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We describe efficient differentiation methods for computing Jacobians and gradients of a large class of matrix 
functions including the matrix logarithm log(𝐴) and 𝑝-th roots 𝐴

1
𝑝 . We exploit contour integrals and conformal 

maps as described by Hale et al. (2008) [34] for evaluation and differentiation and analyze the computational 
complexity as well as numerical accuracy compared to high accuracy finite difference methods. As a demonstrator 
application we compute properties of structural defects in silicon crystals at positive temperatures, requiring 
efficient and accurate gradients of matrix trace-logarithms.

1. Introduction

Matrix functions have long been integral to mathematical and scien
tific disciplines and thus have a wide range of applications [49,37,28] 
in fields such as network analysis [6], control systems [23], matrix func
tion neural networks [4], and solid state physics [14,9,67]. For instance, 
in materials science, matrix functions are indispensable for calculating 
vibrational entropy, which provides insights into the impact of thermal 
vibrations on material properties [67,9].

Despite their broad applicability, the computation of derivatives of 
matrix functions—in particular for matrix families 𝑋𝜃 parameterized by 
a vector 𝜃�-remains a significant computational challenge. This chal
lenge is particularly acute in high-dimensional systems, where conven
tional methods often become computationally prohibitive. For instance, 
in the study of thermally activated processes [12] precise calculations of 
free energy derivatives are required. Conventional approaches often rely 
on potential energy surface (PES) approximations, which, while compu
tationally feasible, can introduce significant errors when entropy plays 
a major role. To accurately capture the full behavior of such systems, 
it is necessary to consider the free energy surface (FES) instead, which 
requires the computation of more complex matrix function derivatives.

In this paper we introduce a method that leverages analytic func
tional calculus in conjunction with both forward and reverse mode au
tomatic differentiation (AD). Our objective is to develop a robust frame
work that significantly enhances the efficiency and scalability of com
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puting derivatives of matrix functions. Our approach streamlines com
putational implementation and expands the potential applications of 
matrix function derivatives to more complex higher-dimensional prob
lems.

2. Matrix functions

2.1. Analytic matrix functions

We use the term matrix function to refer to a matrix-valued extension 
of a scalar function 𝑓 such that 𝑓 (𝑋) with 𝑋 ∈ ℂ𝑛×𝑛 is a computable 
matrix retaining the dimensions of 𝑋. If 𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥+⋯+ 𝑎𝐾𝑥𝐾 is 
a polynomial, this extension is given by

𝑓 (𝑋) =
𝐾∑
𝑘=0
𝑎𝑘𝑋

𝑘,

with 𝑋0 = 𝐼𝑛, the 𝑛× 𝑛 identity matrix. For general continuous 𝑓 , 𝑓 (𝑋)
is defined via density of polynomials. Several approaches for evaluating 
matrix functions have been considered in the literature [37], e.g. via 
the eigendecomposition (or more generally the Jordan canonical form), 
or via a specific polynomial interpolation scheme. In this work we are 
primarily concerned with evaluating analytic matrix functions.

Suppose that 𝑓 ∶ ℂ → ℂ is analytic on a closed set  ⊂ ℂ, where 
 is an open set containing the spectrum of a matrix 𝑋 ∈ ℂ𝑛×𝑛; i.e., 
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Fig. 1. Figure (a) depicts the spectrum of 𝑋 along with the appropriate contour 
. Figure (b) demonstrates mapping the entire doubly connected domain of 
analyticity Ξ, onto an annulus region 𝑋 through a conformal map. In this figure, 
the interval of singularities corresponds to the outer boundary of the annulus, 
while the interval including the spectrum aligns with the dashed inner boundary 
circle. We then apply the trapezoid rule over a circle in the annulus.

𝜎(𝑋) ⊂ . Assume further that the boundary,  ∶= 𝜕, is comprised 
of a finite number of closed rectifiable Jordan curves, encircling 𝜎(𝑋)
once in the counterclockwise direction. Then 𝑓 (𝑋) can be expressed as 
a Riemann contour integral over  as follows:

𝑓 (𝑋) = 1 
2𝜋𝑖 ∮

𝑓 (𝑧) (𝑧𝐼 −𝑋)−1 d𝑧. (1)

2.2. Fast computation of matrix functions 𝑓 (𝑋)

In physics and engineering applications, performant numerical eval
uation of matrix functions is often essential. Hale et al. [34] demon
strated that the Cauchy integral definition in (1) is particularly useful for 
numerical computations. They described an efficient approach utilizing 
(1) for matrices 𝐴 whose eigenvalues are located on or near the positive 
real axis (0,∞), and for functions 𝑓 (𝑧) such as 𝑧𝛼 or log𝑧, which are an
alytic except for the presence of singularities or a branch cut near the 
negative real axis (−∞,0]. This section reviews their method which we 
use in subsequent sections to also compute derivatives of matrix func
tions.

Consider a matrix 𝑋 with real entries and eigenvalues in (0,∞) as 
illustrated in Fig. 1a. While 𝑋 is symmetric in many important cases, 
facilitating the application of trapezoidal sums, symmetry is not essen
tial for the methods presented and will thus not be assumed. We will 
refer to the minimum and maximum eigenvalues of 𝑋 as m and M, re
spectively. In cases where 𝑋 is either symmetric or normal, the 2-norm 
condition number is given by the ratio M∕m. We will generally assume 
that m and M are known though we note that they would typically only 
be estimated in practice. We further assume that the spectrum 𝜎(𝑋)
completely fills the interval [m,M], without significant gaps and that 
the function 𝑓 is analytic in the slit complex plane ℂ ⧵ (−∞,0]. At first 
glance, one might think of surrounding [m,M] by an appropriate con
tour, such as depicted in Fig. 1a, followed by applying the trapezoid rule 
to approximate the integral. However, for ill-conditioned matrices this 
is inefficient as it necessitates 𝑂(𝑀∕𝑚) linear solves to achieve typical 
accuracy requirements. The techniques suggested in [34] leverage vari
able transformations and conformal mappings to optimize the choice 
of contour points, effectively reducing the computational complexity to 
𝑂(log(𝑀∕𝑚)).

The conformal mapping employed involves multiple transformations 
designed to map the region of analyticity of 𝑓 and (𝑧𝐼 −𝑋)−1, charac
terized by the doubly connected set Ξ =ℂ ⧵ ((−∞,0] ∪ [𝑚2 ,

𝑀

2 ]), onto an 
annulus 𝐴 = {𝑧 ∈ ℂ ∶ 𝑟 < |𝑧| < 𝑅}, where 𝑟 and 𝑅 represent the inner 
and outer radii of the annulus respectively. We show a schematic of this 
transformation in Fig. 1b. The question of how to map Ξ to the annulus 
𝐴 and vice versa was answered by Hale et al. [34] in three steps: Start
ing in the 𝑠-plane, we first map the annulus to a rectangle with vertices 
±𝐾 and ±𝐾 + 𝑖𝐾 ′, using a logarithmic transformation

𝑡(𝑠) = 2𝐾𝑖
𝜋

log
(
− 𝑖𝑠
𝑟 

)
, (2)

where 𝐾,𝐾 ′ denote the complete elliptic integrals. For more details on 
Jacobi elliptic functions and integrals, see Appendix A.1. Next, the rect
angle is mapped to the upper half-plane in the 𝑢-plane by the Jacobian 
elliptic function

𝑢(𝑡) = sn(𝑡|𝑘2), 𝑘 =
(𝑀∕𝑚)1∕2 − 1
(𝑀∕𝑚)1∕2 + 1

. (3)

A Möbius transformation is then applied to map the upper half-plane to 
the 𝑧-plane

𝑧(𝑢) = (𝑀∕𝑚)1∕2
(
𝑘−1 + 𝑢
𝑘−1 − 𝑢

)
. (4)

This final transformation is designed to distribute the eigenvalues of 
𝑋 evenly along the real axis, thus facilitating the application of the 
trapezoidal rule [34]. The steps of this conformal map are shown in 
Fig. 2. The integral in (1) can be reformulated as follows:

𝑓 (𝑋) = − 𝑋

2𝜋𝑖

3𝐾+𝑖𝐾′∕2 

∫
−𝐾+𝑖𝐾′∕2

𝑓 (𝑧(𝑡))(𝑧(𝑡) −𝑋)−1𝑧−1 d𝑧
d𝑢 

d𝑢
d𝑡 

d𝑡, (5)

where the interval from −𝐾+ 𝑖𝐾 ′∕2 to 𝐾+ 𝑖𝐾 ′∕2 reflects the segment of 
Γ in the upper half-plane, extended to 3𝐾 + 𝑖𝐾 ′∕2 to include the lower 
half-plane contribution, with 𝑧 transformations provided by:

𝑑𝑧

𝑑𝑢 
=

2𝑘−1
√
𝑚𝑀

(𝑘1 − 𝑢2)2
, 𝑑𝑢

𝑑𝑡 
= sn(𝑡) =

√
1 − 𝑘2𝑢2 = cn(𝑡)dn(𝑡). (6)

Here, cn and dn are standard Jacobi elliptic functions [20, (22.2.4
22.2.6)]. Therefore, the expression for 𝑓 (𝑋) becomes:

𝑓 (𝑋) = −
𝑋
√
𝑚𝑀

𝜋𝑘 

3𝐾+𝑖𝐾′∕2 

∫
−𝐾+𝑖𝐾′∕2

𝑓 (𝑧(𝑡))(𝑧(𝑡) −𝑋)−1𝑧−1cn(𝑡)dn(𝑡)
(𝑘−1 − 𝑢)2

d𝑡. (7)

Given that 𝑋 is real, the integrand is real-symmetric, implying that 𝑓 (𝑋)
is effectively double the real part of the integral evaluated over the first 
half of the contour. Simplifying, we have:

𝑓 (𝑋) = −
2𝑋

√
𝑚𝑀

𝜋𝑘 
Im

𝐾+𝑖𝐾′∕2 

∫
−𝐾+𝑖𝐾′∕2

𝑓 (𝑧(𝑡))(𝑧(𝑡) −𝑋)−1𝑧−1cn(𝑡)dn(𝑡)
(𝑘−1 − 𝑢)2

d𝑡.

(8)

Applying the trapezoidal rule, with 𝑡𝑗 = −𝐾 + 𝑖𝐾′

2 +2 (𝑗−1∕2)𝐾
𝑁

for 𝑗 =
1,… ,𝑁 , representing 𝑁 equidistant points in −𝐾 + 𝑖𝐾 ′∕2,𝐾 + 𝑖𝐾 ′∕2, 
results in

𝑓𝑁 (𝑋) = −
4𝐾𝑋

√
𝑚𝑀

𝜋𝑁𝑘 
Im

(
𝑁∑
𝑗=1 
𝑓 (𝑧(𝑡𝑗 ))

(𝑧(𝑡𝑗 )𝐼 −𝑋)−1cn(𝑡𝑗 )dn(𝑡𝑗 )
𝑧(𝑡𝑗 )(𝑘−1 − 𝑢(𝑡𝑗 ))2

)
.

(9)

The convergence rate of the numerical approximation of 𝑓 (𝑋) using 
an 𝑁 -point quadrature formula to the true value of 𝑓 (𝑋) is given in [34, 
Theorem 1]. Specifically, the error between the actual function 𝑓 (𝑋)
and the numerical approximation 𝑓𝑁 (𝑋) is bounded by:

‖𝑓 (𝑋) − 𝑓𝑁 (𝑋)‖ =𝑂(
𝑒−𝜋

2𝑁∕ log(𝑀∕𝑚+3)
)
. (10)

It is noteworthy that when 𝑓 has a singularity at 𝑧 = 0 but just 
a branch cut on (−∞,0), the above mentioned method is not as effi
cient as in the case when 𝑓 has singularities on (−∞,0). To reach fast 
convergence, Hale et al. [34] proposed a change of variable 𝑤 =

√
𝑧, 

d𝑧 = 2𝑤 d𝑤, under which (1) becomes

𝑓 (𝑋) = 𝑋
𝜋𝑖 ∫𝑤

𝑤−1𝑓 (𝑤2)(𝑤2 −𝑋)−1d𝑤. (11)
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Fig. 2. Steps of the conformal map shown in detail. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In the revised approach, the branch cut of the function 𝑓 (𝑧) along the 
negative real axis in the 𝑧-plane is unfolded to the imaginary axis in the 
𝑤-plane, allowing 𝑓 (𝑧) to be analytically continued as 𝑓 (𝑤2) across the 
entire slit 𝑤-plane, i.e., ℂ ⧵ (−∞,0]. The method involves a contour in
tegration within a modified region, specifically enclosing [𝑚1∕2,𝑀1∕2]
in the 𝑤-plane. This adaptation improves the domain from [𝑚,𝑀] to 
[𝑚1∕2,𝑀1∕2], enabling a more effective application of the previous com
putational techniques.

The expression used for this refined method is

𝑓𝑁 (𝑋)=−
8𝐾𝑋 4

√
𝑚𝑀

𝜋𝑁𝑘 
Im

(
𝑁∑
𝑗=1 
𝑓 (𝑤(𝑡𝑗 )2)

(𝑤(𝑡𝑗 )2𝐼 −𝑋)−1cn(𝑡𝑗 )dn(𝑡𝑗 )
𝑤(𝑡𝑗 )(𝑘−1 − 𝑢(𝑡𝑗 ))2

)
,

(12)

where the 𝑡𝑗 are specified by the modified equations, reflecting changes 
in the contour parameters:

𝑤 = 4√
𝑚𝑀

𝑘−1 + sn(𝑡)
𝑘−1 − sn(𝑡)

, 𝑘 =
4
√
𝑀∕𝑚− 1

4
√
𝑀∕𝑚+ 1

.

These adjustments allow for precise integration over the new contour, 
efficiently capturing the integral’s value while minimizing computa
tional overhead.

2.3. Derivatives of matrix functions

The framework for evaluating matrix functions 𝑓 (𝑋) reviewed in 
Section 2.2 can be efficiently extended to families of matrices denoted 
as 𝑋(𝑢), where 𝑢 ∈ Ω ⊂ ℝ𝑚 represents a multi-dimensional parameter, 
as well as derivatives of 𝑓 (𝑋(𝑢)) with respect to the parameter 𝑢 ∈ Ω. 
Here, Ω ⊂ ℝ𝑚 is an open parameter domain and 𝑚 ∈ ℕ the number of 
parameters.

Lemma 2.1. Consider a matrix 𝑋(𝑢), where each entry 𝑥𝑖𝑗 ∶ Ω → ℂ is 
continuously differentiable. Assume that 𝑓 is analytic in a domain 𝐷̄, where 
𝐷 is open and includes the spectrum of 𝑋(𝑢) for all 𝑢 ∈Ω. Then:

The derivatives of the matrix function 𝑓 (𝑋)with respect to the component 
𝑢𝑘 of 𝑢 are given by:

𝜕𝑓 (𝑋)
𝜕𝑢𝑘

= 1 
2𝜋𝑖 ∫

𝑓 (𝑧)(𝑧𝐼 −𝑋)−1
(
𝜕𝑋 
𝜕𝑢𝑘

)
(𝑧𝐼 −𝑋)−1 d𝑧,

where  is a positively oriented contour enclosing the spectrum of 𝑋, and 𝑧𝐼
represents the identity matrix scaled by 𝑧.

The proof based on (1) is elementary and hence omitted.

Computing the derivatives 𝜕𝑓 (𝑋)
𝜕𝑢𝑚

with respect to each component 𝑢𝑚
of a multi-dimensional parameter vector 𝑢 can lead to substantial com
putational complexity since it involves evaluating 𝜕𝑋 

𝜕𝑢𝑚
, the Jacobian of 

𝑋 with respect to 𝑢. The resulting Jacobian 𝜕𝑋
𝜕𝑢 is a tensor of dimen

sions 𝑛 × 𝑛 ×𝑚, representing a significant computational bottleneck. In 
the section which follows, we discuss the computational complexity of 
this approach in more detail and explain how reverse mode differentia
tion avoids this in many important scenarios.

Remark 2.1. (Effect of a clustered or ill-conditioned spectrum) The 
only spectrum–dependent factor in the error (10) is the logarithm of 
the 2-norm condition number 𝑀∕𝑚. Hence a poorly separated or ill
conditioned spectrum only slows down the convergence but it does not 
really effect stability or differentiability. In practice one can simply in
crease the number 𝑁 of quadrature points until the desired tolerance 
is reached. When 𝑀∕𝑚 is extremely large, a standard approach is to 
apply a spectrum shifting or scaling preconditioner before the contour 
evaluation [22,48].

Remark 2.2. (Generality of the contour-integral scheme) It is notewor
thy that the contour integral framework above relies only on two key 
factors: (i) an analytic continuation of 𝑓 (𝑧) in a slit or a domain that 
avoids the spectrum of 𝑋; and (ii) the ability to evaluate the resol
vent (𝑧𝐼 −𝑋)−1 at the quadrature nodes. Therefore, any primary matrix 
function whose scalar version is analytic, e.g. the matrix exponential, 
matrix sign, powers, can be treated within exactly the same framework 
by choosing a suitable branch cut and, if necessary, applying the square--
root substitutions done above or similar substitutions to regularize any 
singularities. The computational complexity associated with the method 
thus depends on the linear solver rather than on the particular analytic 
function, and the error bound (10) continues to apply in all these cases.

Remark 2.3. (Computational complexity) In practical settings with 
sparse or structured 𝑋, the Cauchy integral framework allows us to 
replace an (𝑛3) dense eigendecomposition by 𝓁 sparse solves whose 
cost scales with the sparsity pattern, so the contour framework is both 
cheaper and easier to differentiate. The preceding Section 3 gives the 
detailed quantitative comparison.

3. Computational complexity

3.1. Objective and formulation

Let 𝑔 ∶ ℝ𝑛×𝑛 → ℝ𝑝, 𝑓 ∶ ℝ𝑛×𝑛 → ℝ𝑛×𝑛, and 𝑋 ∶ ℝ𝑚 → ℝ𝑛×𝑛 be dif
ferentiable functions. Define the composite function ℎ ∶ ℝ𝑚 → ℝ𝑝 by 
ℎ(𝑢) = 𝑔(𝑓 (𝑋(𝑢))), where the parameter vector 𝑢 ∈ ℝ𝑚 is mapped to a 
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Fig. 3. Computational graphs for the forward and reverse modes of differentiation for the composite function ℎ(𝑢) = 𝑔(𝑓 (𝑋(𝑢))). 

𝑝-dimensional output. As illustrated in Fig. 3, our goal is to evaluate the 
sensitivity of the output ℎ with respect to changes in the input 𝑢, which 
is captured by the Jacobian 𝐽ℎ(𝑢) =

𝜕ℎ

𝜕𝑢 . This Jacobian quantifies how 
infinitesimal changes in the input vector 𝑢 affect the output ℎ(𝑢), and 
can be computed by systematically applying the chain rule to differen
tiate through the layers of the composite function. Applying the chain 
rule and elementary matrix multiplication, we can express the Jacobian 
as:

𝐽ℎ(𝑢) = 𝐽𝑔◦𝑓◦𝑋 (𝑢) = 𝐽𝑔(𝑓 (𝑋(𝑢))) ⋅ 𝐽𝑓 (𝑋(𝑢)) ⋅ 𝐽𝑋 (𝑢) (13)

This chain rule can be applied in two distinct ways depending on 
how we propagate the derivatives: either by starting from the inputs 
and working towards the outputs (forward mode differentiation) shown 
in Fig. 3a, or by starting from the outputs and working back towards 
the inputs (reverse mode differentiation) shown in Fig. 3b. Although the 
chain rule is the same in both cases, the direction in which it is applied 
leads to different computational complexities. To analyze the computa
tional complexity of evaluating the Jacobian 𝐽ℎ(𝑢) in reverse mode, we 
must first understand the costs associated with the forward evaluations 
of each function in the composition ℎ(𝑢) = 𝑔(𝑓 (𝑋(𝑢))). Specifically, we 
denote the cost of evaluating each function without differentiation as 
cost(𝑋), cost(𝑓 ), and cost(𝑔), respectively.

Our aim is to compute these derivatives via computer programs. In 
order to evaluate numerical derivatives rather than symbolic expres
sions, automatic differentiation (AD) [38,31,30,35,7] computes deriva
tives by accumulating intermediate values during code execution. Stan
dard code may be easily modified to incorporate AD with little effort. 
The target function ℎ must first be constructed as a series of basic op
erations in a computer program before applying AD. After that, AD can 
be used in either forward or reverse mode.

3.2. Review: forward mode differentiation via dual numbers

To begin, we will briefly go over dual numbers and their applications 
in forward mode AD. Dual numbers [33,53] extend the real numbers by 
introducing an infinitesimal unit 𝜖 with the property

𝜖2 = 0, 𝜖 ≠ 0.

A dual number can be written in the form:

𝑥 = 𝑎+ 𝑏𝜖,

where 𝑎, 𝑏 ∈ ℝ, 𝑎 is called the real part, and 𝑏 is called the dual part. 
The Taylor series expansion of a function 𝑓 evaluated at a dual number 
𝑎+ 𝑏𝜖 around 𝑎 is given by:

𝑓 (𝑎+ 𝑏𝜖) = 𝑓 (𝑎) + 𝑓 ′(𝑎)𝑏𝜖 + 𝑓
′′(𝑎)
2 

(𝑏𝜖)2 + 𝑓
′′′(𝑎)
6 

(𝑏𝜖)3 +⋯ .

Since the property 𝜖𝑛 = 0 holds for 𝑛 ≥ 2, the Taylor series simplifies 
to:

𝑓 (𝑎+ 𝑏𝜖) = 𝑓 (𝑎) + 𝑓 ′(𝑎)𝑏𝜖.

This simplification highlights the utility of dual numbers in comput
ing first-order derivatives. Thus, dual numbers offer a straightforward 
and reliable approach for computing derivatives. There exist highly 
performant practical implementations of dual numbers, which simply 
extend basic arithmetic operations and a short list of standard mathe
matical functions from standard floating point numbers to dual num
bers. For example, the ForwardDiff.jl [57] package in Julia and the 
cppduals [62] library in C++ provide efficient and well-documented im
plementations of dual number arithmetic.

Suppose we want to compute the directional derivative of a function 
ℎ with respect to 𝑚′ parameters of the input vector 𝑥 ∈ℝ𝑚. To achieve 
this, forward mode AD [5,72,32] utilizes 𝑚′ dual numbers, where each 
dual number, 𝜖𝑖, represents an independent infinitesimal perturbation 
associated with the direction 𝑣𝑖 ∈ℝ𝑚. Specifically, it evaluates

ℎ

(
𝑥+

𝑚′∑
𝑖=1 
𝜖𝑖𝑣𝑖

)
= ℎ(𝑥) +

𝑚′∑
𝑖=1 
𝜖𝑖∇ℎ(𝑥) ⋅ 𝑣𝑖. (14)

In the dense case, this approach is conceptually equivalent to com
puting 𝑚′ directional derivatives independently. However, in sparse 
cases efficient techniques can be used to reduce the computational cost. 
More generally, forward mode AD computes the action of the Jacobian 
𝐽ℎ(𝑥) on a matrix 𝑉 of size 𝑚 ×𝑚′, where the columns of 𝑉 are the 𝑚′

directional vectors:

𝑉 ↦ 𝐽ℎ(𝑥)𝑉 .

This is often referred to as the pushforward, adapted from differential 
geometry terminology. Forward mode AD computes these directional 
derivatives by following the process shown in Fig. 3a, where derivatives 
are propagated step by step:

Table 1
Computational steps and their associated 
costs during each step of forward mode AD.

Computation Cost 
(𝑣1, 𝑣′1) =

(
𝑋(𝑐), 𝐽𝑋 (𝑐)𝑉

)
𝑚′ ⋅ cost(𝑋)

(𝑣2, 𝑣′2) =
(
𝑓 (𝑣1), 𝐽𝑓 (𝑣1) ⋅ 𝑣′1

)
𝑚′ ⋅ cost(𝑓 )

(𝑣3, 𝑣′3) =
(
𝑔(𝑣2), 𝐽𝑔 (𝑣2) ⋅ 𝑣′2

)
𝑚′ ⋅ cost(𝑔)

Computing the full Jacobian, corresponds to computing all 𝑚 direc
tional derivatives and essentially starting with 𝑉 as the identity matrix 
𝐼𝑚. The total cost of evaluating 𝐽ℎ(𝑐) is then 𝑚′ ⋅ (cost(𝑋)+cost(𝑓 )+
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cost(𝑔)) and thus depends on the methods chosen to compute the func
tions 𝑋,𝑓 and 𝑔. We will discuss this further in the next subsection.

3.3. Review: reverse mode differentiation

In contrast to forward mode, reverse mode differentiation [31,18] 
computes derivatives by propagating information backward from the 
output(s) of a function. This mode computes adjoints (or sensitivities) 
with respect to the outputs, rather than computing directional deriva
tives with respect to the inputs and is particularly advantageous for func
tions where the output dimension is smaller than the input dimension. 
Given 𝑌 ∈ℝ𝑝×𝑝, in the cotangent space, reverse mode AD computes the 
action of the transposed Jacobian on 𝑌 :

𝐽ℎ(𝑢)⊤𝑌 , (15)

and computes the sensitivities with respect to 𝑝 outputs, which es
sentially construct the rows of 𝐽ℎ(𝑢). Once the forward evaluation is 
complete as shown in Fig. 3b, the adjoints are propagated in reverse as 
follows:

Table 2
Computational steps and their associated costs 
during each sweep of reverse mode AD.

Computation Cost 
∇𝑓 = 𝐽𝑔 (𝑓 (𝑋(𝑢)))⊤ ⋅ 𝑌 𝑝 ⋅ cost(𝑔)
∇𝑋 = 𝐽𝑓 (𝑋(𝑢))⊤ ⋅∇𝑓 = 𝛿𝑋 [𝑓⊤ ⋅∇𝑓 ] 𝑝 ⋅ cost(𝑓 )
∇𝑢 = 𝐽𝑋 (𝑢)⊤ ⋅∇𝑋 = 𝛿𝑢[𝑋⊤ ⋅∇𝑋 ] 𝑝 ⋅ cost(𝑋)

In reverse mode, computing the full Jacobian involves evaluating the 
sensitivities with respect to all 𝑝 outputs. This is achieved by initializing 
𝑌 as the identity matrix 𝐼𝑝 . Consequently, the total cost of computing 
𝐽ℎ(𝑐) in reverse mode is given by: 𝑝 ⋅ (cost(𝑋) + cost(𝑓 ) + cost(𝑔)), 
where the overall cost naturally again depends on the methods used 
to compute the functions 𝑋, 𝑓 and 𝑔. The choice of the most efficient 
mode of AD (forward or reverse) depends on comparing the number of 
outputs 𝑝 and the number of inputs 𝑚. Reverse mode is more efficient 
when 𝑝≪𝑚, while forward mode is better suited for cases where 𝑝≫𝑚.

Additionally, evaluating the Jacobian of matrix functions 𝑓 (𝑋(𝑢))
with respect to the parameter vector 𝑢, denoted as 𝐽𝑓 (𝑢)=𝐽𝑓 (𝑋(𝑢))𝐽𝑋 (𝑢), 
is of significant importance. In forward mode, this computation aligns 
with the first two rows of Table 1, and the total cost of evaluating the 
full Jacobian scales as 𝑚 ⋅ (cost(𝑓 ) + cost(𝑋)).

In reverse mode, the computation corresponds to the last two rows of 
Table 2, with the total cost scaling as 𝑛2 ⋅ (cost(𝑓 )+cost(𝑋)). Clearly, 
unless 𝑛2 < 𝑚, reverse mode Jacobian evaluation is significantly more 
computationally expensive than forward mode. The corresponding com
plexities for evaluating 𝐽𝑓 (𝑢) are summarized in Table 4.

It is noteworthy that advanced techniques such as sparsity detection 
and matrix coloring can be employed to further reduce the computa
tional cost of evaluating the Jacobian, by efficiently identifying and 
exploiting the structure within the matrices involved in the differentia
tion process. For a detailed description of this we refer to Appendix A.2. 
A numerical demonstration of this approach will be provided in sec
tion 4.3.

3.4. Simplified cost analysis

To estimate the cost of evaluating 𝑓 (𝑋), we revisit the methods de
scribed in Section 2. The computational cost depends on the size of the 
matrix 𝑋, its structural properties (e.g., sparsity or bandedness), and 
the number of quadrature points 𝓁 used in the evaluation. If we take 
𝑔 = Trace, we can rewrite (𝑧𝐼 −𝑋) = 𝐿𝑈 , and we would then need to 
evaluate Trace(𝑋(𝑧𝐼 −𝑋)−1) = Trace(𝑋𝑈−1𝐿−1). Using the Cauchy in
tegral definition (12), the cost for different types of matrices is detailed 
below.

Dense matrices. For a dense 𝑛×𝑛 matrix 𝑋, the cost of evaluating 𝑓 (𝑋)
scales as 𝑂(𝓁𝑛3), since computing the inverse of a dense matrix and per
forming other required operations both scale cubically with 𝑛. However, 
in many applications, matrices often exhibit additional structures, such 
as sparsity or bandedness, which significantly reduce the computational 
cost. This reduction is achieved because sparse linear solvers can ex
ploit these structural properties to minimize the number of operations 
required.

Sparse matrices. For a sparse matrix 𝑋, the cost of evaluating 𝑓 (𝑋)
arises from computing

𝑓 (𝑋) =
∑
𝑖 
𝑒⊤
𝑖
𝑈−1𝐿−1𝑒𝑖 =

∑
𝑖 

(
𝑈−⊤𝑒𝑖

)⊤ (
𝐿−1𝑒𝑖

)
,

where 𝑈 and 𝐿 are the LU factors of 𝑋, and 𝑒𝑖 represents the 𝑖-th 
standard basis vector. Each term in the summation involves two back
substitutions: one to compute 𝐿−1𝑒𝑖 and another for 𝑈−⊤𝑒𝑖. The cost of 
each back-substitution depends on the number of nonzeros (nnz) in the 
LU factors.

If 𝑋 is a banded matrix with a bandwidth 𝑏, the LU factorization 
incurs minimal fill in [17]. The cost of LU factorization is 𝑂(𝑛𝑏2). As
suming 𝑏 is constant, since the number of nonzeros in 𝐿 and 𝑈 factors 
scale as 𝑂(𝑛𝑏), the total cost of evaluating 𝑓 (𝑋) scales as 𝑂(𝓁𝑏𝑛2).

For 2D sparse matrices, which often arise from discretizations of 
2D grids or the Hessians of (quasi-)two-dimensional structures, LU fac
torization introduces moderate fill-in. The cost of factorization scales 
as 𝑂(𝑛3∕2), while the number of nonzeros in the 𝐿 and 𝑈 factors is 
𝑂(𝑛 log𝑛). Consequently, the total cost of solving linear systems and 
evaluating 𝑓 (𝑋) scales as 𝑂(𝓁𝑛2 log𝑛).

For 3D sparse matrices, LU factorization incurs more significant fill
in. The factorization cost scales as 𝑂(𝑛2), and the number of nonzeros in 
the 𝐿 and 𝑈 factors is 𝑂(𝑛4∕3). As a result, the total cost of evaluating 
𝑓 (𝑋) scales as 𝑂(𝓁𝑛7∕3).

On the other hand, if eigendecomposition is used to evaluate 𝑓 (𝑋), 
the computational cost is 𝑂(𝑛3), as the method does not leverage the 
sparsity of 𝑋. Thus, the contour integration approach with its ability 
to exploit sparsity has clear advantages for large matrices, though for 
three-dimensional systems that advantage is less pronounced than in 
lower dimension.

We summarize the computational complexities for each case in Ta
ble 3.

Improved complexity via selected inversion. The methods we use in our 
numerical tests have the complexity described above. In principle one 
can improve the computational cost further through a selected inversion 
algorithm: To compute Trace(𝑋(𝑧𝐼 −𝑋)−1) for evaluating 𝑓 using (12), 
efficient algorithms such as Pselinv [40], which are specifically de
signed to compute selected elements of a matrix inverse without re
quiring the full inverse. By leveraging the sparsity and structure of the 
matrix, Pselinv enables significant computational savings compared 
to direct inversion. The trace can be expressed as:

Trace(𝑋(𝑧𝐼 −𝑋)−1) =
∑
𝑖,𝑗 
𝑋𝑖𝑗

(
(𝑧𝐼 −𝑋)−1

)
𝑗𝑖
, (16)

where only the entries of (𝑧𝐼 − 𝑋)−1 that correspond to the sparsity 
pattern of 𝑋 are required. Using Pselinv, these entries are computed 
efficiently, avoiding the computation of the full inverse. The computa
tional cost of Pselinv is comparable to the cost of LU factorization, 
as it directly builds upon the LU decomposition of the matrix 𝑧𝐼 −𝑋. 
For sparse matrices, the cost scales with the number of nonzero elements 
and the fill-in introduced during factorization. For banded matrices with 
constant bandwidth, the cost is 𝑂(𝑛), for 2D sparse matrices, the cost is 
𝑂(𝑛3∕2), and for 3D sparse matrices, the cost is 𝑂(𝑛2). Pselinv is both 
memory-e�icient and highly parallelizable, making it ideal for large
scale problems where sparsity in the matrix can be exploited.
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Table 3
Complexity comparison for evaluating 𝐽ℎ(𝑢) in the dense and various sparse cases.

Mode Sparse 1D Sparse 2D Sparse 3D Dense 
Forward via contour 𝑂(𝓁𝑏𝑚𝑛2) 𝑂(𝓁𝑚𝑛2 log𝑛) 𝑂(𝓁𝑚𝑛7∕3) 𝑂(𝓁𝑚𝑛3)
Reverse via contour 𝑂(𝓁𝑏𝑝𝑛2) 𝑂(𝓁𝑝𝑛2 log𝑛) 𝑂(𝓁𝑝𝑛7∕3) 𝑂(𝓁𝑝𝑛3)

Forward via eigendecomposition 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3)
Reverse via eigendecomposition 𝑂(𝑝𝑛3) 𝑂(𝑝𝑛3) 𝑂(𝑝𝑛3) 𝑂(𝑝𝑛3)

Table 4
Comparison of complexity for evaluating 𝐽𝑓 (𝑢) in the dense, sparse 1D, sparse 2D, and 
sparse 3D cases. When 𝑝 ≪ 𝑛2, the cost of 𝐽𝑓 is significantly higher than the cost of 
𝐽ℎ(𝑢) and evaluating 𝐽𝑓 is therefore almost never advantageous.

Mode Sparse 1D Sparse 2D Sparse 3D Dense 
Forward via contour 𝑂(𝓁𝑏𝑚𝑛2) 𝑂(𝓁𝑚𝑛2 log𝑛) 𝑂(𝓁𝑚𝑛7∕3) 𝑂(𝓁𝑚𝑛3)
Reverse via contour 𝑂(𝓁𝑛4) 𝑂(𝓁𝑛4 log𝑛) 𝑂(𝓁𝑛13∕3) 𝑂(𝓁𝑛5)

Forward via eigendecomposition 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3)
Reverse via eigendecomposition 𝑂(𝑛5) 𝑂(𝑛5) 𝑂(𝑛5) 𝑂(𝑛5)

3.5. Accuracy

We now turn to the question of accuracy: In general, derivatives 
computed using automatic differentiation have effectively arbitrarily 
good precision since the chain rule and explicitly known derivative rules 
are used. This does not directly apply to our case, however, since the 
function whose derivative we compute is merely approximated using a 
contour integral with a finite number of quadrature points. In circum
stances where a function evaluation is subject to approximation errors, 
it is often natural to use approximate derivative schemes such as finite 
differences schemes of the desired accuracy. It is thus a natural ques
tion to ask whether the approximation accuracy of the contour integral 
methods is sufficient to where use of automatic differentiation is sensi
ble. We will provide numerical experiments to showcase the accuracy 
in Sections 4 and 5.

4. Numerical experiments

We present two toy problems to illustrate the complexity and accu
racy of the discussed method. Following these examples, we discuss our 
methodology applied to problems arising from physics, showcasing the 
method’s performance in relevant scenarios.

4.1. Implementation details

We used the ComplexElliptic.jl [63] package to compute the 
conformal maps required to implement the contour integral matrix func
tion as described in [34]. The forward mode AD examples in the toy 
problems were then computed using ForwardDiff.jl [57] while the 
reverse mode AD examples used Zygote.jl [39] and ChainRules.jl 
[73]. Companion code which reproduces the presented results is avail
able [66].

4.2. Scalar derivative

We consider the following toy problem: the composition of two func
tions 𝑔(𝑓 (𝑋)), where the functions 𝑔 and 𝑓 are defined as

𝑔(𝐴) =
∑
𝑖,𝑗 
𝐴3
𝑖𝑗
, 𝐴 = 𝑓 (𝑋) =𝑋1∕3.

The matrix 𝑋 is constructed as follows to have connectivity corre
sponding to a one-dimensional problem setting and to ensure that it is 
symmetric and positive semi-definite (SPD): Given a vector 𝑢 ∈ℝ𝑛 (i.e., 
𝑚 = 𝑛), we define

𝑋(𝑢) =𝐵(𝑢)⊤𝐵(𝑢), where

𝐵(𝑢) =

{
sin(𝑢𝑖 + 𝑢𝑗 ) + cos(𝑢𝑖𝑢𝑗 ) + exp(𝑢𝑖 − 𝑢𝑗 ), if |𝑖− 𝑗| ≤ 3,
0, otherwise.

Fig. 4a illustrates the evaluation time required to compute the gra
dient of 𝑔 with respect to 𝑢 using a contour integral quadrature with 
𝓁 = 35 quadrature points. The evaluation times are shown for both re
verse mode (blue curve) and forward mode (orange curve) automatic 
differentiation.

Remark 4.1. As expected the reverse mode is significantly more effi
cient as the matrix size increases for scalar derivatives. The observed 
deviation from the previously mentioned complexity orders is due to 
the sparsity structure present in the intended applications, which were 
thus also included in the toy examples. Matrices involved in the differen
tiation process, here 𝑋 and 𝐵, usually exhibit additional structure such 
as sparsity or even bandedness that reduce the number of operations re
quired [21]. In particular if as in this example 𝑚 = 𝑛, then bandedness 
with bandwidth 𝑠 (or equivalent sparsity structure) of the 𝑛2 ×𝑚 matrix 
𝐽𝑋 (𝑢) in Equation (13) reduces the expected asymptotic complexity in 
reverse mode to 𝑂(𝓁𝑠𝑛2) in line with our observations.

Fig. 4b shows the error between the second-order centered finite 
difference method and reverse AD using the contour integral and con
formal map approach, plotted against step size for various quadrature 
points 𝓁 = 10,15,20,25. The errors decrease as 𝓁 increases, with higher 
𝓁 values (e.g., 𝓁 ≥ 25) yielding lower errors across all step sizes. The 
dashed line representing ∝ 𝑥2 indicates the expected quadratic conver
gence for the finite difference method. The figure also highlights the 
importance of choosing an appropriate 𝓁 to balance accuracy and com
putational cost.

4.3. Jacobian

Consider the function

𝑔(𝑢) ∶= 𝑓 (𝑋(𝑢)) =
√
∇2𝐸(𝑢),

where 𝑋(𝑢) = ∇2𝐸(𝑢), 𝑓 (𝑋) =
√
𝑋 and 𝐸(𝑢), 𝑢 ∈ℝ𝑛, is given by

𝐸(𝐶;𝑢) =
∑
𝑖 

⎛⎜⎜⎝
∑
𝑗∈𝑖

𝐶𝑖𝑗 |𝑢𝑖 − 𝑢𝑗 |2 + 1
2
|𝑢𝑖 − 𝑢𝑗 |3 + |𝑢𝑖 − 𝑢𝑗 |4⎞⎟⎟⎠ . (17)
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Fig. 4. Figure (a) shows obtained evaluation time for computing the gradient of function 𝑔 with respect to m-vector 𝑢 using a contour integral quadrature with 
𝓁 = 35 quadrature points. Figure (b) shows convergence of a second order centered finite difference computation of the gradient compared to a gradient computed 
by reverse AD through the contour integral with conformal map using 𝓁 quadrature points.

Fig. 5. Figure (a) shows obtained evaluation time for computing the Jacobian of matrix X with respect to m-vector 𝑢 using a contour integral quadrature with 𝓁 = 25
quadrature points. Figure (b) shows convergence of a second order centered finite difference computation of the Jacobian of 𝑓 compared to one computed by forward 
mode AD through the contour integral with conformal map using 𝓁 quadrature points.

Here, 𝑖 indexes discrete points, 𝑖 represents the set of nearest neigh
bors of the 𝑖-th element, 𝐶𝑖𝑗 are coefficients characterizing the inter
actions between 𝑖 and 𝑗. We can think of 𝐸(𝑢) as a toy model for an 
atomistic potential energy, making this example related to the more re
alistic cases we consider in the next section.

Here, we present the computational complexity of Jacobian eval
uation using forward differentiation, comparing the approaches with 
and without coloring. The details of these methods are provided in Ap
pendix A.2. As shown in Fig. 5a, leveraging the sparsity of 𝑋 through 
coloring reduces the Jacobian evaluation cost to 𝑂(𝑚3), whereas with
out coloring, the complexity remains at 𝑂(𝑚4), as expected.

Fig. 5b shows the error between the second-order finite difference 
method and forward mode AD using the contour integral approach 
across step sizes for various quadrature points 𝓁, demonstrating that 
appropriate choice of quadrature points yields highly accurate results.

5. Application to defects in crystalline silicon

To demonstrate practical applications of our approach, we explore 
thermally activated processes in materials science, specifically focusing 
on defect migration, where matrix function derivatives play a crucial 
role. Understanding these processes is essential for predicting and opti
mizing the mechanical and electronic properties of materials [71,69,54].

We consider the free energy

 (𝑢) = (𝑢) − 𝑇(𝑢), (18)

where (𝑢) denotes the potential energy, (𝑢) represents the entropy, 
and 𝑇 is the temperature. The vibrational entropy [67,25,43] in solids, 
(𝑢), is defined as:

(𝑢) ∶= −1
2
Trace log+(F𝐻(𝑢)F), (19)
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where 𝑢 is the lattice displacement vector, and 𝐻(𝑢) = ∇2(𝑢) is the 
Hessian of the potential energy (𝑢). To create a spectral gap, we define 
a self-adjoint operator F, which serves as a preconditioner and acts as 
𝐻

−1∕2
hom

, where 𝐻hom is the Hessian of the homogeneous lattice [67,9]. 
The log+ function is defined as follows: let 𝐓 be a bounded, self-adjoint 
operator on a Hilbert space with spectrum 𝜎(𝐓) ⊂ (−∞,0] ∪ [𝑚,𝑀], 
where 0 < 𝑚 ≤𝑀 . Then, we can define a contour  that encircles the 
interval [𝑚,𝑀] while remaining in the right half-plane. We can then 
define:

log+(T) = 1 
2𝜋𝑖 ∮

log(𝑧) ⋅ Trace
(
𝑧𝐼 − T

)−1 d𝑧. (20)

Defect migration is typically analyzed using the potential energy sur
face (PES), represented by (𝑢̄) in (18), which governs the structure, 
dynamics, and thermodynamics of the system [44]. Migration behavior 
is often studied by examining stationary points on the PES, such as lo
cal minima and transition states, which map out migration pathways, 
often visualized as steepest-descent paths.

The Nudged Elastic Band (NEB) method [36] is widely used to de
termine minimum energy paths (MEPs) between known initial and final 
states on the PES. NEB methods discretize the reaction pathway into 
a series of intermediate configurations, or ‘images’, connected by elas
tic springs to ensure even distribution along the path. These images are 
optimized to remain constrained to the PES while the spring forces main
tain equidistant spacing.

While MEPs on the PES are frequently used due to their simplicity, 
they are only approximations [76] and can become increasingly inaccu
rate at elevated temperatures where entropic effects play an important 
role. For instance, it has been demonstrated in [27,29,60,15] that the 
MEPs on the free energy surface (FES),  (𝑢), provides a more accurate 
and comprehensive depiction of defect migration under finite tempera
ture conditions. By capturing more of the thermodynamic behavior of 
the system, the FES allows for the analysis of migration mechanisms, 
rate constants, and material properties that the PES alone cannot ade
quately describe. Strong entropic effects have also been observed in a va
riety of processes, such as the nucleation of dislocation loops [58,2], the 
transformation of vacancy clusters into stacking-fault tetrahedra [70], 
the growth of nano-voids under tensile stress [52], and dislocation emis
sion from crack tips [71]. In these cases, the role of entropy, particularly 
at high temperatures, becomes dominant in determining the system’s 
kinetics and overall behavior. Such entropic contributions, while in
creasingly recognized as fundamental, are impossible to capture using 
the PES alone, as it only accounts for potential energy minima and tran
sition states, neglecting the broader thermodynamic landscape.

Applying optimization methods such as NEB methods to the free en
ergy surface requires gradients of the free energy functional  (𝑢) as 
expressed in Equation (18). These gradients which drive the optimiza
tion process necessitate computing derivatives that account for both 
energetic and entropic contributions. Specifically, the gradient of  (𝑢)
with respect to the displacement field 𝑢 is

𝜕 (𝑢)
𝜕𝑢 

= 𝜕(𝑢)
𝜕𝑢 

− 𝑇 𝜕(𝑢)
𝜕𝑢 

, (21)

where 𝜕(𝑢)
𝜕𝑢 is the derivative of the potential energy, and 𝜕(𝑢)

𝜕𝑢 is the 
derivative of the entropy. The latter involves matrix derivatives that 
capture changes in entropy due to structural perturbations, which can 
be computationally expensive.

To address these challenges, various methods have been proposed 
for exploring the free energy surface in collective variable spaces. Tech
niques such as metadynamics [42,13], adaptive biasing force methods 
[19], and umbrella sampling [68] effectively sample the FES in low
dimensional spaces. However, these methods are typically less effective 
at locating saddle points in high-dimensional spaces, which are critical 
for accurately determining transition states and reaction pathways in 
complex systems. These limitations highlight the need for more efficient 

approaches to calculate free energy derivatives in high-dimensional con
texts [60].

This motivates the development of computationally efficient and 
highly accurate methods for matrix differentiation to advance our un
derstanding of defect migration and similar thermally activated pro
cesses. Next, we thus illustrate the complexity and accuracy of our 
method for evaluating entropy derivatives and then showcase its ap
plication in some practical settings.

5.1. Implementation details

In the numerical experiments that follow we explore minimum 
free energy pathways for various defects in Silicon using the differ
entiable Stillinger-Weber interatomic potential implementation in Em
piricalPotentials.jl [50]. Forward mode AD is supported in Em
piricalPotentials.jl via the ForwardDiff.jl [57] package but 
manual adjoints had to be added for the Stillinger-Weber potential to 
allow for Zygote.jl [39] and ChainRules.jl [73] support. The 
search for minimum free energy pathways is performed using the Sad
dleSearch.jl [51] package which supports string and NEB based 
searches. The Stillinger-Weber potential in our examples is employed 
purely for the sake of convenience; any interatomic potential support
ing the ForwardDiff.jl and ChainRules.jl interfaces can be used 
instead.

The source code used to generate the results is available in the com
panion code repository [66]. Animations of the migration processes are 
made available via FigShare, see [64], providing a visual representation 
of these dynamic effects. Throughout our experiments all atoms in the 
lattice are allowed to move during defect migration.

5.2. Complexity and convergence study

To demonstrate the computational complexity and convergence be
havior of evaluating the derivative of entropy 𝜕(𝑢)

𝜕𝑢 using our imple
mentation, we conducted tests on a system of silicon comprising 64 
atoms. Fig. 6a illustrates the CPU time complexities for reverse mode 
and forward mode automatic differentiation (AD) based on the proposed 
contour integral formulation. The observed complexity for forward and 
reverse mode AD, for a fixed number of quadrature points, 𝓁 scale as 
𝑂(𝑚4) and 𝑂(𝑚2) respectively. Fig. 6b showcases the error between a 
simple second order centered finite difference approach and the value 
given by reverse AD through the contour integral approach. The FD 
method effectively serves as a proxy for the true gradient up to ap
proximately 10−10, beyond which numerical precision errors limit its 
reliability. These observations allow one to assess the contour integral 
method’s accuracy as a function of 𝓁 and emphasize the importance of 
selecting an appropriate number of quadrature points. These results are 
fully consistent with our numerical study on toy problems in the previ
ous section.

5.3. Vacancy migration

Vacancies in silicon remain an extensively investigated point defect 
in semiconductor physics, due to their role in facilitating impurity dif
fusion. Here we consider vacancy migration, schematically illustrated 
in Fig. 7, which alleviates internal stresses and influences the material’s 
mechanical strength and ductility [16].

We begin by generating a diamond cubic bulk silicon system con
taining 64 atoms per supercell. To create the initial configuration, one 
atom is removed, introducing a vacancy. The system is then relaxed by 
minimizing its energy to reach equilibrium. The free-energy profiles for 
vacancy migration at various temperatures is illustrated in Fig. 7b. The 
migration path connects the minimized initial and final configurations 
on the PES. Free-energy profiles were calculated at three different tem
peratures: 0 K, 100 K, and 200 K. The 0 K pathway corresponds to the 
minimum energy path (MEP) on the potential energy surface (PES). The 
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Fig. 6. Figure (a) shows obtained evaluation time for computing the gradient of vibrational entropy in (19) with respect to a displacement vector 𝑢 of length 𝑚. Both 
methods used contour integral quadrature with 𝓁 = 20 quadrature points. Figure (b) shows convergence of a second order centered finite difference computation of 
the gradient in (19) for a bulk Silicon example to a gradient computed by reverse AD through the contour integral with conformal map using 𝓁 quadrature points.

Fig. 7. (a) Illustration of vacancy migration in silicon. The orange atom in (1) migrates to occupy the adjacent vacancy site, resulting in configuration (2). (b) 
Free-energy profiles for vacancy migration in silicon at various temperatures, illustrating the influence of temperature on the migration barrier and the entropic 
contributions that facilitate the migration process.

vacancy migration energy at 0 K is calculated to be 0.515 eV, which is 
in agreement with the literature value of 0.52 eV reported by [59]. Our 
computed migration path at 0 K also aligns closely with the one reported 
in [55].

As the temperature increases, the energy barrier shows a significant 
variation, reflecting the dynamic nature of atomic movements and their 
influence on the vacancy migration pathway.

5.3.1. Interstitial

Self-interstitials in crystalline Si introduce much stronger local dis
tortions in the crystal structure than vacancies. Interstitials typically 
occupy high-symmetry sites such as the tetrahedral or hexagonal in
terstitial sites. The migration of an interstitial atom from one site to an 
adjacent site, showcased in Fig. 8, is a process that influences material 
properties such as diffusivity and mechanical strength.

We generated a bulk silicon system consisting of 64 atoms per super
cell and generated an initial state with a tetrahedral interstitial defect 
by inserting an atom at 

(
𝑎

2 ,
𝑎

2 ,
𝑎

2 
)

, where 𝑎 is the lattice constant. The 
final state has an interstitial inserted at an adjacent tetrahedral site. To 
computed the migration path between these two states by applying the 

NEB method to the FES, to obtain free energy profiles at temperatures 
of 0 K, 200 K, and 600 K. Fig. 8 illustrates that the free energy barrier 
decreases slightly with increasing temperature. Thermal effects reduce 
the energy barrier, making interstitial migration slightly more likely at 
higher temperatures.

5.3.2. Variational TST

Understanding the rates of various thermally activated processes, 
ranging from defect formation [2] and migration [47] to creep [56] and 
catalysis [10], is crucial for the advancement and optimization of mate
rial properties and chemical processes. These rates are often calculated 
using harmonic transition state theory (HTST), where the potential en
ergy of the lattice is approximated by a second-order Taylor expansion, 
effectively assuming a quadratic potential near equilibrium positions. 
HTST can yield inaccurate predictions when the potential energy surface 
significantly deviates from this quadratic assumption or when thermal 
effects substantially influence the system’s dynamics [61]. As such, a 
more precise approach involves including non-harmonic corrections to 
resolve additional complexity found in the system’s potential landscape.
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Fig. 8. (a) Illustration of interstitial migration in silicon, with the red atom indicating the interstitial defect migrating from position 1 to 2. (b) Evolution of the 
free-energy profiles for the migration of an interstitial defect in Silicon.

Once the minimum energy path (MEP) for a reaction is determined, 
the transition rate can be defined within the framework of harmonic 
transition state theory (HTST) as:

HTST = exp
(
−𝛽

[ (𝜉saddle) − (𝜉min)
])
, (22)

where 𝜉min denotes the positions corresponding to the minimum en
ergy configuration, and 𝜉saddle represents the positions of the saddle 
configuration. The MEP can be parameterized by a reaction coordinate 
𝜉, a scalar variable that describes the progress of the system along the 
reaction path. If 𝑢(𝜉) represents the reaction path, then 𝜉 serves as a 
continuous parameter ranging from initial minimum energy configura
tion (𝜉 = 0) to the final minimum configuration (𝜉 = 1). The reaction 
coordinate provides a natural way to track changes in energy and other 
system properties along the MEP. The saddle point is identified as the 
maximum energy point along the reaction coordinate. Here,  denotes 
the free energy, and 𝛽 = 1∕(𝑘𝐵𝑇 ), where 𝑘𝐵 is the Boltzmann constant 
and 𝑇 is the temperature.

To achieve a more accurate description of defect migration and for
mation in silicon, one can incorporate higher-order terms in the tran
sition state formulation. These additional terms introduce corrections 
to both the energy and entropy contributions, impacting the calculated 
transition rates and leading to a more precise and reliable model of de
fect dynamics. Variational transition state theory (VTST) [2,3] provides 
a simple correction of this kind. Below, we briefly review the idea.

One can equivalently express the energy  and entropy  as a func
tion of the reaction coordinate 𝜉 and expand both along the reaction 
coordinate on the MEP around the saddle point 𝜉 = 𝜉saddle:

(𝜉saddle + 𝜉) ≈ (𝜉saddle) +
1
2
𝜉𝜉(𝜉saddle)𝜉2, (23)

(𝜉saddle + 𝜉) ≈ (𝜉saddle) + 𝜉(𝜉saddle)𝜉, (24)

where 𝜉𝜉 = 𝜕
2
𝜕𝜉2

and 𝜉 = 𝜕
𝜕𝜉 

are scalar functions. We can formally 

approximate

 (𝜉) ≈ (𝜉saddle) +
1
2
𝜉𝜉(𝜉saddle)𝜉2 − 𝑇(𝜉saddle) − 𝑇𝜉(𝜉saddle)𝜉. (25)

Since we have a maximum at the saddle point along the reaction 
coordinates on the MEP, we take the derivative of the free energy with 
respect to 𝜉, the displacement along the reaction coordinates. This leads 
to the following condition for the stationary point:

𝜕
𝜕𝜉 

= 𝜉𝜉(𝜉saddle)𝜉 − 𝑇𝜉(𝜉saddle) = 0, (26)

with solution

𝜉 = 𝑇
𝜉(𝜉saddle) 
𝜉𝜉(𝜉saddle)

. (27)

Fig. 9. Estimated migration rates obtained from the variational free energy bar
riers for vacancy and interstitial migration.

Substituting this back into the free energy expression, we get:

 (𝑇 ) ≈ (𝜉saddle) − 𝑇(𝜉saddle) −
1
2
𝑇 2

2
𝜉
(𝜉saddle) 

𝜉𝜉(𝜉saddle)
. (28)

Thus,

𝑣𝑇𝑆𝑇 (𝑇 ) ≈ 𝐻𝑇𝑆𝑇 (𝑇 ) − 1
2
𝑇 2

2
𝜉
(𝜉saddle) 

𝜉𝜉(𝜉saddle)
. (29)

Therefore, the temperature-dependent variational transition rate is:

𝑘𝑣𝑇𝑆𝑇 (𝑇 ) = exp(−𝛽𝐻𝑇𝑆𝑇 ) exp
(
𝛽𝑇 2

2
𝜉
(𝜉saddle) 

2𝜉𝜉(𝜉saddle)

)
= 𝑘𝐻𝑇𝑆𝑇 exp

(
𝛽𝑇 2𝑇𝑒)

(30)

where 𝑇𝑒 =
2
𝜉
(𝜉saddle) 

2𝜉𝜉 (𝜉saddle)
, and is referred to as the ``effective temperature''. 

As shown in previous sections, 𝜉 can be easily obtained using our dif
ferentiation framework without the need to rely on approximation or 
sampling techniques which are often used for this evaluation [2]. To 
compare the formation rates estimated using harmonic and variational 
TST, we examine the migration of vacancy and interstitial defects based 
on the free energy profiles discussed in the previous subsections.

Fig. 9 presents the migration rates obtained using harmonic transi
tion state theory (HTST) and variational transition state theory (VTST). 
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For vacancy migration, as the temperature increases, the difference be
tween the predictions of VTST and HTST becomes more apparent. This 
indicates that harmonic TST overestimates the migration rate and is, 
therefore, less reliable for high-temperature processes. This is evident 
from the fact that 𝑤𝑤(𝜉saddle) < 0, leading to

exp
(
− 𝛽 𝑇

2

2 
𝑇𝑒

)
< 1.

In contrast, for interstitial migration, the temperature correction 𝑇𝑒 is 
small, and the overestimation of the rate by HTST is negligible even at 
elevated temperatures.

For certain systems entropic contributions become increasingly sig
nificant at elevated temperatures as the vibrational modes of atoms ex
hibit greater anharmonicity. This leads to a wider distribution of energy 
states that harmonic TST can fail to capture. More advanced methods 
such as VTST can be used in such circumstances to obtain more reliable 
predictions of migration rates.

Remark 5.1. (Scalability) The numerical experiments of Sections 4--5
employ matrices up to hundreds of rows, while many problems of 
scientific interest may be of a much larger scale. The cost estimates 
in Section 3 show that the contour formulation becomes increasingly 
asymptotically favorable for much larger systems, provided that the lin
ear solvers optimally exploit sparsity. When the linear systems become 
very large, the bottleneck is no longer the contour integral itself but 
the memory needed for the sparse LU factorizations. At that point it 
is natural to switch to a distributed sparse solver [8,24,75,45], which 
splits both the storage and the computations over several processors. Ad
vanced techniques such as selected inversion [40,46] can further reduce 
the computational cost for very large systems.

6. Conclusion

In this paper we showed how to accurately and efficiently compute 
the derivatives of functions of matrix families 𝑋𝜃 and their derivatives 
with respect to the entries of 𝜃𝑗 of 𝜃. The method is an extension of an 
established approach for matrix functions due to Hale, Higham and Tre
fethen [34] and thus begins with the Cauchy integral definition of matrix 
functions and computes appropriate conformal maps and quadrature in 
the complex plane. We explained in detail the resulting computational 
complexity for both reverse and forward mode differentiation.

With the extension to derivatives in hand, we demonstrated the util
ity of the approach in natural applications in the context of molecular 
simulations and material modeling. We considered questions involving 
the entropy of Silicon systems which require repeated computation of 
matrix trace-logarithms and gradients thereof for saddle point searches. 
As the conformal map based method allows defining straightforward 
adjoints for the matrix logarithm, all that is required in principle for effi
cient reverse mode automatic differentiation of such matrix functions is 
a reverse mode compatible implementation of the involved interatomic 
potential (in the case of our Silicon example this role is played by the 
Stillinger-Weber potential).

Our aim was to demonstrate that employing modern differentiation 
algorithms not only results in numerically robust and accurate deriva
tives but also in improved computational performance, and that such an 
approach is entirely practical within a modern software stack.
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Appendix A

A.1. Jacobi elliptic functions

We begin with some definitions and properties of Jacobi elliptic func
tions as e.g. detailed in [1,11].

A.1.1. Elliptic functions

A doubly periodic meromorphic function is called an elliptic function. 
Let a parameter 𝑚 and complementary parameter 𝑝 be given satisfying

𝑚+ 𝑝 = 1. (31)

If 𝑚 ∈ℝ then in what follows one can assume without loss of generality 
that 0 ≤𝑚 ≤ 1.

A.1.2. Quarter-periods

The quarter-periods 𝐾 and 𝑖𝐾 ′ are defined by the integrals

𝐾(𝑚) =𝐾 =

𝜋

2 

∫
0 

𝑑𝜃 √
1 −𝑚 sin2 𝜃

, (32)

𝑖𝐾 ′(𝑚) = 𝑖𝐾 ′ =

𝜋

2 

∫
0 

𝑑𝜃 √
1 − 𝑝 sin2 𝜃

, (33)

where 𝐾,𝐾 ′ ∈ℝ. 𝐾 is called the real quarter-period and 𝑖𝐾 ′ the imag
inary quarter-period. These quantities satisfy the relationships

𝐾(𝑚) =𝐾(𝑝) =𝐾 ′(1 −𝑚). (34)

Moreover, if any one of the numbers 𝑚,𝑝,𝐾(𝑚),𝐾 ′(𝑚), 𝐾
′(𝑚)
𝐾(𝑚) are given, 

all the rest are uniquely determined through the above relations, i.e. 𝐾
and 𝐾 ′ cannot be independently chosen.

A.1.3. Jacobi elliptic functions

The Jacobi elliptic functions are widely studied standard forms of 
elliptic functions represented by sn(𝑢, 𝑘), cn(𝑢, 𝑘), and dn(𝑢, 𝑘), where 𝑘
is termed the elliptic modulus. They originate from the inverse of the 
elliptic integral of the first kind,

𝑢 = 𝐹 (𝜑,𝑘) =

𝜑 

∫
0 

𝑑𝑡 √
1 − 𝑘2 sin2 𝑡

, (35)

where 𝜑 as am(𝑢, 𝑘) denotes the Jacobian amplitude. This leads to the 
relationships

sin𝜑 = sin(am(𝑢, 𝑘)) = sn(𝑢, 𝑘), (36)

cos𝜑 = cos(am(𝑢, 𝑘)) = cn(𝑢, 𝑘), (37)√
1 − 𝑘2 sin2𝜑 =

√
1 − 𝑘2 sin2(am(𝑢, 𝑘)) = dn(𝑢, 𝑘). (38)
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These functions extend trigonometric functions to be doubly periodic, 
satisfying:

sn(𝑢,0) = sin𝑢, (39)

cn(𝑢,0) = cos𝑢, (40)

dn(𝑢,0) = 1. (41)

A.1.4. Identities for Jacobi elliptic functions

The established identities for Jacobi elliptic functions are given by 
the following equations:

sn2𝑢+ cn2𝑢 = 1, (42)

𝑘2sn2𝑢+ dn2𝑢 = 1, (43)

𝑘2cn2𝑢+ 𝑘′ 2 = dn2𝑢, (44)

cn2𝑢+ 𝑘′ 2sn2𝑢 = dn2𝑢. (45)

A.1.5. Specific values

Specific noteworthy values are listed below:

cn(0, 𝑘) = cn(0) = 1, (46)

cn(𝐾(𝑘), 𝑘) = cn(𝐾(𝑘)) = 0, (47)

dn(0, 𝑘) = dn(0) = 1, (48)

dn(𝐾(𝑘), 𝑘) = dn(𝐾(𝑘)) = 𝑘′ =
√
1 − 𝑘2, (49)

sn(0, 𝑘) = sn(0) = 0, (50)

sn(𝐾(𝑘), 𝑘) = sn(𝐾(𝑘)) = 1, (51)

where 𝐾 =𝐾(𝑘) signifies the complete elliptic integral of the first kind 
and 𝑘′ =

√
1 − 𝑘2 represents the complementary elliptic modulus [74]. 

Fig. 10 illustrates the Jacobi elliptic functions for 𝑘 = 0.7.

A.1.6. Complex arguments

When dealing with complex arguments, the Jacobi elliptic functions 
can be extended as follows:

sn(𝑢+ 𝑖𝑣) = sn(𝑢, 𝑘)dn(𝑣,𝑘′) 
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

+ 𝑖cn(𝑢, 𝑘)dn(𝑢, 𝑘)sn(𝑣,𝑘′)cn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′) 

,

(52)

cn(𝑢+ 𝑖𝑣) = cn(𝑢, 𝑘)cn(𝑣,𝑘′) 
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

− 𝑖sn(𝑢, 𝑘)dn(𝑢, 𝑘)sn(𝑣,𝑘′)dn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′) 

,

(53)

dn(𝑢+ 𝑖𝑣) = dn(𝑢, 𝑘)cn(𝑣,𝑘′)dn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′) 

− 𝑖𝑘
2sn(𝑢, 𝑘)cn(𝑢, 𝑘)sn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′) 

.

(54)

A.2. Strategies for utilizing matrix sparsity

Leveraging potential sparsity of the matrix 𝑋 can significantly en
hance the efficiency of computing its Jacobian. Consider the toy model 
presented in Section 4.3:

𝐸(𝐶;𝑢) =
∑
𝑖 

⎛⎜⎜⎝
∑
𝑗∈𝑖

𝐶𝑖𝑗 |𝑢𝑖 − 𝑢𝑗 |2 + 𝛿|𝑢𝑖 − 𝑢𝑗 |3 + |𝑢𝑖 − 𝑢𝑗 |4⎞⎟⎟⎠ . (55)

Consider a system composed of 8 atoms. Our objective is to compute 
the Jacobian of the Hessian matrix, which corresponds to the matrix of 
second derivatives of the energy (17) with respect to the displacements 
in such a system. The Jacobian is shown in Fig. 11 (a). Looking at this 
sparse matrix, we can see that there is a lot of free space in the ma
trix. We aim to compress the sparse matrix into a denser format shown 
in Figs. 11 (b) and (c), allowing for the processing of non-zero entries 

Fig. 10. Jacobi Elliptic Functions sn(𝑢, 𝑘), cn(𝑢, 𝑘), dn(𝑢, 𝑘) for 𝑘 = 0.7. 

with significantly fewer function calls than previously necessary. Al
though both matrices (d) and (e) represent the Jacobian in a denser 
format, the main task is to find the smallest dense matrix which in our 
case is (e). This technique uses a strategy from graph theory [26,41], 
aiming to combine columns with non-overlapping non-zero elements, 
referred to as structurally orthogonal columns into single groups, thus re
ducing the total number of groups needed. To achieve this, one can use 
a number of graph coloring algorithms including Contraction Coloring, 
Greedy distance-k coloring, and Backtracking Sequential Coloring. We 
will briefly go over the Greedy distance-1 coloring algorithm which re
sults were also shown in Fig. 11 (f)-(g) [65].

We begin with a brief overview of essential graph theory termi
nology. A graph 𝐺 is formally defined as an ordered pair 𝐺 = (𝑉 ,𝐸), 
where 𝑉 is a finite, non-empty set of vertices, and 𝐸 is a set compris
ing unordered pairs of distinct vertices, known as edges. Vertices 𝑢 and 
𝑣 are adjacent if an edge (𝑢, 𝑣) is included in 𝐸; otherwise, they are de
scribed as non-adjacent. Within a graph, a path of length 𝑙 (measured in 
edges) is a sequence of vertices 𝑣1, 𝑣2,… , 𝑣𝑙+1, where each consecutive 
pair (𝑣𝑖, 𝑣𝑖+1) is adjacent, for all 1 ≤ 𝑖 ≤ 𝑙, with each vertex appearing 
uniquely in the sequence. Vertices 𝑢 and 𝑣 are considered distance-𝑘
neighbors if the shortest path between them has a length of 𝑘 or less. 
The set of all distance-𝑘 neighbors of a vertex 𝑢, denoted 𝑁𝑘(𝑢), does not 
include 𝑢 itself. Additionally, if two vertices are distance-𝑘 neighbors, 
they also qualify as distance-𝑘′ neighbors for any 𝑘′ > 𝑘.

A graph is categorized as bipartite if its vertex set 𝑉 can be parti
tioned into two disjoint subsets 𝑉1 and 𝑉2, such that every edge connects 
a vertex from 𝑉1 to one from 𝑉2. There are no edges between vertices 
within the same subset, which ensures that 𝑉1 and 𝑉2 comprehensively 
separate the vertices of the graph.

A distance-𝑘 vertex coloring of a graph 𝐺 = (𝑉 ,𝐸) is a labeling func
tion 𝜑 ∶ 𝑉 → {1,2,… , 𝑝} that assigns different colors to any pair of 
distance-𝑘 neighbors. The minimum number of colors needed to estab
lish such a coloring for graph 𝐺 is termed the 𝑘-chromatic number, de
noted as 𝜒𝑘(𝐺). If only a specific subset 𝑊 ⊂ 𝑉 of the vertices is colored, 
the coloring is referred to as partial. Specifically, a partial distance-𝑘
coloring on 𝑊 is defined by a function 𝜑 ∶𝑊 → {1,2,… , 𝑝} such that 
𝜑(𝑢) ≠ 𝜑(𝑣) for any two vertices 𝑢 and 𝑣 within 𝑊 that are distance-𝑘
neighbors. An example of such a distance-2 coloring is illustrated on the 
right side of Fig. 11.

The following lemma provides a graph-theoretical characterization 
of structural orthogonality for a nonsymmetric matrix.

Lemma A.1. [26, Lemma 3.4] Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐺𝑏(𝐴) =
(𝑉1, 𝑉2,𝐸) be its bipartite graph. Two columns (or rows) in 𝐴 are structurally 
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Fig. 11. The process of compressing the Jacobian matrix of the Hessian of toy model (17) with 8 atoms in two partitions (a)--(e). Each partition is also represented 
as a distance-1 coloring in a column intersection graph (f)-(g).

orthogonal if and only if the corresponding vertices in 𝐺𝑏(𝐴) are at a distance 
greater than two from each other.

According to Lemma A.1, determining a structurally orthogonal par
tition of the columns of a matrix 𝐴 corresponds to attaining a partial 
distance-2 coloring of its bipartite graph 𝐺𝑏(𝐴) = (𝑉1, 𝑉2,𝐸) specifically 
applied to 𝑉2. This coloring is termed partial as it does not extend to 𝑉1. 
Theorem 3.5 provides a formal statement of this relationship.

Theorem A.1. [26, Theorem 3.5] Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐺𝑏(𝐴) =
(𝑉1, 𝑉2,𝐸) represent its bipartite graph. A function 𝜑 constitutes a partial 
distance-2 coloring of 𝐺𝑏(𝐴) on 𝑉2 if and only if 𝜑 generates a structurally 
orthogonal partition of the columns of 𝐴.

Now we can reformulate our main problem as follows: Given the bi

partite graph 𝐺𝑏(𝐴) = (𝑉1, 𝑉2,𝐸) that represents the sparsity structure of 
an 𝑚 × 𝑛 matrix 𝐴, the objective is to find a partial distance-2 coloring of 
𝐺𝑏(𝐴) on 𝑉2 that utilizes the minimal number of colors. This coloring strat

egy aims to efficiently partition the columns of 𝐴 into structurally orthogonal 
sets, corresponding to the vertices in 𝑉2, while minimizing the color count.

To solve this problem we can use the greedy distance-2 coloring al
gorithm, shown in 1. We initially need to represent our Jacobian using 
a graph. Given a matrix 𝐴 ∈ ℝ𝑚×𝑛, we can represent the structure of 
𝐴 using a bipartite graph 𝐺 = (𝑉 ,𝐸). The construction process for the 
bipartite graph is outlined as follows:

1. Create two disjoint sets of vertices, 𝑈 and 𝑊 , where 𝑈 corresponds 
to the rows of 𝐴 and 𝑊 corresponds to the columns of 𝐴. Thus, 
𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚} and 𝑊 = {𝑤1,𝑤2,… ,𝑤𝑛}.

2. The set of vertices 𝑉 is the union of 𝑈 and 𝑊 , i.e., 𝑉 =𝑈 ∪𝑊 .
3. For each non-zero entry 𝐴𝑖𝑗 in the matrix 𝐴, add an edge (𝑢𝑖,𝑤𝑗 )

to the set of edges 𝐸. This implies there is an edge between vertex 
𝑢𝑖 ∈𝑈 and vertex 𝑤𝑗 ∈𝑊 if and only if the entry 𝐴𝑖𝑗 is non-zero.

This bipartite graph representation, 𝐺, captures the interactions be
tween the rows and columns of 𝐴 based on its non-zero entries. It allows 
for a visual and analytical understanding of the matrix’s structure, and 
can help us use the coloring algorithms that exploit sparsity patterns 
for improved computational efficiency. Below, we outline the detailed 

steps and the corresponding algorithm that collectively streamline this 
process:

1. Graph Representation of Sparsity: First, the sparsity pattern of 
the Jacobian matrix 𝐽 is modeled as a graph 𝐺 = (𝑉 ,𝐸), where the 
vertices 𝑉 represent the matrix’s rows and columns, and the edges 
𝐸 correspond to non-zero entries in 𝐽 .

2. Applying a Greedy Distance-2 Coloring Algorithm: The coloring 
of graph 𝐺 is executed through a methodical greedy algorithm that 
ensures no two vertices within two edges of each other share the 
same color, reflecting the distance-2 coloring strategy necessary for 
avoiding computational interference:
(a) Initially, all vertices are uncolored.
(b) The coloring process is iterative, with each uncolored vertex 

being assigned the least positive integer color that is not used 
by its distance-1 and distance-2 neighbors, ensuring that the 
coloring satisfies the distance-2 constraints.

3. Constructing Perturbation Vectors: For every unique color as
signed, a corresponding perturbation vector 𝑑 is created. This vec
tor has elements set to 1 for indices colored with the current color 
and 0 elsewhere.

4. Evaluating the Jacobian: Using each perturbation vector 𝑑, the 
function 𝐹 (𝑥 + 𝜖𝑑) is evaluated to ascertain the non-zero compo
nents of the Jacobian matrix that correspond to each color. This 
step is crucial for identifying which parts of the matrix can be inde
pendently calculated, thereby enhancing computational efficiency.

Algorithm 1, operationalizes the second step of this process. Once a 
group is determined, centered finite difference or automatic differenti
ation [63] can be used to calculate the directional derivatives along the 
compressed matrix directions. For more details on the graph coloring 
method for computing derivatives we refer to [26].

Data availability

I have shared the code at the attach file step.

EntropyGrad.jl (Original data) (Github)
Animations of migration paths for defects in silicon crystals at 100 K

(Original data) (Figshare)
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Algorithm 1 A greedy distance-2 coloring algorithm. [26, Algorithm 
3.1].
1: procedure D2ColoringAlg(𝐺 = (𝑉 ,𝐸))
2: Let 𝑣1, 𝑣2,… , 𝑣|𝑉 | be a given ordering of 𝑉
3: Initialize ForbiddenColors with some value 𝑎∉ 𝑉
4: for 𝑖← 1 to |𝑉 | do

5: for each colored vertex 𝑤∈𝑁1(𝑣𝑖) do

6: ForbiddenColors[𝑐𝑜𝑙𝑜𝑟[𝑤]]← 𝑣𝑖
7: for each colored vertex 𝑥∈𝑁1(𝑤) do

8: ForbiddenColors[𝑐𝑜𝑙𝑜𝑟[𝑥]]← 𝑣𝑖
9: end for

10: end for

11: 𝑐𝑜𝑙𝑜𝑟[𝑣𝑖]←min{𝑐 > 0 ∶ ForbiddenColors[𝑐] ≠ 𝑣𝑖}
12: end for

13: end procedure
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