, the use of long time series datasets is infeasible in practice
due to the computationally intensive nature of the optimisation routines. Hence, to
account for the influence of spatial variability of rainfall patterns and intensities, a
shorter compilation of rainfall events representative of the historic catchment rainfall is
required. In this study, a rainfall event ‘mashup’ was created which contains a selected

subset of the historical catchment rainfall spanning several years (2015-2019).

Similar approaches have been used previously for computationally intensive
optimisation based methods which are sensitive to temporal variation in rainfall inputs
(Mounce et al. 2020). In this study, due to the nature of the rainfall runoff, it is important
to retain elements in the subset that capture both the temporal and spatial distribution
of rainfall within the catchment. To achieve this, the statistical characteristics (temporal
and spatial variability) of the historic catchment rainfall patterns were analysed and

recreated as closely as possible in the rainfall ‘mashup’ input file.

A routine was first developed to analyse the 1 km? spatial and 5 min temporal
resolution spatial rainfall radar data from the Met Office Nimrod System (Met Office,
2003). Initially every 5-minute time step data point was averaged over the catchment
area to produce a single value, producing a time series of 5-minute catchment
averaged values for several years (2015-2019). As the metaldehyde model is used for
September-December months, data for these months only was taken forward for
analysis (Figure 2). For every 5-minute time step, the spatial standard deviation,
(defined as standard deviation of all the values within the original spatial rainfall file for

that 5 minute time step), was calculated as a metric of rainfall variability.

A routine was then developed to loop through the resulting averaged rainfall time

series to automate the recognition of storm events. The routine identifies a gap in

12
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rainfall, takes the next nonzero value as a start of a storm event, and the subsequent
next gap in rainfall as the end of a storm event. It assigns a storm ID to each event,
records its start and end date/time, calculates its length (time in hours), total event
rainfall depth, average spatial standard deviation, and antecedent moisture condition
for 15 days prior to the start of the rainfall event (AMC15). The identified events were
further refined so that each included event was at least 1 hour long and be expected
to produce an increase in pesticide levels at the abstraction site (based on running the
Asfaw et al. 2018 model for each event). Over the full time series (months September
to December in the years 2015-2019) this resulted in 188 identified storm events in

the catchment expected to influence pesticide levels at the catchment outlet.

A multivariate stratified sampling method (Speight et al., 2004) was then used to select
a subset of these events which efficiently characterised the overall temporal and
spatial variability of all identified rainfall events in the catchment without bias by taking
into account the clustered nature of the data. The rainfall events were assigned into
strata by spatial standard deviation, each strata was then stratified by temporal
standard deviation. At sub-strata level, random numbers were assigned to elements
and sorted largest to smallest. A single element at the top of each sorted sub-strata
was then selected. Based on this analysis, sixteen rainfall events were selected to
create the mashup subset. Summary statistics of the full and sampled dataset are

shown in table 2.
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Table 2 summary statistics of catchment averaged hourly rainfall for the full dataset of

188 events and the sampled dataset of 16 events

.Statistic Full dataset Sampled dataset

Mean 0.52 0.52
Standard Error 0.02 0.07
Median 0.32 0.31
Mode 1.48 x 10°° N/A
Standard Deviation 0.6 0.67
Sample Variance 0.36 0.44
Kurtosis 4.39 6.16
Skewness 1.92 2.31
Range 4.09 3.36
Minimum 4.93 x 10° 7.40x10°
Maximum 4.09 3.36
Sum 668.38 43.55
Count 1287 83

A two-sample Kolmogorov-Smirnov test was used to check if the full rainfall dataset
and rainfall mashup dataset obtained through multivariate stratified sampling have the
same distribution of temporal and spatial standard deviation. If the Kolmogorov—
Smirnov test statistic exceeds critical D (Daq, equation 1) the null hypothesis of both

samples come from a population with the same distribution can be rejected.
(Equation 1)

Dy = c(a) |—

Where c(a) is the inverse of the Kolmogorov distribution at significance level a, m is

the first sample size and n is the second sample size. As the test statistic was lower

14
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than critical D at a = 0.05, a failure to reject the null hypothesis is implied. Therefore,
the two datasets can be assumed to be from the same distribution when checked both
by spatial and temporal standard deviation distributions. The histograms below show
the distributions for spatial standard deviation (figure 3) and temporal standard

deviation (figure 4).

Based on this analysis, the mashup event was taken forward and used as an input to
the GA simulation/optimisation routine. When considering the rainfall mashup as an
input, the optimisation algorithm for metaldehyde land use was evaluated to have
reached the best solution (considering a maximum of 5%+1% land mitigation) after
3023 runs. On a Windows10 computer with Intel 19-10900x processor and 64GB of

RAM this optimisation analysis required approximately 4.5 days of simulation time.

2.3.3. Simulation and verification of river pesticide concentrations

To define the performance of the GA approach (including the use of the simplified
representation of rainfall inputs via the mashup event), the resulting optimised high-
risk mitigation solutions were evaluated by running the pesticide model with the full
188 rainfall event record identified for September-December 2015-2019. The outcome
of total duration pesticide levels were above regulatory threshold was compared to two
alternative methods for verification: 1) a random 5% removal of high-risk area, and 2)

removal of the 5% of fields closest to the abstraction site, as selected by travel time.

3. Results and discussion

3.1 Land-use optimisation

Model outputs for the range of simulated high-risk removal areas resulted in pesticide
levels at the catchment outlet above the regulatory threshold for between 307 and 322

hours for the duration of the mashup event. After 3023 runs the GA routine produced

15
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a reduction of 39 hours in duration over the regulatory threshold from the initial solution

(figure 5).

The location of high-risk fields removed in the initial solution as well as fields removed
for the optimal solution as identified by the GA are plotted in figure 6. In this case there
is no discernible clustering in the identified fields or identified proximity to the river
network. However it is noted that the shape of the temporal distribution of the removed
high-risk areas (in terms of travel time from the abstraction site under a uniform 1
mm/hr rainfall event, calculated as in Asfaw et al., 2018) is of similar form to the overall

initial 2018 distribution of identified high-risk fields in the catchment (figure 7).

3.2 Performance under historical rainfall record

To evaluate the performance of the methodology in reducing pesticide risks to the
drinking water abstraction site, the proposed GA solution (spatial distribution of
mitigated high-risk areas) was simulated under the full historical rainfall record (i.e.
188 identified storm events from 2015 - 2019). This effectively tests the impacts of the
uncertainties introduced by the simplification of the rainfall record into a mashup event
during the optimization process. Water quality outputs were compared to a simulations
using the original high-risk (HR) land use with no fields removed, a randomly selected
removal of 5% of fields by area (m?), and a removal of 5% of area from fields with the
shortest travel time (identified after running the Asfaw et al., 2018 catchment
hydrological model with 1mm/hr uniform rainfall). The total duration that pesticide
remained over the regulatory threshold for each of these scenarios is presented in

Table 3.

Table 3. Performance of optimization methodology under full 2015-2019 historical

rainfall dataset

16



355

356

357

358

359

360

361

362

363

364

365

366

367

Reduction in pesticide
hours-above-
threshold compared to
Pesticide hours-above- original H.R. field
Scenario 0.1 pg/l threshold distribution
Original HR fields 3248 N/A
5% random HR fields
removed (initial solution) 3157 91 (2.8 %)
5% HR fields removed by
best GA solution 2997 251 (7.7%)
5% shortest travel time HR
fields removed 3169 79 (2.4%)

The GA solution for high-risk area mitigation reduced modelled pesticide time above
the regulatory threshold at the abstraction site by 251 hours or 7.7% in the test
catchment. The GA best solution performed significantly better than removing an
equivalent area of high-risk fields closest to the abstraction point, or if the field
distribution was selected randomly. This demonstrates the effectiveness of the
proposed methodology, including the rainfall subsampling procedure in effectively and
efficiently targeting high-risk (HR) fields for mitigating pesticide impacts on water
supply systems. In this case clustering interventions close to the abstraction site
resulted in similar levels of performance to a random chosen distribution. To enable a
comparison, a simple sensitivity analysis was conducted utilising the original Asfaw et
al. (2018) model by varying the uniform catchment washoff parameter. Based on an

analysis over the full rainfall record, to achieve the same reduction in time above
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threshold using a non optimated field distribution (i.e. randomly removed fields) would
require an estimated 9.5 % reduction in pollutant wash-off from catchment high risk

fields.

When considering the full record, it is noted that the GA solution is effective in reducing
the duration over threshold for the majority of simulated events (although to a minor
degree in some cases). In contrast, due to spatial positioning and interaction with the
runoff processes the shortest travel time selected H.R. field approach is observed to
reduce concentrations during the rising limb of some of the larger events only. The
randomly selected H.R. removal field method also performs inconstantly, reducing
duration over threshold for a more limited subset of events than the GA solution.As
examples, Figures 8 and 9 plot the modelled pesticide concentration for two selected
rainfall events from the historical record under the different land use scenarios. Fig 8
is an example of a low intensity, frequently occurring event in which the GA solution
reduced the time above threshold by 3 hours, with almost no reduction for the alternate
approaches. Fig 9 displays a larger (and hence less frequent) rainfall event where the
shortest travel time approach reduced the time above threshold by 1 hour by delaying
the first arrival time of the pesticide. Overall, the increased performance of the GA
solution is due to a more consistent ability to reduce the duration over the threshold
over a greater range of rainfall events than the alternate approaches. This further
indicates the effectiveness of the proposed event sub-sampling approach in
characterising the full rainfall record.

It is important to note that, given model simulation and optimisation uncertainties it is
not possible to claim that the GA solution represents the best possible land use
distribution/targeted mitigation strategy. However the use of a catchment validated

model together with the verification results provide confidence that the proposed
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methodology provides a feasible approach to effectively target land use interventions
which provides superior performance over random or simple clustered groupings of

interventions.

3.3 Future studies

Considering observed interactions between modelled water quality dynamics, the
objective function and the defined regulatory threshold for pesticides, it is evident that
the choice of objective function has significance when defining the optimal positioning
of catchment interventions such as BMPs, and hence when considering the
performance of simulation/optimisation algorithms for spatial targeting of interventions.
Whilst many previous studies have focused on total pollutant load over a given time
period (e.g. year) as an objective function, it is recommended for future studies that
further consideration is given to appropriate objective functions based on the proposed
application/environmental problem under consideration. Whilst total pollutant load may
be appropriate for many environmental problems, there are a range of different
environmental performance metrics, regulatory targets and practical considerations
which may be appropriate under different situations. Examples include chemical
frequency-concentration-duration standards for intermittent pollutant discharges
based on environmental toxicology in surface waters (e.g. FWR 2012), bacterial
percentile standards for bathing waters (e.g. EU. 2006), and various utility defined
management techniques for raw potable water supply, often locally dependent on the
availability of bankside storage options to enable blending of raw water as well as site

specific treatment efficiency and local drinking water regulations.

A further notable consideration is that in this case, the properties/shape of the travel
time distribution of the optimum GA solution resemble that of the initial distribution of

HR fields. This suggests that targeting/removing high-risk field areas in proportion to

19



418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

the calculated travel time distribution within catchment may be an effective
transferable strategy to other catchments when considering the targeted mitigation of
rainfall driven water quality impacts, however this finding requires further verification
at other sites. In this specific case model outputs suggest that this strategy is effective
in producing solutions which are effective over a wider range of potential catchment
rainfall/runoff events than clustering interventions in specific catchment areas.
However, it should be noted that interactions between rainfall runoff / water quality
dynamics / and the objective function are notably complex, and the degree that this
result is a function of the water quality parameter under investigation (a highly soluble
pesticide), specific catchment characteristics and nature of the objective function
should be further explored in future work.

It is also acknowledged that modelling uncertainties (e.g. those associated with
pollutant build up and wash off quantification), within the simulation approach will affect
the identification of optimal field distributions using the GA methodology developed
herein. Due to computational requirements, adopting formal uncertainty assessments
such as Monte Carlo are infeasible when applied to optimisation problems at this
scale. However, in this specific case, a site validated simulation model has been used,
and performance verified using a comprehensive rainfall record of 188 district events
to consider the effectiveness of the model input subsampling approach. Ideally, further
studies would consider measuring in river pollutant response before and after GA
targeted land use mitigations have been adopted, however this would require a
significant multi-season study with the cooperation and resources of water utilities and
landowners/farmers. The transferability of this approach to other catchments and
contaminants with different characteristics is also worth further study, however when

dealing with alternate and/or more complex catchments or contaminants a recalibrated
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or alternate/more complex water quality simulation model should be used within the
optimization framework, and confidence in the validity of model outputs should be
validated by further field observations of the contaminant under study during rainfall-
runoff events. It should also be noted that practical adoption of mitigation strategies
is dependent on the cooperation and agreement with local landowners/farmers (Cooke
et al. 2020), and that precise specification of specific areas may not always be feasible

to local practicalities such as land access issues.

4. Conclusions

This study has developed a new methodology for targeting catchment mitigation
options for the reduction of impacts from pesticides following acute rainfall events on
water abstraction systems. In this case impact is defined as duration the pesticide
remains above the UK regulatory target of 0.1 ug/l, which is the relevant metric for the
water supply utility. Whilst land use optimisation to address water quality problems is
a common topic in the literature, to date such methods have focused on an evaluation
of long-term water pollutant loads based on lumped or semi distributed catchment
models. When considering the mitigation of acute impacts, a key challenge is the
required representation of the effects of spatial and temporal variations in rainfall within
the optimisation framework. To enable the required computational efficiency required
for such an optimisation with a distributed water quality model, this work has proposed
the selection of a subset of rainfall events based on statistical interrogation of the
historic rainfall record (based on statistical properties related to the spatial and
temporal variability of rainfall events) for use within the optimisation routine. The use
of this ‘mashup’ event within a GA optimisation algorithm was able to identify priority
areas for catchment intervention which resulted in a significant simulated reduction in

pesticide risk to the water supply system. Pending successful transferability, the
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approach can be feasibly applied using a desktop computer for catchments of
moderate scale (300 km? in this case). The application of the GA defined solution to
the historic rainfall record demonstrated a significant improvement when compared to
a simple selection/prioritisation of fields closed to the abstraction site (7.8% in duration
target pesticide remained over the regulatory limit, based on a 5% removal of high-
risk field area in the catchment). Findings from this case suggest that superior
intervention strategies are those which can be effective over the widest possible range
of rainfall events within the target catchment. Here, this can be considered by
proportionally applying measures which reference to the distribution of high-risk areas

according to travel time from the site of concern.

The method of optimisation and rainfall subsampling is potentially transferable to other
catchments/pollutant types assuming the availability of appropriate, validated
catchment specific models for the pollutant and application of concern (e.g. bacterial
models such as in Suslovaite et al., 2024). The methodology is expected to be of most
relevance in cases where fully distributed/complex modelling approaches are required
to capture the necessary temporal dynamics of the water quality parameter, most
notably for water supply applications. Results also demonstrated the complexity of the
interaction between rainfall runoff process, water quality dynamics and the objective
function used within the optimization problem, which further highlights the requirement
to carefully consider an appropriate choice of objective function, required model
structure and input variables for the required environmental objective at appropriate

scales.

Based on identified priority areas for interventions, utilities may invest in catchment
measures such as subsidies to use alternative pesticides, cultural controls or

investment in local drainage solutions. The use of such optimization methods is
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anticipated to enable utilities to obtain the best return for the money invested by
replacing blanket mitigation measures with a more targeted catchment intervention

approach.
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