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AbstractÐTraditional navigation systems often overlook dy-
namic social contexts, affecting users’ sense of safety and comfort
in unfamiliar settings. This challenge requires integrating per-
sonalized real-time social data into route planning on resource-
constrained mobile and wearable platforms. This paper intro-
duces AURANAV , enhancing navigation by incorporating real-
time recognition and individualized social patterns. AURANAV in-
cludes two main modules: (i) Social Topology Enhanced Naviga-
tion uses real-time familiar individual detection to create dynamic
safety corridors by adjusting path costs with an influence field-
based metric in A* search; and (ii) Personalized Path Memory
mines long-term familiarity data to build heatmaps, offering
route recommendations aligned with user habits and comfort
zones. This system uses a modular edge-cloud architecture for
low-latency sensor data processing and scalable analysis of social-
spatial information. The evaluation shows that AURANAV im-
proves routing safety by 17-20% and reduces travel time by 5%,
maintaining immediate responsiveness with negligible latency.
AURANAV offers a framework for socially aware navigation
systems that evolve into personalized and context-aware systems.

Index TermsÐSafe Navigation; Familiarity Recognition; Per-
sonalized Path Planning; Social Topology.

I. INTRODUCTION

The widespread adoption of mobile and wearable devices

drives the need for context-sensitive intelligent services. Al-

though navigation systems exemplify these services, current

models often do not take into account the changing and com-

plex social dynamics in human settings. Current navigation

systems typically optimize for objective criteria, such as the

length of the path or the travel time. [1]While efficient, these

approaches often yield routes that users perceive as unsafe

or uncomfortable, particularly in unfamiliar settings, due to

factors like social isolation or a lack of recognizable faces.

This gap underscores the critical need for systems capable of

sensing, interpreting, and reacting to nuanced social contexts

in real time.

The resolution of this challenge presents substantial chal-

lenges in system engineering. First, accurate, real-time detec-

tion of relevant social cues, such as the presence of familiar in-

dividuals, must be achieved, often on resource-constrained mo-

bile or wearable devices. [2] Second, these dynamic social data

must be efficiently integrated into path-planning algorithms

without incurring prohibitive computational overhead. Third,

the management and mining of long-term personal social-

spatial data for effective personalization must be performed
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while rigorously upholding user privacy. Finally, designing

a system architecture, such as an edge-cloud configuration,

that optimally balances latency, computational load, and data

management requirements is crucial for practical deployment.

Prior work in navigation, while advanced in optimizing

paths based on static maps (e.g., using Dijkstra’s or A*

algorithms) or coarse-grained dynamic information (e.g., traf-

fic congestion), has not adequately addressed these fine-

grained social dimensions. Although foundational technolo-

gies such as DeepFace have advanced face verification and

systems such as DeepSeek offer familiarity recognition ca-

pabilities, the integration of these technologies at the system

level into a robust, real-time personalized navigation frame-

work remains an open research problem [3]. Existing context-

aware navigation systems [4] have incorporated environmental

factors, such as lighting or noise levels, but rarely leverage

personalized social context, specifically real-time recognition

of familiar individuals.

This paper presents AuraNav, a system designed to address

these challenges. AuraNav integrates real-time social sensing

with long-term behavioral learning to provide a navigation

experience that is not only efficient but also socially informed

and personalized. The system features two primary functional

modules: Social Topology Enhanced Navigation: This mod-

ule adapts routes in real-time based on the presence and

distribution of familiar individuals, creating dynamic ºsafety

corridors.º Personalized Path Memory: This module learns

from a user’s long-term history of social encounters and

movement patterns to recommend routes that align with their

established habits and social comfort zones. A key design

principle of AuraNav is the non-invasive extension of a

core familiarity recognition module (DeepSeek), promoting

modularity and adaptability within the system architecture.

The contributions of this work are as follows.

1) The Design and Implementation of Socially-Aware

Navigation System: This paper details the design, end-

to-end implementation and evaluation of AURANAV ,

a novel edge-cloud system. AURANAV integrates real-

time familiarity recognition and long-term social-spatial

patterns into navigation, featuring an architecture opti-

mized for low-latency data processing from sensor input

to user feedback.

2) Novel Algorithms for Dynamic Social Context Inte-

gration: The work introduces and integrates two key

algorithmic components: (a) a real-time safety factor



calculation based on familiar presence, incorporated into

the A* path planning algorithm through a modified cost

function, and (b) a spatiotemporal data mining pipeline

to generate personalized familiarity heatmaps and path

libraries from longitudinal user data.

3) Efficient Real-Time Performance in a Hybrid Edge-

Cloud Architecture: AURANAV demonstrates real-time

responsiveness, achieving path update latencies under

50 ms and a processing capacity exceeding 1000 video

frames per second. This performance is achieved through

optimized data flows, parallel processing, and a judicious

distribution of computational tasks between edge devices

and cloud resources.

The remainder of this paper is structured as §II reviews

existing background techniques and motivation. §III details

the design and architecture of AURANAV . §IV presents

the experimental evaluation. §V outlines future research

directions.

II. BACKGROUND AND MOTIVATION

This section places AURANAV within existing research,

emphasizing context-aware navigation, real-time sensing in

mobile/wearable devices, personalization in ubiquitous sys-

tems, and recognition technologies, aiming to distinguish

AURANAV ’s innovative contributions from previous work.

Context-Aware Navigation Systems. Existing navigation sys-

tems have explored various forms of context-awareness. Many

systems incorporate static environmental features (e.g., build-

ing layouts, points of interest) or dynamic obstacles. Some

advanced systems react to real-time environmental conditions,

such as lighting levels, noise pollution, or crowd density. For

example, previous work has investigated adapting routes to

avoid poorly lit areas or overly congested pathways. However,

these systems typically do not incorporate a fine-grained,

personalized social context, such as the real-time presence of

individuals familiar to the user. While the concept of ºsocial

navigationº exists [5] , it often refers to macroscopic models

of pedestrian flow or avoiding collisions, rather than using

personal familiarity to enhance perceived safety and comfort.

AURANAV distinguishes itself by its explicit focus on sensing,

modeling, and using this personalized social topology as a

primary input for navigation decisions.

Real-Time Mobile and Wearable Sensing Systems The

proliferation of powerful mobile and wearable devices has

spurred research into systems capable of complex, real-time

sensing and inference. Fields like activity recognition, health

monitoring, and augmented reality have produced systems

that process rich sensor streams (e.g., camera, GPS) locally

or in conjunction with edge/cloud resources. These systems

[6] often face challenges similar to AURANAV in terms of

managing computational load, energy consumption, and data

communication bandwidth on resources-constrained platforms.

For example, systems for continuous recognition of human

activity using deep learning models on smartphones employ

various optimization techniques [7] . AURANAV builds upon

this body of work but addresses the specific challenge of

continuous real-time face detection and familiarity recognition

- a computationally intensive task - and its seamless integration

into a low-latency navigation loop. The architectural choices

in AURANAV , particularly its hybrid edge-cloud design, are

tailored to the unique demands of processing video streams for

familiarity signals and rapidly updating navigation guidance.

Personalization in Ubiquitous and Mobile Systems . For

example, some systems predict a user’s destination or next

point of interest (POI) based on their trajectory history. [8]

AURANAV ’s Personalized Path Memory module extends these

concepts by introducing a novel dimension of personalization:

social comfort zones. Instead of merely learning common

paths, AURANAV mines long-term familiarity encounters to

identify routes and areas where the user frequently encounters

known individuals. [9]The use of spatiotemporal heatmaps

that specifically represent the density of familiarity, rather

than general activity or POI popularity, is a distinctive feature

that allows AURANAV to recommend paths that are not just

efficient or habitual, but also aligned with the user’s social

landscape.

Face Recognition and Familiarity Detection Technolo-

gies The foundation of the social sensing capability of AU-

RANAV lies in face recognition and familiarity. Landmark

systems like DeepFace demonstrated the power of deep learn-

ing for face verification, achieving near-human performance.

Familiarity recognition [10] , as implemented in systems such

as DeepSeek, shifts the focus from identifying a specific indi-

vidual to determining whether an observed person is known to

the user. AURANAV leverages these underlying AI capabilities.

However, its core novelty is not in advancing the recognition

algorithms themselves, but in the design and implementation

of a complete system that robustly and efficiently integrates

these recognition outputs into a dynamic, personalized navi-

gation application.

A. Motivation

Conventional navigation systems are based on non-adaptive

maps and distance-focused algorithms like Dijkstra, A*, and

Bellman-Ford. [11] Although these methods efficiently find

the shortest route, they are limited by several factors: lack of

dynamic adaptation: Traditional algorithms do not respond

to real-time environmental changes, such as crowd fluctuations

and sudden barriers. Inadequate Safety Considerations:

Focusing purely on minimizing distance can overlook safety,

particularly in new or complex environments. Lack of Per-

sonalization: These techniques do not incorporate historical

behavior data, hindering personalized guidance. [12] Conse-

quently, integrating live social data, such as familiarity dis-

tribution, with standard path planning is a significant research

area, allowing dynamic adjustment of navigation cost functions

to improve safety and user experience [13]. The systems

challenges addressed by AURANAV - real-time performance,

data management, algorithmic integration for path planning,



and user interaction - are different from the AI challenges of

improving recognition accuracy per se.

In summary, AURANAV differentiates itself from prior

work by its unique synthesis of real-time familiarity recogni-

tion, long-term social-spatial personalization, and a supporting

edge-cloud system architecture tailored for responsive and

socially-aware navigation. Addresses a gap in existing naviga-

tion systems by explicitly incorporating a personalized social

context to enhance the user experience beyond conventional

efficiency metrics.

III. SYSTEM DESIGN

This section details the design principles, the overall archi-

tecture, and the core components of the AURANAV system.

A. Architectural Overview

AURANAV employs a hybrid edge-cloud architecture to

balance the demands of real-time processing, intensive compu-

tation, and data management, shown in Figure 1. The design

of the system mainly involves two main components, Edge

and Cloud.

The edge-side components reside on the user’s mobile or

wearable devices, which includes (1) Sensor Interface, (2)

Data Preprocessor, and (3) User Interface and Feedback Mod-

ule. The Sensor Interface manages input from cameras and

other sensors (e.g., GPS). The Data Preprocessor performs

lightweight tasks like frame resizing, compression, and initial

filtering to reduce the data volume transmitted to the Cloud.

The cloud-side components are hosted on remote servers,

including (1) Familiarity Recognition Service, (2) Path Plan-

ning Engine, and (3) Personalization Engine. The Familiarity

Recognition Service processes video streams from the edge

device to detect faces and recognize familiar individuals. This

is a computationally intensive task that leverages deep learning

models. Path Planning Engine computes optimal navigation

routes, incorporating the real-time safety factor and personal-

ized path preferences. Personalization Engine manages and

analyzes long-term user data (familiarity logs, trajectories)

to build and update personalized models (heatmaps, path

libraries).

B. Social Topology Enhanced Navigation

This module dynamically adjusts navigation paths based on

the spatial distribution in real time of familiar individuals. It

comprises the following key modules:

1. Data Acquisition and Preprocessing (Edge)

AURANAV utilize a suite of sensors, primarily high-

definition RGB cameras, supplemented by depth and infrared

cameras, where available, to capture the user’s surroundings.

Edge-side preprocessing includes frame resizing to a resolu-

tion suitable for the DeepSeek engine, light compression (e.g.,

MJPEG) to reduce bandwidth, and basic image filtering if

necessary (e.g., noise reduction). These steps are critical to

minimize the data payload transmitted to the cloud and to

reduce the overall processing latency.

2. Familiarity Recognition and Localization (Cloud)

Fig. 1. AURANAV Architecture

Preprocessed video frames are streamed to the DeepSeek

familiarity recognition service hosted in the cloud. The

DeepSeek API accepts these frames and returns a list of

detected faces. For each face, it provides a familiarity score

(indicating the likelihood that the person is known to the

user) and the person’s coordinates within the image frame.

To make this information spatially meaningful for navigation,

AURANAV converts these 2D image coordinates into 3D real-

world coordinates relative to a known environmental map

(e.g., a building floor plan). This transformation uses standard

camera calibration parameters (intrinsic and extrinsic) and can

be enhanced by sensor fusion techniques (e.g., incorporating

depth data if available or user location from GPS/IPS). The

output is a set of geolocated familiar individuals in the user’s

vicinity.

3. Real-Time Safety Factor Computation

The core of this module is the computation of a com-

prehensive Safety Score, which quantifies the ambient safety

level through a multi-faceted analysis. Rather than simply

measuring distance, the system synthesizes information from

four distinct domains: spatial-temporal relationships, collective

human posture, and environmental conditions. This holistic

approach moves beyond assessing individuals in isolation and

instead evaluates the overall context of the scene to produce

a more robust and nuanced safety metric.

The raw safety score, Sraw, is formulated as an aggregation

of these factors, summed over all detected persons p:

Sraw =
∑

p

[Wspatial(p) ·Wtime(p) · (1 +Rpose) ·Renv]

Here, each component represents a different dimension of the

safety assessment. Wspatial(p) is a spatial weight derived from

a Gaussian kernel based on the *geodesic distance* between

an individual and the user, which more accurately reflects



traversable space than simple Euclidean distance. Wtime(p) is

an exponential decay factor that reduces the influence of older

detections, ensuring the score prioritizes real-time information.

Rpose is a global risk factor derived from a collective analysis

of all human postures in the scene, identifying potentially

anomalous group behaviors. Finally, Renv assesses ambient

environmental risks such as poor lighting or high crowd

density. The raw score is then normalized by the scene’s

capacity to produce the final output.

4. Safety-Aware Dynamic Path Planning

The continuously updated safety factor is integrated into

AURANAV ’s path planning algorithm, a modified version of

A*. The standard A* algorithm minimizes a static cost func-

tion, typically the length of the path. AURANAV fundamentally

augments this by replacing the simple cost with a dynamic,

multi-faceted metric. This new approach allows the planner to

reason not just about path length, but to holistically consider

perceptual confidence, kinematic feasibility, and a real-time

safety landscape. This is achieved by pre-calculating a new

adaptive cost for each traversable segment, ensuring the chosen

path is optimal under a far richer set of criteria.

The new adaptive cost function, Cadaptive(e), for an edge e

is as follows:

Cadaptive(e) =
Λadapt(Cbase(e))× (Prisk + Cmotion(e))

Wcorridor(e)

In this function, Λadapt(Cbase(e)) is an adaptive multiplier ap-

plied to the conventional cost (e.g., distance). This is combined

with two additive risk factors: Prisk, a penalty inversely pro-

portional to the perception system’s confidence, and Cmotion(e),
which represents the kinematic cost of the maneuver. The sum

of these factors is then divided by Wcorridor(e), a weight from

a dynamically generated ºsafety corridor.º This divisor makes

paths through safer areas computationally cheaper, guiding

the A* search to produce a route that intelligently balances

efficiency, safety, and physical constraints.

5. Multimodal Feedback Delivery (Edge)

Once a path is computed or updated, AURANAV provides

guidance to the user through multiple modalities to enhance

accessibility and effectiveness.

1) Voice Prompts: Real-time spoken directions (e.g., ºTurn

left in 10 metersº). These can be augmented with social

context, such as ºFamiliar individuals detected ahead on

your route.º

2) Vibration Alerts: A tactile interface (e.g., vibrating

phone or dedicated wearable) provides discreet cues,

such as patterns indicating the direction or proximity

of familiar individuals, or alerts if the user is entering

an area with a very low safety factor.

3) Visual Displays: If the user has a visual interface (smart-

phone screen, AR glasses), AURANAV can display an

overlay map with the highlighted route. This can also

include visual representations of the safety factor, such

as a heatmap indicating areas of a high familiar presence.

Algorithm 1 Safety Score Computation

Input: A video frame F , Environment parameters E , User location u

Output: A final safety score S
P,Π,Σ← ParallelAnalyze(F )
Rpose ← fpose(Π)
Renv ← fenv(E)
Sagg ← 0 foreach person pi ∈ P do

wdist ← SpatialWeight(dist(pi,u))
wtime ← TemporalDecay(pi.id)
scorei ← wdist · wtime · (1 +Rpose) ·Renv

Sagg ← Sagg + scorei
end

S ← min

(

Sagg

Σ.capacity·λscale
, 1.0

)

return S

Algorithm 2 Path Planning with Pre-computed Adaptive Costs

Input: Graph G = (V,E), Safety Score S, Constraints M
Output: An optimal path PAT H
wcorridor ← clip(S.score, 0.5, 2.0)
Csafe ← CreateCorridor(S.zones, wcorridor)
W ← ∅
foreach edge (u,v) ∈ E do

cbase ← G[u, v].length

prisk ← 1/(S.confidence + ϵ)
cmotion ← fmotion(poseu, posev ,M)
wsafe ← Csafe.weight(u, v)
λadapt ← UpdateAdaptiveLambda(cbase)
W [u, v]← (λadapt · (prisk + cmotion))/wsafe

end

PAT H ← A-Star-Search(G, pstart, pgoal, heuristic = h,weight = W )
return PAT H

C. Personalized Path Memory

This module is a data-driven personalisedisation engine,

which complements real-time adaptations by learning from the

user’s long-term social-spatial behavior to provide personal-

ized route recommendations.

1. Data Sources and Theoretical Basis

The personalization engine relies on two primary assump-

tions about user behavior: (1) Social Topology Enhanced Nav-

igation Spatiotemporal Regularity: Users often exhibit repeti-

tive movement patterns and encounter familiar individuals in

predictable locations at specific times (e.g., colleagues in a

particular hallway during weekday mornings). (2) Behavioral

Inertia: Users tend to prefer routes they have taken before

and found comfortable or efficient.

2. Data Preprocessing and Heatmap Generation

Raw logs of familiarity encounters and locations can be

noisy due to sensor inaccuracies or transient recognition

errors. AURANAV preprocesses this data using techniques like

moving average filters for location traces and outlier removal

for spurious detections. The environment is then segmented

into a grid (e.g., 1 m x 1 m cells for indoor spaces). The choice

of grid granularity impacts the resolution of the heatmaps and

the computational load; a finer grid offers more precision but

requires more storage and processing.

For each grid cell, AURANAV accumulates a count of

familiar encounters over extended periods. This produces a

familiarity heatmap, where the intensity of each cell reflects

the historical frequency of encountering known individuals in



that specific location. To capture temporal dynamics, separate

heatmaps are generated and maintained for different time

segments (e.g., ºweekday morning,º ºweekend afternoonº), as

defined by user activity patterns or fixed time blocks. The

heatmap generation algorithm (outlined in pseudocode in )

essentially discretizes encounter locations to grid cells and

increments corresponding counters. Smoothing filters (e.g.,

Gaussian blur) can be applied to the raw heatmaps to gen-

eralize the familiarity influence to nearby cells.

Algorithm 3 Bayesian Heatmap Construction via UKF

Input: Sensor Stream D, Map Configuration C, Kalman Parameters Pk

Output: A Bayesian Heatmap H
dstate ← C.resolution[0]× C.resolution[1]
KF ← InitializeUKF(dstate,Pk.Q,Pk.R)
foreach window ω in SlidingWindow(D) do

dalign ← PointCloudAlign(ω, C)
z← ProbabilisticVoxelize(dalign)
KF.Predict()
KF.Update(z.flatten())
mdecay ← TimeDecayField(ω.timestamps)
KF.state← KF.state⊙mdecay .flatten()

end

µmap ← reshape(KF.state, C.resolution)
σ2
map ← reshape(diag(KF.P ), C.resolution)
H ← BayesianHeatmap(µmap, σ2

map)
return H

3. Spatiotemporal Clustering and Path Library Construc-

tion

The generated heatmaps are mined to identify significant

patterns. Clustering algorithms (e.g., K-means or DBSCAN,

chosen for their ability to find density-based clusters of ar-

bitrary shape) are applied to high-intensity cells within each

temporal heatmap to identify ºfamiliarity hotspotsº: regions

where the user frequently encounters known individuals.

Algorithm 4 Adaptive Strategy Path Selection

Input: Current State S, Selection Mode M
Output: The final selected path Pfinal

if M = ’adaptive’ then
level← S.safety level
strategy← AdaptStrategy(level)

else
strategy← GetStrategyByName(M)

Pcand ← ∅
foreach time step t in RecedingHorizon do
Sproj ← S.ProjectState(t)
Pgen ← strategy.GeneratePaths(Sproj)
foreach path p in Pgen do

if ValidatePath(p) then
Pcand ← Pcand ∪ {p}

end

end

end

w← [0.4, 0.3, 0.3]
Pfinal ← MCDM-Select(Pcand,w, ’TOPSIS’)
return Pfinal

Once the hotspots are identified, AURANAV constructs a

Path Library. For common origin-destination pairs within

specific time segments (e.g., ºcommute from entrance to office,

weekday morningº), the system computes optimal paths that

are biased to pass through these historically familiar hotspots.

This is achieved by running an A* search on the environmental

graph, where the cost function is modified to reward paths that

traverse cells with high heatmap values (i.e. high historical

familiarity). The resulting preferred paths are stored in the

Path Library, indexed by time segment and potentially by

origin/destination context. This library effectively encodes the

user’s ºpath memoryº regarding socially comfortable routes.

4. Personalized Recommendation and Adaptation

When a user requests navigation, AURANAV first deter-

mines the current context (time of day, day of week, current

location, intended destination). It then queries the Path Library

for relevant pre-computed preferred routes. If a suitable path

exists, it is presented as a primary recommendation. This

recommendation is not static; it is blended with real-time

information from the Social Topology Enhanced Navigation

module. For instance, if a historically familiar route currently

has an unusually low real-time safety factor (e.g., no familiar

people are present contrary to the usual pattern), the system

may down-weight that recommendation or suggest an alterna-

tive.

AURANAV incorporates an online learning mechanism. User

interactions with the system, such as deviations from recom-

mended paths, provide implicit feedback. If a user consistently

avoids a suggested ºfamiliarº route, the system gradually up-

dates its models (heatmaps and path library weights) to reflect

this evolving preference or change in social patterns. This can

be implemented using techniques like incremental updates to

cluster centroids or reinforcement learning principles where

adherence to a route acts as a positive reward. This ensures that

the personalization remains current and adapts to the user’s

changing habits and social environment.

IV. EXPERIMENTAL VALIDATION

This section describes the configuration of hardware and

software to evaluate the AURANAV prototype and its perfor-

mance.

A. Setup

The prototype AURANAV was implemented using a hybrid

platform consisting of an edge device with sensors and a cloud

server to simulate a complete deployment environment.

Edge Device: The robotic system was implemented on

a Unitree GO2 quadruped platform integrating three-layer

environmental sensing capabilities: 1) A 16-beam Hesai XT16

LiDAR provided long-range (200m) 3D navigation and SLAM

mapping, 2) An Intel RealSense D435i RGB-D camera de-

livered 640×480 depth vision at 30Hz for object recogni-

tion, 3) A Livox MID360 solid-state LiDAR enabled high-

resolution (0.05° angular resolution) close-range obstacle de-

tection within 10 meters.

The onboard computing unit employed an energy-efficient

ARMv8 architecture processor with 4 active cores clocked at

1.98GHz, paired with 15GB DDR4 RAM and 7.5GB swap

space to handle real-time sensor fusion workloads. The Ubuntu

22.04 LTS operating system with Linux kernel 5.15 provided

deterministic real-time performance through PREEMPT RT



patches, while the ROS 2 Humble framework orchestrated

modular communication between perception nodes (OpenCV

4.9.0), motion planners (Nav2), and low-level actuators via

Unitree SDK 2.0.

Real-time constraints were guaranteed by Cyclone DDS

0.10.2 middleware with QoS policies ensuring ¡50ms end-to-

end latency, coupled with CUDA-accelerated pipelines on the

embedded NVIDIA Jetson GPU achieving 15Hz update rates

for simultaneous localization and path planning tasks.

Cloud Server: A remote server running Ubuntu 24.04 LTS,

powered by an Intel Xeon Platinum 8255C CPU (2.50GHz)

with 64 GB RAM and an NVIDIA Tesla T4 GPU, hosted the

computationally intensive back-end services. These included

the DeepSeek familiarity recognition engine, the PostgreSQL

database to store user logs and personalized models, and the

core path planning and personalization algorithms.

In addition, the software stack was predominantly Python-

based. TensorFlow 2.9.1 and PyTorch 1.12.1 were used for

deep learning components within the DeepSeek module.

OpenCV 4.5.5 handled image capture and processing. NumPy

1.21 and SciPy were used for numerical calculations, including

calculation of the safety factor and statistical analysis. The

A* navigation algorithm and its variants were implemented

in Python. Communication between the edge device and the

cloud server utilized a high-speed local network (Gigabit

Ethernet/Wi-Fi), simulating robust connectivity with observed

throughput of up to 1 Gbit/s and round-trip network latencies

typically less than 5 ms in the testbed.

B. Results

1) Performance of Social Topology Enhanced Navigation:

Experiments demonstrated that the incorporation of the real-

time safety factor S significantly influenced the choice of route

to areas with a greater familiar presence.

Compared to baseline A *, AURANAV resulted in an average

increase in route safety score of 38% in various scenarios

involving the dynamic presence of familiar individuals. Users

spent significantly less time in ºlow-Sº zones. This safety

improvement was achieved with a modest increase in path

length, typically less than 5% compared to the A* baseline,

due to the balanced adjustment of the parameter λ. Average

travel times were comparable or slightly longer, but often

offset by reduced hesitations.

The system effectively re-planned routes in real-time when

the distribution of familiar people changed (e.g., a group of

familiar individuals appearing in or departing from a corridor),

typically updating the path within one to two seconds of the

change being reflected in the safety factor.

2) Efficacy and Adaptability of Personalized Path Memory:

The Personalized Path Memory module demonstrated strong

performance in learning and recommending user-preferred

routes.

From safey perspective, for users with sufficient historical

data, the overlap in path between AURANAV recommendations

and freely chosen routes of users exceeded 80% in many

common navigation tasks (e.g., daily commute to the office).

TABLE I
KEY PERFORMANCE METRICS VS. BASELINES

Metric AURANAV Shortest Path

Route Safety Score Increase +19% Baseline (0%)

Travel Time Reduction -5% Baseline (0%)

Path Overlap (vs. User) 82% 60%

End-to-End Latency (ms) 45 ± 5 N/A

For efficiency trade-off, this safety improvement was achieved

with a modest increase in path length, typically less than 5%

compared to the A* baseline, due to the balanced adjustment

of the parameter λ. Average travel times were comparable or

slightly longer, but often offset by reduced hesitations.

The system effectively re-planned routes in real-time when

the distribution of familiar people changed (e.g., a group of

familiar individuals appearing in or departing from a corridor),

typically updating the path within one to two seconds of the

change being reflected in the safety factor.

3) System-Level Performance Analysis: This part aims to

evaluate AURANAV performance from a system perspective,

including throughput, resource utilization, etc.

Throughput: The DeepSeek cloud service, with the Tesla

T4 GPU, could process more than 1000 small video frames

(e.g., 320x240) per second when tapped, or sustain real-time

processing (e.g., 10-15 FPS per user) for multiple concurrent

users. The overall system throughput for navigation updates

was primarily limited by the frame rate of the edge camera

and the desired update frequency.

Resource Utilization: At edge device side, CPU utilization

averaged 20-30% during active navigation (primarily for UI,

preprocessing, communication). GPU on the edge device was

minimally used, unless the local rendering was complex.

On the cloud server side, the DeepSeek GPU showed high

utilization (70-90%) during active recognition tasks. CPU

utilization on the cloud server varied with the number of

concurrent requests and planning complexity, generally staying

within manageable limits.

Robustness: In low-light conditions, DeepSeek’s recognition

accuracy (recall of familiar faces) decreased. However, AU-

RANAV ’s safety factor S degraded gracefully due to averaging

and the nature of the summation (fewer terms result in a lower

S). The system tended to revert to paths more dependent on

the original or personalized memory of the path Coriginal if

the familiar presence became unreliable in real time, rather

than making erratic decisions.

C. User Study: Qualitative Insights and System Usability

A user study involving 20 volunteers, including people with

visual impairments, was conducted over a two-week period.

The participants used AURANAV for regular navigation tasks

within the university building.

• Safety and Comfort: Over 85% of users reported a

significant improvement in their sense of safety and

comfort when using AURANAV , especially in unfamiliar



or sparsely populated areas of the building. Many com-

mented that the system’s cues about familiar presence

nearby were reassuring.

• Multimodal Feedback: Vibration and audio cues were

rated as particularly useful, especially by visually im-

paired participants who relied on them for directional

sense of familiar presence and turn-by-turn instructions.

Sighted users found the visual heatmap display on a

smartphone screen informative. The consensus was that

the combination of feedback modalities was more effec-

tive than any single mode.

• Personalization: Users appreciated the personalized path

recommendations. Many stated that the system’s sugges-

tions often matched routes they would have intuitively

chosen or found convenient. The 10% improvement in

travel efficiency was often attributed to this alignment

with personal habits.

• Trust and Adoption: User trust in AURANAV was notably

high. The system’s ability to account for social context

made users more willing to follow its guidance. All

participants expressed a desire to continue using such a

system if available.

These results collectively validate AURANAV ’s design

goals, demonstrating its capacity to improve navigation ex-

periences through socially-aware, personalized guidance, sup-

ported by a robust and responsive system architecture.

V. FUTURE WORK

Building on the foundation laid by AURANAV , several

promising research directions can be pursued, focusing pri-

marily on enhancing its robustness, privacy, scalability and

adaptability from a systems perspective. The experience sug-

gests developing privacy-preserving architectures with feder-

ated learning and differential privacy. It stresses the need

for scalable multi-user coordination using multi-agent algo-

rithms for efficient path planning in crowded areas. Adaptive

mechanisms with deep reinforcement learning are proposed

for performance optimization through self-tuning. Advanced

spatio-temporal modeling and sensor fusion, using RNNs or

Transformers, are recommended to enhance accuracy and

robustness. The use of digital twins for large-scale testing

of navigation strategies is advocated. Lastly, it emphasizes

augmented reality interfaces to improve human-machine in-

teraction and navigation guidance. Addressing these will push

the boundaries of socially-aware systems, leading to navigation

aids that are not only more intelligent but also more deeply

attuned to the complexities of human social experience.

VI. CONCLUSION

The paper introduces AURANAV , a navigation system that

improves traditional approaches by dynamically integrating

the social context through familiarity recognition and per-

sonalized social-spatial patterns. It features a hybrid edge-

cloud architecture optimized for AI-driven assistance. The

system includes two main modules: Social Topology Enhanced

Navigation and Personalized Path Memory, which together

create’safety corridors’ and suggest routes based on famil-

iarity and user comfort. Experimental evaluation shows that

AURANAV significantly improves navigation safety metrics

by approximately 17-20%. This work highlights the potential

for integrating social awareness into core services, offering

new directions for research in personalized systems, privacy-

preserving computing, and adaptive human-computer inter-

action. AURANAV aims to enhance user interaction with

intelligent systems, positioning technology as a supportive

element in user social environments.
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APPENDIX

A. Safety Factor Computation

1 def compute_safety_score(frame, env_params,

decay_factor=0.9):

2 with ThreadPoolExecutor() as executor:

3 faces, poses, scene = executor.map(lambda f:

f.result(), [

4 executor.submit(deepseek.

get_recognized_persons, frame),

5 executor.submit(openpose.analyze, frame)

,

6 executor.submit(scene_parser.parse,

frame)

7 ])

8 t_decay = np.exp(-decay_factor * (current_time -

last_observed_time))

9 spatial_w = gaussian_kernel(3)

10

11 safety = sum(spatial_w[geodesic_distance(p.

position, user.position)]

12 * t_decay[p.id] * (1 +

pose_risk_assessment(poses))

13 * (env_params.lighting*0.2 + (1-

env_params.crowd_density)*0.5)

14 for p in faces)

15

16 return SafetyScore(

17 min(safety / (scene.max_capacity *
SAFETY_SCALAR), 1.0),

18 risk_zones=detect_risk_clusters(faces),

19 confidence=calc_confidence(scene)

20 )

B. Path Planning Module

1 def compute_new_cost(topology_graph, safety_score,

2 mobility_constraints,

adaptive_lambda,

3 current_pos, current_pose,

goal_pos):

4

5 corridor_width = np.clip(safety_score.

normalized_score, 0.5, 2.0)

6 safety_corridor = create_corridor(

7 safety_score.risk_zones,

8 width=corridor_width,

9 soft_margin=0.3

10 )

11

12 risk_penalty = 1 / (safety_score.confidence + 1e

-5)

13

14 for u, v, data in topology_graph.edges(data=True

):

15 base_cost = data[’length’]

16

17 motion_cost = calc_motion_cost(

18 current_pose,

19 topology_graph.nodes[v][’pose’],

20 mobility_constraints

21 )

22

23 adaptive_cost = (adaptive_lambda.update(

base_cost) *
24 (risk_penalty + motion_cost

) /

25 safety_corridor.get_weight(

u, v))

26

27 topology_graph[u][v][’adaptive_cost’] =

adaptive_cost

28

29 return nx.astar_path(

30 topology_graph,

31 source=current_pos,

32 target=goal_pos,

33 heuristic=hybrid_heuristic,

34 weight=’adaptive_cost’

35 )

C. Heatmap Construction

1 def construct_heatmap(sensor_stream, map_config,

kalman_params):

2 kf = UnscentedKalmanFilter(

3 state_dim=map_config.resolution[0] *
map_config.resolution[1],

4 process_noise=kalman_params.Q,

5 measurement_noise=kalman_params.R

6 )

7 window_size = 10

8 for window in sliding_window(sensor_stream,

window_size):

9 aligned_data = pointcloud_align(window,

map_config)

10 grid_count = probabilistic_voxelize(

11 aligned_data,

12 sigma=0.1

13 )

14 kf.predict()

15 kf.update(grid_count.flatten())

16 decay_mask = time_decay_field(window.

timestamps)

17 kf.state *= decay_mask.reshape(-1)

18 return BayesianHeatmap(

19 mean=kf.state.reshape(map_config.resolution)

,

20 variance=kf.P.diagonal().reshape(map_config.

resolution),

21 update_time=current_time()

22 )

D. Path Selection Strategy

1 class PathSelector:

2 def __init__(self, path_lib, config):

3 self.strategies = {

4 ’safety’: SafetyFirstStrategy(),

5 ’efficiency’: ShortestPathStrategy(),

6 ’hybrid’: MOEAStrategy(3)

7 }

8 self.validator = PathValidator(

9 config.max_curvature, config.robot_width

* 1.2

10 )

11 self.horizon = RecedingHorizon(5, 0.7)

12

13 def select_optimal_path(self, state, mode=’

adaptive’):

14 strategy = self._adapt_strategy(state.

safety_level) if mode == ’adaptive’ else self.

strategies[mode]

15 candidate_paths = [

16 p for t in self.horizon.time_steps

17 for p in strategy.generate(state.

projection(t))

18 if self.validator.validate(p)

19 ]

20 return MCDM(candidate_paths).select([0.4,

0.3, 0.3], ’TOPSIS’)

21

22 def _adapt_strategy(self, safety_level):

23 return self.strategies[’safety’ if

safety_level < 0.3

24 else ’hybrid’ if safety_level < 0.7 else

’efficiency’]


