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A B S T R A C T

The biggest challenge of sustainability is improving ecosystem production services while preserving other 
functions at large scales. One solution is to seek a delicate equilibrium from complex nonlinear trade-offs be
tween socioeconomic development, climate change, and environmental protection to maximize ecosystem ser
vices. This solution’s thrust is understanding these factors’ relative contributions (RC) to long-term ecosystem 
changes. Here, we developed a novel analysis based on space–time interpretable machine learning (IML) to assess 
the RC from two climate factors, four land uses, four environmental pollution indicators, and 28 socioeconomic 
variables from 2001 to 2018 on grassland changes across the Inner Mongolia Plateau. Compared with econo
metric panel regression analysis and hierarchical linear mixed models, which are popular in ecological and 
geographical studies, the IML models generated exciting insights and illustrated several advantages. The IML 
models identified that no driving factors have maintained consistent impacts on ecosystem health in space and 
time. The strengths and directions of their RC varied and depended on their regional and local interactions. The 
IML models revealed fine-grained space–time RC variations, with each feature contributing to individual pre
dictions (EFCTIP), and EFCTIP varying regionally and locally, which no other approaches can achieve. Tradi
tional models’ system-wide interpretations are misleading. The IML models support the concurrent 
spatiotemporal examination of ecosystem health and feature engineering to mitigate limitations from multi
collinearity and non-linearity. This study has significant policy implications for grassland management in Inner 
Mongolia and can be applied to other ecosystems.

1. Introduction

Over the past decade, the focus of ecosystem health research has 
shifted increasingly from quantitative evaluation to the analysis of 
driving forces and mechanisms (He et al., 2024). This shift signifies 
several important new efforts. One emphasis is on a total socio
environmental system approach (Xie, 2023) or a tightly coupled human 
nature system method (Hull et al., 2015; Gupta, 2020; Shi, 2021) to 
synthesize how human factors (economic growth, demographic shift, 
environmental pollution, land use changes, regional development pol
icies, urbanization, etc.) and natural environments (climate changes, 
geologic factors, hydrological dynamics, natural resource consumption, 
etc.) interactively affect ecosystem health. The concept of a total or 

integrated socioenvironmental system can be traced back to the theory 
of coevolution between nature and society (Norgaard and Kallis, 2011). 
When a living society consumes resources from a biophysical system for 
socioeconomic well-being, the residents alter the biophysical system and 
also adjust to the changes their consumption caused (Weisz and Clark, 
2011). This concept has inspired new interests in exploring nature- 
society coevolution in recent years because the tradeoff between 
human alteration and adaptation impacts socioenvironmental sustain
ability (Waring et al., 2017; Fischer et al., 2021; Zhou et al., 2022).

A related effort to support the study of total or integrated socio
environmental systems involves compiling and creating comprehensive 
data that encompasses both environmental and socioeconomic factors 
from an increasingly growing number of sources (Zhou et al., 2022). Big 
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data makes high-resolution spatial and temporal data available to 
ecologists and geoscientists over large areas. These fine-grained 
ecological data, including ground-based images, can be used to 
develop innovative approaches for habitat mapping, leveraging multi
modal data and computer vision (Morueta-Holme et al., 2023). They can 
be used to develop functional indicators to measure ecosystem health 
(Hu et al., 2022). Big data complements ecological experiments to 
advance ecology and conservation (McCleery, 2023). For example, in a 
study of the Inner Mongolia Autonomous Region (IMAR) grassland 
spatial distribution patterns, remote sensing data from the online Google 
Earth Engine platform, along with 6114 field plots, over 23 years 
(2000–2022) were analyzed and mapped (Yang, 2024).

On the other hand, more environmental scientists are paying atten
tion to socioeconomic factors that are crucial for measuring human well- 
being, a critical societal element of sustainability (O’Neill et al., 2018). 
Based on the public well-being measurement summarized by Forgeard 
et al. (2011), the following socioeconomic variables (Forgeard et al., 
2011), such as, gross domestic productivity (GDP), income, economic 
activities, education, democratic quality, governmental investment, 
employment, and markets, are often analyzed along with environmental 
indicators in the literature concerning ecosystem health. For example, 
time series data on grassland productivity and climatic changes (nine 
growing seasons ×18 years from 2000 to 2017) with yearly observations 
of ten socioeconomic variables were assembled to investigate how these 
factors affected grassland deterioration in IMAR (Zhou et al., 2022).

Another accompanying effort is to develop more advanced and in
tegrated modeling frameworks to analyze total or integrated socio
environmental systems with increasing volumes of large and combined 
socioenvironmental datasets. Current research methods concerning the 
relative contributions of socioenvironmental factors can be summarized 
into four groups. The first group comprises process-based models that 
integrate climate, hydrological, water quality, and ecological models to 
examine aquatic environments (Shrestha, 2024). Popular models 
include general circulation models (Li et al., 2023), regional circulation 
models (Li et al., 2023); modified vegetation photosynthesis model 
(Gong et al., 2024); the Soil and Water Assessment Tool (Shrestha, 
2024), the Planification et gestion de l’assainissement des eaux 
(PEGASE) model (Boukari, 2019), and dynamic land use change models 
(Shiferaw et al., 2025). These models are primarily focused on hydro
logical and environmental processes and their impacts on ecosystem 
health, but are less detailed on anthropogenic factors (Koppa et al., 
2022).

The second group pertains to comprehensive index assessment 
models, which have been emerging and applied in many ecological 
studies. Vigor-organization-resilience model, pressure-state-response 
model, and vigor-organization-resilience-ecosystem services (VORS) 
model are some typical examples (Shen, 2023). For example, A VORS 
was adopted to assess the ecosystem health of the Southern China Karst 
landscape from 2004 to 2020 (He et al., 2024). These models primarily 
originate from disciplines such as agriculture, ecology, resource con
servation, land use management, environmental monitoring, 
geographical information science, and sustainable development. The 
socioeconomic factors are narrowly defined and usually include socio
economic measures of ecological engineering intervention, such as 
environmental protection investment, area of artificial wetlands, and 
length of new pipelines (Yuan, 2023) in addition to several standard 
socioeconomic variables, including GDP (Gross domestic product), 
population density, urbanization, and agricultural production. Howev
er, much information concerning industrial structure (such as the pro
portion of secondary and tertiary industries), pollution states, residents’ 
well-being (income and access to health), and social development 
(transportation and education facilities) is seldom accounted for.

Empirical statistical models belong to the third group, which ana
lyzes linear relationships between a response variable and a set of 
explanatory variables to examine how these drivers affect the response 
(Schulz, 2020). Typical statistical models include multiple regression 

models, structural equation models (SEM), econometric panel regression 
analysis (EPRA), and hierarchical linear mixed model (HLMM). These 
models usually examine balanced sets of variables covering biophysical 
and socioeconomic factors (Zhou et al., 2022). EPRA and HLMM are 
more capable of handling complex data structures than regression and 
SEM models. EPRA is a popular and influential method to simulta
neously analyze the impacts of climate and socioeconomic factors on an 
ecosystem’s cross-area (spatial) and time-series (temporal) variations 
(Xie et al., 2021). EPRA can examine multilevel regional differences 
over time and allow more sample variability (Hsiao, 2007). EPRA pro
vides a greater capacity for capturing the complexity of human behavior 
than a single time-series or cross-section data (Hsiao, 2022).

HLMM is a multilevel mixed model to describe causal relationships 
between an ecological issue and its potential driving factors (Hedeker 
and Gibbons, 2006; Price et al., 2016). HLMM incorporates random ef
fects to examine heterogeneities among individuals, species, commu
nities, regions, and periods (Bolker, 2015). Therefore, HLMM can 
currently handle random effects and repeated measures to support the 
analysis of hierarchical (multilevel) relationships (Bolker, 2010). 
Modeling the grouping variable using so-called random effects in a 
mixed effects model is a significant improvement compared to modeling 
each group separately or including a grouping variable as a categorical 
variable in a model (Sigrist, 2022). However, treating a grouping vari
able as random effects in HLMM is less flexible than treating a formal 
cross-section and over-time (spatiotemporal) structure in EPRA.

In recent years, machine learning (ML) techniques have been 
increasingly expanding and providing innovative solutions to overcome 
the limitations of conventional statistical models (Reichstein, 2019). 
Many ML approaches have been applied in ecology and evolution (Stock 
et al., 2023), environment science (Wegmann and Jaume-Santero, 
2023), earth science (Bergen et al., 2019), and geoscience (Chen, 
2024). A machine learning-based hybrid model has been developed to 
estimate global terrestrial evaporation (Koppa et al., 2022). The con
straints affecting evaporation from plant leaves (or transpiration) are 
particularly complex. They are often assumed to interact linearly in 
global models due to our limited knowledge based on local studies. 
Machine learning has broken these limitations and improved the esti
mation of evaporation. Schulz and his team (Schulz, 2020) have done an 
interesting experiment, systematically assessing the performance of 
linear, shallow-nonlinear, and machine learning models as a function of 
sample size on UKBiobank brain images against established machine 
learning references. They confirmed that prediction accuracy constantly 
improves from the linear models to the shallow-nonlinear and machine- 
learning nonlinear models.

Animal ecologists can utilize large datasets from modern sensors. 
Integrating machine learning approaches with domain knowledge im
proves inputs for ecological models and leads to integrated hybrid 
modeling tools for better wildlife preservation (Tuia, 2022). Andermann 
et al. (2022) have demonstrated how machine learning can harness 
unexplored signals from complex data sets that traditional methods 
cannot (Andermann et al., 2022). Thus, integrating machine learning 
can extract information from fossil evidence, geologic models, and pa
leoclimatic proxies to reconstruct paleo vegetation and provide insights 
into the evolution of Earth’s biomes in time and space. Wu and her 
colleagues (2022) have demonstrated the use of machine learning to 
automatically count huge populations of mammals across a highly het
erogeneous landscape (Wu, 2023). They developed a robust machine- 
learning tool that automatically locates and counts large herds of 
migratory wildebeest and zebra in the Serengeti-Mara ecosystem. Brun 
et al. (2024) applied deep neural networks (DNNs) to ubiquitous citizen 
science data to identify the distributions of 2477 plant species and 
species aggregates across Switzerland (Brun, 2024). They found that 
compared to commonly used approaches, multispecies DNNs predict 
species distributions and especially community composition more 
accurately. Moreover, their design allows the investigation of many 
understudied aspects of ecology.
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The ML approach has also been integrated to study the health of 
grassland ecosystems. For example, in the IMAR case study, Yang et al. 
(2024) integrated random forest (an ML technique), traditional regres
sion, Theil-Sen estimation, Mann-Kendall trend analysis, and the geo- 
detector models to estimate above-ground biomass (AGB) and to iden
tify the driving forces affecting Inner Mongolia grassland AGB changes 
(Yang, 2024). Another random forest model was developed to simulate 
grassland productivity resistance to different climate extremes in 
temperate semi-arid grasslands of China (Huang et al., 2024). Parente 
et al. (2024) extracted more than 2.3 million samples based on visual 
interpretation of global time-series remote sensing images (Parente, 
2024). They integrated these samples with multi-source static and dy
namic environmental factors, including topography, climate, land sur
face temperature, and spatial distance information of cities and roads, to 
construct a probability prediction model of grassland classifications 
through spatiotemporal machine learning. Kladny et al. (2024) devel
oped a convolutional long short-term memory (ConvLSTM) model to 
capture spatial and temporal dependencies in time series data, exam
ining how different drought conditions impacted vegetation growth 
(Kladny et al., 2024). They demonstrated the accuracy of the deep 
learning model for predicting time series of ecosystem services under 
extreme environmental conditions.

Nevertheless, ML approaches in the eco-geo sciences are still rapidly 
developing, and their impact on the fields is limited. Current approaches 
to studying the RC of ESDF face several challenges. At first, most current 
ML-based explorations and applications focus on natural or physical 
processes (Parente, 2024; Zhou et al., 2022; Morueta-Holme et al., 2023; 
Hu et al., 2022; McCleery, 2023; Yang, 2024; O’Neill et al., 2018). 
Implementing ML approaches with eco-geo sciences must integrate with 
human dimensions, facilitate human interaction and interpretation 
(Hazeleger, 2024), adopt the open science principle (Bergen et al., 
2019), and advocate multidisciplinary collaboration (Chen, 2024). The 
outcomes of ML-based models must be interpretable and understandable 
to concerned scientists, practitioners, and policymakers (Kaack, 2022). 
There is a call for developing interpretable MI (IML) models (Rudin, 

2022, 2019). IML models are interpretable from the beginning instead of 
explaining ML predictions through post-process diagnostics (Irrgang, 
2021). IML models are tightly hybrid between ML algorithms and con
ventional domain-specific models (Eyring et al., 2024).

Secondly, traditional statistical approaches often fail to handle 
linearity, multicollinearity, and the need for fine-grained (i.e., individ
ual variable) interpretation. Many process-based models do not 
concurrently model spatial variations and time series dynamics. For 
example, econometric panel regression analysis (EPRA) and hierarchical 
linear mixed model (HLMM) can concurrently examine cross-space and 
time-series variations. However, EPRA and HLMM assume the existence 
of a linear relationship between the response variable and explanatory 
variables. They usually claim some causal relationships between the 
response variable and explanatory variables. The challenge is that 
linearity is seldom known or difficult to confirm in complex coupled 
human and natural systems (Schulz, 2020). Especially when datasets are 
extensive, multicollinearity is expected to exist in some pairs of 
explanatory variables. Multicollinearity occurs when two or more var
iables are highly correlated in a multiple linear regression model, 
making it challenging to interpret the regression outcomes. It is hard to 
handle multicollinearity in traditional statistical models. When the 
number of variables is large, PCA (principal component analysis) or 
some other form of dimensionality reduction is often recommended to 
transform a large number of variables into a set of fewer orthogonal 
features by using the covariance matrix (Yang et al., 2021). Reducing 
multicollinearity or shrinking dimensionality requires excellent statis
tical skills and domain knowledge.

Thirdly, process-based models lack a well-established approach for 
handling time series data. For example, Huang et al. (2024) assessed 
ecosystem health by incorporating a sustainable supply of ecosystem 
services from 2000 to 2020 (Huang et al., 2024). The paper selected a 
five-year time slot to examine temporal changes, rather than employing 
a continuous time series analysis. A five-year time slot was also 
employed by Lv et al. (2024) to examine the rapid shrub encroachment 
in grasslands from 1990 to 2020 in Inner Mongolia, China (Lv, 2024). Lu 

Fig. 1. The Conceptual Framework.
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et al. (2023) integrated a suite of tools, including the Hurst index, cor
relation analysis, coefficient of variation, gravity center model, and 
wavelet analysis, to investigate the spatial and temporal changes in 
vegetation net primary productivity and its driving factors (Yuan, 2023). 
Gong et al. (2024) employed the land surface water index, vegetation 
photosynthesis model, and linear regression to explore the spatiotem
poral dynamics of gross primary productivity and its driving mechanism 
in the Loess Plateau, China (Gong et al., 2024). These studies coupled 
spatial and temporal analyses, rather than providing a systematic 
framework for examining spatiotemporal dynamics concurrently, as 
EPRA and HLMM do. These studies conducted temporal analysis, but not 
a time series analysis of how past conditions affected recent states.

In this study, we analyze the limitations of current statistical ap
proaches to studying the relative contribution (RC) of ecosystem sus
tainability driving factors (ESDF) (Fig. 1), investigate which machine- 
learning techniques are suitable for differentiating the RC of ESDF, 
and illustrate unique contributions of IML solutions through a case study 
of grassland ecosystem health in the Inner Mongolia Plateau. The sci
entific and methodological contributions include (1) identifying ML 
methods that can explicitly and concurrently examine spatial and time- 
series (spatiotemporal) variations and dynamics of ecosystem health, (2) 
breaking several limitations of traditional statistical and process-based 
models, (3) incorporating a large set of socioenvironmental variables 
to examine anthropogenic impacts on ecosystem health, (4) robust 
feature engineering to identify RC of important ESDF, (5) fine-grained 
interpretation of each feature’s contribution to individual prediction 
(EFCTIP), and (6) localized EFCTIP.

2. The study area, data, and methods

2.1. The study area and data

Grassland is an essential element of the terrestrial ecosystem (Li 
et al., 2023), accounting for about 1/3 of global terrestrial vegetation 
covers (Gong et al., 2024). Grasslands provide crucial ecosystem ser
vices, such as food production and habitats for organisms (Boukari, 
2019). Most grasslands are in semi-arid, arid, and semi-humid areas. 
Humans have exploited these areas for a long time, and global climate 
changes are most noticeable in such regions (Shiferaw et al., 2025). For 
example, the Inner Mongolia Autonomous Region (IMAR) is located on 
the northern border of China and the southern part of the Mongolia 
Plateau. IMAR is the main distribution area of temperate grasslands in 
China, accounting for about 67 percent of the region’s total area and 22 
percent of the grassland area of China. Rapid economic development 
and population increase have led to intensive grazing, farming, mining, 
and urbanization in IMAR, which makes IMAR an excellent case to study 
how these socioeconomic and LULC drivers and climate change affect 
grassland productivity (Koppa et al., 2022).

The case study datasets contain 38 variables, of which EVI (enhanced 
vegetation index, a proxy of grassland productivity) is the target vari
able (Table 1). The covariates include two climate factors, four LULC 
types, 11 environmental and technological indicators, and 20 socio
economic variables covering 67 counties from 2001 to 2018. This 
dataset is extensive in terms of broad inclusion of socioeconomic and 
environmental factors for examining their interactions with grassland 
ecosystem health. The separation of the variables into different cate
gories is based on the scopes and sources of the data. The source data for 
EVI, precipitation, and temperature are contained in raster images with 
a 250 m resolution. The LULC raster datasets are at 500 m and 30 m 
resolutions. Since the final analysis unit is the county, all data are 
resampled as mean values within county boundaries. In addition, all 
variables are standardized as Z-scores. Finally, both environmental and 
socioeconomic data are organized as an across-space and time-series 
panel dataset to support concurrent spatiotemporal analysis.

(a) The response variable is the enhanced vegetation index (EVI), a 
better proxy of grassland productivity in the study area (Li and Xie, 

Table 1 
List of variables.

Short 
Name

Long Name Unit

​ Grassland Productivity as Proxy to Ecosystem 
Health1

​

EVI Enhanced vegetation index Value range of –1 to 
+ 1

​ Climate Factors2 ​
Psum Precipitation (summarized precipitation of 

each period in the growing season)
mm

Temp Temperature (averaged temperature of each 
period in the growing season)

◦C

​ Socioeconomic Variables3 ​
Pp Population density 1,000 per Km2

Gp Per capita gross domestic product (GDP) 1,000 Chinese Yuan
prpop Percent of rural population to total 

population
%

iofp Net income of farmers and pastoralists Chinese Yuan
ls the year-end number of livestock per square 

kilometer
1,000 head

gp Grain production per square kilometers ton
gova the gross output value of farming, forestry, 

animal husbandry and fishery − share of GDP 
in a county

%

aa percent of the arable area to total land area in 
a county

%

fai fixed assets investment − share of GDP in a 
county

%

lgr local government revenue − share of GDP in a 
county

%

lohsk the total length of highways per square 
kilometers in a county

Km/Km2

HMP health & medical professionals per ten 
thousand people in a county

person/10,000 
people

HPB hospital beds per ten thousand people in a 
county

bed/10,000 people

MHT middle & high school teachers per ten 
thousand people in a county

person/10,000 
people

PTE professional & technical employment per ten 
thousand people in a county

person/10,000 
people

Pcurei per capita disposable income of permanent 
urban residents in a county

1000 Yuan pc

PIO primary industry output value − share of GDP 
in a county

%

SIO secondary industry output value − share of 
GDP in a county

%

TIO tertiary industry output value − share of GDP 
in a county

%

TCRV total consumer retail value − share of GDP in 
a county

%

​ Land Use Types4 ​
Grass grassland area (percentage to total land area) %
CropPG crop area + planted grassland for harvest 

(percentage to grassland)
%

Urban urban area (percentage to total land area) %
Wateru water area (percentage to total land area) %

​ Environmental and Technology Factors5 ​
dustgdp GDP per unit discharge of industrial dust 1,000 Yuan
fosgdp GDP per unit area of forest land 1,000 Yuan
interp Internet users per capita Int. Users/1,000 

people
invpa_p Invention patent applications per capita Patent applications/ 

1,000 people
mobile_p Mobile phone per capita Buses/1,000 people
noxgdp GDP per unit nitrogen oxide emission 1,000 Yuan
road_p Road area per capita Km
sdxgdp GDP per unit sulfur dioxide emission 1,000 Yuan
bus_p Bus per capita Buses/1,000 people
taxiv Taxi per capita Taxis/1,000 people
telev Telecom business volume per capita Telecom sets/1,000 

people
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2013). EVI’s source is the MOD13Q1 product (Li, 2013), with 250 m 
spatial resolution and 16-day temporal resolution over the growing 
season (9 May to 29 September) for 18 years from 2000 to 2017.

(b) Two climatic factors, precipitation (PRE) and temperature (TEM) 
were collected from 50 weather stations across IMAR (https://cdc.cma. 
gov.cn). Those climate variables were spatially interpolated as the grid 
maps at 250 m × 250 m using ArcGIS Inverse Distance Weighted (IDW) 
interpolation adopted from the work of Chen and his colleagues (Price 
et al., 2000). Daily precipitations were added as 16-day sums while daily 
average temperatures were averaged as 16-day averages.

(c) The socioeconomic variables were collected from the IMAR sta
tistic yearbooks 2000–2017 published by IMAR Statistical Bureau 
(2001–2018) (IMAR, 2017). The socioeconomic, environmental and 
technological data are yearly statistics. The socioeconomic data were 
normalized according to GDP, total area, and total population. For 
instance, GPD and rural populations were normalized by the total 
population as gdppc and srural. The units were per capita and the share or 
percentage, respectively. The arable area, grain production, length of 
highway, and livestock were standardized by the total area as the den
sity indicators (daa, dgr, dhw, and dls). The farmer and pastoralist in
come, farming income, local government revenue, and governmental 
investment were standardized by GDP as the share of GPD, sfinc, sfarm, 

slgov, and sinv.
(d) The data of LULC primarily came from The NASA MCD12Q1 Data 

Product (https://lpdaac.usgs.gov/products/mcd12q1v006/) at 500 m 
resolution. 16 out of the 17 International Geosphere-Biosphere Program 
LULC types were found in the study area, except “Evergreen Broadleaf 
Forest” (https://www.igbp.net/). However, the urban land areas in the 
NASA MCD12Q1 Data Product were the values in 2000 and no further 
updates were provided. Therefore, the urban land data was replaced 
with the impervious land surface dataset of China (Gong et al., 2019).

(e) Patent data is mainly derived from the patent cloud website 
(https://app.patentcloud.com/), and the environmental and techno
logical data are mainly from the Online China Urban Statistics Yearbook 
(https://data.cnki.net/yearbook/Single/N2020050229). Seventeen out 
of 84 counties are primary grazing economies and didn’t report envi
ronmental pollution data. They were excluded from the study.

Violin plots (a combination of box plot and density plot) were pro
duced for all variables to analyze data distribution characteristics. Due 
to the large number of variables, several unique ones were presented and 
explained in the main text (Figs. 2 and 3), while the remaining ones are 
provided in the Supplementary Document. For example, Gova (the gross 
output of farming, forestry, animal husbandry, and fishery) gradually 
increased annually from 2001 to 2018, showing a general trend of 

Fig. 2. Distribution characteristics of four indicators on agriculture, grazing, and urban income.
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socioeconomic variables. However, Gova displayed an abnormal phe
nomenon in 2013. In the spring of 2013, the central and western regions 
of Inner Mongolia experienced low precipitation and high temperatures, 
resulting in widespread droughts (China Meteorological Administration, 
2013). Droughts in Ordos City, Baotou, and many other places in the 
west and central regions were more severe, which led to a decrease in 
Gova.

Ls (the year-end number of livestock per square kilometer) was un
usually high in 2003. The central government of China accelerated the 
policy of returning grazing land to grassland in 2003, which led to a 
more comprehensive and detailed counting of the number of livestock at 
the end of the year (State Council Gazette, 2013). The values of gp were 
higher in 2008–2009. The Chinese government increased the total 
amount of agricultural subsidies by at least 20 percent from the previous 
year in 2008. The Chinese government also implemented comprehen
sive support measures, such as direct payments, price support, prefer
ential credit, and tax exemptions for grain production in the following 
years, which led to noticeable jumps of gp (Information Office of the 
Ministry of Agriculture, 2011).

Pcurei (per capita disposable income of permanent urban residents) 
showed unusually high values during 2007–2011. Inner Mongolia’s 
economy has long relied on mining commodities, such as coal and rare 

earths. Productions in these sectors expanded rapidly between 2008 and 
2011, but then global commodity prices fell sharply since 2011, leading 
to a narrower increase in corporate profits and workers’ wages (Central 
Government Gate, 2015). Furthermore, macroeconomic control cooled 
down these sectors. In addition, rural migrants to cities were counted as 
“urban population” since 2012, lowering the average Pcurei value but 
more truly reflecting the changes in the income structure in the process 
of urbanization.

Three environmental pollution indicators, dustgdp, noxgdp, and 
sdxgdp, experienced a significant increase in 2012 (Fig. 3). As discussed 
above, Inner Mongolia’s economy heavily depended on coal and rare 
earth mining and witnessed rapid expansion from 2008 to 2011. By 
2012, the added values of these industries in Inner Mongolia increased 
by 14.8 %, much higher than the per capita GDP growth rate, reflecting 
that the regional economy was still highly dependent on the develop
ment of resource-based industries (Central Government Gate, 2015). 
Driven by the “Twelfth Five-Year Plan”, Ordos, Wuhai, Baotou, and 
other areas vigorously developed the coal chemical industry and 
extended the coal industry chain, including coal-to-liquid, coal-to-ole
fins, and other projects, which further exacerbated these pollution 
indicators.

Telev (tele-communication growth) was booming from 2007 to 2011 

Fig. 3. Distribution characteristics of environmental pollution, telecom, and wetland indicators.
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as well. The Ministry of Industry and Information Technology (MIIT) of 
China successively approved the 3G licenses of the three biggest telecom 
operators in China, and immediately launched large-scale network 
construction and user promotion. Following the launch of 3G network 
coverage, mobile data and multimedia services (such as video calling 
and mobile office) experienced rapid growth, leading to a significant 
increase in business volume from 2010 to 2011. In 2010, the State 
Council unveiled the “Broadband China” action plan, which clearly 
stated the goal of “accelerating the construction of urban optical net
works and rural broadband.” Broadband access costs have decreased, 
bandwidth has increased significantly, and Internet usage has sky
rocketed among both home and business users (Network, 2009).

2.2. Newly developed interpretable machine-learning algorithms

Big data analytics are particularly effective when nonlinear re
lationships exist (Schulz, 2020) or when many variables need to be 
trained to shrink dimensionality or remove multicollinearity (Bruce and 
Bruce, 2017). More importantly, machine-learning techniques encom
pass many computational algorithms, support automatic feature engi
neering (dimensionality reduction and multicollinearity removal) and 
automatic calibration of model parameters, provide flexible ways of 
visualizing model training and testing processes and outcomes, and 
enable analysts to incorporate their expert knowledge to interpret and 
validate data, models, and findings. These new capacities of machine- 
learning techniques can break the limitations confronted by tradi
tional statistical methods.

We focus on solving the limitations that conventional EPRA, HLMM, 
and process-based models face, such as linearity, multicollinearity, and 
the need for fine-grained analysis. Notably, quantifying and differenti
ating relative contributions (RC) of ecosystem sustainability driving 
factors (ESDF), such as climate, environmental, and socioeconomic 
factors, are crucial for effective ecosystem management. RC studies of 
ESDF must consider three unique features. Ecosystems are complex 
coupled human-nature systems that consist of almost all earth sub- 
systems and many socioeconomic and policy elements and necessitate 
examinations of correlations, covariations, and causal structures among 
a large set of variables (Kline, 2023). For this reason, this research has 
compiled a comprehensive dataset on environmental and socioeconomic 
aspects to support this study. Secondly, predicting future ecosystem 
health must understand the present conditions and the past evolutionary 
dynamics (Bergen et al., 2019). Thirdly, ecosystems display evident 
spatial heterogeneity, which becomes typical characteristics of 
ecosystem diversity and resilience (Xie et al., 2021). Therefore, we must 
simultaneously examine spatial and temporal changes and dynamics of 
complex interactions and feedback embedded in a coupled socio- 
ecological systems (Xie, 2023). In other words, this research intends to 

Fig. 4. Pseudocode for GPBooster explicitly defines the cross sections and 
time series.

Table 2 
The summary statistics of the EPRA and the HLMM models.

The EPRA Model

Fixed-effects (within) regression Number of obs = 1,156

Group variable: CID Number of groups = 68
R-sq: Obs per group: ​ ​
within = 0.2083 min = 17
between = 0.0036 avg = 17
overall = 0.0021 max = 17
​ F(25,1063) = 11.19
corr(EVI, Xb) = -0.2110 Prob > F = 0

The HLMM model
Mixed-effects regression Number of obs = 1,156
Group variable: CID Number of groups = 68
R-sq: Obs per group: ​ ​
0.1623 min = 17
corr(EVI, Xb) = 0.4029 avg = 17
​ max = 17
​ Wald chi2(25) ​ 543.10
​ Prob > chi2 ​ 0.00
​ Log pseudolikelihood ​ − 441.72
Mixed-effects regression Number of obs = 1,156
Group variable: Year Number of groups = 17
R-sq: Obs per group: ​ ​
0.5974 min = 68
corr(EVI, Xb) = 0.7729 avg = 68
​ max = 68
​ Wald chi2(16) ​ .
​ Prob > chi2 ​ .
​ Log pseudolikelihood ​ − 1097.89

Table 3 
Summary of Statistics of Four Machine-learning Gradient Boosting Models.

GPBoost Mean Squared Error 0.1192
R-squared 0.8807

XGBoost Mean Squared Error 0.2876
R-squared 0.7179

LightGBM Mean Squared Error 0.5124
R-squared 0.4875

MERF Mean Squared Error 0.1411
R-squared 0.8588

MERF-XGBoost Mean Squared Error 0.1133
R-squared 0.8866

MERF-LightGBM Mean Squared Error 0.1211
R-squared 0.8789

MERF-GPB Mean Squared Error 0.1254
R-squared 0.8746
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identify machine-learning algorithms that can explicitly handle panel 
data (cross-section and time series data, also called grouped data or 
longitudinal data). Panel data has a unique structure. It is multidimen
sional (i.e., cross-sectional), indexed by Section ID or Case ID (Xie, 
2023). The data structure is also a time series, indexed by Time ID. In 
other words, panel data has a 3D data structure, explicitly considering 
both space and time simultaneously. An execution of a panel data 
analysis requires an explicit declaration of the Section ID and Time ID 
(Fig. 4). Through a thorough examination, we have found four viable 
machine-learning algorithms that can handle panel data: Mixed Effects 
Random Forest (MERF), eXtreme Gradient Boosting (XGBoost), 
Gaussian Process Boosting (GPBoost), and Light Gradient Boosting Ma
chine (LightGBM). Although these models are well-established ML ap
proaches and frequently adopted in grassland ecosystem research (Jia 
et al., 2024; Zhang, 2022), their capabilities of examining spatiotem
poral dynamics simultaneously are not fully illustrated. This research 
fills this gap, which is one of the novelties of this paper.

It is worth pointing out that geographically weighted regression 
(GWR) models are powerful tools for examining spatially varying 

relationships in great detail (Shrestha, 2024; Su et al., 2017), although 
they are not designed to explore time series changes. GWR can generate 
a set of local-specific coefficients, including individual R-sq, parameter 
estimates, and corresponding t-test values. These local-specific co
efficients can be mapped to interpret spatially varying relationships 
between the dependent and independent variables (Li et al., 2021). 
Several GWR models were performed for comparison.

2.2.1. MERF
MERF model combines the random forest and mixed effects models. 

MERF, like GPBoost, explicitly constructs datasets into cross-section 
(space) and over-time (time) panels (Fig. 4). It is designed to address 
problems with hierarchical data, such as longitudinal studies or data 
with a group structure. In the MERF model, the random forest handles 
heterogeneity and non-linear relationships between groups (Tan et al., 
2023). In contrast, the mixed effects model models correlations and 
random effects within groups. This combination allows the model to 
account for the hierarchical structure of the data and correlations be
tween groups, thereby enhancing its ability to model complex data and 

Fig. 5. The Determination of Important Features Contributing to Grassland Productivity*. *SHAP is an abbreviation of Shapley Additive exPlanations. The concept of 
SHAP values comes from cooperative game theory. The contribution of each feature to a prediction should be calculated as the average marginal contribution of that 
feature across all possible feature combinations. Therefore, SHAP values are local, additive feature attributions that quantify how much each feature contributes to a 
single prediction relative to a baseline. Rather than giving one global importance score per feature, SHAP computes for each case and each feature the signed 
contribution that feature makes toward pushing the model’s output above or below a reference value (e.g. the mean prediction). In practice, this means that when the 
model makes a prediction for a particular observation, its SHAP values indicate both which features drove the prediction and by how much they contributed to 
moving it in the positive or negative direction. Summing all SHAP values (plus the baseline) exactly recovers the model’s output for that case. In other words, when 
the model makes each prediction, SHAP values can tell us which features are the most important to the prediction and how much they contributed to it.
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handle imbalanced datasets and missing values. Through this combi
nation, the MERF model is better suited for adapting to data with hi
erarchical or clustered structures, such as longitudinal panel data or 
spatial data.

The following are the basic principles of the MERF model: 

yi = f(Xi)+Ai⋅bi + ei (1) 

where:yi is the ni × 1 vector of responses for cluster i. Xi is the ni × p 
fixed effects covariates that are associated with the yi. Ai is the ni × q 
random effects covariates that are associated with the yi. bi N(0,D) is the 
ni × 1 vector of errors for cluster i. i is the cluster ID. ei is the ni × 1 
vector of errors and is assumed to be completely random across all 
clusters.

Furthermore, MERF is a flexible machine-learning platform. The 
fixed effect, f(Xi), can be solved by various algorithms, such as XGBoost, 
GPBoost, and LightGBM. This is MERF’s biggest advantage over other 
machine-learning algorithms. Therefore, we integrate the longitudinal 
structured data and EPRA analytical processes with the MERF family 
models to create an interpretable ML models. We focus on the classic 
challenges EPRA and HLMM face and the new insights the MERF-family 
models can achieve. These new insights include but are not limited to 
the automatic detection of relative contributions (ADRC) of important 
biophysical and socioeconomic factors on grassland productivity; the 
fine-grained visualization of spatiotemporal patterns of RC variations 
across counties and over the years; visualization and local analysis of 
each feature’s contribution to individual prediction (EFCTIP); and 
automatic calibration of model parameters (ACMP). These advantages 

facilitate researchers in understanding complex interactions between 
ecosystem health, climate change, LULC, and socioeconomic trans
formation. They affect how we model RC of biophysical and socioeco
nomic factors to ecosystems and become promising paradigms for 
studying change dynamics and interactions embedded in coupled 
human-natural systems.

2.2.2. Xgboost
XGBoost is a foundational algorithm of the optimized gradient 

boosting-tree family and is closely related to GPBoost and LightGBM. 
XGBoost can be used for both classification and regression tasks. It en
hances predictive performance by combining multiple weak learners 
(typically decision trees) into a strong learner. It achieves high perfor
mance through block-wise feature splitting, cache awareness, and par
allel processing to improve training speed and model performance (Chen 
and Guestrin, 2016; Fu et al., 2019). During training, XGBoost utilizes 
gradient descent to optimize model parameters, making it capable of 
handling high-dimensional sparse features, missing values, and 
nonlinear relationships while exhibiting robustness and generalization 
ability.

The objective function of XGBoost, which measures the model’s fit to 
the training data and its complexity, can be expressed as follows: 

Obj =
∑n

i=1
loss(yi, ŷi

(t)
)+

∑t

k=1

ε(fk) (2) 

where:loss
(
yi, ŷi

)
represents the loss function, which measures the 

discrepancy between the predicted ŷi and the true label yi. ε
(
fk
)

repre

Fig. 6. The Heatmap of SHAP values between the test period, 2001 – 2018*. * The y-axis displays significant covariates based on their SHAP values. The x-axis lists 
the cases by observation years.
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sents the regularization term, controlling the model’s complexity to 
prevent overfitting. t represents the step so ŷi

(t) means the prediction 
value at step t. fk denotes the k th weak classifier.

XGBoost excels in handling structured data and nonlinear relation
ships, commonly applied in regression and classification tasks (Celbiş 
et al., 2023). Additionally, it offers functionalities such as feature 
importance assessment and visualization, early stopping, and cross- 
validation to assist users in optimizing models and avoiding over
fitting. This paper integrates the XGBoost algorithm with the MERF 
modeling framework (MERF-XGB), generating the highest R-sq value. 
The paper also experimented with the GPBoost and the LightGBM al
gorithms for comparison.

2.2.3. Gpboost
GPBoost combines tree-boosting with Gaussian process and grouped 

random effects models. It supports independently applying tree- 
boosting, Gaussian process, and (generalized) linear mixed effects 
models (LMMs and GLMMs). GPBoost explicitly considers a panel data 
structure with both spatial and temporal indices through a concatena
tion function (Algorithm 1). GPBoost is a machine learning framework 
specifically designed to handle large-scale data and high-dimensional 
features (Sigrist, 2022). It was developed based on XGBoost and in
corporates the concept of Gaussian processes. It can be seen as a syn
thesis of three modeling frameworks, traditional (generalized) linear 
mixed effects, Gaussian process models, and classical independent tree- 
boosting algorithms.

GPBoost algorithm assumes that the response variable Y is the sum of 
a potentially non-linear mean function Ω(X) and random effects Zb: 

Y = Ω(X)+Zb+ xi (3) 

where: Ω(X) is an ensemble of trees, X are predictor variables (aka 
covariates or features), and xi is an independent error term. Zb repre
sents the random effects and can consist of Gaussian processes 
(including random coefficient processes) and grouped random effects 
(including nested, crossed, and random coefficient effects).

Compared to traditional (generalized) linear mixed effects and 
Gaussian process models, GPBoost algorithm can establish fixed effect 
function models in a non-parametric and non-linear manner, building 
more realistic models and achieving higher prediction accuracy. 
Compared to classical independent boosting algorithms, GPBoost in
troduces Gaussian processes to model the uncertainty of the model, 
enabling more effective learning of prediction functions and improving 
prediction accuracy. It can efficiently model high-cardinality categorical 
variables as well as spatial or spatio-temporal data. GPBoost excels in 
handling sparse data, large-scale datasets, and high-dimensional fea
tures, demonstrating high predictive performance and good 
interpretability.

2.2.4. LightGBM
LightGBM is a high-performance machine learning algorithm based 

on the gradient boosting framework. It employs a histogram-based de
cision tree learning algorithm, which discretizes continuous features 

Fig. 7. (a) The Heatmap of Important Features in 2007, (b) The Heatmap of Important Features in 2013.
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into discrete histograms to enhance training speed and memory effi
ciency. Additionally, it utilizes histogram-based decision tree algorithms 
and exclusive feature bundling to improve training speed and model 
performance further (Ke, 2017). LightGBM has achieved significant 
success in many data science competitions and real-world projects due 
to its ability to handle large-scale datasets, high-dimensional features, 
and imbalanced datasets while maintaining high predictive performance 
and low computational costs (Meng, 2016).

2.2.5. Geographically weighted regression model
The GWR model can be formulated as Gao and Li’s research (Gao and 

Li, 2011): 

yi = βo(gi, hi)+
∑

k
βk(gi, hi)xk + εi (4) 

where yi is the dependent variable at location i, βo
(
gi, hi

)
is the intercept 

at location i, 
(
gi, hi

)
denotes the coordinates of location i, βk

(
gi, hi

)
is the 

local parameter estimate of independent variable xk at location i, and εi 
denotes the random error term for location i.

3. Results and discussion

3.1. The classic challenges EPRA and HLMM face

For EPRA and HLMM, we must assess multicollinearity, stationarity, 
and fixed or random effects. Based on conventional exploratory statis
tical analysis, we produced a correlation matrix and conducted a very 
important feature (VIF) test to assess multicollinearity interactively. We 
removed those variables that had both higher VIF values and correlation 
coefficients. As a result, 13 variables were removed, and 25 were kept 
for further analysis (A-Table 1). Next, we performed the Levin–Lin–Chu 
(LLC) test to see whether a unit root or stationarity exists in those 25 
variables. The LLC unit root test assumes that the time series contains a 
common unit root; the alternative is that this series is stationary (Levin 
et al., 2002). If a unit root was found, we adopted either the Differencing 
or Lag method to remove it (A-Table 2) (Xie, 2023). We then conducted 
the Hausmann test to assess which type of estimation an EPRA model 
should apply: a fixed-effect model or a random-effect model (Baltagi, 
2004). The Hausmann test suggested an EPRA fixed-effect model with 
the explanatory variables that passed the multicollinearity test and un
derwent the unit-root removal (A-Table 3). Meanwhile, for an HLMM 
model, we tested both cross-sections (the county index − CID) and time- 

Fig. 8. Local SHAP Value Bar of Ejina Banner in 2018.
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series (Year) as the grouping variables, revealing the random effect (Lu 
et al., 2024).

The summary statistics of the EPRA and HLMM models are reported 
in Table 2. The model coefficients and related statistics are reported in 
A-Table 4, 5, and 6. The R-sq. values were very low for the EPSA model 
(overall R-sq. = 0.0021) and for the HLMM model with CID (Counties) as 
the group variable (R-sq. = 0.1623). These findings indicated that the 
EPSA model and the HLMM-CID model were unsuitable for revealing 
relationships between EVI and the other climate, LULC, and socio
environmental drivers. Therefore, these two models could not assess the 
RC of biophysical and socioeconomic variables to ecosystem health or be 
suitable for estimating or predicting evi. However, the HLMM model 
with Year as the group variable obtained a moderate R-sq. value 
(=0.5874). Since the time series (Year) was short (17), each year had 68 
cases (Table 1). As a result, the performance of the HLMM-Year model 
was much better than the HLMM-CID model but not compatible with the 
outcomes of most IML models.

3.2. Automatically Detecting RC of Climate, LULC, and socioeconomic 
covariates

Four models, GPBoost, XGBoost, LightGBM, and MERF, were re
ported in this section. Additionally, the MERF modeling framework can 

integrate several gradient boosting algorithms, including XGBRegressor, 
GPBoostRegressor, and LightGBMRegressor. As a result, the outcomes of 
these seven models were included in Table 3. The combination of MERF- 
XGB (Regressor) produced the highest R-sq (0.8866) among these ML 
algorithms that can handle space–time structured data (Table 3). The 
GPBoost model also achieved a very good R-sq, 0.8807. The models of 
MERF, MERF-LightGBM, MERF-GBM, and XGBoost got R-sq values be
tween 0.72 and 0.88. Even LightGBM achieved a moderate R-squared 
value of 0.49. Compared with the EPRA model and the HLMM model 
with CID as the group variable, many more variables made essential 
contributions to the response variable, EVI, grassland productivity, and 
the R2 values from the ML models were dramatically raised.

The most noticeable advantage of ML models is the automatic 
identification of biophysical and socioeconomic covariates that signifi
cantly contribute to ecosystem health. This process is also called feature 
engineering, which automatically removes multicollinearity and iden
tifies important features contributing to the prediction of the response 
variable. The important features resembled each other to some degree 
between the models of MERF-XGB and GPBoost, as well as between 
XGBoost and LightGBM (Fig. 5). We chose the MERF-XGB model as an 
illustration for detailed explanation and analysis since it has the highest 
R-sq (Table 3).

The MERF-XGB model identified a dozen variables to have 

Fig. 9. Local SHAP Value Bar of Baotou City in 2018.
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noticeable importance affecting grassland productivity, including two 
climate variables (Psum – summarized precipitation of the growing 
season, and Temp – average temperature during the growing season), 
one crop plantation variable (croppg – the percentage of crop area and 
planted grassland area for harvest to the total grassland area), two in
dustrial pollution variables (dustgdp − GDP per unit discharge of in
dustrial dust, and sdxgdp − GDP per unit sulfur dioxide emission), and 
one economic indicator (gp – gross domestic production per capita) 
(Fig. 5). Psum had the highest mean SHAP value (0.0657). It has long 
been agreed that Psum is the most crucial driver of grassland growth in 
the Mongolia Plateau (Wang et al., 2013). However, this statistic only 
reflects an overall condition in the conventional statistics and traditional 
coupled human-natural system studies. In other words, the highest mean 
value only says that this covariate (Psum) has the most substantial 
positive influence on the target variable (the grassland productivity). 
Still, it fails to provide insight into how much it contributes to the 
model’s prediction.

We conducted a panel regression-based very important feature (VIF) 
test using Stata 16 software to prove that multicollinearity was removed 
automatically. The results are reported in A-Table 7. The important 
features automatically selected by the MERF-XGB algorithm all passed 
the VIF test in a cross-section and over-time regression analysis. This 
finding confirmed that the machine-learning model automatically 

removed multicollinearity, a significant advantage for the machine- 
learning-based models compared to classic statistical models.

3.3. Fine-grained spatiotemporal analysis of RC variations across counties 
and over years

We adopted a SHAP heatmap to visualize each feature’s contribution 
to individual prediction (EFCTIP). This facilitates researchers in un
derstanding complex interactions between a covariate and the target 
variable and their case-specific variations. Fig. 6 reveals fine-grained 
spatial and temporal patterns of EFCTIP. The x axis lists the study 
areas (counties) by years. The y axis ranks each feature contribution 
decreasingly from the top to the bottom. They together reveal spatial 
and temporal variations of EFCTIC. For example, the grassland pro
ductivity curve, f(Xi), was well above the average line before 2009. Psum 
was relatively abundant during this period. As a result, Psum exerted 
positive impacts on grassland productivity. However, between 2010 and 
2018, the f(Xi) curve was largely below the average line, and Psum was 
also under the average value. The SHAP values of Psum were in the blue 
range and became a deterring factor in grassland productivity. In other 
words, Psum did not always positively influence grassland productivity. 
This finding reveals our current understanding that precipitation always 
positively affects grassland productivity is untrue. The fine-grained 
analysis based on IML elucidates that the actual impact of precipita
tion on grassland productivity depends on its relative abundance 
compared with other drivers.

croppg had the second-highest mean SHAP value (0.0299), almost 
half of the Psum’s SHAP value (Fig. 5). It was also interesting to note that 
the SHAP values of croppg were almost positive (red across the entire 
spectrum) (Fig. 6). The croppg data was derived from satellite images. 
Crop plants and harvested grass pastures showed more greenness than 
natural grasslands in semi-arid and semi-humid regions (Tang, 2016). 
Therefore, there was a close association between croplands, harvested 
grass pastures, and greenness, corresponding to higher EVI values on the 
remotely sensed images.

Temp (Temperature) was the third-most important driver (Fig. 5) but 
showed an interesting impact pattern (Fig. 6). Temp displayed positive 
or negative impacts on grassland productivity in specific years and over 
certain counties. It has been controversial how Temp affected grassland 
in IMAR. Our case study confirmed that no simple linear relationship 
between temperature and grassland productivity could be established 
(Li et al., 2012). High temperatures intensified evaporation and led to 
drier climate conditions, negatively influencing grassland growth in 
semi-dried and dried regions. The drying effects of Temp became 
stronger in drought years or drier locations.

GDP per unit discharge of industrial dust (dustgdp) and GDP per unit 
sulfur dioxide emission (sdxgdp) were two exciting drivers of grassland 
productivity. They showed mixed impacts on grassland productivity 
(Fig. 6). For example, they had negative consequences in 2007 but 
positive impacts during 2010, 2011, and 2012. Moreover, the impacts of 
dustgdp and sdxgdp on grassland productivity displayed similar spatial 
and temporal variations. Although dustgdp and sdxgdp were introduced 
into coupled human-natural systems studies for the first time, the find
ings are against the common intuition that large amounts of industrial 
dust discharge and sulfur dioxide emission indicated fast industrializa
tion, which led to grassland deterioration or conversion to industrial 
land. However, they periodically showed moderate positive influences 
on grassland productivity (Fig. 6, the 4th and 5th rows of SHAP values). 
We will delve into it in the next section.

Moreover, gp (GDP per capita) was the covariate with the sixth- 
highest mean SHAP value. However, the SHAP values of gp fluctuated 
frequently between red and blue, revealing that the positive or negative 
impacts of gp on grassland productivity showed apparent local varia
tions. In some counties and years, GDP negatively affected EVI, indi
cating that GDP per capita would increase when a larger grassland area 
was converted to urban or agricultural land to seek high economic 

Table 4 
Summary statistics of the GWR models in 2001, 2008, 2010, and 2018.

Year General Info

​ Model type: Gaussian
​ Number of observations: 62
​ Number of covariates: 11

​ Model Summary Statistics ​
2001 Log-likelihood: − 481.59

AICc: 959.40
R2 0.84
Adj. R2 0.78

2008 Log-likelihood: − 477.97
AICc: 961.04
R2 0.84
Adj. R2 0.78

2010 Log-likelihood: − 473.16
AICc: 962.06
R2 0.85
Adj. R2 0.80

2018 Log-likelihood: − 482.61
AICc: 959.41
R2 0.89
Adj. R2 0.85

​ Significant Variables T-statistic p-value

2001 croppg 2.63 0.008
Temp 3.12 0.002
pcurei 2.07 0.038
iofp 2.50 0.012

2008 croppg 4.60 0.000
pcurei 2.08 0.037
iofp − 2.64 0.008
rpop 2.46 0.014

2010 Psum − 2.29 0.022
croppg 6.86 0.000
dustgdp 2.82 0.005
rpop 3.48 0.001

2018 Psum 2.52 0.012
croppg 4.13 0.000
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growth. The covariate of gp measures overall economic growth. The 
impacts of gp on grassland productivity varies across counties, and over 
time (Zhou et al., 2022).

3.4. Spatial heterogeneity of each feature’s contribution to individual 
prediction (EFCTIP)

The x-axis in Fig. 6 lists the counties of interest by each observation 
year. We can zoom in for a chosen year to visualize EFCTIP in each 
county. Fig. 7a shows the heatmap of the important features in 2007. It 
is a zoomed-in heatmap of the Year 2007 in Fig. 6, which was left-turned 
90 degrees. The x-axis lists the important features, and the y-axis pre
sents the counties (banners). The map can be divided into two sections: 
the lower section consists of the counties and cities in the middle and 
west parts of IMAR, and the upper half includes the counties and cities in 
the east and southeast parts of IMAR. The grassland productivity curve, 
f(x), was the primary feature that divided the study area into the eastern 
and the middle-western parts. This rotated heatmap is robust in 
revealing spatial heterogeneity of different drivers’ influences on 
ecosystem health. For example, the middle and western parts were 
predominantly semi-arid and arid grasslands with relatively lower 
grassland productivity in 2007. The observed values of Psum were above 
the average amount in 2007, indicating a precipitation-rich year. As a 
result, Psum became the most important driving factor to EVI in this 
region (Fig. 7a). Croppg had a harvest year. gp (GDP pe capita) was 
higher as well. However, Temp differentiated its impact on EVI between 
the western and eastern sections. The western section was covered 
mainly by desert steppes and deserts, and Temp negatively affected EVI 
because it increased evaporation and air dryness. The climate in the east 
section was semi-humid and humid. Temp exhibited a positive influence. 
However, there were some similarities between the middle-west and the 
east-southeast sections. For example, dustgdp and sdxgdp displayed 
negative driving impacts on EVI. These findings suggested that IMAR 
was a primary animal husbandry base in 2007. Large portions of 
grassland and crop production helped keep animal husbandry. On the 
other hand, industrial development negatively impacted grassland 
productivity.

The year 2013 was a different year from 2007. The grassland pro
ductivity curve, f(x), was under the average line in the western section 
and barely above the average line in the eastern section (Fig. 7b). This 
was a drought year. Psum was below the average precipitation in most 

counties and cities, particularly for those counties and cities located in 
the southern, eastern, and southeastern parts of IMAR. Croppg showed 
negative SHAP values across IMAR. Temp intensified the dryness and 
negatively impacted grassland productivity in many counties except 
those in the southeastern. In brief, animal husbandry and crop produc
tion suffered during this drought year. On the other hand, both dustgdp 
and sdxgdp displayed positive SHAP values across IMAR, contributing to 
EVI. The explanation is that industrial development-induced GDP 
improved the local economy. Especially when the drought negatively 
affected animal husbandry and agriculture production, the revenue from 
industrial development helped alleviate local economic stresses, reduce 
financial reliance on grasslands, and, thus, contribute to grassland 
ecosystem health.

3.5. Local analysis and visualization of EFCTIP

Spatiotemporal patterns of important features’ RC provided details 
on how these features interacted to affect the regional pattern of 
grassland productivity. In addition, machine-learning techniques sup
port examining how these important features interact with one another 
locally (i.e., in a particular county and at a specific year). We selected 
two locations (one rural banner, which is a county in the Mongolian 
language, and one big city) as the illustrations: Ejina Banner in 2018, 
and Baotou City in 2018. Ejina Banner is located far west of Inner 
Mongolia. Ejina has a mixed agriculture and grazing economy with a 
small population of 20,000~30,000 people but has the largest grassland 
area among the three banners in the Alxa League. In recent years, 
tourism around the “Euphrates Forest, Juyanhai Lake, and Black City” 
flourished, which promoted the popularity of Ejina and drove the 
development of the tourism-related economy. Since it was located in the 
declining areas of EVI and Pnum, agriculture (croppg), grass, and their 
related income (iofp) declined. However, the industries and urban in
come related to tourism saw increases in 2018 (Fig. 8). The local SHAP 
graphic provides the observed values of all covariates on the left column 
and their corresponding SHAP values on the right. It illustrates the 
covariates’ importance to local EVI prediction vis horizontal bars. This 
graphic provides fine-grained statistics and powerful visualization to 
reveal EFCTIP, far exceeding standard statistical approaches.

Baotou City, located in the western part of the Inner Mongolia 
Autonomous Region, is an important hub connecting North China and 
Northwest China. Baotou is one of the top three most vigorous 

Fig. 10. (a) The spatial variations of prediction errors of the GWR model in 2018, (b) The spatial variations of prediction errors of the MERF-XGBoost model in 2018.
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development areas in Inner Mongolia, along with Hohhot and Ordos. 
Baotou has the largest steel, aluminum, equipment manufacturing, and 
rare earth processing enterprises in Inner Mongolia. It is a vital energy, 
raw material, rare earth, new coal chemical, and equipment 
manufacturing base in the country and Inner Mongolia. EVI (grassland 
productivity) declined along with Psum since 2016. Although EVI started 
to recover in 2018, it was not back to the normal range (Fig. 6). The 
2018 Baotou SHAP bar (Fig. 9) reflected this general climate change 
trend and Baotou industrial city characteristics. The covariates of 
dustgdp and sdxgdp increased, and most of the socioeconomic and new 
economic covariates increased. Only a few covariates such as gp, pcurei, 
Temp, invpa_p, and nosgdp decreased.

3.6. Automatic calibration of optimal model parameters

Most machine-learning modeling frameworks support automatic 
calibration of optimal model parameters. We adopted Hyperopt, a Py
thon library for hyperparameter optimization. Hyperopt’s core algo
rithm is based on Bayesian optimization. Specifically, Hyperopt uses a 
Tree-structured Parzen Estimator for Bayesian optimization (Bergestra 
et al.). The calibrated parameters for the four machine-learning models 
are reported in A-Table 8. The automatic calibration of optimal model 
parameters is another essential improvement of machine-learning 
models compared with conventional statistical models.

3.7. Geographically weighted regression (GWR) models and spatial 
variations of ecosystem health

A GWR model was developed based on Eq. (4). The GWR model 
could be very complex since there exist 37 independent variables. For an 
illustration, the first eleven important variables identified by the MERF- 
XGBoost model (the top eleven variables on the left vertical axis of 
Fig. 6) were regressed against EVI. In addition, since the GWR model is 
not designed to handle time-series data at present, four years, 2001, 
2008, 2010, and 2018, were chosen to run the GWR model. The selec
tion of 2001 and 2018 was based on the consideration of the beginning 
and ending years of the study period, and also, they were the years with 
regular precipitation. The years of 2008 and 2010 were drought years, 
and 2010 was the year that witnessed dramatic socioeconomic booming, 
as we discussed in the study area and data section.

The key relevant parameters and statistics of the four years’ GWR 
models are presented in Table 4, while their complete sets of outcomes 
are included in the Supplementary Document. The GWR model results 
revealed several interesting findings. First, the model’s performances 
were judged based on linearity via the statistics, such as AICc (corrected 
Akaike information criterion) and adjusted R2. Over the four years, these 
statistics revealed that the 2018 GWR model performed better than 
other years due to its normal precipitation year. Second, the significance 
levels of the independent variables displayed noticeable changes each 
year. Only two to four variables out of eleven significantly affected EVI, 
although they all were important variables contributing to EVI changes 
in the MERF-XGBoost model. Third, the climate factors, precipitation 
(Psum) and temperature (Temp), showed a positive influence on EVI in 
regular precipitation years but a negative impact in drought years. In 
summary, the interpretable machine learning based MERF-XGBoost 
model exhibits advantages because of its capabilities of feature engi
neering and non-linear relationship exploration between ecosystem 
health and its driving factors as discussed in the previous sections.

Next, the model prediction errors of both GWR and MERF-XGBoost 
models were mapped. Fig. 10a is the map of Z scores of the prediction 
errors by counties from the GWR model in 2018 (the maps of 2001, 
2008, and 2010 are provided in the Supplementary Documents). 
Fig. 10b is the map of Z scores of the prediction errors by counties from 
the MERF-XGBoost model in 2018 (the maps of 2001, 2008, and 2010 
are provided in the Supplementary Documents). The Z scores of the 
predicted errors can reveal the overestimation or underestimation of a 

regression model (Zhou et al., 2022). The positive Z scores indicated an 
overestimation, while the negative Z scores meant an underestimation. 
It was interesting to notice the differences in overestimation or under
estimation between the GWR and MERF-XGBoost models.

First, two prediction error maps exhibited similar spatial patterns. 
The overpredictions from both models happened in the meadow grass
lands in the northeastern section, the typical grasslands in the south
eastern section, and the irrigated mixed agricultural lands and 
grasslands in the western section along the Yellow River. The under
predictions occurred in the northwestern desert grasslands. Second, the 
local patterns of prediction errors varied noticeably between the two 
models. The GWR model made overprediction errors in the central part 
of the northeastern section and showed varied prediction errors in the 
adjacent counties (Fig. 10a). However, the MERF-XGBoost model illus
trated more uniform overprediction errors in this region (Fig. 10b). In 
the southeastern section, the MERF-XGBoost model significantly over
predicted EVI in six counties in comparison to the GWR model. In gen
eral, both GWR and MERF-XGBoost models were effective in revealing 
local variations.

4. Conclusions

This paper presents the first comprehensive investigation into the 
relative contributions of various driving factors to ecosystem health, 
using Inner Mongolian grasslands as a case study. The paper takes a non- 
linear approach by integrating ML gradient boosting techniques with 
traditional cross-space and over-time panel data statistical analysis as a 
space–time interpretable ML application. The innovation lies in inter
pretability, as this paper purposefully selects ML algorithms that can 
explicitly examine cross-section and time series (panel) data concur
rently, a desired capability that ecologists and environmental scientists 
are familiar with and know how to interpret.

Moreover, the ML’s new capabilities, such as feature engineering and 
fine-grained analysis (each feature’s contribution to individual fore
casting), break through the limitations of classic regression-based sta
tistical models, including linearity, multicollinearity, and system-wide 
interpretation. As a result, several findings from this case study have 
direct policy and management implications: (1) There are differentiated 
relative contributions (RC) of climate change, LULC, and socioeconomic 
factors to ecosystem health; (2) None of driving factors was predominant 
and showed constantly positive or negative impact on grassland health 
and system-wide interpretations derived from traditional models like 
EPRA and HLMM were misleading; (3) Strengths and directions of 
ecosystem sustainability driving factors’ RC on ecosystem health must 
be understood from regional perspectives and local contexts; (4) 
Human-induced changes are far more important than climate change 
because socioeconomic and environmental factors are many; and (5) 
The RC differentiation has critical policy and management implications, 
and local governments and residents must take action to protect the 
grasslands because their economic activities and consumption behaviors 
have more profound and direct impacts on ecosystem health and re
covery than climate changes.

In this paper, the enhanced vegetation index (EVI) is used as a proxy 
for grassland productivity to quantify ecosystem health. EVI is a crude 
indicator of ecosystem productivity, which is a limitation of the current 
dataset. More data items or variables shall be examined to represent 
ecosystem health or sustainability.

The inconsistent scale between datasets is another big challenge to 
coupled human and natural systems. In general, environmental and 
ecosystem data are derived from remote sensing in the format of pixels, 
which can be a few inches in scale. However, most current socioeco
nomic statistics are collected by census bureaus over counties, which 
cover hundreds or thousands of square kilometers. Assimilating pixel 
data over county boundaries loses spatial variabilities, and any analysis 
based on coarse county scale can lead to an oversimplified conclusion 
(Xie, 2023). The next experiment, extending ML functions in statistical 
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empirical studies, shall be conducted over fine geographical scales.
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