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1. Introduction  

Water resources are under pressure from population growth, pollutant emergence and 

climate change (United Nations, 2019). The effects of climate change are likely to lead 

to more frequent and intense extremes in rainfall and droughts (Caloiero et al., 2018, 

Du et al., 2019). The implications for water resources include both increased 

contaminant wash-off into river systems during rainfall events, and/or increasing 

periods of low river flows with corresponding reduced capacity for dilution of 

contaminants (Graydon et al., 2022). The likely increased pressure on surface raw 

water treatment facilities during pollutant spikes in river systems will lead to increased 

costs and higher risks of drinking water quality failures, which will in turn heighten risks 

to human health (Swinamer et al., 2024).  

Alongside emerging contaminants, the management of pesticide runoff to water supply 

systems is a current and ongoing concern (Cooke et al., 2020). In the United Kingdom 

and EU water supply regulations set the maximum current legal limit for drinking water 

at 0.1 µg/l of one particular pesticide or not more than 0.5µg/l of all pesticides present 

in total (European Commission, 2024). The effectiveness of pesticide removal from 

surface water via treatment varies from country to country and several pesticides are 

commonly found in drinking water (Tröger et al. 2021). There is therefore an ongoing 

need for cost effective mitigation strategies to reduce contamination risks to water 

supply systems. 

Previous studies have demonstrated that the spatial distribution of non-point sources 

(NPS) and/or placement of remediation approaches within a catchment can have a 

significant impact of pollutant loads at sensitive locations including abstraction sites 

(Zhang et al. 2011, Brookes et al., 2015). Hence, simulation based spatial optimization 

is seen as a useful method to inform catchment management strategies for the 



mitigation of non-point pollution of water resources (Srivastava et al., 2002; Arabi et 

al., 2006, Dai et al., 2024). These techniques can guide catchment best management 

practices (BMPs) and resources to be targeted to specific areas which are expected 

to be most effective in reducing pollutant impacts at specific sites (e.g. at the river 

basin outlet). BMP measures may include the efficient targeting of farmer subsidies to 

remove or reduce contaminant sources (Cooke et al., 2020), or the implementation of 

filter strips or riparian buffers (Schramm et al., 2024).  

Simulation methodologies commonly involve an optimisation-based framework in 

which an objective function defined based on an aspect of a water quality model output 

is minimized as a function of the spatial (and/or other) properties of the pollutant 

sources in the catchment. An important consideration is the selection of appropriate 

inputs and a modelling approach which enables the optimization routine to produce 

faithful outputs of the water quality dynamics under investigation.  

For example, Srivastava et al., (2002) showed that the use of continuous time series 

rainfall as a simulation input rather than combinations of design rainfall events 

provided a superior performance when optimizing BMP placement in a 725 ha 

agricultural catchment for yearly water quality improvement. In this case, the objective 

functions were defined as the total pollutant load simulations of the annualised 

AnnAGNPS model and net returns of a simple cost model. Numerous further examples 

of land use and/or BMP targeting optimization methodologies are available in the 

literature (Bodrud-Doza et al., 2023; Kaim et al., 2018), utilizing alternate optimization 

algorithms (Kaim, et al, 2018), remediation techniques (Lui et al., 2019), as well as 

coupled approaches that also consider cost or other functions (Arabi et al., 2006, 

Jeong et al., 2024). However, the most commonly utilized water quality evaluation 

criteria are total pollutant loadings which are normally seen as a general indicator of 



overall NPS impacts although some alternate metrics such as stream health have also 

been explored (Herman et al., 2016). Further, for computational efficiency under 

optimization, most approaches utilize lumped/or semi distributed water quality models 

(such as SWAT) and calculate performance metrics based on simulated water quality 

at daily or lower temporal resolutions. Hence existing approaches for simulation based 

spatial optimization are rarely tailored for specific objectives related to water supply 

systems. 

When considering the case of impacts of specific pollutants on water resource 

infrastructure such as abstraction systems, objective functions which consider specific 

regulatory or operational target functions are likely to be more relevant when 

developing spatial optimization approaches. For pesticides, these targets frequently 

consider the duration in which concentrations remain above the regulatory threshold, 

such that control/abstraction/pumping decisions can be optimized to achieve water 

resource targets (Yassin et al., 2021, Ortiz-Lopez et al., 2022). Further, in many cases 

relevant water quality dynamics are highly variable at sub-daily scales, being sensitive 

to the spatial and temporal variability of surface rainfall runoff processes (Asfaw et al. 

2018, Delpla et al., 2019, Suslovaite et al. 2024), and hence require a distributed 

modelling approach operating at sub-daily (i.e. event based) temporal scales to 

capture the necessary detail for appropriate spatial optimization.  

Given the sensitivity to surface runoff dynamics, an additional challenge is to derive 

suitable and computationally efficient rainfall inputs to any simulation/optimization 

approach which account for the temporal and spatial variations in rainfall in the 

catchment. Whilst the use of historical rainfall time series would naturally incorporate 

such variations, the combination of a detailed/distributed model and extensive time 

series inputs within an optimization routine would be computationally prohibitive. 



Optimization approaches which utilize more complex hydrodynamic or water quality 

models are often required to develop appropriate rainfall sampling strategies, such 

that a shorter subset of rainfall events can be derived which preserve the necessary 

rainfall features for simulation (Mounce et al., 2020, Eulogi et al., 2022).  

This study develops and tests a spatial high-risk land management optimization 

approach appropriate to the reduction of acute pollutant pesticide concentrations, in 

this case metaldehyde, from rainfall runoff at water abstraction sites. A novel 

methodology to characterise rainfall inputs for optimisation-based approaches within 

complex/distributed catchment models is developed for this purpose, and a 

contaminant specific objective function based on threshold exceedance is used for the 

proposed application. The technique is implemented in a UK test catchment with 

historically high levels of observed metaldehyde concentrations, for which a validated 

distributed water quality model currently exists. The land use optimization 

methodology can be used to prioritize the mitigation of high-risk areas within the 

catchment, and further investigates how removal of these areas (e.g. via a subsidy 

scheme, as in Cooke et al., 2020) affects acute pollutant concentrations in river 

systems under a historical rainfall time series when compared to alternate land use 

mitigation strategies. 

2. Methodology 

This section describes the development of an inverse modelling methodology to be 

applied to a case study catchment. In this work the land use optimization approach is 

developed for the mitigation of a specific pesticide (metaldehyde), for which an event-

based transport model in the case study catchment has previously been developed, 

calibrated, and validated. Based on the requirements of the water utility, an objective 



function related to concentration duration over a threshold is selected. The 

methodology identifies priority high-risk fields in which pesticide has been applied to 

crops to target for intervention, representing up to 5% of the total high-risk area. 

However, the optimization approach is suitable for other cases, pollutants and target 

area thresholds for which a distributed water quality model is required to consider 

water quality dynamics at appropriate scales (i.e. at high/sub-daily resolutions). 

Finally, the approach is then verified by the simulation of pollutant response under 

historical measured rainfall record for the optimised land distribution vs comparable 

alternate random and clustered field selection strategies.    

2.1 Study site 

At 300 km2, River Leam is a moderate size sub-catchment of River Severn. Catchment 

elevation ranges between 46m to 232m above sea level. The abstraction site, where 

surface water is abstracted for drinking water supply, is maintained by the utility who 

carries out routine and regulatory monitoring of river water quality. A UK Environment 

Agency flow gauging station is present on site with data available at 15 minute 

intervals. Typical flow depth range is between 0.24 m and 1.16 m with mean flow of 

1.57 m3/s and mean annual catchment rainfall of 649mm.  

The utility has identified pesticides as a pollutant of concern at the abstraction site 

through long-term routine monitoring. Within the case study catchment in 2018, 1114 

tal 

area of 88.76 km2. Utility collaborative programmes (Farm to Tap schemes) with the 

farms are still ongoing to mitigate diffuse pollution from pesticides (Severn Trent 

Water, 2024). The schemes are carried out annually at catchment level where 

individual farms can apply for funding from the utility if they are eligible. Hence, in this 

context of cooperative land management, it would be beneficial to develop an 



approach to facilitate identification of priority catchment areas to inform targeted 

catchment management interventions.  

2.2 Pesticide model 

In this study we focus on the example mitigation of a specific pesticide (metaldehyde) 

which is a soluble molluscicide used in agriculture to control slugs and snails (Li et al., 

2010). In the UK metaldehyde was historically applied to winter crops such as winter 

wheat, potatoes and oilseed rape, between September and December, when the 

conditions are most favourable for Mollusca (Asfaw, 2018). Its low sorption coefficient 

of active ingredient to organic carbon (KOC) value (34 to 240 L/kg) (Kay and Grayson, 

2014) combined with its relatively long half-life in soil (3.17 to 223 days) allows for it to 

be readily leached into surface runoff during rainfall events. As such is poses 

significant risks for water supply systems, with frequent observations of high 

concentrations in arable catchments after rainfall. Metaldehyde has previously been 

identified to be responsible for majority of all cases of pesticide exceedances in 

drinking water in England and Wales. In 2016 it accounted for 87% of all pesticide 

exceedances recorded that year (DWI, 2017). The utility has reported exceedances at 

17% of water treatment works (WTW) in 2017 and at 8% of WTWs in 2018 (Cooke et 

al., 2020). 

Asfaw et al. (2018) presented a validated, travel time based, physically distributed 

model used to predict metaldehyde levels after a rainfall event accounting for 

variations in rainfall and distribution of land use. The model was tested/validated on 

the same case study catchment based on hourly metaldehyde observations at the 

-up/wash-



ainfall depth It (mm) at 

curve number (CN) method (Mancini and Rosso, 1989). 

vel time technique 

2009). The pollutant build-up/wash- ld-up 

-risk areas. The model operates at 1 

h time step, with input spatial rainfall data at 1 km2, and calculates runoff at 5m2 

resolution. The model was validated via direct measurement during independent 

rainfall runoff events (monitored between Oct 2014 - Feb 2017)  during which 

metaldehyde concentration was monitored at hourly intervals at the catchment outlet. 

When compared to measured values, model simulations for the events all had 

correlation coefficients of 0.70 or more, prediction error of peak metaldehyde 

concentration less than 5% and time to peak concentration error of 6 or less hours. 

er details of the model build, calibration and validation 

can be found in Asfaw et al (2018). The model has since been used in drinking water 

abstraction management at the utility to suspend abstraction from surface water when 

a peak in metaldehyde concentrations is forecasted.  

2.3 Development of inverse modelling method for designing catchment 

management options 

The inverse modelling approach searches for model input, in this case a distribution 

of catchment high-risk fields (i.e. those which act as a significant source for pesticide, 

based on seasonal distribution of crops as identified by land cover maps), that result 



in desired model output (defined pesticide levels in river water). The objective function 

is set to be the number of predicted hours that pesticide levels exceed the specified 

-1 in drinking water at the potable water abstraction 

site situated at catchment outlet. This objective function is of specific relevance for 

water supply systems with limited raw water storage or ability to blend with other 

sources, in which abstracted water is directly treated and distributed to consumers.  

There are vast amounts of possible catchment high-risk field distributions and so a 

guided search algorithm is needed. In this case, genetic algorithm (GA) was selected 

to carry out land use optimisation. GA is widely used to solve optimization problems in 

water resources planning and management (Nicklow et al., 2010, Eulogi et al., 2022). 

GA is an evolutionary search algorithm based on natural selection. It works with 

parameter sets of a model while checking the outcome of the model as its objective 

function. The parameter values that produce the most optimal model outcome are then 

mutation. In many applications, there is a need to have several near optimal solutions 

as alternatives because not all solutions can be implemented for practical reasons. 

Hence, GA is especially suited to mitigation measure allocation searches (Srivastava 

et al., 2003; Srivastava et al., 2002; Arabi et al., 2006; Perez-Pedini et al., 2005) 

because it searches from populations rather than a single point and can provide more 

than one solution. A more detailed summary of Genetic Algorithms and their 

applications is detailed in Tang et al. (1996). 

2.3.1 Zero-one integer programming 

Combinatorial GA problems require an input as a list of values that can be presented 

in different combinations which the algorithm can optimise. In this study, zero-one 

integer programming is used to represent source fields within the catchment where 



the pesticide is present (1) or not present (0). The technique has been previously used 

in solving similar allocation problems where the method (or land use) is either 

implemented or not implemented (Wang et al., 2019, Aerts et al., 2002). 

Since fields have a non-uniform area, maintaining the same total pesticide use area 

for each iteration is not always possible. A targeted land use mitigation approach was 

assumed in which up to 5% of the land area can be considered for intervention. In 

practice this is likely to represent measures such as such as farmer subsidies paid by 

the water utility to use alternate, less harmful alternatives (such as ferric phosphate) 

at these locations (Cooke et al., 2020). Therefore, in this case the GA aims to find a 

combination of high-risk (pesticide present) fields which constitutes a reduction of 

high-risk field area by 5%±1% and minimises the number of hours that forecasted total 

1. Hence, every new solution created 

in GA contains at least 95%±1% of the total original (2018) high-risk field area. 

To begin, an initial solution is created, based on the known 2018 distribution of fields 

total number of digits, represent all the fields present in the original 2018 high-risk 

shapefile. Then, presence of pesticides is removed from a number of randomly 

-risk fields were 

pesticides are present. The Asfaw et al. (2018) pesticide model is first run with the 

initial solution land use shapefile and the outcome forms the initial objective function 

that GA uses to compare to its subsequent objective functions.  

All new solutions form a list of same length as the initial solution but where fields are 

selected to be removed, the 1s are replaced with 0s. For each iteration, a new high-



risk shapefile is created and the resulting objective function value is determined based 

on the water quality model and associated variables.  

Genetic algorithm parameters are set out in table 1. Figure 1  shows a flow chart of 

the GA method. The initial solution represents the current distribution of high risk land 

use. Checking the objective function runs the model with the new high risk shapefile 

and checks the resulting forecasted total hours pesticide levels are above threshold, 

and redefines objective function. 

Table 1 Parameter settings used in the genetic algorithm. 

Parameter name Parameter setting 

Probability of crossover 1 

Probability of mutation 0.3 

Tournament size 3 

Population size 100 

Number of generations 100 

Stopping criteria 4.5 days runtime 
 

2.3.2 Rainfall Inputs 

A significant complicating factor is that the spatial and temporal variations in rainfall 

have a significant effect on the dynamics of pesticide concentrations at the abstraction 

site (Asfaw et al. 2018). Therefore, an appropriate model rainfall input for the inverse 

modelling/optimisation approach needs to be carefully considered to account for these 

processes when considering the spatial distribution of high-risk fields. Utilising 

observed long-term rainfall datasets within the optimisation would be a valid approach, 

as this would inherently capture the variations of temporal and spatial rainfall over the 



catchment area. However, the use of long time series datasets is infeasible in practice 

due to the computationally intensive nature of the optimisation routines. Hence, to 

account for the influence of spatial variability of rainfall patterns and intensities, a 

shorter compilation of rainfall events representative of the historic catchment rainfall is 

subset of the historical catchment rainfall spanning several years (2015-2019). 

Similar approaches have been used previously for computationally intensive 

optimisation based methods which are sensitive to temporal variation in rainfall inputs 

(Mounce et al. 2020). In this study, due to the nature of the rainfall runoff, it is important 

to retain elements in the subset that capture both the temporal and spatial distribution 

of rainfall within the catchment. To achieve this, the statistical characteristics (temporal 

and spatial variability) of the historic catchment rainfall patterns were analysed and 

recreated as clos  

A routine was first developed to analyse the 1 km2 spatial and 5 min temporal 

2003). Initially every 5-minute time step data point was averaged over the catchment 

area to produce a single value, producing a time series of 5-minute catchment 

averaged values for several years (2015-2019). As the metaldehyde model is used for 

September-December months, data for these months only was taken forward for 

analysis (Figure 2). For every 5-minute time step, the spatial standard deviation, 

(defined as standard deviation of all the values within the original spatial rainfall file for 

that 5 minute time step), was calculated as a metric of rainfall variability.  

A routine was then developed to loop through the resulting averaged rainfall time 

series to automate the recognition of storm events. The routine identifies a gap in 



rainfall, takes the next nonzero value as a start of a storm event, and the subsequent 

next gap in rainfall as the end of a storm event. It assigns a storm ID to each event, 

records its start and end date/time, calculates its length (time in hours), total event 

rainfall depth, average spatial standard deviation, and antecedent moisture condition 

for 15 days prior to the start of the rainfall event (AMC15). The identified events were 

further refined so that each included event was at least 1 hour long and be expected 

to produce an increase in pesticide levels at the abstraction site (based on running the 

Asfaw et al. 2018 model for each event). Over the full time series (months September 

to December in the years 2015-2019) this resulted in 188 identified storm events in 

the catchment expected to influence pesticide levels at the catchment outlet.  

A multivariate stratified sampling method (Speight et al., 2004) was then used to select 

a subset of these events which efficiently characterised the overall temporal and 

spatial variability of all identified rainfall events in the catchment without bias by taking 

into account the clustered nature of the data. The rainfall events were assigned into 

strata by spatial standard deviation, each strata was then stratified by temporal 

standard deviation. At sub-strata level, random numbers were assigned to elements 

and sorted largest to smallest. A single element at the top of each sorted sub-strata 

was then selected. Based on this analysis, sixteen rainfall events were selected to 

create the mashup subset. Summary statistics of the full and sampled dataset are 

shown in table 2. 

 

 

 



Table 2 summary statistics of catchment averaged hourly rainfall for the full dataset of 

188 events and the sampled dataset of 16 events 

.Statistic Full dataset Sampled dataset 

Mean 0.52 0.52 

Standard Error 0.02 0.07 

Median 0.32 0.31 

Mode 1.48 x 10-5 N/A 

Standard Deviation 0.6 0.67 

Sample Variance 0.36 0.44 

Kurtosis 4.39 6.16 

Skewness 1.92 2.31 

Range 4.09 3.36 

Minimum 4.93 x 10-6 7.40 x 10-5 

Maximum 4.09 3.36 

Sum 668.38 43.55 

Count 1287 83 

A two-sample Kolmogorov-Smirnov test was used to check if the full rainfall dataset 

and rainfall mashup dataset obtained through multivariate stratified sampling have the 

same distribution of temporal and spatial standard deviation. If the Kolmogorov

Smirnov test statistic exceeds critical D (D , equation 1) the null hypothesis of both 

samples come from a population with the same distribution can be rejected. 

               (Equation 1) 

Where is the inverse of the Kolmogorov distribution at significance level , m is 

the first sample size and n is the second sample size. As the test statistic was lower 



than critical D at , a failure to reject the null hypothesis is implied. Therefore, 

the two datasets can be assumed to be from the same distribution when checked both 

by spatial and temporal standard deviation distributions. The histograms below show 

the distributions for spatial standard deviation (figure 3) and temporal standard 

deviation (figure 4).  

Based on this analysis, the mashup event was taken forward and used as an input to 

the GA simulation/optimisation routine. When considering the rainfall mashup as an 

input, the optimisation algorithm for metaldehyde land use was evaluated to have 

reached the best solution (considering a maximum of 5%±1% land mitigation) after 

3023 runs. On a Windows10 computer with Intel I9-10900x processor and 64GB of 

RAM this optimisation analysis required approximately 4.5 days of simulation time.  

2.3.3. Simulation and verification of river pesticide concentrations 

To define the performance of the GA approach (including the use of the simplified 

representation of rainfall inputs via the mashup event), the resulting optimised high-

risk mitigation solutions were evaluated by running the pesticide model with the full 

188 rainfall event record identified for September-December 2015-2019. The outcome 

of total duration pesticide levels were above regulatory threshold was compared to two 

alternative methods for verification:  1) a random 5% removal of high-risk area, and 2) 

removal of the 5% of fields closest to the abstraction site, as selected by travel time.  

3. Results and discussion 

3.1 Land-use optimisation 

Model outputs for the range of simulated high-risk removal areas resulted in pesticide 

levels at the catchment outlet above the regulatory threshold for between 307 and 322 

hours for the duration of the mashup event. After 3023 runs the GA routine produced 



a reduction of 39 hours in duration over the regulatory threshold from the initial solution 

(figure 5).  

The location of high-risk fields removed in the initial solution as well as fields removed 

for the optimal solution as identified by the GA are plotted in figure 6. In this case there 

is no discernible clustering in the identified fields or identified proximity to the river 

network. However it is noted that the shape of the temporal distribution of the removed 

high-risk areas (in terms of travel time from the abstraction site under a uniform 1 

mm/hr rainfall event, calculated as in Asfaw et al., 2018) is of similar form to the overall 

initial 2018 distribution of identified high-risk fields in the catchment (figure 7). 

3.2 Performance under historical rainfall record 

To evaluate the performance of the methodology in reducing pesticide risks to the 

drinking water abstraction site, the proposed GA solution (spatial distribution of 

mitigated high-risk areas) was simulated under the full historical rainfall record (i.e. 

188 identified storm events from 2015 - 2019). This effectively tests the impacts of the 

uncertainties introduced by the simplification of the rainfall record into a mashup event 

during the optimization process. Water quality outputs were compared to a simulations 

using the original high-risk (HR) land use with no fields removed, a randomly selected 

removal of 5% of fields by area (m2), and a removal of 5% of area from fields with the 

shortest travel time (identified after running the Asfaw et al., 2018 catchment 

hydrological model with 1mm/hr uniform rainfall). The total duration that pesticide 

remained over the regulatory threshold for each of these scenarios is presented in 

Table 3.  

Table 3. Performance of optimization methodology under full 2015-2019 historical 

rainfall dataset 



 

The GA solution for high-risk area mitigation reduced modelled pesticide time above 

the regulatory threshold at the abstraction site by 251 hours or 7.7% in the test 

catchment. The GA best solution performed significantly better than removing an 

equivalent area of high-risk fields closest to the abstraction point, or if the field 

distribution was selected randomly. This demonstrates the effectiveness of the 

proposed methodology, including the rainfall subsampling procedure in effectively and 

efficiently targeting high-risk (HR) fields for mitigating pesticide impacts on water 

supply systems. In this case clustering interventions close to the abstraction site 

resulted in similar levels of performance to a random chosen distribution. To enable a  

comparison, a simple sensitivity analysis was conducted utilising the original Asfaw et 

al. (2018) model by varying the uniform catchment washoff parameter. Based on an 

analysis over the full rainfall record, to achieve the same reduction in time above 

Scenario 

Pesticide hours-above-

0.1 µg/l threshold  

Reduction in pesticide 

hours-above-

threshold compared to 

original H.R. field 

distribution 

Original HR fields 3248 N/A 

5% random HR fields 

removed (initial solution) 3157 91 (2.8 %) 

5% HR fields removed by 

best GA solution 2997 251 (7.7%) 

5% shortest travel time HR 

fields removed 3169 79 (2.4%) 



threshold using a non optimated field distribution (i.e. randomly removed fields) would 

require an estimated 9.5 % reduction in pollutant wash-off from catchment high risk 

fields.   

When considering the full record, it is noted that the GA solution is effective in reducing 

the duration over threshold for the majority of simulated events (although to a minor 

degree in some cases). In contrast, due to spatial positioning and interaction with the 

runoff processes the shortest travel time selected H.R. field approach is observed to 

reduce concentrations during the rising limb of some of the larger events only. The 

randomly selected H.R. removal field method also performs inconstantly, reducing 

duration over threshold for a more limited subset of events than the GA solution.As 

examples, Figures 8 and 9 plot the modelled pesticide concentration for two selected 

rainfall events from the historical record under the different land use scenarios. Fig 8 

is an example of a low intensity, frequently occurring event in which the GA solution 

reduced the time above threshold by 3 hours, with almost no reduction for the alternate 

approaches. Fig 9 displays a larger (and hence less frequent) rainfall event where the 

shortest travel time approach reduced the time above threshold by 1 hour by delaying 

the first arrival time of the pesticide. Overall, the increased performance of the GA 

solution is due to a more consistent ability to reduce the duration over the threshold 

over a greater range of rainfall events than the alternate approaches. This further 

indicates the effectiveness of the proposed event sub-sampling approach in 

characterising the full rainfall record.  

It is important to note that, given model simulation and optimisation uncertainties it is 

not possible to claim that the GA solution represents the best possible land use 

distribution/targeted mitigation strategy. However the use of a catchment validated 

model together with the verification results provide confidence that the proposed 



methodology provides a feasible approach to effectively target land use interventions 

which provides superior performance over random or simple clustered groupings of 

interventions. 

3.3 Future studies 

Considering observed interactions between modelled water quality dynamics, the 

objective function and the defined regulatory threshold for pesticides, it is evident that 

the choice of objective function has significance when defining the optimal positioning 

of catchment interventions such as BMPs, and hence when considering the 

performance of simulation/optimisation algorithms for spatial targeting of interventions. 

Whilst many previous studies have focused on total pollutant load over a given time 

period (e.g. year) as an objective function, it is recommended for future studies that 

further consideration is given to appropriate objective functions based on the proposed 

application/environmental problem under consideration. Whilst total pollutant load may 

be appropriate for many environmental problems, there are a range of different 

environmental performance metrics, regulatory targets and practical considerations 

which may be appropriate under different situations. Examples include chemical 

frequency-concentration-duration standards for intermittent pollutant discharges 

based on environmental toxicology in surface waters (e.g. FWR 2012), bacterial 

percentile standards for bathing waters (e.g. EU. 2006), and various utility defined 

management techniques for raw potable water supply, often locally dependent on the 

availability of bankside storage options to enable blending of raw water as well as site 

specific treatment efficiency and local drinking water regulations.    

A further notable consideration is that in this case, the properties/shape of the travel 

time distribution of the optimum GA solution resemble that of the initial distribution of 

HR fields. This suggests that targeting/removing high-risk field areas in proportion to 



the calculated travel time distribution within catchment may be an effective 

transferable strategy to other catchments when considering the targeted mitigation of 

rainfall driven water quality impacts, however this finding requires further verification 

at other sites. In this specific case model outputs suggest that this strategy is effective 

in producing solutions which are effective over a wider range of potential catchment 

rainfall/runoff events than clustering interventions in specific catchment areas. 

However, it should be noted that interactions between rainfall runoff / water quality 

dynamics / and the objective function are notably complex, and the degree that this 

result is a function of the water quality parameter under investigation (a highly soluble 

pesticide), specific catchment characteristics and nature of the objective function 

should be further explored in future work. 

It is also acknowledged that modelling uncertainties (e.g. those associated with 

pollutant build up and wash off quantification), within the simulation approach will affect 

the identification of optimal field distributions using the GA methodology developed 

herein. Due to computational requirements, adopting formal uncertainty assessments 

such as Monte Carlo are infeasible when applied to optimisation problems at this 

scale. However, in this specific case, a site validated simulation model has been used, 

and performance verified using a comprehensive rainfall record of 188 district events 

to consider the effectiveness of the model input subsampling approach. Ideally, further 

studies would consider measuring in river pollutant response before and after GA 

targeted land use mitigations have been adopted, however this would require a 

significant multi-season study with the cooperation and resources of water utilities and 

landowners/farmers. The transferability of this approach to other catchments and 

contaminants with different characteristics is also worth further study, however when 

dealing with alternate and/or more complex catchments or contaminants a recalibrated 



or alternate/more complex water quality simulation model should be used within the 

optimization framework, and confidence in the validity of model outputs should be 

validated by further field observations of the contaminant under study during rainfall-

runoff  events. It should also be noted that practical adoption of mitigation strategies 

is dependent on the cooperation and agreement with local landowners/farmers (Cooke 

et al. 2020), and that precise specification of specific areas may not always be feasible 

to local practicalities such as land access issues.  

4. Conclusions 

This study has developed a new methodology for targeting catchment mitigation 

options for the reduction of impacts from pesticides following acute rainfall events on 

water abstraction systems. In this case impact is defined as duration the pesticide 

remains above the UK regulatory target of 0.1 µg/l, which is the relevant metric for the 

water supply utility. Whilst land use optimisation to address water quality problems is 

a common topic in the literature, to date such methods have focused on an evaluation 

of long-term water pollutant loads based on lumped or semi distributed catchment 

models. When considering the mitigation of acute impacts, a key challenge is the 

required representation of the effects of spatial and temporal variations in rainfall within 

the optimisation framework. To enable the required computational efficiency required 

for such an optimisation with a distributed water quality model, this work has proposed 

the selection of a subset of rainfall events based on statistical interrogation of the 

historic rainfall record (based on statistical properties related to the spatial and 

temporal variability of rainfall events) for use within the optimisation routine. The use 

areas for catchment intervention which resulted in a significant simulated reduction in 

pesticide risk to the water supply system. Pending successful transferability, the 



approach can be feasibly applied using a desktop computer for catchments of 

moderate scale (300 km2 in this case). The application of the GA defined solution to 

the historic rainfall record demonstrated a significant improvement when compared to 

a simple selection/prioritisation of fields closed to the abstraction site (7.8% in duration 

target pesticide remained over the regulatory limit, based on a 5% removal of high-

risk field area in the catchment). Findings from this case suggest that superior  

intervention strategies are those which can be effective over the widest possible range 

of rainfall events within the target catchment. Here, this can be considered by 

proportionally applying measures which reference to the distribution of high-risk areas 

according to travel time from the site of concern.  

The method of optimisation and rainfall subsampling is potentially transferable to other 

catchments/pollutant types assuming the availability of appropriate, validated 

catchment specific models for the pollutant and application of concern (e.g. bacterial 

models such as in Suslovaite et al., 2024). The methodology  is expected to be of most 

relevance in cases where fully distributed/complex modelling approaches are required 

to capture the necessary temporal dynamics of the water quality parameter, most 

notably for water supply applications. Results also demonstrated the complexity of the 

interaction between rainfall runoff process, water quality dynamics and the objective 

function used within the optimization problem, which further highlights the requirement 

to carefully consider an appropriate choice of objective function, required model 

structure and input variables for the required environmental objective at appropriate 

scales.  

Based on identified priority areas for interventions, utilities may invest in catchment 

measures such as subsidies to use alternative pesticides, cultural controls or 

investment in local drainage solutions. The use of such optimization methods is 



anticipated to enable utilities to obtain the best return for the money invested by 

replacing blanket mitigation measures with a more targeted catchment intervention 

approach. 
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