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Highlights

What are the main findings?

• Vehicle-to-grid (V2G) implementation does provide additional revenue and/or savings

relative to smart charging.

• The costs of V2G implementation more than offset the marginal financial benefits EV

owners can generally receive at this current time.

What is the implication of the main finding?

• V2G adoption by individual EV owners, given current costs and benefits, is likely to

be challenged despite the overall system benefits prior works find it provides.

• If V2G adoption is going to significantly increase, financial benefits to EV owners must

increaseÐwhich may ultimately reduce or even eliminate the system benefits prior

work estimates V2G provides.

Abstract

This paper seeks to provide a cost benefit analysis of the implementation of a vehicle-to-grid

(V2G) charging strategy relative to a smart charging (V1G) strategy from the perspective of

an individual electric vehicle (EV) owner with and without solar photovoltaics (PV) located

on their roof. This work utilizes a novel AC optimized power flow model (ACOPF) to

produce distributed location marginal prices (DLMP) on a modified IEEE-33 node network

and uses a complete set of real-world costs and benefits to perform this analysis. Costs, in

the form of the addition of a bi-directional charger and the increased vehicle depreciation

incurred by a V2G strategy, are calculated using modern reference sources. This produces a

more true-to-life comparison of the V1G and V2G strategies from the frame of reference of

EV owners, rather than system operators, with parameterization of EV penetration levels

performed to look at how the choice of strategy may change over time. Counter to much

of the existing literature, when the analysis is performed in this manner it is found that

the benefits of implementing a V2G strategy in the U.S.Ðgiven current compensation

schemesÐdo not outweigh the incurred costs to the vehicle owner. This result helps

explain the gap in findings between the existing literatureÐwhich typically finds that a

V2G strategy should be favoredÐand the real world, where V2G is rarely employed by

EV owners.

Keywords: AC optimized power flow (ACOPF); distributed energy resources (DER);

distribution locational marginal pricing (DLMP); electric vehicles (EV); photovoltaics (PV);

vehicle-to-grid (V2G)
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1. Introduction

The rapid decrease in the cost of lithium-ion (Li-ion) batteries over the past decade and

an increase in consumer awareness and desire to address carbon dioxide (CO2) emissions

has led to rapid growth in the number of electric vehicles (EVs) offerings for light-duty

vehicle (LDV) applications. This, in turn, has led to a marked increase in the share of EVs

and plug-in hybrid electric vehicles (PHEVs) as a percentage of LDV sales across the globe,

with EVs and PHEVs representing 21.4% of new LDV sales in Europe, 9.4% in the U.S.,

and 33.9% in China in 2023 [1]. Simultaneously, deployment of variable renewable energy

(VRE) sources, such as wind and solar photovoltaics (PV), has also grown substantially due

to their reduction in costÐand notably for PV, a significant amount of this deployment is in

the form of rooftop PV located on single-family homes.

To take advantage of VRE deployment, energy storage is needed to smooth out the

variability in generation to better match energy demand. There is also, in certain cases, an

interest from homeowners with rooftop PV to store the electricity generated to maximize

self-consumption. Historically, rooftop PV owners sold excess electricity generation to the

grid, in a process called net-energy metering (NEM), at a rate that was equivalent to the

price that they bought electricity from their utility. Several recent policy actions, such as

NEM 3.0 in California [2] will or already have significantly reduced the reimbursement

rate to the point that storage will be necessary to make the economics of rooftop PV work

for homeowners.

It is possible that these storage demands may be met by the batteries in LDVs. This is

due to the significant size of LDV EV batteries, which average 72.5 kWh of usable capacity

for current fully electric offerings [3] and the large number of LDVs that exist that, on

average, are idle 95% of the time [4]. Given these dynamics one can imagine a future where

EVs are an important source of storage and reliability services to the grid and there is a

large body of research on vehicle grid integration (VGI), with the subset of vehicle-to-grid

(V2G) generally receiving the most attention.

Whether V2G is ultimately adopted requires an analysis of competing options and

motivations for both the grid operator and the vehicle owner. On the grid operator side,

competing centralized storage options include utility-scale Li-ion batteries, thermal energy

storage, pumped storage hydropower, compressed and liquified air energy storage, and

numerous other earlier-stage long duration energy storage solutions under development.

While these options would appear to cost more than utilizing an already purchased battery

from an idle vehicle, the typical utility business model, at least in the U.S., incentivizes

utility ownership and operation of grid assets. Utilities are likely to own these competing

options in most of their formsÐbut they are unlikely to be an owner of most of the vehicles

that are utilized for V2G, which may dampen their desire to enable V2G.

An EV owner considering a V2G program will have to balance revenues against the

costs of equipment upgrades required (e.g., to bidirectional chargers) and accelerated

degradation of the vehicle battery due to increased cycling. Because the battery also

supports their transportation needs, owners will be concerned about state-of-charge (SOC)

management to ensure their vehicle can meet their transportation needs. Beyond these

straightforward costs (to theorize, not necessarily to calculate), though, there are other

potential opportunity costs related to V2G relative to other VGI strategiesÐwhich we

discuss in greater detail in the VGI Hierarchy section below.

1.1. VGI Hierarchy

To understand these opportunity costs and ultimately compare VGI options, it is

necessary to place V2G within the broader VGI framework. Other VGI options include

smart charging (i.e., charging during times of lowest cost electricity, often called V1G) or
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using the vehicle to service energy needs for their own home (referred to as V2H or V2B;

here we use V2H). These options form a hierarchy, in terms of complexity and cost to

implement that grows from V1G to V2H to V2G. It is critical to consider this hierarchy

when evaluating the marginal benefit of each ªstep upº on the VGI ladder as the value

streams that constitute the total V2G value consist of the V1G and V2H value streams

while the implementation cost increases with each additional step up. Therefore, from

an EV owner’s perspective, it is the marginal V2G streams not covered by these other

optionsÐand the tradeoff in total marginal value measured against marginal costÐthat

will determine whether that owner is likely to adopt V2G.

For V1G, the EV owner’s largest benefit comes in the form of reduced electricity

cost through charging at lower cost hours of the day in areas with variable time-of-use

(TOU) electricity rates and/or in managing total electricity demand in areas with demand

charges [5,6]. As previously noted, if the owner also has PV on their roof, there may be

a form of arbitrage in charging from their PV system if they are in one of the increasing

number of locations where NEM rates are below the retail rate of electricity.

If the EV owner allows their automobile to be aggregated into a demand response (DR)

program they may receive additional value from capacity payments and/or the provision

of a limited set of ancillary services in certain markets [7]. Further, whether aggregated or

not, there is some potential transmission and distribution (T&D) deferral value, though

this is typically only monetizable by the transmission owner currently.

From the grid operator’s perspective, the value of V1G is effectively identical to DR.

Therefore, it consists primarily of avoided fuel cost, generation capacity buildout, balancing

load, and T&D deferral [8,9].

In V2H, the most well-known additional value for EV owners beyond V1G is as a

form of electricity back up if power to their home should go out. However, an EV owner

may also be able to reduce their overall electricity bill by charging their car during times of

lowest electricity cost and allowing the home to utilize energy from their car battery during

times of higher electricity price [10]. Unless the size of the load of the home is considerable,

though, most of the value from reducing electricity costs comes from V1G [11]. From a

utility perspective, the largest benefit of V2H is the avoidance of additional generation

capacity build out and avoided fuel cost [12].

V2G is the broadest step on the VGI ladder in terms of the number of value streams

that can be incorporated. For an EV owner, in addition to V1G and V2H value streams

they may now be able to arbitrage electricity to an even greater extent by charging during

lowest cost times and selling electricity back to the grid at times of highest energy cost.

There is also a broader set of ancillary service revenue streamsÐsuch as for frequency

regulationÐthat can be received because of the capability to send energy back to the grid

when vehicles are integrated as part of a virtual power plant (VPP) [13]. These additional

value streams are largely the same ones that could be realized by a utility [14].

1.2. Literature Review and Background

A significant amount of literature comparing V1G and V2G focuses on impacts to

the bulk transmission system and, by association, direct benefits to the system at large.

These studies usually include some, but typically not all, costs associated with V2G imple-

mentation relative to V1G while generally focusing results on the gross benefit of various

strategies across a large portion, if not all, of the EV fleet in a geography. They are often

conducted using models of the grid that only look at the bulk transmission system, if

they consider transmission constraints at all. Studies of this type include [8], which used

Lawrence Berkeley Laboratory’s V2G-Sim software [15], which incorporates grid-scale

system modeling alongside models for vehicle powertrain dynamics, typical driving cycles,
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and battery degradation models to look at the California grid in a future scenario with high

renewable penetration. It was found that V2G reduced ramping requirements to a greater

degree than V1G, ultimately reducing the investment that would otherwise be required in

grid-scale storage technologies by nearly 7 times.

Reference [16] also looked at V1G and V2G on the California grid in a future high

renewable scenario using the Holistic Grid Resource Integration and Deployment Tool

(HiGRID), a tool which balances electricity supply and demand on an hourly basis without

the consideration of transmission constraints [17]. Powertrain, energy dispatch and vehicle

travel pattern models were incorporated into the study as well; it was ultimately found that

renewable penetration could be increased from 73% to 84%, with the need for grid storage

being 75% lower with V1G and eliminated altogether with V2G relative to immediate

charging, assuming 135GW of EV capacity available across the state.

Another volume of V1G to V2G study does consider individual behaviors [18±22].

These studies consider real world revenue from wholesale electricity marketsÐoften includ-

ing ancillary services and capacity markets in addition to energy pricesÐand real-world

travel patterns to account for time of vehicle availability. These studies, while mentioning

concerns about battery degradation, do not consider full cost differences in implementing

V2G and often consider fleet ownership consisting of dozens to hundreds of vehicles.

These studies do not tend to consider distribution or electrical system constraints more

broadly. With those limitations noted, they do find increased revenue from V2G [18,19] or

net revenue [20,21].

This paper fills the gap between studies focused on system level impacts in V1G to V2G

comparisons, which misses the importance of costs to the individuals that own the EVs, and

studies that consider individuals or fleet owners but assume unrealistic conditionsÐsuch

as individual EV owner access to wholesale market pricingÐwhile omitting physical grid

implications and/or additional EV owner costs for the implementation of V2G. To do

this, we focus on single homeowners as they are the most likely owner of an EV in the

near-term and, therefore, will be the decision-maker as to how the vehicle is used. We also

only consider the total costs that EV owners are likely to (1) be aware of and (2) have a

meaningful impact on their decision making between selection of a V1G or V2G strategy

and do not count benefits for things like emissions reduction, which most EV owners

cannot receive direct compensation for. Additionally, we only consider near-term value in

the form of energy arbitrage that EV owners can likely receive and avoid ancillary service

compensation, which EV owners cannot access unless they join a virtual power plant (and

thereby forego much of the revenue to the virtual power plant operator). In this arbitrage

calculation we add the under explored consideration of the case where the EV owner has

solar PV on their roof, which is increasingly relevant due to the relatively high overlap

between EV and solar PV owners. Finally, we utilize a DLMP methodology which has not

been widely applied to the study of V2G though it is not yet (to our knowledge) utilized in

a commercial setting. However, it allows the implementation of real-world TOU rates while

modeling the physical limitations of the distribution grid and likely provides a best-case

scenario for individual EV owner compensation when implementing V2G.

It should be noted that in this discussion of value we have focused on those that can

be monetized, at least in some form, by either the EV owner or the utility across most

of the world. Much of the literature around VGI also focuses on the potential climate

benefits this technology can provide. Climate is a significant driver in the adoption of

DER and EV technology to this point, so this value is non-trivial. However, much of this

support has come in the form of government incentives or mandates. There are carbon

markets in some parts of the world, but most of these markets are limited to large industrial
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players and, therefore, do not directly incorporate residential power and transportation

related emissions.

Many studies of VGI include a value for carbon emissions avoidance based upon local

carbon market pricing or various avoided cost of carbon calculations. This study will not

include a carbon emission value stream due to the general inability for stakeholdersÐthat is

EV owners or utilitiesÐto directly monetize this benefit in the U.S., which likely keeps these

potential value streams outside of the decision making process when selecting between

V1G and V2G.

The remainder of this paper is laid out as follows. Section 2 will cover the method-

ology used to model the distribution system and how costs and values associated with

EV ownership have been determined. Section 3 will present the results of the modeling

effort. Section 4 contains a discussion of the results while Section 5 provides a conclusion

and discusses next steps.

2. Theory

To look at the impacts of EV ownership, the choice of VGI strategy, and determine the

ultimate value that choice will have, an AC optimal power flow (ACOPF) model is utilized

under a distributed locational marginal pricing (DLMP) framework. While the DLMP

framework creates some differential pricing at the various nodes on the circuit that would

not typically be seen by EV owners today (due to the congestion pricing aspect of DLMP),

it does serve to highlight where equipment limitations may exist on the distribution grid

and the grid operator would incur costs to upgrade the system due to EV deployment.

Therefore, the DLMP methodology does serve as a reasonable proxy for total costs that

would be realized in the near term to allow for greater penetration of EVs.

The remainder of this section will highlight the ACOPF and DLMP framework, the

ACOPF model used, and how costs and value are determined for the EV owner.

2.1. DLMP and ACOPF Modeling Approach

DLMP is an extension of the traditional locational marginal price (LMP) methodology

typically used by independent system operators (ISOs) or regional transmission operators

(RTOs) for the bulk transmission systems [22]. To move the LMP framework on to the distri-

bution system the congestion had traditionally been removed [23], resulting in DLMP being

composed solely of energy and energy loss. However, to reflect the operational constraints

specific to distribution systems, recent improvements to the modeling methodology and

increasing congestion on the distribution system have allowed for the addition of conges-

tion and voltage components to DLMP [24]. For example, Reference [25] utilized a DLMP

method inclusive of congestion to examine demand response. Reference [26] takes a similar

approach to look at EV charging management on the distribution system. More recent work

such as [27] has brought together DLMP and OPF to look at an active distribution network.

Reference [28] used a linearized formulation of an ACOPF to calculate DLMPs and a more

wholistic distribution system operation by also considering active power, reactive power,

congestion, voltage support, and loss. The model used here builds off the more wholistic

approach and considers each of these pieces of the electric system.

We have chosen to adopt the DLMP approach to evaluate EV integration into the

distribution system as increasing EV penetration is likely to increase the probability that

congestion and voltage constraints will be the binding technical factors limiting EV integra-

tion. The reason for this belief is the fact that a singular EV with a level 2 charger represents

a load that is greater than or equal to the maximum power draw from most homes in the

U.S.Ðand with average households owning more than two cars, large-scale EV adoption

is effectively equivalent to tripling the housing stock on the existing distribution system
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from the perspective of potential maximum power draw. DLMP incorporating voltage

constraints and congestion would, therefore, provide effective price signals to EVs and

households generally that would maximize the capabilities of the existing grid.

In adopting a DLMP framework, we require that the distribution grid operates similar

to ISOs/RTOs in that those homeowners generating electricity via DERs or those with

storage technologies, such as EVs, must provide bids at which they are willing to sell

electricity ahead of time. The market price is then setÐat each individual nodeÐat the

price where the marginal bid for supply meets demand, with all sellers receiving and

electricity consumers paying the market clearing price. In this study we do not specify a

bidding protocol or specific market maker as the relative comparison of VxG strategies

should not be significantly affected by those choices, but the assumed bidding and clearing

operation would be most closely aligned to a day-ahead market with perfect demand and

supply foresight. Bids to deliver power from EVs are set equivalent to their cost of charging

(i.e., the cost paid for electricity divided by the battery round trip efficiency) and the bids

for PV generated electricity are assumed to be equivalent to the levelized cost of electricity

of the PV. parentheses to avoid ambiguities in denominators.

2.1.1. Distribution Market-Clearing Model for Joint Active and Reactive Power Pricing to
Value VGI

The ACOPF model utilized here has been previously described in [29], with modifica-

tion to account for EV batteries in addition to PV systems. For this study, the focus is on

the active and reactive power value of each VGI option under study and we assume that

the EV charger can provide reactive power. The distribution market clearing is defined as:

minb
p
s ps + b

q
s qs + ∑i∈EV

(

b
p,EVc
i pc,EV

i + b
p,EVd
i pd,EV

i + b
q,EV
i qEV

i

)

(1)

∑k∈Φ(i)

(

p
f
ki − rkiwki

)

− ∑j∈Ψ(i)
p

f
ij = pd

i − ∑i∈EV
(p c,EV

i − pd,EV
i

)

, ∀i ∈ N

N f
:
(

λ
p
i

)

(2)

∑k∈Φ(i)

(

q
f
ki − xkiwki − ∑j∈Ψ(i)

q
f
ij = qd

i − ∑i∈EV
qEV

i , ∀i ∈ N

N f
:
(

λ
q
i

)

(3)

p
g
i − ∑j∈Ψ(i)

p
f
ij = pd

i − ∑i∈EV
p

g
i , i ∈ N f (4)

qs
i − ∑j∈Ψ(i)

q
f
ij = qd

i − ∑i∈EV
q

g
i , i ∈ N f (5)

ui − uj = 2
(

rij p
f
ij + xijq

f
ij

)

+
(

r2
ij + x2

ij

)

wij, ∀j ∈ Ψ(i), ∀i ∈ N (6)

∥

∥

∥
2p

f
ij 2q

f
ij wij − ui

∥

∥

∥

2
≤ wij + ui (7)

V2
i,min ≤ ui ≤ V2

i,max (8)

0 ≤ wij ≤ I2
ij,max (9)

pEV
i,min ≤ pEV

i ≤ pEV
i,max (10)

−pEV
i

√
1 − κ2

κ
≤ qEV

i ≤ pEV
i

√
1 − κ2

κ
(11)

(

pEV
i

)2
+ (q EV

i

)2
≤ (S EV

i, max

)2
(12)

(ps)2 + (qs)2 ≤ (Ss
max)

2 (13)

where ps and qs are the active power and reactive power imported from the transmission

network through the substation, respectively; bs
p and bs

q are the LMPs at the substation
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node for active power and reactive power, respectively, b
p, EVc
i and b

p,EVd
i are the bidding

prices of active power while charging and discharging the EV (when applicable) and

b
q
i is the reactive power from EV i; pc,EV

i and pd,EV
i are the active charging and discharging

power and qEV
i is the reactive power of EV i (either charging or discharging); pEV

i,min and

pEV
i,max are the minimum and maximum limits for active power from the EVs (assumed to

be equivalent for charge and discharge); SEV
i,max is the nameplate power capacity of EV i;

pd
i and qd

i are the active power and reactive power load demand at node i; p
f
ij and q

f
ij are

the active and reactive power flow in the line from node i to j; Φ(i) and Ψ(i) are denoted as

the sets of parent and children nodes of node i, respectively; r and x are the line impedance;

u and w are the variables representing the square of nodal voltage and line current;

Vi,min and Vi,max are the minimum and maximum voltage limits of node i; Iij,max is the

maximum current limit of line i-j; Ss
max is the power capacity of the substation; and, κ is the

power factor of the EVs.

Equation (1) is the objective function that minimizes the total power purchase cost

across the entire system. Equations (2)±(5) are the nodal power balance equations in the

distribution network. Voltage drop is defined in Equation (6) while Equation (7) is the

second order cone-relaxed line flow constraint. Details for the second order cone relaxation

can be found in [30]. Equations (8) and (9) set the nodal voltage and line current limits.

The operating limits of EVs are provided in Equations (10)±(12). Equation (11) imposes

the power factor constraints (i.e., the ratio of real to reactive power), which range from

0.95 lagging to 1.05 leading. The imported power is subject to the substation capacity limit

in Equation (13).

2.1.2. PV Addition to Model

For the cases where PV is added to homes with EVs, Equations (1)±(5) are modified to

Equations (14)±(18), respectively, and additional constraints (19)±(21) are added:

minb
p
s ps + b

q
s qs + ∑i∈EV

(
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p
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p
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q
f
ij = qd

i − ∑i∈EV
q

g
i − ∑i∈PV

q
g
i , i ∈ N f (18)

pPV
i,min ≤ pPV

i ≤ pPV
i,max (19)

−pPV
i

√
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≤ qPV

i ≤ pPV
i

√
1 − κ2

κ
(20)

(

pPV
i

)2
+ (q PV

i

)2
≤ (S PV
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)2
(21)

where b
p,PV
i and b

q,PV
i are the bidding prices of active power and reactive power from PV i;

pPV
i and qPV

i are the active and reactive power of PV i; pPV
i,min and pPV

i,max are the minimum

and maximum limits for active power from the PVs; SPV
i,max is the nameplate power capacity

of PV i; and, κ is expanded to cover the power factor of the PVs as well as the EVs.

The dual values, or shadow prices, of the active and reactive power balance equations

represent the additional system cost for serving the marginal unit of active and reactive
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power. Thus, after solving the above distribution-market clearing model, the DLMPs at

each node can be obtained as λ
p
i and λ

q
i .

2.2. Determination of VGI and PV Cost and VGI Value

The total package of costs that could be included in a study on VGI is massive and

many are non-obvious and complex to calculate. This complexity is owed to the vast

number of differing situations that EV owners might find themselves in. Therefore, to

begin the calculation of VGI for this study we must first define the condition of the EV

owner and explicitly state which costs will and will not be considered.

VGI costs depend on the type of residence that the owner lives in. If the EV owner

lives in and owns a single-family home, it is likely that they are responsible for the cost

of ownership for an EV charger. However, if the EV owner is a renter, it is likely that

their landlord is responsible for the cost of an EV charger. Further, at least currently, if

the EV owner lives in multi-family housing they may not pay for the electricity used

to charge the carÐbut then they are also unlikely to be able to benefit from any VGI

value the EV provides. Given the complexity and uncertainty of these renter relationships

today, this study focuses on a VGI situation that assumes that the EV owner owns the

charging infrastructure, is responsible for charging costs, and can benefit from any VGI

value associated with energy services.

On the cost side, there is also a potential type of opportunity cost that many EV owners

must face if utilizing any VGI strategyÐthe ability, or lack thereof, to make their next trip.

Often referred to as range anxiety, any EV owner implementing a VGI strategy incurs this

cost by moving from a single goal in their chargingÐfilling up the battery as quickly as

possibleÐto an optimization strategy that adds a lowest cost charging and/or highest

revenue generation target to the goal of filling the battery.

Determining the cost of range anxiety is complex and multi-variable. Several studies

have been conducted on this topic, generally with a focus on the cost of charging infrastruc-

ture to alleviate these concerns [31±33]. These studies, however, are not particularly useful

when it comes to day-to-day charging at home. Therefore, to alleviate the need to calculate

these costs we have chosen to ensure a minimum SOC in the vehicle based upon the average

daily miles driven by a light-duty vehicle driver in the U.S., which was 36.9 miles as of

May 2022 [34], and limit any VGI usage subject to the constraint that enough energy has

been added to the battery to account for traveling that distance by 8 AM in the morning,

regardless of the initial state of charge of the battery. Although this is an oversimplification,

because it ignores changes in week versus weekend and seasonal driving patterns, it is still

useful to estimate the relative differences between V1G and V2G.

Finally, the initial capital expense of the vehicle itself is ignored. It may be true

that those with more expensive EVs are less inclined to participate in V2G generally, as

the associated depreciation on their vehicle due to battery degradation would be higher.

However, there is also reason to believe that EV depreciation unrelated to the battery is a

function dominated by time from manufacture and miles driven, which is not impacted

by battery cycling for V2G. There appears to be a lack of literature that has explored these

conjecturesÐthere has been a comparison of EV depreciation to internal combustion engine

(ICE) vehicles, but this focused on the aforementioned variables of age of vehicle and

miles driven as the drivers of depreciation [35]. There are also a few studies that include

the cost of an EV when analyzing the total cost of ownership (TCO) for participation in

V2G generally [36,37]. However, these studies focused on V2G alone and therefore do

not account for the differing battery cycle pattern between V1G and V2G. Therefore, we

assume that marginal depreciation of the EV is solely driven by increased cycling of the

battery pack and the associated increase in battery degradation.
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On the value side of the ledger the relatively straightforward value to understand is

that accrued from charging at times of lower cost energy. In this study it is assumed that all

vehicle charging is performed at home so that a ªbest-caseº value of V1G can be calculated.

As previously noted, there may also be the ability for an EV operating in a V1G mode to

receive some amount of capacity value and value from T&D deferral. However, EVs are a

relatively unique resource to the grid in that they are potentially unconnected, or at least

connected in different locations, frequently. This makes the calculation of capacity value

and T&D value much more complex; however, this behavior and associated challenge is

true regardless of VGI operational strategy. Therefore, for simplicity, any capacity and T&D

value has been ignored in this study.

In addition to the previously discussed V1G opportunity to charge at lower cost times,

V2G adds the ability to sell electricity back to the grid at times of higher energy prices.

Additionally, there is also potential for V2G to provide ancillary services, such as frequency

regulation. However, the rules allowing a resource to qualify to bid into ancillary service

markets varies widely in differing ISO territories in the U.S., the total revenue from these

services is <5% of total electricity market revenue in the U.S., and the value of these services

has generally been falling over the past decadeÐeven as penetration of renewables has

increased [38]. The value of these services is therefore ignored here due to the complexity

in calculation and their relatively small value.

2.2.1. VGI Cost Methodology

To calculate the marginal cost of going from V1G to V2G one must first baseline the

cost of implementing V1G. For V1G, the costs included in this study only consist of a level

2 EV charger. For V2G, costs will include the cost of a bidirectional level 2 EV charger and

costs associated with the increased degradation of the vehicle battery due to additional

cycling to provide V2G services. Note that there is also some work highlighting that V1G

could degrade battery lifetime due to the potential for extended time spent at a lower

SOC [39], but this can be mitigated if the battery is kept at or near room temperature.

The cost to install a level 2 EV charger in the U.S. is highly variable, dependent upon

local labor rates, the condition of the home it is to be installed in, and the brand of charger

purchased. On average, however, the cost in mid-2022 of an installation was $1100. There

are also a wide variety of offerings for level 2 chargers ranging in price from $260±$2100,

with an average cost of $833. Both these average values include data on single port and

dual port chargers, with the latter being a considerably more expensive option [40].

Bi-directional chargers are a more nascent technology, and it is therefore difficult

to pinpoint current costs. Relative to standard level 2 chargers, bi-directional chargers

contain an inverter to convert the electricity returning from the vehicle battery from DC

to AC. Numerous companies have announced that they will soon offer bi-directional

chargers to the U.S. market, but only the Ford Charge Station Pro appears to be for sale

currently. Because the Ford offering relies on an inverter internal to the Ford F-150 for DC

to AC conversionÐa function currently unique to that vehicleÐit is not a good representa-

tion of the likely cost of a universal bi-directional charger. There are some bi-directional

models for sale overseas currently, with the Wallbox Quasar ranging in price from

$4500±$8000 depending upon location. There have not been formal price announcements

for many of the upcoming offerings, though Emporia Energy has stated that they estimate

their cost will be ~$1500 [41].

With a lack of solid data on bi-directional charger costs in the U.S., a more basic

assumption on cost must be made. As a bi-directional charger is analogous to a level 2

charger combined with an inverter, here it is estimated that a bi-directional charger cost is

the sum of current commercial offerings of these components. The average level 2 charger
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cost in the U.S. was previously given. For inverter costs, a proxy of the cost of residential

solar inverters is used as an estimate. In 2019, SolarEdge had over 50% of the market share

for U.S. residential solar inverters [42]. SolarEdge residential inverters can be purchased

online for prices ranging from ~$1300±$2800 depending upon size and features [43]. The

midpoint of this range is used and added to the average cost of a level 2 EV charger to

estimate a bi-directional charger cost of $2883. As power specs appear to generally be

similar between level 2 EV chargers and bi-directional EV chargers, it is assumed the cost

of installation is the same for both options.

The final cost to consider for V2G is the increased degradation of the vehicle battery

due to additional cycling. There are numerous charging and discharging factors that have

been found to impact battery lifetime, including battery temperature, SOC, and depth-of-

discharge; the impact these factors have varies with battery chemistry and battery life [44].

Therefore, the impact that V2G will have on battery lifetime will vary accordingly with the

control constraints and electricity services the owner chooses to provide (e.g., frequency

regulation, energy arbitrage).

Generally, increasing the time that the battery is in service increases degradation. For

example, ref. [45] utilized an Arrhenius equation model to calculate battery capacity fade

for lithium iron phosphate (LFP) batteries and found that daily frequency regulation service

increased capacity fade by 14.3%, allowing the battery to serve as a peak shaving asset

for 2 h daily increased fade by 22.8%, and allowing both led to 35.6% decreased capacity.

Reference [46] uses similar methodologies and finds directionally similar impacts to battery

degradation while also finding increased degradation from use of level 2 chargers relative

to level 1 chargers, primarily because of the greater amount of energy that can by cycled

through the battery with a level 2 charger.

There are more limited studies that physically cycle batteries using patterns similar to

what would be seen on the road alongside usage that V2G would entail. In [47] the current

dominant EV battery chemistry, lithium nickel-cobalt-aluminum oxide (NCA), was cycled

in actual physical tests that mimicked real driving conditions and grid operations. It found

that providing V2G services two times per day could bring the lifetime of the battery down

to under 5 years while performing V2G services only once per day more than halved the

impact V2G had on battery degradation. An older, but similarly constructed, study was

performed on LFP, which is becoming increasingly popular in EVs. This studyÐlike the

strict modeling efforts aboveÐfound battery degradation was most dependent on the total

energy cycled through the battery, meaning that V2G again increased the degradation rate

of the EV battery [39].

Reference [48] investigated the cost of cycling, inclusive of these degradation modes,

using various charging strategies on Li-ion battery. The cases most relevant to the charging

strategies proposed for this study find the cost of battery degradationÐin one specific

caseÐto be $4.28 when adding 20 kWh to the battery, or $0.214/kWh. The authors note this

value changes based upon the SoC and state of health of the battery, the charging power

input into the battery, and a host of other factors. While noting the conditions of this case

will notÐand cannotÐmatch the variety of charging conditions that will be found in this

study, this value is used as the baseline degradation value in the cost/benefit comparison

between V1G and V2G scenarios.

2.2.2. PV Cost Calculation

To determine what an EV owner with PV on their roof might choose to do with their

PV generated electricity it is necessary to calculate the cost of that electricity. To do this, it

is assumed that the EV owner has installed PV at the average cost of an installation in San

Francisco in March 2023, $3.00/W [49], and can receive the full 30% ITC available in the



Smart Cities 2025, 8, 138 11 of 25

U.S. [50]. Additionally, it is assumed that the size of the installation is 6.4 kWDC, which is

the median size of a residential solar installation in California for a homeowner making

between $100k and $150k per year [51].

NREL SAM 2022.11.21 [52] was used for calculating the LCOE of a residential

PV system. The PVWatts model with the Distributed and Residential Owner settings

were selected. The typical meteorological year (TMY) file for San Francisco at latitude

37.7771 and longitude −122.42 was chosen to be representative of a general location in

San Francisco. Outside of the values defined above, all other parameters were left equal to

the default values in SAM. SAM calculated the LCOE of this system, as described, to be

$0.092/kWh in real 2023 dollars.

3. Calculation

The model was implemented and case studies were conducted on a modified IEEE

33-node distribution system. The modification includes the addition of EV load and

PV production at each node, as relevant per the case descriptions below, coupled with

an adjustment to make daily demand equivalent to average daily load shape in the

PG&E region in July 2023 [53]. The proposed optimization model was implemented

in MATLAB R2024a and Yalmip and solved by Gurobi. The base case of the IEEE 33-node

system can be found in [54]. The topology is shown in Figure 1.

Figure 1. IEEE 33-node Distribution Network.

To baseline VGI value, an initial scenario (dubbed V0G) is run for each case. In this

scenario an EV starts charging once plugged in and does not stop until the endpoint

charging value is hit (akin to most charging done today in the U.S.). Additionally, to make

the case more representative of a potential near future for much of the U.S., the price of

electricity available at the substation is defined by the PG&E EV-2A TOU rates as defined

in March 2023, which are provided in Table 1 below. Note these rates are much higher

than most of the U.S., but the relative pricing of hours given by the TOU schedule is likely

representative of TOU schedules that could be implemented across greater portions of

the U.S.

Table 1. PG&E EV-2A TOU Rate Schedule [55].

Time of Day Electricity Price

12 a.m.±3 p.m. $0.26/kWh
3 p.m.±4 p.m. $0.46/kWh
4 p.m.±9 p.m. $0.57/kWh
9 p.m.±12 a.m. $0.46/kWh
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To parameterize EV and PV penetration for the separate cases and scenarios, the

number of households at each node in the IEEE 33-node case was defined by looking at the

baseline demand at each node and dividing it by the average hourly power consumption

of a U.S. household, which was 1.23 kW in 2022 [56]. This U.S. value was used, rather

than California, as existing U.S. datasets contain electricity sold by utilities, which omits

electricity generation from rooftop solar. This understates residential electricity usage

across the U.S., but given the relatively large amount of rooftop solar in California it

is likely to be even further impacted by this omission if only looking at data for the

state alone. Additionally, this methodology does not account for daily and seasonal

demand varianceÐbut as this study is using TOU pricing and focused on the comparison of

VGI methodologies this oversight should not bias the results.

The EV characteristics utilized are the equivalent of a Tesla Model Y, which was the

EV with the greatest number of unit sales in the U.S. in 2023 [57]. The specific Model

Y assumed is the extended range version, which has a battery with 75.0 kWh of usable

capacity [58]. Finally, it is assumed that the rate of charge/discharge is limited by the EV

charger and we ignore any impacts that battery SOC, environment, or other factors have

on real-time power draw or power supply. The charger is assumed to be operating at

240 V and 40 A, for 9.6 kW of power, a relatively common level 2 configuration in

the U.S. [59].

In all cases, it is assumed that all EV owners leave their home at 8:00 AM and return

home at 5:00 p.m., plug in the EV, and the EV is then available for whichever charg-

ing strategy is being evaluated. In all cases it is assumed each individual car is driven

36.9 miles daily, aligned with the daily average driving amount in the U.S. noted above,

and that the car is achieving an efficiency of 240 Wh/mi, equivalent to the spec for a Model

Y driving in mixed (road and highway) conditions in mild weather [57]. This results in an

estimate of 8.86 kWh/day of energy used per day for travel, and in all cases and scenarios

this is the amount of net energy the car must be supplied with between the time it returns

home (i.e., 5 p.m.) and when it leaves in the morning (i.e., 8 a.m.).

Finally, for V2G scenarios it is assumed that the EV owners bidÐand thereby charging-

behavior is driven by the TOU rate schedule. The bids ignore potential impacts of conges-

tion as that cannot be predicted before the market clears. The discharge bids do account for

roundtrip efficiency losses, however. Therefore, the bid behavior is one where owners only

offer to charge their cars when the TOU scheduled rate is $0.26/kWh and offer to discharge

at all other times with higher TOU pricing. Additionally, it is assumed that the battery is at

a 50% state-of-charge upon the EVs return home at 5 p.m. and that all existing energy in

the battery was charged at an electricity cost of $0.26/kWh.

4. Results

4.1. No PV Case

In the baseline V0G scenario, the power demanded from the system looks like one

would expectÐsimply a large spike at 5 p.m. when the EVs return home plug in. This

spike lasts for a singular hour (Figure 2) as all the power needed for a daily drive cycle can

be delivered in one-hour from each individual EV charger. As there is no ability to shift

charging time in this scenario, the overall power demand at the 5 p.m. hour increases nearly

linearlyÐwith some minor deviation caused by congestion and associated line lossesÐas

EV penetration increases. This behavior limits the system to max out at 78% penetration

(i.e., 78% of households have one EV) before the distribution system limitations are no

longer able to service any further EV demand.
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Figure 2. Substation Power Demand, V0G, No PV.

As the substation is the only source of energy supply in this case, nodal DLMPs change

little even as EV penetration increases, solely driven by slight increases in congestion along

the distribution system. No node shows significantly different behavior, so DLMPs for

nodes covering representative points along the length of the system are shown in Figure 3.

Note that the hourly pricing differences are driven by the TOU schedule outlined in Table 1.

Figure 3. Representative Nodal DLMPs Throughout the Day, V0G, No PV.

Once V1G charging is enabled the demand from the charging vehicles gets evenly

spread across the low-cost night hours before the car must leave at 8 a.m. (Figure 4). This

allows the system to now reach 200% penetration (i.e., every home has 2 EVs) without any

need for system upgrade. Note that further EVs could have been added, but 200% was

the chosen end point for this analysis as this is approximately how many cars the average

American household owns.
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Figure 4. Substation Power Demand, V1G, No PV.

As the substation is still the only source of energy supply in this scenario, nodal

DLMPs show little change with EV penetration in the V1G scenario. Similarly to the

V0G, No PV scenario, no node shows unique behaviorÐthere still only minor variances

node-to-node caused by congestion.Therefore, DLMPs for the same four representative

nodes are shown in Figure 5.

Figure 5. Representative Nodal DLMPs Throughout the Day, V1G, No PV.

When V2G control is enabled, the demand curve for power from the substation

changes markedly. As the EV returns home at 5 p.m.. it begins offering electricityÐfrom

the remaining energy in the batteryÐat a price significantly below the evening TOU rate.

Therefore, as EV penetration grows evening demand is increasingly serviced by the EVs,

with all power demand in the evening delivered by the vehicles once EV penetration

hits 80% (Figure 6). To return to the necessary SOC for daily transport at 8 a.m., the EVs

increasingly demand power during the low-cost night-time hours. Once EV penetration

hits 170%, power demand reaches the maximum delivery capability of the substation

during the low-cost nighttime hours. Notably, above this level of penetration the EVs must

begin to reduce the evening load they service to ensure that there is enough power available
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from the substation during the night to meet the daily transport needs for all EVs. As in

the V1G, No PV scenario the analysis is stopped at 200% penetration though the system

could handle a higher amount of EVs.

Figure 6. Substation Power Demand, V2G, No PV.

As EVs supply 100% of system electricity demand in the evening hours, they become

a portion of the marginal generation and cause a shift in DLMP relative to the prior

scenarios. As EV penetration increases, DLMP increasingly falls from the substation TOU

prices during these hours to a value closer to that of the bid price from the EVÐnotably,

it does stay above that value as meeting the marginal energy demand requires shifting

some portion of total demand to earlier in the day via the EVs. This behavior is similar

across all nodes, so there is not significant variation in nodal DLMP in this case either. A

representative set of nodal DLMPs for the V2G, No PV case is shown in Figure 7.

Figure 7. Representative Nodal DLMPs Throughout the Day, V2G, No PV.

4.2. PV + EV Case

In the PV + EV case, the V0G, V1G, and V2G scenarios are repeated with PV installa-

tions alongside the EVs. In all cases PV penetration is made to be equivalent to the stated



Smart Cities 2025, 8, 138 16 of 25

EV penetration up to 100%, after which EV penetration is increased up to 200% while

PV penetration remains fixed at 100%.

In the PV + V0G scenario a similar demand spike to the No PV, V0G scenario at 5 p.m.

is found (Figure 8). Additionally, PV demand is found to significantly reduce demand for

electricity from the substation during daylight hours as PV penetration increases. However,

very little PV generation overlaps with the hours when the vehicle is home and available

for charging. Therefore, the EV penetration that can be achieved in this scenario only

slightly increases over the correlating scenario with no PV, to 89%, before limitations of the

distribution system allow for no more EVs.

Figure 8. Substation Power Demand, PV + V0G.

Once the PV penetration reaches 89% PV does meet all demand for one

hourÐotherwise, for all other penetration levels and hours of the day the substation

remains the marginal generator. In that singular hourÐnoonÐPV generation drops the

DLMP down to the PV price of generation, as seen in Figure 9. In all other hours the sub-

station remains the source of marginal electricity and, therefore, outside of the noon hour

at 89% EV penetration the plot of DLMP looks very similar to the V0G, No PV scenario.

Figure 9. Representative Nodal DLMPs Throughout the Day, V0G + PV.

EV charging in the PV + V1G scenario exhibits similar behavior to the V1G,

No PV scenario in that power demand for charging is evenly spread throughout the
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night (Figure 10). Once 90% PV + EV penetration is reached, PV generation meets all

demand during the noon hour. At 100% penetration, PV services all demand from the

hours of 11 a.m. to 1 p.m. (note that in cases labeled greater than 100%, only EV penetration

exceeds 100% while PV penetration stays at 100%). However, similar to the V0G + PV case,

as the EVs are not home to charge during these hours they cannot take advantage of this

lower cost energy supply.

Figure 10. Substation Power Demand, PV + V1G.

DLMP behavior in this scenario is similar to the V1G, No PV as PV becomes the

marginal generator only at noon once PV penetration reaches 90% and from 11 a.m. to

1 p.m. when PV reaches 100% penetration. At all other PV penetration levels and at all other

hours the substation remains the marginal generator and this is reflected in the resulting

DLMP, as seen in Figure 11.
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Figure 11. Representative Nodal DLMPs Throughout the Day, V1G + PV.

In the V2G + PV scenario power demand from the substation inverts as EV and PV

penetration increases, meaning that peak demand moves from the middle of the day to

the night with increasing penetration. As EV + PV penetration increases, demand from

the substation is reduced to nearly zero during the day and evening due to PV generation

servicing demand during the day and EVs meeting demand during the evening. There is
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a small spike in substation demand from 2 to 5 p.m. as PV generation subsides and the

EVs have not yet returned home. Additionally, as penetration increases nighttime becomes

the time of greatest demand for the substation as the EVs take advantage of the lower-cost

power, with substation delivery being maxed out during the night once EV penetration

hits 170% (Figure 12).

Figure 12. Substation Power Demand, PV + V2G.

In this scenario DLMP behavior essentially combines what is seen in the V2G, No PV

scenario with the V1G + PV scenario, caused by PV serving as the marginal supplier during

the middle of the day once penetration exceeds 90% and EVs being the marginal supplier

during the evening, with nighttime DLMP being driven by the same behavior noted in the

No PV, V2G case. We again do not see significant shifts in DLMP behavior across the nodes

and representative nodal DLMPs for this case are shown in Figure 13.
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Figure 13. Representative Nodal DLMPs Throughout the Day, V2G + PV.

In comparing the No PV scenarios (Figure 14), it is clear that the addition of PV reduces

total system cost generally and that V1G reduces total system cost relative to V0G. However,

in each of the V0G and V1G scenarios without PV total system cost increases linearly with
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EV penetration increases. In the V2G, No PV case, however, V2G implementation reduces

total system cost relative to the corresponding V1G scenario with costs actually falling until

EV penetration reaches 100%. After this point system cost does start to increase, though it

stays below the baseline system cost (i.e., 0% EV penetration) even as penetration rises to

200%. This behavior is a clear result of the arbitrage behavior V2G allows, replacing more

expensive evening electricity with lower cost nighttime electricity.

Figure 14. Normalized System Cost.

For the V0G and V1G scenarios with PV, costs fall with increasing PV penetration

until 100% of rooftops have PV. In the V1G scenario, after 100% penetration no more PV

can be added and, therefore, costs begin to increase due to the increase in power demand

from the EVsÐthough costs do stay below the initial baseline level. The V2G scenario sees

cost fall even more deeply almost entirely due to EV driven arbitrageÐas the time of EV

availability does not significantly overlap with PV generation V2G capability only enables

a negligible amount of additional PV generation. V2G scenario cost is essentially flat from

100% to 160% EV penetration before a mild increase up to about 78% of the baseline cost

when EV penetration reaches 200%.

A cost-to-benefit ratio for the implementation of V2G relative to V1G in the No PV

scenario is shown in Figure 15 from the perspective of an individual EV owner. This

analysis assumes a 5-year ownership period for the vehicle, assumes that cycling behavior

each day over that time is identical to the single day calculation here, and the calculation is

performed using nominal cash flows. The Base Case has the costs for a level 2 charger and

battery degradation as previously specified. Given the uncertainty of current bidirectional

EV charger cost, two additional cases were run that parameterize this cost. The Mid

Case assumes the cost premium is reduced by half and the Parity Case assumes that a

bidirectional level 2 charger is at cost parity with a current standard level 2 charger.

In the Base Case, the increased cost in battery degradation coupled with the cost of

a bidirectional charger results in costs exceeding benefits by at least 1.39 times, with the

cost-to-benefit ratio rising as EV penetration increases due to EV competition reducing

the electricity arbitrage opportunity for each individual vehicle. The Mid Case finds costs

exceed benefits by at least 1.3 time and the Parity cases reduces the cost-to-benefit ratio

even further, but it remains greater than 1.2 for all EV penetrations. The ratio also rises

with EV penetration in each of these cases, for the same reason specified for the Base Case.

As previously noted, in the scenario with PV the V2G case allows for a minimal amount of

additional PV generationÐno more than 380 kWh, or less than 1% of total demand, over

the course of the day at any level of EV penetration. Therefore, the cost-to-benefit ratio is

largely unchanged in the PV scenario.
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Figure 15. V2G, No PV Cost-to-Benefit Ratio.

5. Conclusions

This study utilized a novel ACOPF model to examine the relative value of V1G and

V2G charging strategies for EVs located in residences with and without solar PV. The

model utilizes numerical values for energy and equipment cost based upon recent data

for San Francisco, CA, for the U.S., and for real equipment as appropriate, whereas much

of the existing literature uses assumed values for some or all of these inputs. The value

streams available to EV owners were also based upon their general current ability to

access these streams and do not include benefits that cannot be received by EV owners,

unlike much of the current literature. These considerations are input into the model so

that we can evaluate whether the additional cost required to implement a V2G strategy

is sufficiently compensated by the additional value it can provide. Within the limitations

of the study assumptions, it is found that the cost to implement V2G, relative to V1G, is

roughly 1.2 times or greater than the benefits captured even under the most optimistic

scenarios for V2G implementation cost. This presents a challenge for the grid of the future,

as many citing the promise of V2G rightly note the lower overall system costs enabled by

its implementationÐconsistent with the findings hereÐwithout fully considering the cost

of implementation to the asset owners.

While we view this study to be grounded in the real-world at a greater extent than

much of the existing literature, there are still limitations to the approach taken. For example,

this work has focused on energy price conditions in San Francisco, CA and the use of

other geographies or market conditions could change the magnitude of the V1G to V2G

comparison, though we believe that the overall conclusion is robust across most geographies

given the level of commonality among current energy market structures in the U.S., Europe,

and Australia. Additionally, this study utilized simplified assumptions of driving behavior

and only considered EV ownership from the perspective of a single-family homeowner.

To improve the fidelity of the study to real world behavior, future studies could include

more real-world informed driving patterns (and, by association, EV availability) as well

as expand the EV ownership structures represented in the study. Finally, including other

potential value streams such as ancillary services may improve fidelity of the analysis,

though the relatively small value of these services and the limitations to EV owner access

to these value streams is unlikely to change the conclusion found here. With that said,

expansion of the study fidelity and validation or refutation of these beliefs are interesting

areas for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

ACOPF AC Optimized Power Flow

CO2 Carbon Dioxide

DER Distributed Energy Resources

DLMP Distributed Location Marginal Pricing

DR Demand Response

EV Electric Vehicle

HiGRID Holistic Grid Resource Integration and Deployment Tool

ICE Internal Combustion Engine

ISO Integrated System Operator

LDV Light-Duty Vehicles

Li-ion Lithium-ion

LMP Locational Marginal Pricing

PHEV Plug-in Hybrid Electric Vehicles

PV Photovoltaics

NEM Net Energy Metering

NREL National Renewable Energy Laboratory

RTO Regional Transmission Operator

SAM System Advisor Model

SOC State-of-Charge

T&D Transmission and Distribution

TCO Total Cost of Ownership

TOU Time-of-Use

V1G Smart charging

V2B Vehicle-to-Building

V2G Vehicle-to-Grid

V2H Vehicle-to-Home

VGI Vehicle Grid Integration

VPP Virtual Power Plant

VRE Variable Renewable Energy

Nomenclature

b
p, EVc
i bidding prices of active power while charging and discharging EV i

b
p,EVd
i bidding prices of active power while discharging EV i

b
p,PV
i bidding prices of active power from PV i

b
q
i reactive power from EV i

b
q,PV
i bidding price of reactive power from PV i

bs
p LMP at the substation node for active power

bs
q LMP at the substation node for reactive power

Iij,max maximum current limit of line i-j
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pc,EV
i active charging power of EV i

Iij,max maximum current limit of line i-j

pc,EV
i active charging power of EV i

pd,EV
i active discharging power of EV i

pd
i active power load demand at node i

pEV
i,max maximum active power limit for EV i

pEV
i,min minimum active power limit for EV i

p
f
ij active power flow in the line from node i to j

pPV
i active power of PV i

pPV
i,max maximum limit for active power from PV i

pPV
i,min minimum limit for active power from PV i

ps active power imported from the transmission network through the substation

qd
i reactive power load demand at node i

qEV
i the reactive power of EV i

q
f
ij reactive power flow in the line from node i to j

qPV
i reactive power of PV i

qs reactive power imported from the transmission network through the substation

r resistance portion of line impedance

SEV
i,max nameplate power capacity of EV i

SPV
i,max nameplate power capacity of PV i

Ss
max power capacity of the substation

u square of nodal voltage

Vi,max maximum voltage limit of node i

Vi,min minimum voltage limit of node i

w square of line current

x reactive component of line impedance

λ
p
i active power DLMP at node i

λ
q
i reactive power DLMP at node i

κ EV and PV power factor

Φ(i) parent node of node i

Ψ(i) children node of node i
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