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Abstract

Despite their remarkable performance on ab-

stractive summarization, large language models

(LLMs) face two significant challenges: their

considerable size and tendency to hallucinate.

Hallucinations are concerning because they

erode the reliability of LLMs and raise safety is-

sues. Pruning is a technique that reduces model

size by removing redundant weights to create

sparse models that enable more efficient infer-

ence. Pruned models yield comparable perfor-

mance to their counterpart full-sized models,

making them ideal alternatives when operating

on a limited budget. However, the effect that

pruning has upon hallucinations in abstractive

summarization with LLMs has yet to be ex-

plored. In this paper, we provide an extensive

empirical study on the hallucinations produced

by pruned models across three standard summa-

rization tasks, two pruning approaches, three

instruction-tuned LLMs, and three hallucina-

tion evaluation metrics. Surprisingly, we find

that pruned LLMs hallucinate less compared

to their full-sized counterparts. Our follow-up

analysis suggests that pruned models tend to

depend more on the source input and less on

their parametric knowledge from pre-training

for generation. This greater dependency on the

source input leads to a higher lexical overlap

between generated content and the source in-

put, which can be a reason for the reduction in

hallucinations.1

1 Introduction

Abstractive summarization is the task of distilling

the key information from a given document, to

generate a summary consisting of text that might

not appear in the original document (Cohn and La-

pata, 2008; Saggion and Poibeau, 2013; Lin and

Ng, 2019). Large language models (LLMs) have

demonstrated strong performance on abstractive

∗Equal contribution.
1We publicly release our the code: https://github.com/

casszhao/PruneHall

User: Please summarize the following text:

David Cameron has returned to govern-

ment as UK foreign secretary, in a stunning

comeback that highlights Rishi Sunak’s will-

ingness to take risks as he looks to revive

his political fortunes [. . . ] amid reports that

several MPs had turned the job down.

Model: David Cameron, the former UK

prime minister [. . . ] orchestrated by

Chancellor Rishi Sunak, is part of a

broader reshuffle that includes the sack-

ing of Suella Braverman as home secretary.

Figure 1: An intuitive example of hallucinations in ab-

stractive summarization. Highlighted text in red indi-

cates hallucinated content (i.e. content or information

not present in the source input that is not factually cor-

rect).

summarization (Lewis et al., 2020; Zhang et al.,

2020a; Touvron et al., 2023; Almazrouei et al.,

2023; Ouyang et al., 2022; OpenAI, 2023; Zhang

et al., 2023). However, they face two significant

challenges: their substantial size requires extensive

computational resources for training and inference;

and they tend to hallucinate, i.e. generate nonsen-

sical or nonfactual contents not supported by the

source document (Zhao et al., 2020; Xu et al., 2023)

(see a concrete example in Figure 1).

On the one hand, hallucinations not only under-

mine the performance of models but also introduce

critical safety risks, ultimately eroding the trust of

end users (Milintsevich and Agarwal, 2023; Tang

et al., 2023; Narayan et al., 2023). For example,

LLM generated summaries in the legal or health

space can contain inaccurate information posing a

real-life negative impact (Elaraby et al., 2023). On

the other hand, large decoder-based models such

as GPT-3.5 (Ouyang et al., 2022), GPT-4 (Ope-
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nAI, 2023), and Llama 2 (Touvron et al., 2023)

challenge the hardware capacity of many end-users.

As an indication, GPT-175B requires at least five

NVIDIA A100 GPUs with 80GB of memory each

for half-precision (FP16) inference (Frantar and Al-

istarh, 2023). Pruning is a technique that enables ef-

ficient inference by removing unnecessary weights

to create a sparse model (Wang et al., 2020b) with

little performance degradation. Pruned models ap-

pear as attractive alternatives to full-sized models

for abstractive summarization in cases of limited

access to compute.

In abstractive summarization, hallucinations are

a thoroughly studied subject (Cao et al., 2020; Dur-

mus et al., 2020; Raunak et al., 2021; Narayan et al.,

2023). Similarly, the effect of pruning on model

performance in abstractive summarization bench-

marks is also well explored (Sun et al., 2023; Xu

and McAuley, 2023; Zhu et al., 2023a). However,

the relationship between model pruning and hallu-

cinations has yet to be explored. With the appeal

of cost reduction and comparable downstream per-

formance of pruned models, it is also important

to establish how trustworthy their generated sum-

maries are (i.e. if pruned models hallucinate more,

the same, or less than their original counterparts).

To this end, we empirically investigate hallu-

cinations of pruned models across three LLMs,

two state-of-the-art pruning methods, three sum-

marization datasets, and three hallucination evalu-

ation metrics. Surprisingly, our results show that

pruned models hallucinate less compared to their

full-sized counterparts, which challenges ªthe big-

ger the betterº stereotype (Touvron et al., 2023;

OpenAI, 2023). To understand this phenomenon,

we further investigate the impact of different spar-

sity levels on hallucination patterns. Our anal-

ysis shows that hallucinations are reduced with

increasing model sparsity regardless of the prun-

ing method. Furthermore, our results suggest that

pruning encourages the model to rely more on the

source input when generating text, resulting in sum-

maries that are more lexically similar to the source

input.

2 Related Work

2.1 Hallucinations in Summarization

In abstractive summarization, the model is ex-

pected to generate a concise summary of the source

document input. However, prior work observed

that abstractive summarization models tend to gen-

erate hallucinatory content that is not based on

or cannot be entailed from the source document

(Vinyals and Le, 2015; Rohrbach et al., 2018; Cao

et al., 2018; Maynez et al., 2020; Raunak et al.,

2021; Falke et al., 2019; Maynez et al., 2020; Chen

et al., 2022). For example, Falke et al. (2019) found

that 25% of the model generated summaries con-

tain hallucinated content. On the other hand, auto-

matic summary quality evaluation metrics such as

ROUGE (Lin, 2004) and BERTScore (Zhang et al.,

2020b) do not correlate with hallucinations in sum-

maries (Zhou et al., 2021). For instance, (Zhou

et al., 2021) show that even if a summary contains

a large amount of hallucinatory content, it can still

achieve a high ROUGE score. This has opened up

new research focusing on developing approaches

to detect and evaluate hallucinations (Zhou et al.,

2021; Durmus et al., 2020; Guerreiro et al., 2023);

and how to mitigate them (Xiao and Wang, 2021;

Choubey et al., 2023; King et al., 2022).

Hallucination evaluation metrics can broadly be

split into three categories: (a) entailment-based, (b)

question-answering (QA), and (c) text-generation

based. Entailment-based methods (Kryscinski

et al., 2020; Laban et al., 2022) typically use pre-

trained neural entailment models. These models

return the entailment score between the source

document (premise) and the generated summary

(hypothesis). The higher the entailment score,

the more consistent a summary is with respect

to the input. Question-answering methods (Wang

et al., 2020a; Deutsch et al., 2021; Durmus et al.,

2020), decompose the task of finding hallucinations

to a question answering problem. For example,

Faithfulness Evaluation with Question Answering

(FEQA) (Durmus et al., 2020) first identifies declar-

ative sentences in a summary, extracts entities as

gold-label answers and uses a trained question gen-

erator to create questions for these answers. A

pre-trained QA model then goes over the source

document to extract answers for the generated ques-

tions. Extracted entities from the summary that do

not match model answers are considered as hallu-

cinations. Finally, text-generation based methods

use off-the-shelf models to quantify the risk of hal-

lucinations (Yuan et al., 2021; Son et al., 2022).

For example, HaRiM (Son et al., 2022) uses the

log-likelihood of a reference-free decoder model to

evaluate hallucinations in a summary at the token

level.

Previous work has only focused on evaluating

hallucinations in summarization using full-sized



models (i.e. models that have not been pruned). To

the best of our knowledge, no previous work has

evaluated hallucinations in the context of pruned

models, which we introduce in the following sec-

tion.

2.2 Pruning Large Language Models

Model compression is the task of reducing the

memory footprint of a model (Ganesh et al., 2021).

Pruning is a popular technique that removes re-

dundant weights from the model (LeCun et al.,

1989). Weights may be removed individually (un-

structured pruning), according to defined blocks

(semi-structured pruning), or in relation to model

components (structured pruning) (Blalock et al.,

2020; Mishra et al., 2021; Zhu et al., 2023b).

As the size of LLMs surpasses billions of param-

eters, pruning techniques that require re-training

become impractical. Instead, post-training model

compression aims to reduce model size using only

a small calibration dataset (Hubara et al., 2021).

In this setting, Frantar and Alistarh (2022) define

the layer-wise compression problem to create a

compressed version of a given layer that functions

as closely as possible to the original. State-of-

the-art post-training pruning techniques include

SparseGPT (Frantar and Alistarh, 2023) and Wanda

(Sun et al., 2023). SparseGPT introduces an effi-

cient solution for layer-wise compression in the

context of LLM pruning, relying upon an itera-

tive weight update process using Hessian inverses,

inspired by OBC (Hassibi et al., 1993). Wanda

further improves upon computational efficiency,

enabling pruning in a single forward pass. This

is achieved using a simple pruning criterion, con-

sisting of the element-wise product between the

weight magnitude and the norm of input activations

without requiring any weight updates.

Pruning methods, like Wanda and SparseGPT,

have been used to prune decoder-only LLMs, show-

ing the ability to maintain zero-shot performance in

summarization tasks compared to full-sized LLMs.

However, it remains unclear how pruning affects

the faithfulness of LLMs (i.e. to what extent they

hallucinate).

3 Methodology

Our objective is to compare hallucinations in gener-

ated summaries from a full-sized model (M) with

its pruned counterpart (Mp). Given a source doc-

ument D, we generate summaries T and Tp using

M and Mp, respectively. For both type of mod-

els, we use identical prompts. We then evaluate

summaries T and Tp in terms of the hallucinations

that they contain. We consider whether the pruned

model Mp performs better in comparison to the

original model M with respect to the degree of

hallucinations they produce.

3.1 Full-sized Models

We use the following decoder-only instruction-

tuned models M:2

Llama2 (Touvron et al., 2023) Llama 2 is a

decoder-only model pre-trained on two trillion to-

kens. We use the 7-billion and 13-billion parameter

models of the further fine-tuned version of Llama 2,

i.e. Llama 2-Chat. Llama 2-Chat was instruction-

tuned on 1 million human-annotated examples.

Falcon (Almazrouei et al., 2023) We use the

7-billion parameter instruction-tuned model. Fal-

con was pre-trained on 1.5 trillion tokens and

instruction-tuned on 250 million tokens.

3.2 Pruning Methods

We obtain pruned models Mp using the following

methods: (a) SparseGPT (Frantar and Alistarh,

2023); and (b) Wanda (Sun et al., 2023). We opt

from using magnitude pruning (Hagiwara, 1994;

Han et al., 2015) as it was previously shown to yield

sub-par performance to SparseGPT and Wanda.

Comparing the performance of pruning methods

on summarization is out of the scope of our paper.

We select a 2:4 structured sparsity pattern (pro-

viding a total of 50% sparsity) following previ-

ous work (Frantar and Alistarh, 2023; Sun et al.,

2023), enabling efficient hardware acceleration on

GPUs (Mishra et al., 2021).3 We use the same

sparsity level in all experiments unless otherwise

stated. Following Sun et al. (2023), we use the ex-

act same set of calibration data for pruning Wanda

and SparseGPT, which consists of 128 sequences

sampled from C4 (Raffel et al., 2020).

3.3 Summarization Datasets

For our experiments, we include three subset

datasets from the SummaC Benchmark (Laban

et al., 2022): (1) FactCC (Kryscinski et al., 2020),

2We opt for experimenting with instruction-tuned models
due to their wide adoption, impressive performance in abstrac-
tive summarization (Zhang et al., 2023) and large size, which
makes them ideal candidates for pruning.

32:4 structured sparsity refers to zeroing two values of
each four value contiguous block in the weight matrix.



(2) Polytope (Huang et al., 2020), and (3) Sum-

mEval (Fabbri et al., 2021). For each dataset, we

take the source documents of the testing split and re-

move duplicated documents, resulting in 311, 634,

and 100 source documents for FactCC, Polytope,

and SummEval, respectively.

3.4 Generating Summaries with

Instruction-tuned LLMs

For the summary generation, we use greedy search

as our decoding strategy (i.e. selecting the token

with the highest probability) for better reproducibil-

ity. We set the maximum number of new tokens to

25% of the original input tokens for each individ-

ual input. For prompting the models, we use the

instruction templates of Touvron et al. (2023) for

Llama 2 models and Almazrouei et al. (2023) for

Falcon. As the generation performance of decoder-

only LLMs can vary with differing prompts, to con-

trol for variability we run all experiments across

three distinct prompts. Each prompt is hence a

different way to instruct the model towards summa-

rizing a document, under the same template. The

prompts along with their templates for each model

can be seen in Appendix A. As each data point

corresponds to three generated summaries, we eval-

uate across all three generations by averaging the

scores.

3.5 Evaluating Summarization Quality

We evaluate the quality of generated summaries

using a subset of the ROUGE family of metrics

(Lin, 2004) and BERTScore (Zhang et al., 2020b).

From ROUGE, we use two n-gram overlap metrics

ROUGE-1 and ROUGE-2 and also ROUGE-L, the

longest sequence overlap metric. We also report

model perplexity.

3.6 Evaluating Hallucinations

To evaluate the degree of hallucinations in the gen-

erated summaries, we use three standard automatic

hallucination evaluation metrics that do not require

gold-reference summaries or human evaluation:

HaRiM, SummaCConv and SummaCZS.

HaRiM (Son et al., 2022) This is a reference-

free (i.e. does not rely on the source sequence)

hallucination metric for abstractive summarization

with encoder-decoder models. The main assump-

tion is that in such architectures, the generation of

the next token is largely dependent on the previ-

ously generated (decoder-only) text. Consequently,

Model Pruning Method Perplexity

Falcon-7B

- 8.526

SparseGPT 11.186

Wanda 11.583

Llama-7B

- 5.360

SparseGPT 6.648

Wanda 6.533

Llama-13B

- 5.283

SparseGPT 6.410

Wanda 6.557

Table 1: Perplexity of original and pruned models on

the held-out set of WikiText (lower is better).

they re-use the same model starting with an empty

encoder input, to obtain the decoder probabilities.

For a single source sequence, HaRiM is then com-

puted as follows, where L is the sequence length,

ps2s the predicted probability of the model given

the source input and plm the generated token prob-

ability:

HaRiM =
1

L

L∑

i=0

(1− ps2s)(1− (ps2s − plm))

SummaC (Laban et al., 2022) This metric uses

an off-the-shelf entailment model to assess the con-

sistency between a source document and a gener-

ated summary. First, the document and summary

are split into sentences, with the document sen-

tences (N ) being the hypothesis and the generated

summary sentences (K) being the premise. The

second step is to create an K ×N matrix of entail-

ment scores from the pre-trained model. A gener-

ated sentence with a low entailment score, with any

of the document sentences is a potential hallucina-

tion. Finally, two approaches are used for obtaining

the overall consistency score. SummaCZS obtains

the row-wise maximum entailment score, which

leads to a vector E of size K. In vector E each el-

ement can be interpreted as the hallucination score

for each sentence in the summary. E is finally av-

eraged to obtain a single summary hallucination

score. SummaCConv obtains vector E by using a

convolutional model that passes a trained kernel

over each row K, to get a single score. Similarly,

vector E contains the hallucination score for each

sentence, which can then be averaged for the sum-

mary hallucination score.



Data Pruning
Falcon 7B Llama 7B Llama 13B

ROUGE-Av BERTScore ROUGE-Av BERTScore ROUGE-Av BERTScore

FactCC

- 0.27 (0.10) 0.88 (0.03) 0.22 (0.09) 0.85 (0.01) 0.20 (0.08) 0.84 (0.01)

SparseGPT 0.29 (0.10) 0.87 (0.03) 0.23 (0.09) 0.85 (0.01) 0.21 (0.08) 0.84 (0.01)

Wanda 0.29 (0.10) 0.87 (0.03) 0.23 (0.09) 0.85 (0.02) 0.22 (0.08) 0.84 (0.01)

Polytope

- 0.24 (0.09) 0.85 (0.02) 0.23 (0.08) 0.83 (0.01) 0.22 (0.08) 0.83 (0.01)

SparseGPT 0.22 (0.10) 0.83 (0.03) 0.25 (0.08) 0.83 (0.01) 0.23 (0.08) 0.83 (0.01)

Wanda 0.24 (0.11) 0.83 (0.03) 0.25 (0.09) 0.83 (0.01) 0.23 (0.08) 0.83 (0.01)

SummEval

- 0.27 (0.07) 0.88 (0.01) 0.25 (0.08) 0.85 (0.01) 0.23 (0.07) 0.85 (0.01)

SparseGPT 0.29 (0.08) 0.87 (0.02) 0.26 (0.07) 0.85 (0.01) 0.24 (0.07) 0.85 (0.01)

Wanda 0.29 (0.08) 0.86 (0.05) 0.26 (0.07) 0.85 (0.01) 0.24 (0.07) 0.85 (0.01)

Table 2: Summary generation quality measured using ROUGE-1/2/L and BERTScore, across three datasets and

three original models (-) and their two pruned counterparts (SparseGPT and Wanda). For clarity, we show the

average of the ROUGE scores (ROUGE-Av) with the full stack of results available in Appendix B. For all summary

generation quality metrics, higher is better.

For all metrics, a higher score indicates that there

is a lower prevalence of hallucinations in the gener-

ated summary.

3.7 Implementation Details

We use pre-trained models from the Hugging Face

library (Wolf et al., 2020). We run all experiments

on a single NVIDIA A100 GPU.

4 Results

4.1 Model Perplexity

Before comparing hallucinations between full-

sized models and their pruned counterparts, we

first measure model perplexity. Table 1 includes

the reproduced perplexity of pruned models on the

held-out dataset of WikiText (Merity et al., 2017) as

per previous work (Sun et al., 2023). As expected,

pruned models result in higher perplexity scores,

with both pruning methods performing comparably,

corroborating findings by Sun et al. (2023).

4.2 Summarization Performance

We also evaluate model performance in generating

summaries. Whilst the zero-shot summarization

performance of instruction tuned models is not the

focus of this work, a comparable performance be-

tween pruned and non-pruned models allows a fair

comparison of their hallucination quality and better

justifies our study (i.e. practitioners might prefer us-

ing pruned models to full-sized if their downstream

performance is similar). We therefore measure

summary generation performance with ROUGE-

1/2/L and BERTScore, across three datasets, three

full-sized models and their two pruned counter-

parts (SparseGPT and Wanda). For brevity, Table 2

shows the average of the ROUGE scores (ROUGE-

Av) with the full stack of results available in Ap-

pendix B. For both summarization metrics, higher

is better.

We first observe that the summarization qual-

ity of pruned models does not degrade, with ei-

ther of the pruning methods tested (SparseGPT

and Wanda) across metrics and datasets. We see

that the full-sized model slightly outperforms the

pruned models in BERTScore when using Falcon

7B, whilst remaining consistent with both Llama

models. For example, with Llama 7B and Polytope

all models record a BERTScore of 0.83. On the

contrary, when using the lexical overlap metrics

(ROUGE-Av) we observe that pruned models have

a slight lead over their full-sized counterparts. For

example, in SummEval we observe higher ROUGE-

Av scores for both pruning methods across all mod-

els tested (e.g. 0.29 ROUGE-Av with Falcon 7B

pruned with Wanda or SparseGPT, versus 0.27 with

the original model).

4.3 Comparing Model Hallucinations

Table 3 shows the hallucination prevalence of

three full-sized models and their pruned counter-

parts, tested across FactCC, Polytope and Sum-

mEval. Hallucination prevalence is measured us-

ing HaRiM, SummaCConv and SummaCZS, where

a higher score indicates the model hallucinates less

(i.e. lower hallucination prevalence).

Pruned models hallucinate less. The almost

unanimous green cells in Table 3 indicate that, in

general, pruned models hallucinate less compared



Data Model Pruning HaRiM SummaCConv SummaCZS

F
ac

tC
C

Falcon 7B

- 4.36 (0.83) 0.57 (0.21) 0.6 (0.25)

SparseGPT 4.77 (0.85) 0.67 (0.19) 0.73 (0.23)

Wanda 4.83 (0.83) 0.68 (0.18) 0.72 (0.24)

Llama 7B

- 3.44 (0.66) 0.33 (0.09) 0.26 (0.16)

SparseGPT 3.56 (0.74) 0.38 (0.11) 0.35 (0.19)

Wanda 3.56 (0.74) 0.38 (0.11) 0.36 (0.19)

Llama 13B

- 2.86 (0.49) 0.32 (0.08) 0.24 (0.15)

SparseGPT 2.96 (0.53) 0.37 (0.10) 0.34 (0.17)

Wanda 2.95 (0.58) 0.37 (0.11) 0.34 (0.18)

P
o

ly
to

p
e

Falcon 7B

- 3.67 (0.63) 0.51 (0.15) 0.63 (0.21)

SparseGPT 4.02 (0.71) 0.58 (0.17) 0.72 (0.21)

Wanda 3.70 (0.78) 0.50 (0.15) 0.63 (0.23)

Llama 7B

- 3.32 (0.54) 0.35 (0.10) 0.41 (0.19)

SparseGPT 3.48 (0.55) 0.42 (0.13) 0.50 (0.18)

Wanda 3.36 (0.61) 0.41 (0.13) 0.51 (0.19)

Llama 13B

- 2.82 (0.49) 0.34 (0.09) 0.39 (0.18)

SparseGPT 2.97 (0.58) 0.41 (0.12) 0.51 (0.19)

Wanda 3.09 (0.60) 0.40 (0.11) 0.50 (0.18)

S
u

m
m

E
v
al

Falcon 7B

- 4.35 (0.52) 0.55 (0.18) 0.63 (0.20)

SparseGPT 4.67 (0.67) 0.65 (0.17) 0.76 (0.17)

Wanda 4.52 (0.73) 0.59 (0.19) 0.70 (0.23)

Llama 7B

- 3.77 (0.65) 0.34 (0.11) 0.33 (0.17)

SparseGPT 3.99 (0.52) 0.39 (0.13) 0.43 (0.18)

Wanda 3.99 (0.56) 0.39 (0.14) 0.45 (0.18)

Llama 13B

- 3.14 (0.49) 0.34 (0.10) 0.34 (0.17)

SparseGPT 3.27 (0.53) 0.39 (0.11) 0.43 (0.18)

Wanda 3.19 (0.52) 0.40 (0.13) 0.45 (0.19)

Table 3: Model hallucination comparison, averaging over the three prompts (higher is better). Green cells indicate

that the pruned model hallucinates less on average compared to its non-pruned counterpart, whilst red the opposite.

Bold values denote that the difference between the pruned model and the original are significant (paired t-test; p <

0.05)

to their non-pruned counterparts. The hallucination

degree of pruned models is significantly lower com-

pared to the original models in 46 out of 54 total

comparisons (bold values in green cells). For ex-

ample, with Llama 2 7B in SummEval, we observe

significantly higher scores with all three metrics,

with SummaCZS recording a 10 point increase with

SparseGPT (0.43 from 0.33) and 12 with Wanda

(0.45 from 0.33). Additionally, in the two instances

where a pruned model records lower scores (i.e.

hallucinates more) compared to the non-pruned

counterparts, this difference is not statistically sig-

nificant (e.g. 0.51 using SummaCConv with original

Llama 7B compared to 0.50 with Wanda pruning

in Polytope).

These findings seem counter-intuitive, consid-

ering that pruned models typically perform albeit

comparably, slightly worse in perplexity and down-

stream tasks. We hypothesize that by removing

unused parameters, we potentially remove some of

the model’s parametric knowledge (i.e. knowledge

obtained via pre-training and fine-tuning). This

perhaps ªforcesº the model to rely more on the

source document during the summary generation

and in turn reduces hallucinations. We examine

this in more detail in Section 5.

SparseGPT is more consistent. Whilst both

pruned models hallucinate less than their counter-

part full-sized models, there are subtle differences

between the two pruning methods tested. Results

suggest that SparseGPT in particular is more con-

sistent compared to Wanda, recording significantly

better results compared to the full model in 26

out of 27 comparisons (in contrast Wanda records

significantly better results in 20 out of 27 com-

parisons). For example, with Llama 7B in Poly-

tope, SparseGPT records higher scores compared

to Wanda in all metrics. A possible reason behind



Figure 2: Performance comparison by ratio between a pruned Llama 7B model and its full-sized counterpart across

5 sparsity levels, 3 hallucination performance metrics and 4 generation performance metrics (grey dotted lines).

Ratios higher than 1 indicate better performance compared to the baseline full-sized model (black-colored horizontal

line).

this could be that SparseGPT updates the model

weights during pruning, which might affect model

behavior.

5 Impact of Sparsity on Hallucinations

We further conduct a quantitative analysis, to better

understand previous results and test our working

hypothesis: pruning a model removes parametric

knowledge, thereby requiring the model to attend

more towards the source input during generation.

In turn, we assume this is the culprit behind the

reduced level of hallucinations in pruned models.

For this purpose, in Figure 2 we compare the per-

formance of Llama 7B pruned to various sparsity

thresholds (using Wanda and SparseGPT) against

its full-sized counterpart.4 We increase the level of

sparsity sequentially in 10% increments and com-

pare the summarization performance and halluci-

nation scores of the resulting model against the

original. The comparison considers three hallu-

cination performance metrics (lines with circled

markers) and four generation performance metrics

4We also observe similar findings for Falcon 7B and Llama
2 13B. Results are available in Appendix C.

(dotted lines in grey). A ratio higher than one, indi-

cates that the pruned Llama performs better in the

corresponding metric compared to the original.

Hallucinations reduce as sparsity increases.

Results from Figure 2 show that in most cases,

hallucinations reduce with increasing sparsity.

At initial sparsity levels (20% and 30%), the hal-

lucination performance of pruned models reduces

slightly compared to the original model. However,

hallucinations in pruned model summaries remain

comparable with those from the full-sized model

(3% difference at the lowest point with Wanda

and HaRiM in SummEval with 20% sparsity). On

the contrary, we observe differences between the

pruned and the original model when increasing

sparsity. For example in Polytope with SparseGPT,

the model with 50% sparsity records an increase

of 21% with SummaCZS, 19% with SummaCConv,

and 5% with HaRiM compared to the full-sized

model. These findings suggest that increasing spar-

sity does indeed appear to reduce hallucinations in

summaries generated by the model.

Pruned models generate summaries that have

greater lexical similarity to the input. Observ-



FactCC Polytope SummEval

HaRiM SummaCConv SummaCZS HaRiM SummaCConv SummaCZS HaRiM SummaCConv SummaCZS

SparseGPT

ROUGE-1 0.48 (0.33) 0.17 (0.75) 0.05 (0.93) 0.55 (0.26) 0.43 (0.40) 0.30 (0.57) 0.69 (0.13) 0.64 (0.17) 0.52 (0.29)

ROUGE-2 0.97 (0.00) 0.94 (0.01) 0.89 (0.02) 0.98 (0.00) 0.93 (0.01) 0.88 (0.02) 0.97 (0.00) 0.96 (0.00) 0.91 (0.01)

ROUGE-L 0.97 (0.00) 0.92 (0.01) 0.86 (0.03) 0.98 (0.00) 0.92 (0.01) 0.88 (0.02) 0.97 (0.00) 0.97 (0.00) 0.93 (0.01)

Wanda

ROUGE-1 0.90 (0.02) 0.81 (0.05) 0.70 (0.12) 0.75 (0.09) 0.79 (0.06) 0.68 (0.14) 0.90 (0.01) 0.94 (0.01) 0.83 (0.04)

ROUGE-2 0.98 (0.00) 0.95 (0.00) 0.88 (0.02) 0.86 (0.03) 0.90 (0.02) 0.83 (0.04) 0.97 (0.00) 0.98 (0.00) 0.90 (0.01)

ROUGE-L 0.97 (0.00) 0.91 (0.01) 0.83 (0.04) 0.86 (0.03) 0.92 (0.01) 0.85 (0.03) 0.92 (0.01) 0.96 (0.00) 0.85 (0.03)

Table 4: Pearson’s correlation (p-values in the brackets) across all sparsity levels between hallucination (HaRiM,

SummaCConv, SummacZS) and lexical overlap metrics (ROUGE 1/2/L) for the Llama 2 7B model. Bold values

indicate significant correlations (p < 0.05).

ing lexical-based (ROUGE) and semantic-based

(BERTScore) summary quality metrics across spar-

sity levels, the outcomes are mixed. In almost

all cases for each pruning method, BERTScore

scores remain comparable to the full-sized model

(close to 1) up to 50% sparsity. This shows that

the summaries generated by pruned models remain

semantically similar to those from their original

counterparts.

However, there is a stark contrast when look-

ing at the ROUGE-based metrics. Pruned models

record lower ROUGE-based scores across the 20%

and 30% sparsity levels but then increase substan-

tially beyond the original model’s scores at 50%

sparsity. Surprisingly, it appears that at the point

where lexical-based metrics in pruned models sur-

pass their original counterparts, we also observe

a large jump in hallucination metric scores. For

example with FactCC and Wanda above 40% spar-

sity, SummaCZS jumps from 1.10 to 1.35 whilst

SummaCConv from 1.02 to 1.15. As summaries

from pruned models remain semantically compara-

ble to the source input with full-sized models, their

increasing lexical overlap with the source docu-

ment indicates that pruned models focus more on

the input document to generate a summary.

Lexical-based metrics correlate with Halluci-

nation metrics. To better understand the rela-

tionship between lexical overlap and hallucination

metrics, we conduct a pairwise comparison across

all sparsity levels between hallucination metrics

(HaRiM, SummaCConv, SummacZS) and lexical

overlap metrics (ROUGE 1/2/L). The rationale here

is that strong correlations can reinforce our argu-

ment that: the reduced hallucinations are poten-

tially due to the increasing lexical overlap between

the source document and the generated summary by

the pruned models. For this purpose in Table 4, we

show the average Pearson correlation values across

data points (with p-values in the brackets). Bold

values indicate significant correlations between lex-

ical overlap metrics and hallucination scores across

sparsity levels.5

Our results show that there are strong correlation

signals across all three datasets, all three hallucina-

tion metrics with both pruning methods in ROUGE-

2 and ROUGE-L. That is, generated summaries

with greater lexical overlap with their source docu-

ments, e.g. higher ROUGE scores, are less likely to

contain hallucinations.6 This corroborates findings

drawn from the human annotation task by Durmus

et al. (2020) which showed that summaries that are

more lexically similar to the source input are less

likely to contain hallucinations.

Our overall results suggest that higher lexical-

overlaps could be responsible for reduced halluci-

nations, whilst increasing sparsity appears respon-

sible for the increasing lexical-overlaps.

6 Conclusion

In this work, we explore how hallucinations in

abstractive summarization differ when LLMs are

pruned. Our experimental setup consisted of

two state-of-the-art pruning methods (Wanda and

SparseGPT) applied to three instruction-tuned

LLMs (Falcon 7B and Llama 7B & 13B). We

measured hallucinations across three datasets us-

ing three established metrics. Surprisingly, our

results show that as models are pruned to higher

sparsity, they hallucinate less. Our analysis further

shows that increased sparsity potentially encour-

5We also find similar outcomes with Falcon and Llama
13B, see Appendix C for all results.

6For ROUGE-1 we also observe positive correlations of
varying degrees and strength, however, they are not significant.



ages a model to attend more to the source input for

generation, offering a possible explanation for the

fewer hallucinations. Our findings are supported

by increasing lexical overlaps between the source

input and the summary, which in turn correlate

with the patterns observed in hallucination metrics

across sparsity levels.

Future work includes evaluating more models

and model sizes. Additionally, we plan to explore

the relationship between hallucination prevalence

and model pruning in other tasks such as open-book

question answering (Mihaylov et al., 2018; Ciosici

et al., 2021) and machine translation (Guzmán

et al., 2019; Wang and Sennrich, 2020; Dale et al.,

2023). Finally, whilst these metrics offer a good

baseline for measuring hallucinations, we would

like to expand our experiments to include human

annotations.
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A Prompt templates

We prompt the model to generate a summary with the following different prompts:

• "Your task is to summarize concisely and truthfully. Summarize the input below:

Input: [document]

Single paragraph summary: "

• "Summarize the article below in a single paragraph:

Input: [document]

Summary: "

• "Please write a short summary for the text below:

Input: [document]

Summary: "

B Full Generation Results

Dataset Model Pruning Method ROUGE-1 ROUGE-2 ROUGE-L BERTScore

F
ac

tC
C

Falcon 7B

- 0.31 (0.08) 0.23 (0.10) 0.26 (0.09) 0.88 (0.03)

SparseGPT 0.33 (0.07) 0.26 (0.11) 0.29 (0.09) 0.87 (0.03)

Wanda 0.33 (0.08) 0.26 (0.11) 0.29 (0.09) 0.87 (0.03)

Llama 7B

- 0.30 (0.07) 0.16 (0.06) 0.20 (0.06) 0.85 (0.01)

SparseGPT 0.29 (0.08) 0.18 (0.07) 0.22 (0.07) 0.85 (0.01)

Wanda 0.30 (0.07) 0.18 (0.07) 0.21 (0.07) 0.85 (0.02)

Llama 13B

- 0.28 (0.07) 0.14 (0.05) 0.19 (0.06) 0.84 (0.01)

SparseGPT 0.28 (0.08) 0.16 (0.06) 0.20 (0.06) 0.84 (0.01)

Wanda 0.29 (0.07) 0.16 (0.06) 0.20 (0.06) 0.84 (0.01)

P
o
ly

to
p
e

Falcon 7B

- 0.29 (0.08) 0.21 (0.09) 0.23 (0.09) 0.85 (0.02)

SparseGPT 0.27 (0.08) 0.17 (0.10) 0.22 (0.09) 0.83 (0.03)

Wanda 0.30 (0.08) 0.18 (0.11) 0.23 (0.09) 0.83 (0.03)

Llama 7B

- 0.31 (0.07) 0.18 (0.06) 0.21 (0.06) 0.83 (0.01)

SparseGPT 0.31 (0.07) 0.20 (0.07) 0.23 (0.07) 0.83 (0.01)

Wanda 0.32 (0.07) 0.20 (0.07) 0.23 (0.07) 0.83 (0.01)

Llama 13B

- 0.29 (0.07) 0.16 (0.06) 0.20 (0.06) 0.83 (0.01)

SparseGPT 0.30 (0.07) 0.18 (0.06) 0.21 (0.07) 0.83 (0.01)

Wanda 0.30 (0.07) 0.18 (0.06) 0.22 (0.07) 0.83 (0.01)

S
u
m

m
ev

al

Falcon 7B

- 0.32 (0.06) 0.24 (0.08) 0.27 (0.07) 0.88 (0.01)

SparseGPT 0.33 (0.06) 0.25 (0.08) 0.28 (0.07) 0.87 (0.02)

Wanda 0.34 (0.05) 0.26 (0.09) 0.29 (0.07) 0.86 (0.05)

Llama 7B

- 0.33 (0.05) 0.21 (0.05) 0.24 (0.05) 0.85 (0.01)

SparseGPT 0.33 (0.05) 0.21 (0.05) 0.24 (0.05) 0.85 (0.01)

Wanda 0.33 (0.05) 0.21 (0.06) 0.24 (0.05) 0.85 (0.01)

Llama 13B

- 0.31 (0.04) 0.17 (0.04) 0.22 (0.04) 0.85 (0.01)

SparseGPT 0.32 (0.04) 0.18 (0.04) 0.23 (0.04) 0.85 (0.01)

Wanda 0.32 (0.04) 0.18 (0.05) 0.23 (0.04) 0.85 (0.01)

Table 5: Generation performance for original sized models and compressed
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Figure 3: Performance comparison by ratio between a pruned Falcon 7B model and its full-sized counterpart across

five sparsity levels, three hallucination performance metrics and four generation performance metrics (grey dotted

lines). Ratios higher than 1 indicate better performance compared to the baseline full-sized model (black colored

horizontal line).

FactCC Polytope SummEval

HaRiM SummaCConv SummaCZS HaRiM SummaCConv SummaCZS HaRiM SummaCConv SummaCZS

SparseGPT

ROUGE-1 0.93 (0.01) 0.93 (0.01) 0.95 (0.00) -0.85 (0.03) -0.65 (0.16) -0.58 (0.23) 0.80 (0.05) 0.87 (0.02) 0.91 (0.01)

ROUGE-2 0.93 (0.01) 0.92 (0.01) 0.94 (0.01) -0.89 (0.02) -0.72 (0.11) -0.64 (0.17) 0.81 (0.05) 0.89 (0.02) 0.91 (0.01)

ROUGE-L 0.95 (0.00) 0.94 (0.00) 0.96 (0.00) -0.64 (0.17) -0.37 (0.47) -0.30 (0.57) 0.86 (0.03) 0.92 (0.01) 0.95 (0.00)

Wanda

ROUGE-1 0.89 (0.02) 0.90 (0.01) 0.91 (0.01) 0.92 (0.01) 0.47 (0.35) 0.72 (0.11) 0.88 (0.02) 0.91 (0.01) 0.90 (0.02)

ROUGE-2 0.91 (0.01) 0.92 (0.01) 0.93 (0.01) 0.58 (0.23) 0.82 (0.04) 0.64 (0.17) 0.95 (0.00) 0.98 (0.00) 0.97 (0.00)

ROUGE-L 0.92 (0.01) 0.93 (0.01) 0.94 (0.01) 0.90 (0.01) 0.75 (0.08) 0.83 (0.04) 0.93 (0.01) 0.96 (0.00) 0.96 (0.00)

Table 6: Pearsons correlation statistic (with p-values in the brackets) across all sparsity levels between hallucination

metrics (HaRiM, SummaCConv, SummacZS) and lexical overlap metrics (ROUGE 1/2/L) for Falcon 7B model. Bold

values indicate significant correlations (p-value < 0.05).

FactCC Polytope SummEval

HaRiM SummaCConv SummaCZS HaRiM SummaCConv SummaCZS HaRiM SummaCConv SummaCZS

SparseGPT

ROUGE-1 0.89 (0.02) 0.67 (0.15) 0.55 (0.26) 0.81 (0.05) 0.50 (0.31) 0.42 (0.41) 0.89 (0.02) 0.75 (0.09) 0.46 (0.36)

ROUGE-2 0.93 (0.01) 0.82 (0.04) 0.73 (0.10) 0.95 (0.00) 0.76 (0.08) 0.69 (0.13) 0.95 (0.00) 0.81 (0.05) 0.54 (0.26)

ROUGE-L 0.95 (0.00) 0.85 (0.03) 0.77 (0.08) 0.96 (0.00) 0.80 (0.05) 0.73 (0.10) 0.91 (0.01) 0.76 (0.08) 0.47 (0.34)

Wanda

ROUGE-1 0.95 (0.00) 0.79 (0.06) 0.72 (0.10) 0.91 (0.01) 0.82 (0.05) 0.70 (0.12) 0.93 (0.01) 0.86 (0.03) 0.78 (0.07)

ROUGE-2 0.96 (0.00) 0.81 (0.05) 0.75 (0.09) 0.96 (0.00) 0.86 (0.03) 0.75 (0.08) 0.97 (0.00) 0.88 (0.02) 0.77 (0.07)

ROUGE-L 0.95 (0.00) 0.84 (0.03) 0.79 (0.06) 0.93 (0.01) 0.90 (0.02) 0.80 (0.06) 0.95 (0.00) 0.90 (0.01) 0.79 (0.06)

Table 7: Pearsons correlation statistic (with p-values in the brackets) across all sparsity levels between hallucination

metrics (HaRiM, SummaCConv, SummacZS) and lexical overlap metrics (ROUGE 1/2/L) for Llama 2 13B model.

Bold values indicate significant correlations (p-value < 0.05).



Figure 4: Performance comparison by the ratio between a pruned Llama 13B model and its full-sized counterpart

across five sparsity levels, three hallucination performance metrics, and four generation performance metrics

(grey dotted lines). Ratios higher than 1 indicate better performance compared to the baseline full-sized model

(black-colored horizontal line).
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