
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Fast automatically differentiable matrix functions and applications in

molecular simulations
Tina Torabi a, ,∗,1, Timon S. Gutleb b,1, Christoph Ortner a

a Department of Mathematics, University of British Columbia, Vancouver, V6T1Z2, BC, Canada
b School of Computer Science, University of Leeds, Leeds, LS2 9JT, UK

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Blum Volker

Dataset link: EntropyGrad.jl (Original data),
Animations of migration paths for defects in
silicon crystals at 100~K (Original data)

We describe efficient differentiation methods for computing Jacobians and gradients of a large class of matrix
functions including the matrix logarithm log(𝐴) and 𝑝-th roots 𝐴

1
𝑝 . We exploit contour integrals and conformal

maps as described by Hale et al. (2008) [34] for evaluation and differentiation and analyze the computational
complexity as well as numerical accuracy compared to high accuracy finite difference methods. As a demonstrator
application we compute properties of structural defects in silicon crystals at positive temperatures, requiring
efficient and accurate gradients of matrix trace-logarithms.

1. Introduction

Matrix functions have long been integral to mathematical and scien
tific disciplines and thus have a wide range of applications [49,37,28]
in fields such as network analysis [6], control systems [23], matrix func
tion neural networks [4], and solid state physics [14,9,67]. For instance,
in materials science, matrix functions are indispensable for calculating
vibrational entropy, which provides insights into the impact of thermal
vibrations on material properties [67,9].

Despite their broad applicability, the computation of derivatives of
matrix functions—in particular for matrix families 𝑋𝜃 parameterized by
a vector 𝜃�-remains a significant computational challenge. This chal
lenge is particularly acute in high-dimensional systems, where conven
tional methods often become computationally prohibitive. For instance,
in the study of thermally activated processes [12] precise calculations of
free energy derivatives are required. Conventional approaches often rely
on potential energy surface (PES) approximations, which, while compu
tationally feasible, can introduce significant errors when entropy plays
a major role. To accurately capture the full behavior of such systems,
it is necessary to consider the free energy surface (FES) instead, which
requires the computation of more complex matrix function derivatives.

In this paper we introduce a method that leverages analytic func
tional calculus in conjunction with both forward and reverse mode au
tomatic differentiation (AD). Our objective is to develop a robust frame
work that significantly enhances the efficiency and scalability of com

* Corresponding author.
E-mail addresses: torabit@student.ubc.ca (T. Torabi), T.S.Gutleb@leeds.ac.uk (T.S. Gutleb), ortner@math.ubc.ca (C. Ortner).

1 These authors contributed equally to this work.

puting derivatives of matrix functions. Our approach streamlines com
putational implementation and expands the potential applications of
matrix function derivatives to more complex higher-dimensional prob
lems.

2. Matrix functions

2.1. Analytic matrix functions

We use the term matrix function to refer to a matrix-valued extension
of a scalar function 𝑓 such that 𝑓 (𝑋) with 𝑋 ∈ ℂ𝑛×𝑛 is a computable
matrix retaining the dimensions of 𝑋. If 𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥+⋯+ 𝑎𝐾𝑥𝐾 is
a polynomial, this extension is given by

𝑓 (𝑋) =
𝐾∑
𝑘=0
𝑎𝑘𝑋

𝑘,

with 𝑋0 = 𝐼𝑛, the 𝑛× 𝑛 identity matrix. For general continuous 𝑓 , 𝑓 (𝑋)
is defined via density of polynomials. Several approaches for evaluating
matrix functions have been considered in the literature [37], e.g. via
the eigendecomposition (or more generally the Jordan canonical form),
or via a specific polynomial interpolation scheme. In this work we are
primarily concerned with evaluating analytic matrix functions.

Suppose that 𝑓 ∶ ℂ → ℂ is analytic on a closed set  ⊂ ℂ, where
 is an open set containing the spectrum of a matrix 𝑋 ∈ ℂ𝑛×𝑛; i.e.,

https://doi.org/10.1016/j.cpc.2025.109832
Received 14 January 2025; Received in revised form 21 May 2025; Accepted 26 August 2025

Computer Physics Communications 317 (2025) 109832

Available online 9 September 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0003-2094-5899
https://github.com/tinatorabi/EntropyGrad.jl
https://figshare.com/articles/media/Animations_of_migration_paths_for_defects_in_silicon_crystals_at_100K/27003448/3
https://figshare.com/articles/media/Animations_of_migration_paths_for_defects_in_silicon_crystals_at_100K/27003448/3
mailto:torabit@student.ubc.ca
mailto:T.S.Gutleb@leeds.ac.uk
mailto:ortner@math.ubc.ca
https://doi.org/10.1016/j.cpc.2025.109832
https://doi.org/10.1016/j.cpc.2025.109832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109832&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 1. Figure (a) depicts the spectrum of 𝑋 along with the appropriate contour
. Figure (b) demonstrates mapping the entire doubly connected domain of
analyticity Ξ, onto an annulus region 𝑋 through a conformal map. In this figure,
the interval of singularities corresponds to the outer boundary of the annulus,
while the interval including the spectrum aligns with the dashed inner boundary
circle. We then apply the trapezoid rule over a circle in the annulus.

𝜎(𝑋) ⊂ . Assume further that the boundary,  ∶= 𝜕, is comprised
of a finite number of closed rectifiable Jordan curves, encircling 𝜎(𝑋)
once in the counterclockwise direction. Then 𝑓 (𝑋) can be expressed as
a Riemann contour integral over  as follows:

𝑓 (𝑋) = 1
2𝜋𝑖 ∮

𝑓 (𝑧) (𝑧𝐼 −𝑋)−1 d𝑧. (1)

2.2. Fast computation of matrix functions 𝑓 (𝑋)

In physics and engineering applications, performant numerical eval
uation of matrix functions is often essential. Hale et al. [34] demon
strated that the Cauchy integral definition in (1) is particularly useful for
numerical computations. They described an efficient approach utilizing
(1) for matrices 𝐴 whose eigenvalues are located on or near the positive
real axis (0,∞), and for functions 𝑓 (𝑧) such as 𝑧𝛼 or log𝑧, which are an
alytic except for the presence of singularities or a branch cut near the
negative real axis (−∞,0]. This section reviews their method which we
use in subsequent sections to also compute derivatives of matrix func
tions.

Consider a matrix 𝑋 with real entries and eigenvalues in (0,∞) as
illustrated in Fig. 1a. While 𝑋 is symmetric in many important cases,
facilitating the application of trapezoidal sums, symmetry is not essen
tial for the methods presented and will thus not be assumed. We will
refer to the minimum and maximum eigenvalues of 𝑋 as m and M, re
spectively. In cases where 𝑋 is either symmetric or normal, the 2-norm
condition number is given by the ratio M∕m. We will generally assume
that m and M are known though we note that they would typically only
be estimated in practice. We further assume that the spectrum 𝜎(𝑋)
completely fills the interval [m,M], without significant gaps and that
the function 𝑓 is analytic in the slit complex plane ℂ ⧵ (−∞,0]. At first
glance, one might think of surrounding [m,M] by an appropriate con
tour, such as depicted in Fig. 1a, followed by applying the trapezoid rule
to approximate the integral. However, for ill-conditioned matrices this
is inefficient as it necessitates 𝑂(𝑀∕𝑚) linear solves to achieve typical
accuracy requirements. The techniques suggested in [34] leverage vari
able transformations and conformal mappings to optimize the choice
of contour points, effectively reducing the computational complexity to
𝑂(log(𝑀∕𝑚)).

The conformal mapping employed involves multiple transformations
designed to map the region of analyticity of 𝑓 and (𝑧𝐼 −𝑋)−1, charac
terized by the doubly connected set Ξ =ℂ ⧵ ((−∞,0] ∪ [𝑚2 ,

𝑀

2]), onto an
annulus 𝐴 = {𝑧 ∈ ℂ ∶ 𝑟 < |𝑧| < 𝑅}, where 𝑟 and 𝑅 represent the inner
and outer radii of the annulus respectively. We show a schematic of this
transformation in Fig. 1b. The question of how to map Ξ to the annulus
𝐴 and vice versa was answered by Hale et al. [34] in three steps: Start
ing in the 𝑠-plane, we first map the annulus to a rectangle with vertices
±𝐾 and ±𝐾 + 𝑖𝐾 ′, using a logarithmic transformation

𝑡(𝑠) = 2𝐾𝑖
𝜋

log
(
− 𝑖𝑠
𝑟

)
, (2)

where 𝐾,𝐾 ′ denote the complete elliptic integrals. For more details on
Jacobi elliptic functions and integrals, see Appendix A.1. Next, the rect
angle is mapped to the upper half-plane in the 𝑢-plane by the Jacobian
elliptic function

𝑢(𝑡) = sn(𝑡|𝑘2), 𝑘 =
(𝑀∕𝑚)1∕2 − 1
(𝑀∕𝑚)1∕2 + 1

. (3)

A Möbius transformation is then applied to map the upper half-plane to
the 𝑧-plane

𝑧(𝑢) = (𝑀∕𝑚)1∕2
(
𝑘−1 + 𝑢
𝑘−1 − 𝑢

)
. (4)

This final transformation is designed to distribute the eigenvalues of
𝑋 evenly along the real axis, thus facilitating the application of the
trapezoidal rule [34]. The steps of this conformal map are shown in
Fig. 2. The integral in (1) can be reformulated as follows:

𝑓 (𝑋) = − 𝑋

2𝜋𝑖

3𝐾+𝑖𝐾′∕2

∫
−𝐾+𝑖𝐾′∕2

𝑓 (𝑧(𝑡))(𝑧(𝑡) −𝑋)−1𝑧−1 d𝑧
d𝑢

d𝑢
d𝑡

d𝑡, (5)

where the interval from −𝐾+ 𝑖𝐾 ′∕2 to 𝐾+ 𝑖𝐾 ′∕2 reflects the segment of
Γ in the upper half-plane, extended to 3𝐾 + 𝑖𝐾 ′∕2 to include the lower
half-plane contribution, with 𝑧 transformations provided by:

𝑑𝑧

𝑑𝑢
=

2𝑘−1
√
𝑚𝑀

(𝑘1 − 𝑢2)2
, 𝑑𝑢

𝑑𝑡
= sn(𝑡) =

√
1 − 𝑘2𝑢2 = cn(𝑡)dn(𝑡). (6)

Here, cn and dn are standard Jacobi elliptic functions [20, (22.2.4
22.2.6)]. Therefore, the expression for 𝑓 (𝑋) becomes:

𝑓 (𝑋) = −
𝑋
√
𝑚𝑀

𝜋𝑘

3𝐾+𝑖𝐾′∕2

∫
−𝐾+𝑖𝐾′∕2

𝑓 (𝑧(𝑡))(𝑧(𝑡) −𝑋)−1𝑧−1cn(𝑡)dn(𝑡)
(𝑘−1 − 𝑢)2

d𝑡. (7)

Given that 𝑋 is real, the integrand is real-symmetric, implying that 𝑓 (𝑋)
is effectively double the real part of the integral evaluated over the first
half of the contour. Simplifying, we have:

𝑓 (𝑋) = −
2𝑋

√
𝑚𝑀

𝜋𝑘
Im

𝐾+𝑖𝐾′∕2

∫
−𝐾+𝑖𝐾′∕2

𝑓 (𝑧(𝑡))(𝑧(𝑡) −𝑋)−1𝑧−1cn(𝑡)dn(𝑡)
(𝑘−1 − 𝑢)2

d𝑡.

(8)

Applying the trapezoidal rule, with 𝑡𝑗 = −𝐾 + 𝑖𝐾′

2 +2 (𝑗−1∕2)𝐾
𝑁

for 𝑗 =
1,… ,𝑁 , representing 𝑁 equidistant points in −𝐾 + 𝑖𝐾 ′∕2,𝐾 + 𝑖𝐾 ′∕2,
results in

𝑓𝑁 (𝑋) = −
4𝐾𝑋

√
𝑚𝑀

𝜋𝑁𝑘
Im

(
𝑁∑
𝑗=1
𝑓 (𝑧(𝑡𝑗))

(𝑧(𝑡𝑗)𝐼 −𝑋)−1cn(𝑡𝑗)dn(𝑡𝑗)
𝑧(𝑡𝑗)(𝑘−1 − 𝑢(𝑡𝑗))2

)
.

(9)

The convergence rate of the numerical approximation of 𝑓 (𝑋) using
an 𝑁 -point quadrature formula to the true value of 𝑓 (𝑋) is given in [34,
Theorem 1]. Specifically, the error between the actual function 𝑓 (𝑋)
and the numerical approximation 𝑓𝑁 (𝑋) is bounded by:

‖𝑓 (𝑋) − 𝑓𝑁 (𝑋)‖ =𝑂(
𝑒−𝜋

2𝑁∕ log(𝑀∕𝑚+3)
)
. (10)

It is noteworthy that when 𝑓 has a singularity at 𝑧 = 0 but just
a branch cut on (−∞,0), the above mentioned method is not as effi
cient as in the case when 𝑓 has singularities on (−∞,0). To reach fast
convergence, Hale et al. [34] proposed a change of variable 𝑤 =

√
𝑧,

d𝑧 = 2𝑤 d𝑤, under which (1) becomes

𝑓 (𝑋) = 𝑋
𝜋𝑖 ∫𝑤

𝑤−1𝑓 (𝑤2)(𝑤2 −𝑋)−1d𝑤. (11)

Computer Physics Communications 317 (2025) 109832

2

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 2. Steps of the conformal map shown in detail. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In the revised approach, the branch cut of the function 𝑓 (𝑧) along the
negative real axis in the 𝑧-plane is unfolded to the imaginary axis in the
𝑤-plane, allowing 𝑓 (𝑧) to be analytically continued as 𝑓 (𝑤2) across the
entire slit 𝑤-plane, i.e., ℂ ⧵ (−∞,0]. The method involves a contour in
tegration within a modified region, specifically enclosing [𝑚1∕2,𝑀1∕2]
in the 𝑤-plane. This adaptation improves the domain from [𝑚,𝑀] to
[𝑚1∕2,𝑀1∕2], enabling a more effective application of the previous com
putational techniques.

The expression used for this refined method is

𝑓𝑁 (𝑋)=−
8𝐾𝑋 4

√
𝑚𝑀

𝜋𝑁𝑘
Im

(
𝑁∑
𝑗=1
𝑓 (𝑤(𝑡𝑗)2)

(𝑤(𝑡𝑗)2𝐼 −𝑋)−1cn(𝑡𝑗)dn(𝑡𝑗)
𝑤(𝑡𝑗)(𝑘−1 − 𝑢(𝑡𝑗))2

)
,

(12)

where the 𝑡𝑗 are specified by the modified equations, reflecting changes
in the contour parameters:

𝑤 = 4√
𝑚𝑀

𝑘−1 + sn(𝑡)
𝑘−1 − sn(𝑡)

, 𝑘 =
4
√
𝑀∕𝑚− 1

4
√
𝑀∕𝑚+ 1

.

These adjustments allow for precise integration over the new contour,
efficiently capturing the integral’s value while minimizing computa
tional overhead.

2.3. Derivatives of matrix functions

The framework for evaluating matrix functions 𝑓 (𝑋) reviewed in
Section 2.2 can be efficiently extended to families of matrices denoted
as 𝑋(𝑢), where 𝑢 ∈ Ω ⊂ ℝ𝑚 represents a multi-dimensional parameter,
as well as derivatives of 𝑓 (𝑋(𝑢)) with respect to the parameter 𝑢 ∈ Ω.
Here, Ω ⊂ ℝ𝑚 is an open parameter domain and 𝑚 ∈ ℕ the number of
parameters.

Lemma 2.1. Consider a matrix 𝑋(𝑢), where each entry 𝑥𝑖𝑗 ∶ Ω → ℂ is
continuously differentiable. Assume that 𝑓 is analytic in a domain 𝐷̄, where
𝐷 is open and includes the spectrum of 𝑋(𝑢) for all 𝑢 ∈Ω. Then:

The derivatives of the matrix function 𝑓 (𝑋)with respect to the component
𝑢𝑘 of 𝑢 are given by:

𝜕𝑓 (𝑋)
𝜕𝑢𝑘

= 1
2𝜋𝑖 ∫

𝑓 (𝑧)(𝑧𝐼 −𝑋)−1
(
𝜕𝑋
𝜕𝑢𝑘

)
(𝑧𝐼 −𝑋)−1 d𝑧,

where  is a positively oriented contour enclosing the spectrum of 𝑋, and 𝑧𝐼
represents the identity matrix scaled by 𝑧.

The proof based on (1) is elementary and hence omitted.

Computing the derivatives 𝜕𝑓 (𝑋)
𝜕𝑢𝑚

with respect to each component 𝑢𝑚
of a multi-dimensional parameter vector 𝑢 can lead to substantial com
putational complexity since it involves evaluating 𝜕𝑋

𝜕𝑢𝑚
, the Jacobian of

𝑋 with respect to 𝑢. The resulting Jacobian 𝜕𝑋
𝜕𝑢 is a tensor of dimen

sions 𝑛 × 𝑛 ×𝑚, representing a significant computational bottleneck. In
the section which follows, we discuss the computational complexity of
this approach in more detail and explain how reverse mode differentia
tion avoids this in many important scenarios.

Remark 2.1. (Effect of a clustered or ill-conditioned spectrum) The
only spectrum–dependent factor in the error (10) is the logarithm of
the 2-norm condition number 𝑀∕𝑚. Hence a poorly separated or ill
conditioned spectrum only slows down the convergence but it does not
really effect stability or differentiability. In practice one can simply in
crease the number 𝑁 of quadrature points until the desired tolerance
is reached. When 𝑀∕𝑚 is extremely large, a standard approach is to
apply a spectrum shifting or scaling preconditioner before the contour
evaluation [22,48].

Remark 2.2. (Generality of the contour-integral scheme) It is notewor
thy that the contour integral framework above relies only on two key
factors: (i) an analytic continuation of 𝑓 (𝑧) in a slit or a domain that
avoids the spectrum of 𝑋; and (ii) the ability to evaluate the resol
vent (𝑧𝐼 −𝑋)−1 at the quadrature nodes. Therefore, any primary matrix
function whose scalar version is analytic, e.g. the matrix exponential,
matrix sign, powers, can be treated within exactly the same framework
by choosing a suitable branch cut and, if necessary, applying the square--
root substitutions done above or similar substitutions to regularize any
singularities. The computational complexity associated with the method
thus depends on the linear solver rather than on the particular analytic
function, and the error bound (10) continues to apply in all these cases.

Remark 2.3. (Computational complexity) In practical settings with
sparse or structured 𝑋, the Cauchy integral framework allows us to
replace an (𝑛3) dense eigendecomposition by 𝓁 sparse solves whose
cost scales with the sparsity pattern, so the contour framework is both
cheaper and easier to differentiate. The preceding Section 3 gives the
detailed quantitative comparison.

3. Computational complexity

3.1. Objective and formulation

Let 𝑔 ∶ ℝ𝑛×𝑛 → ℝ𝑝, 𝑓 ∶ ℝ𝑛×𝑛 → ℝ𝑛×𝑛, and 𝑋 ∶ ℝ𝑚 → ℝ𝑛×𝑛 be dif
ferentiable functions. Define the composite function ℎ ∶ ℝ𝑚 → ℝ𝑝 by
ℎ(𝑢) = 𝑔(𝑓 (𝑋(𝑢))), where the parameter vector 𝑢 ∈ ℝ𝑚 is mapped to a

Computer Physics Communications 317 (2025) 109832

3

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 3. Computational graphs for the forward and reverse modes of differentiation for the composite function ℎ(𝑢) = 𝑔(𝑓 (𝑋(𝑢))).

𝑝-dimensional output. As illustrated in Fig. 3, our goal is to evaluate the
sensitivity of the output ℎ with respect to changes in the input 𝑢, which
is captured by the Jacobian 𝐽ℎ(𝑢) =

𝜕ℎ

𝜕𝑢 . This Jacobian quantifies how
infinitesimal changes in the input vector 𝑢 affect the output ℎ(𝑢), and
can be computed by systematically applying the chain rule to differen
tiate through the layers of the composite function. Applying the chain
rule and elementary matrix multiplication, we can express the Jacobian
as:

𝐽ℎ(𝑢) = 𝐽𝑔◦𝑓◦𝑋 (𝑢) = 𝐽𝑔(𝑓 (𝑋(𝑢))) ⋅ 𝐽𝑓 (𝑋(𝑢)) ⋅ 𝐽𝑋 (𝑢) (13)

This chain rule can be applied in two distinct ways depending on
how we propagate the derivatives: either by starting from the inputs
and working towards the outputs (forward mode differentiation) shown
in Fig. 3a, or by starting from the outputs and working back towards
the inputs (reverse mode differentiation) shown in Fig. 3b. Although the
chain rule is the same in both cases, the direction in which it is applied
leads to different computational complexities. To analyze the computa
tional complexity of evaluating the Jacobian 𝐽ℎ(𝑢) in reverse mode, we
must first understand the costs associated with the forward evaluations
of each function in the composition ℎ(𝑢) = 𝑔(𝑓 (𝑋(𝑢))). Specifically, we
denote the cost of evaluating each function without differentiation as
cost(𝑋), cost(𝑓), and cost(𝑔), respectively.

Our aim is to compute these derivatives via computer programs. In
order to evaluate numerical derivatives rather than symbolic expres
sions, automatic differentiation (AD) [38,31,30,35,7] computes deriva
tives by accumulating intermediate values during code execution. Stan
dard code may be easily modified to incorporate AD with little effort.
The target function ℎ must first be constructed as a series of basic op
erations in a computer program before applying AD. After that, AD can
be used in either forward or reverse mode.

3.2. Review: forward mode differentiation via dual numbers

To begin, we will briefly go over dual numbers and their applications
in forward mode AD. Dual numbers [33,53] extend the real numbers by
introducing an infinitesimal unit 𝜖 with the property

𝜖2 = 0, 𝜖 ≠ 0.

A dual number can be written in the form:

𝑥 = 𝑎+ 𝑏𝜖,

where 𝑎, 𝑏 ∈ ℝ, 𝑎 is called the real part, and 𝑏 is called the dual part.
The Taylor series expansion of a function 𝑓 evaluated at a dual number
𝑎+ 𝑏𝜖 around 𝑎 is given by:

𝑓 (𝑎+ 𝑏𝜖) = 𝑓 (𝑎) + 𝑓 ′(𝑎)𝑏𝜖 + 𝑓
′′(𝑎)
2

(𝑏𝜖)2 + 𝑓
′′′(𝑎)
6

(𝑏𝜖)3 +⋯ .

Since the property 𝜖𝑛 = 0 holds for 𝑛 ≥ 2, the Taylor series simplifies
to:

𝑓 (𝑎+ 𝑏𝜖) = 𝑓 (𝑎) + 𝑓 ′(𝑎)𝑏𝜖.

This simplification highlights the utility of dual numbers in comput
ing first-order derivatives. Thus, dual numbers offer a straightforward
and reliable approach for computing derivatives. There exist highly
performant practical implementations of dual numbers, which simply
extend basic arithmetic operations and a short list of standard mathe
matical functions from standard floating point numbers to dual num
bers. For example, the ForwardDiff.jl [57] package in Julia and the
cppduals [62] library in C++ provide efficient and well-documented im
plementations of dual number arithmetic.

Suppose we want to compute the directional derivative of a function
ℎ with respect to 𝑚′ parameters of the input vector 𝑥 ∈ℝ𝑚. To achieve
this, forward mode AD [5,72,32] utilizes 𝑚′ dual numbers, where each
dual number, 𝜖𝑖, represents an independent infinitesimal perturbation
associated with the direction 𝑣𝑖 ∈ℝ𝑚. Specifically, it evaluates

ℎ

(
𝑥+

𝑚′∑
𝑖=1
𝜖𝑖𝑣𝑖

)
= ℎ(𝑥) +

𝑚′∑
𝑖=1
𝜖𝑖∇ℎ(𝑥) ⋅ 𝑣𝑖. (14)

In the dense case, this approach is conceptually equivalent to com
puting 𝑚′ directional derivatives independently. However, in sparse
cases efficient techniques can be used to reduce the computational cost.
More generally, forward mode AD computes the action of the Jacobian
𝐽ℎ(𝑥) on a matrix 𝑉 of size 𝑚 ×𝑚′, where the columns of 𝑉 are the 𝑚′

directional vectors:

𝑉 ↦ 𝐽ℎ(𝑥)𝑉 .

This is often referred to as the pushforward, adapted from differential
geometry terminology. Forward mode AD computes these directional
derivatives by following the process shown in Fig. 3a, where derivatives
are propagated step by step:

Table 1
Computational steps and their associated
costs during each step of forward mode AD.

Computation Cost
(𝑣1, 𝑣′1) =

(
𝑋(𝑐), 𝐽𝑋 (𝑐)𝑉

)
𝑚′ ⋅ cost(𝑋)

(𝑣2, 𝑣′2) =
(
𝑓 (𝑣1), 𝐽𝑓 (𝑣1) ⋅ 𝑣′1

)
𝑚′ ⋅ cost(𝑓)

(𝑣3, 𝑣′3) =
(
𝑔(𝑣2), 𝐽𝑔 (𝑣2) ⋅ 𝑣′2

)
𝑚′ ⋅ cost(𝑔)

Computing the full Jacobian, corresponds to computing all 𝑚 direc
tional derivatives and essentially starting with 𝑉 as the identity matrix
𝐼𝑚. The total cost of evaluating 𝐽ℎ(𝑐) is then 𝑚′ ⋅ (cost(𝑋)+cost(𝑓)+

Computer Physics Communications 317 (2025) 109832

4

T. Torabi, T.S. Gutleb and C. Ortner

cost(𝑔)) and thus depends on the methods chosen to compute the func
tions 𝑋,𝑓 and 𝑔. We will discuss this further in the next subsection.

3.3. Review: reverse mode differentiation

In contrast to forward mode, reverse mode differentiation [31,18]
computes derivatives by propagating information backward from the
output(s) of a function. This mode computes adjoints (or sensitivities)
with respect to the outputs, rather than computing directional deriva
tives with respect to the inputs and is particularly advantageous for func
tions where the output dimension is smaller than the input dimension.
Given 𝑌 ∈ℝ𝑝×𝑝, in the cotangent space, reverse mode AD computes the
action of the transposed Jacobian on 𝑌 :

𝐽ℎ(𝑢)⊤𝑌 , (15)

and computes the sensitivities with respect to 𝑝 outputs, which es
sentially construct the rows of 𝐽ℎ(𝑢). Once the forward evaluation is
complete as shown in Fig. 3b, the adjoints are propagated in reverse as
follows:

Table 2
Computational steps and their associated costs
during each sweep of reverse mode AD.

Computation Cost
∇𝑓 = 𝐽𝑔 (𝑓 (𝑋(𝑢)))⊤ ⋅ 𝑌 𝑝 ⋅ cost(𝑔)
∇𝑋 = 𝐽𝑓 (𝑋(𝑢))⊤ ⋅∇𝑓 = 𝛿𝑋 [𝑓⊤ ⋅∇𝑓] 𝑝 ⋅ cost(𝑓)
∇𝑢 = 𝐽𝑋 (𝑢)⊤ ⋅∇𝑋 = 𝛿𝑢[𝑋⊤ ⋅∇𝑋] 𝑝 ⋅ cost(𝑋)

In reverse mode, computing the full Jacobian involves evaluating the
sensitivities with respect to all 𝑝 outputs. This is achieved by initializing
𝑌 as the identity matrix 𝐼𝑝 . Consequently, the total cost of computing
𝐽ℎ(𝑐) in reverse mode is given by: 𝑝 ⋅ (cost(𝑋) + cost(𝑓) + cost(𝑔)),
where the overall cost naturally again depends on the methods used
to compute the functions 𝑋, 𝑓 and 𝑔. The choice of the most efficient
mode of AD (forward or reverse) depends on comparing the number of
outputs 𝑝 and the number of inputs 𝑚. Reverse mode is more efficient
when 𝑝≪𝑚, while forward mode is better suited for cases where 𝑝≫𝑚.

Additionally, evaluating the Jacobian of matrix functions 𝑓 (𝑋(𝑢))
with respect to the parameter vector 𝑢, denoted as 𝐽𝑓 (𝑢)=𝐽𝑓 (𝑋(𝑢))𝐽𝑋 (𝑢),
is of significant importance. In forward mode, this computation aligns
with the first two rows of Table 1, and the total cost of evaluating the
full Jacobian scales as 𝑚 ⋅ (cost(𝑓) + cost(𝑋)).

In reverse mode, the computation corresponds to the last two rows of
Table 2, with the total cost scaling as 𝑛2 ⋅ (cost(𝑓)+cost(𝑋)). Clearly,
unless 𝑛2 < 𝑚, reverse mode Jacobian evaluation is significantly more
computationally expensive than forward mode. The corresponding com
plexities for evaluating 𝐽𝑓 (𝑢) are summarized in Table 4.

It is noteworthy that advanced techniques such as sparsity detection
and matrix coloring can be employed to further reduce the computa
tional cost of evaluating the Jacobian, by efficiently identifying and
exploiting the structure within the matrices involved in the differentia
tion process. For a detailed description of this we refer to Appendix A.2.
A numerical demonstration of this approach will be provided in sec
tion 4.3.

3.4. Simplified cost analysis

To estimate the cost of evaluating 𝑓 (𝑋), we revisit the methods de
scribed in Section 2. The computational cost depends on the size of the
matrix 𝑋, its structural properties (e.g., sparsity or bandedness), and
the number of quadrature points 𝓁 used in the evaluation. If we take
𝑔 = Trace, we can rewrite (𝑧𝐼 −𝑋) = 𝐿𝑈 , and we would then need to
evaluate Trace(𝑋(𝑧𝐼 −𝑋)−1) = Trace(𝑋𝑈−1𝐿−1). Using the Cauchy in
tegral definition (12), the cost for different types of matrices is detailed
below.

Dense matrices. For a dense 𝑛×𝑛 matrix 𝑋, the cost of evaluating 𝑓 (𝑋)
scales as 𝑂(𝓁𝑛3), since computing the inverse of a dense matrix and per
forming other required operations both scale cubically with 𝑛. However,
in many applications, matrices often exhibit additional structures, such
as sparsity or bandedness, which significantly reduce the computational
cost. This reduction is achieved because sparse linear solvers can ex
ploit these structural properties to minimize the number of operations
required.

Sparse matrices. For a sparse matrix 𝑋, the cost of evaluating 𝑓 (𝑋)
arises from computing

𝑓 (𝑋) =
∑
𝑖
𝑒⊤
𝑖
𝑈−1𝐿−1𝑒𝑖 =

∑
𝑖

(
𝑈−⊤𝑒𝑖

)⊤ (
𝐿−1𝑒𝑖

)
,

where 𝑈 and 𝐿 are the LU factors of 𝑋, and 𝑒𝑖 represents the 𝑖-th
standard basis vector. Each term in the summation involves two back
substitutions: one to compute 𝐿−1𝑒𝑖 and another for 𝑈−⊤𝑒𝑖. The cost of
each back-substitution depends on the number of nonzeros (nnz) in the
LU factors.

If 𝑋 is a banded matrix with a bandwidth 𝑏, the LU factorization
incurs minimal fill in [17]. The cost of LU factorization is 𝑂(𝑛𝑏2). As
suming 𝑏 is constant, since the number of nonzeros in 𝐿 and 𝑈 factors
scale as 𝑂(𝑛𝑏), the total cost of evaluating 𝑓 (𝑋) scales as 𝑂(𝓁𝑏𝑛2).

For 2D sparse matrices, which often arise from discretizations of
2D grids or the Hessians of (quasi-)two-dimensional structures, LU fac
torization introduces moderate fill-in. The cost of factorization scales
as 𝑂(𝑛3∕2), while the number of nonzeros in the 𝐿 and 𝑈 factors is
𝑂(𝑛 log𝑛). Consequently, the total cost of solving linear systems and
evaluating 𝑓 (𝑋) scales as 𝑂(𝓁𝑛2 log𝑛).

For 3D sparse matrices, LU factorization incurs more significant fill
in. The factorization cost scales as 𝑂(𝑛2), and the number of nonzeros in
the 𝐿 and 𝑈 factors is 𝑂(𝑛4∕3). As a result, the total cost of evaluating
𝑓 (𝑋) scales as 𝑂(𝓁𝑛7∕3).

On the other hand, if eigendecomposition is used to evaluate 𝑓 (𝑋),
the computational cost is 𝑂(𝑛3), as the method does not leverage the
sparsity of 𝑋. Thus, the contour integration approach with its ability
to exploit sparsity has clear advantages for large matrices, though for
three-dimensional systems that advantage is less pronounced than in
lower dimension.

We summarize the computational complexities for each case in Ta
ble 3.

Improved complexity via selected inversion. The methods we use in our
numerical tests have the complexity described above. In principle one
can improve the computational cost further through a selected inversion
algorithm: To compute Trace(𝑋(𝑧𝐼 −𝑋)−1) for evaluating 𝑓 using (12),
efficient algorithms such as Pselinv [40], which are specifically de
signed to compute selected elements of a matrix inverse without re
quiring the full inverse. By leveraging the sparsity and structure of the
matrix, Pselinv enables significant computational savings compared
to direct inversion. The trace can be expressed as:

Trace(𝑋(𝑧𝐼 −𝑋)−1) =
∑
𝑖,𝑗
𝑋𝑖𝑗

(
(𝑧𝐼 −𝑋)−1

)
𝑗𝑖
, (16)

where only the entries of (𝑧𝐼 − 𝑋)−1 that correspond to the sparsity
pattern of 𝑋 are required. Using Pselinv, these entries are computed
efficiently, avoiding the computation of the full inverse. The computa
tional cost of Pselinv is comparable to the cost of LU factorization,
as it directly builds upon the LU decomposition of the matrix 𝑧𝐼 −𝑋.
For sparse matrices, the cost scales with the number of nonzero elements
and the fill-in introduced during factorization. For banded matrices with
constant bandwidth, the cost is 𝑂(𝑛), for 2D sparse matrices, the cost is
𝑂(𝑛3∕2), and for 3D sparse matrices, the cost is 𝑂(𝑛2). Pselinv is both
memory-e�icient and highly parallelizable, making it ideal for large
scale problems where sparsity in the matrix can be exploited.

Computer Physics Communications 317 (2025) 109832

5

T. Torabi, T.S. Gutleb and C. Ortner

Table 3
Complexity comparison for evaluating 𝐽ℎ(𝑢) in the dense and various sparse cases.

Mode Sparse 1D Sparse 2D Sparse 3D Dense
Forward via contour 𝑂(𝓁𝑏𝑚𝑛2) 𝑂(𝓁𝑚𝑛2 log𝑛) 𝑂(𝓁𝑚𝑛7∕3) 𝑂(𝓁𝑚𝑛3)
Reverse via contour 𝑂(𝓁𝑏𝑝𝑛2) 𝑂(𝓁𝑝𝑛2 log𝑛) 𝑂(𝓁𝑝𝑛7∕3) 𝑂(𝓁𝑝𝑛3)

Forward via eigendecomposition 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3)
Reverse via eigendecomposition 𝑂(𝑝𝑛3) 𝑂(𝑝𝑛3) 𝑂(𝑝𝑛3) 𝑂(𝑝𝑛3)

Table 4
Comparison of complexity for evaluating 𝐽𝑓 (𝑢) in the dense, sparse 1D, sparse 2D, and
sparse 3D cases. When 𝑝 ≪ 𝑛2, the cost of 𝐽𝑓 is significantly higher than the cost of
𝐽ℎ(𝑢) and evaluating 𝐽𝑓 is therefore almost never advantageous.

Mode Sparse 1D Sparse 2D Sparse 3D Dense
Forward via contour 𝑂(𝓁𝑏𝑚𝑛2) 𝑂(𝓁𝑚𝑛2 log𝑛) 𝑂(𝓁𝑚𝑛7∕3) 𝑂(𝓁𝑚𝑛3)
Reverse via contour 𝑂(𝓁𝑛4) 𝑂(𝓁𝑛4 log𝑛) 𝑂(𝓁𝑛13∕3) 𝑂(𝓁𝑛5)

Forward via eigendecomposition 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3) 𝑂(𝑚𝑛3)
Reverse via eigendecomposition 𝑂(𝑛5) 𝑂(𝑛5) 𝑂(𝑛5) 𝑂(𝑛5)

3.5. Accuracy

We now turn to the question of accuracy: In general, derivatives
computed using automatic differentiation have effectively arbitrarily
good precision since the chain rule and explicitly known derivative rules
are used. This does not directly apply to our case, however, since the
function whose derivative we compute is merely approximated using a
contour integral with a finite number of quadrature points. In circum
stances where a function evaluation is subject to approximation errors,
it is often natural to use approximate derivative schemes such as finite
differences schemes of the desired accuracy. It is thus a natural ques
tion to ask whether the approximation accuracy of the contour integral
methods is sufficient to where use of automatic differentiation is sensi
ble. We will provide numerical experiments to showcase the accuracy
in Sections 4 and 5.

4. Numerical experiments

We present two toy problems to illustrate the complexity and accu
racy of the discussed method. Following these examples, we discuss our
methodology applied to problems arising from physics, showcasing the
method’s performance in relevant scenarios.

4.1. Implementation details

We used the ComplexElliptic.jl [63] package to compute the
conformal maps required to implement the contour integral matrix func
tion as described in [34]. The forward mode AD examples in the toy
problems were then computed using ForwardDiff.jl [57] while the
reverse mode AD examples used Zygote.jl [39] and ChainRules.jl
[73]. Companion code which reproduces the presented results is avail
able [66].

4.2. Scalar derivative

We consider the following toy problem: the composition of two func
tions 𝑔(𝑓 (𝑋)), where the functions 𝑔 and 𝑓 are defined as

𝑔(𝐴) =
∑
𝑖,𝑗
𝐴3
𝑖𝑗
, 𝐴 = 𝑓 (𝑋) =𝑋1∕3.

The matrix 𝑋 is constructed as follows to have connectivity corre
sponding to a one-dimensional problem setting and to ensure that it is
symmetric and positive semi-definite (SPD): Given a vector 𝑢 ∈ℝ𝑛 (i.e.,
𝑚 = 𝑛), we define

𝑋(𝑢) =𝐵(𝑢)⊤𝐵(𝑢), where

𝐵(𝑢) =

{
sin(𝑢𝑖 + 𝑢𝑗) + cos(𝑢𝑖𝑢𝑗) + exp(𝑢𝑖 − 𝑢𝑗), if |𝑖− 𝑗| ≤ 3,
0, otherwise.

Fig. 4a illustrates the evaluation time required to compute the gra
dient of 𝑔 with respect to 𝑢 using a contour integral quadrature with
𝓁 = 35 quadrature points. The evaluation times are shown for both re
verse mode (blue curve) and forward mode (orange curve) automatic
differentiation.

Remark 4.1. As expected the reverse mode is significantly more effi
cient as the matrix size increases for scalar derivatives. The observed
deviation from the previously mentioned complexity orders is due to
the sparsity structure present in the intended applications, which were
thus also included in the toy examples. Matrices involved in the differen
tiation process, here 𝑋 and 𝐵, usually exhibit additional structure such
as sparsity or even bandedness that reduce the number of operations re
quired [21]. In particular if as in this example 𝑚 = 𝑛, then bandedness
with bandwidth 𝑠 (or equivalent sparsity structure) of the 𝑛2 ×𝑚 matrix
𝐽𝑋 (𝑢) in Equation (13) reduces the expected asymptotic complexity in
reverse mode to 𝑂(𝓁𝑠𝑛2) in line with our observations.

Fig. 4b shows the error between the second-order centered finite
difference method and reverse AD using the contour integral and con
formal map approach, plotted against step size for various quadrature
points 𝓁 = 10,15,20,25. The errors decrease as 𝓁 increases, with higher
𝓁 values (e.g., 𝓁 ≥ 25) yielding lower errors across all step sizes. The
dashed line representing ∝ 𝑥2 indicates the expected quadratic conver
gence for the finite difference method. The figure also highlights the
importance of choosing an appropriate 𝓁 to balance accuracy and com
putational cost.

4.3. Jacobian

Consider the function

𝑔(𝑢) ∶= 𝑓 (𝑋(𝑢)) =
√
∇2𝐸(𝑢),

where 𝑋(𝑢) = ∇2𝐸(𝑢), 𝑓 (𝑋) =
√
𝑋 and 𝐸(𝑢), 𝑢 ∈ℝ𝑛, is given by

𝐸(𝐶;𝑢) =
∑
𝑖

⎛⎜⎜⎝
∑
𝑗∈𝑖

𝐶𝑖𝑗 |𝑢𝑖 − 𝑢𝑗 |2 + 1
2
|𝑢𝑖 − 𝑢𝑗 |3 + |𝑢𝑖 − 𝑢𝑗 |4⎞⎟⎟⎠ . (17)

Computer Physics Communications 317 (2025) 109832

6

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 4. Figure (a) shows obtained evaluation time for computing the gradient of function 𝑔 with respect to m-vector 𝑢 using a contour integral quadrature with
𝓁 = 35 quadrature points. Figure (b) shows convergence of a second order centered finite difference computation of the gradient compared to a gradient computed
by reverse AD through the contour integral with conformal map using 𝓁 quadrature points.

Fig. 5. Figure (a) shows obtained evaluation time for computing the Jacobian of matrix X with respect to m-vector 𝑢 using a contour integral quadrature with 𝓁 = 25
quadrature points. Figure (b) shows convergence of a second order centered finite difference computation of the Jacobian of 𝑓 compared to one computed by forward
mode AD through the contour integral with conformal map using 𝓁 quadrature points.

Here, 𝑖 indexes discrete points, 𝑖 represents the set of nearest neigh
bors of the 𝑖-th element, 𝐶𝑖𝑗 are coefficients characterizing the inter
actions between 𝑖 and 𝑗. We can think of 𝐸(𝑢) as a toy model for an
atomistic potential energy, making this example related to the more re
alistic cases we consider in the next section.

Here, we present the computational complexity of Jacobian eval
uation using forward differentiation, comparing the approaches with
and without coloring. The details of these methods are provided in Ap
pendix A.2. As shown in Fig. 5a, leveraging the sparsity of 𝑋 through
coloring reduces the Jacobian evaluation cost to 𝑂(𝑚3), whereas with
out coloring, the complexity remains at 𝑂(𝑚4), as expected.

Fig. 5b shows the error between the second-order finite difference
method and forward mode AD using the contour integral approach
across step sizes for various quadrature points 𝓁, demonstrating that
appropriate choice of quadrature points yields highly accurate results.

5. Application to defects in crystalline silicon

To demonstrate practical applications of our approach, we explore
thermally activated processes in materials science, specifically focusing
on defect migration, where matrix function derivatives play a crucial
role. Understanding these processes is essential for predicting and opti
mizing the mechanical and electronic properties of materials [71,69,54].

We consider the free energy

 (𝑢) = (𝑢) − 𝑇(𝑢), (18)

where (𝑢) denotes the potential energy, (𝑢) represents the entropy,
and 𝑇 is the temperature. The vibrational entropy [67,25,43] in solids,
(𝑢), is defined as:

(𝑢) ∶= −1
2
Trace log+(F𝐻(𝑢)F), (19)

Computer Physics Communications 317 (2025) 109832

7

T. Torabi, T.S. Gutleb and C. Ortner

where 𝑢 is the lattice displacement vector, and 𝐻(𝑢) = ∇2(𝑢) is the
Hessian of the potential energy (𝑢). To create a spectral gap, we define
a self-adjoint operator F, which serves as a preconditioner and acts as
𝐻

−1∕2
hom

, where 𝐻hom is the Hessian of the homogeneous lattice [67,9].
The log+ function is defined as follows: let 𝐓 be a bounded, self-adjoint
operator on a Hilbert space with spectrum 𝜎(𝐓) ⊂ (−∞,0] ∪ [𝑚,𝑀],
where 0 < 𝑚 ≤𝑀 . Then, we can define a contour  that encircles the
interval [𝑚,𝑀] while remaining in the right half-plane. We can then
define:

log+(T) = 1
2𝜋𝑖 ∮

log(𝑧) ⋅ Trace
(
𝑧𝐼 − T

)−1 d𝑧. (20)

Defect migration is typically analyzed using the potential energy sur
face (PES), represented by (𝑢̄) in (18), which governs the structure,
dynamics, and thermodynamics of the system [44]. Migration behavior
is often studied by examining stationary points on the PES, such as lo
cal minima and transition states, which map out migration pathways,
often visualized as steepest-descent paths.

The Nudged Elastic Band (NEB) method [36] is widely used to de
termine minimum energy paths (MEPs) between known initial and final
states on the PES. NEB methods discretize the reaction pathway into
a series of intermediate configurations, or ‘images’, connected by elas
tic springs to ensure even distribution along the path. These images are
optimized to remain constrained to the PES while the spring forces main
tain equidistant spacing.

While MEPs on the PES are frequently used due to their simplicity,
they are only approximations [76] and can become increasingly inaccu
rate at elevated temperatures where entropic effects play an important
role. For instance, it has been demonstrated in [27,29,60,15] that the
MEPs on the free energy surface (FES),  (𝑢), provides a more accurate
and comprehensive depiction of defect migration under finite tempera
ture conditions. By capturing more of the thermodynamic behavior of
the system, the FES allows for the analysis of migration mechanisms,
rate constants, and material properties that the PES alone cannot ade
quately describe. Strong entropic effects have also been observed in a va
riety of processes, such as the nucleation of dislocation loops [58,2], the
transformation of vacancy clusters into stacking-fault tetrahedra [70],
the growth of nano-voids under tensile stress [52], and dislocation emis
sion from crack tips [71]. In these cases, the role of entropy, particularly
at high temperatures, becomes dominant in determining the system’s
kinetics and overall behavior. Such entropic contributions, while in
creasingly recognized as fundamental, are impossible to capture using
the PES alone, as it only accounts for potential energy minima and tran
sition states, neglecting the broader thermodynamic landscape.

Applying optimization methods such as NEB methods to the free en
ergy surface requires gradients of the free energy functional  (𝑢) as
expressed in Equation (18). These gradients which drive the optimiza
tion process necessitate computing derivatives that account for both
energetic and entropic contributions. Specifically, the gradient of  (𝑢)
with respect to the displacement field 𝑢 is

𝜕 (𝑢)
𝜕𝑢

= 𝜕(𝑢)
𝜕𝑢

− 𝑇 𝜕(𝑢)
𝜕𝑢

, (21)

where 𝜕(𝑢)
𝜕𝑢 is the derivative of the potential energy, and 𝜕(𝑢)

𝜕𝑢 is the
derivative of the entropy. The latter involves matrix derivatives that
capture changes in entropy due to structural perturbations, which can
be computationally expensive.

To address these challenges, various methods have been proposed
for exploring the free energy surface in collective variable spaces. Tech
niques such as metadynamics [42,13], adaptive biasing force methods
[19], and umbrella sampling [68] effectively sample the FES in low
dimensional spaces. However, these methods are typically less effective
at locating saddle points in high-dimensional spaces, which are critical
for accurately determining transition states and reaction pathways in
complex systems. These limitations highlight the need for more efficient

approaches to calculate free energy derivatives in high-dimensional con
texts [60].

This motivates the development of computationally efficient and
highly accurate methods for matrix differentiation to advance our un
derstanding of defect migration and similar thermally activated pro
cesses. Next, we thus illustrate the complexity and accuracy of our
method for evaluating entropy derivatives and then showcase its ap
plication in some practical settings.

5.1. Implementation details

In the numerical experiments that follow we explore minimum
free energy pathways for various defects in Silicon using the differ
entiable Stillinger-Weber interatomic potential implementation in Em
piricalPotentials.jl [50]. Forward mode AD is supported in Em
piricalPotentials.jl via the ForwardDiff.jl [57] package but
manual adjoints had to be added for the Stillinger-Weber potential to
allow for Zygote.jl [39] and ChainRules.jl [73] support. The
search for minimum free energy pathways is performed using the Sad
dleSearch.jl [51] package which supports string and NEB based
searches. The Stillinger-Weber potential in our examples is employed
purely for the sake of convenience; any interatomic potential support
ing the ForwardDiff.jl and ChainRules.jl interfaces can be used
instead.

The source code used to generate the results is available in the com
panion code repository [66]. Animations of the migration processes are
made available via FigShare, see [64], providing a visual representation
of these dynamic effects. Throughout our experiments all atoms in the
lattice are allowed to move during defect migration.

5.2. Complexity and convergence study

To demonstrate the computational complexity and convergence be
havior of evaluating the derivative of entropy 𝜕(𝑢)

𝜕𝑢 using our imple
mentation, we conducted tests on a system of silicon comprising 64
atoms. Fig. 6a illustrates the CPU time complexities for reverse mode
and forward mode automatic differentiation (AD) based on the proposed
contour integral formulation. The observed complexity for forward and
reverse mode AD, for a fixed number of quadrature points, 𝓁 scale as
𝑂(𝑚4) and 𝑂(𝑚2) respectively. Fig. 6b showcases the error between a
simple second order centered finite difference approach and the value
given by reverse AD through the contour integral approach. The FD
method effectively serves as a proxy for the true gradient up to ap
proximately 10−10, beyond which numerical precision errors limit its
reliability. These observations allow one to assess the contour integral
method’s accuracy as a function of 𝓁 and emphasize the importance of
selecting an appropriate number of quadrature points. These results are
fully consistent with our numerical study on toy problems in the previ
ous section.

5.3. Vacancy migration

Vacancies in silicon remain an extensively investigated point defect
in semiconductor physics, due to their role in facilitating impurity dif
fusion. Here we consider vacancy migration, schematically illustrated
in Fig. 7, which alleviates internal stresses and influences the material’s
mechanical strength and ductility [16].

We begin by generating a diamond cubic bulk silicon system con
taining 64 atoms per supercell. To create the initial configuration, one
atom is removed, introducing a vacancy. The system is then relaxed by
minimizing its energy to reach equilibrium. The free-energy profiles for
vacancy migration at various temperatures is illustrated in Fig. 7b. The
migration path connects the minimized initial and final configurations
on the PES. Free-energy profiles were calculated at three different tem
peratures: 0 K, 100 K, and 200 K. The 0 K pathway corresponds to the
minimum energy path (MEP) on the potential energy surface (PES). The

Computer Physics Communications 317 (2025) 109832

8

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 6. Figure (a) shows obtained evaluation time for computing the gradient of vibrational entropy in (19) with respect to a displacement vector 𝑢 of length 𝑚. Both
methods used contour integral quadrature with 𝓁 = 20 quadrature points. Figure (b) shows convergence of a second order centered finite difference computation of
the gradient in (19) for a bulk Silicon example to a gradient computed by reverse AD through the contour integral with conformal map using 𝓁 quadrature points.

Fig. 7. (a) Illustration of vacancy migration in silicon. The orange atom in (1) migrates to occupy the adjacent vacancy site, resulting in configuration (2). (b)
Free-energy profiles for vacancy migration in silicon at various temperatures, illustrating the influence of temperature on the migration barrier and the entropic
contributions that facilitate the migration process.

vacancy migration energy at 0 K is calculated to be 0.515 eV, which is
in agreement with the literature value of 0.52 eV reported by [59]. Our
computed migration path at 0 K also aligns closely with the one reported
in [55].

As the temperature increases, the energy barrier shows a significant
variation, reflecting the dynamic nature of atomic movements and their
influence on the vacancy migration pathway.

5.3.1. Interstitial

Self-interstitials in crystalline Si introduce much stronger local dis
tortions in the crystal structure than vacancies. Interstitials typically
occupy high-symmetry sites such as the tetrahedral or hexagonal in
terstitial sites. The migration of an interstitial atom from one site to an
adjacent site, showcased in Fig. 8, is a process that influences material
properties such as diffusivity and mechanical strength.

We generated a bulk silicon system consisting of 64 atoms per super
cell and generated an initial state with a tetrahedral interstitial defect
by inserting an atom at

(
𝑎

2 ,
𝑎

2 ,
𝑎

2
)

, where 𝑎 is the lattice constant. The
final state has an interstitial inserted at an adjacent tetrahedral site. To
computed the migration path between these two states by applying the

NEB method to the FES, to obtain free energy profiles at temperatures
of 0 K, 200 K, and 600 K. Fig. 8 illustrates that the free energy barrier
decreases slightly with increasing temperature. Thermal effects reduce
the energy barrier, making interstitial migration slightly more likely at
higher temperatures.

5.3.2. Variational TST

Understanding the rates of various thermally activated processes,
ranging from defect formation [2] and migration [47] to creep [56] and
catalysis [10], is crucial for the advancement and optimization of mate
rial properties and chemical processes. These rates are often calculated
using harmonic transition state theory (HTST), where the potential en
ergy of the lattice is approximated by a second-order Taylor expansion,
effectively assuming a quadratic potential near equilibrium positions.
HTST can yield inaccurate predictions when the potential energy surface
significantly deviates from this quadratic assumption or when thermal
effects substantially influence the system’s dynamics [61]. As such, a
more precise approach involves including non-harmonic corrections to
resolve additional complexity found in the system’s potential landscape.

Computer Physics Communications 317 (2025) 109832

9

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 8. (a) Illustration of interstitial migration in silicon, with the red atom indicating the interstitial defect migrating from position 1 to 2. (b) Evolution of the
free-energy profiles for the migration of an interstitial defect in Silicon.

Once the minimum energy path (MEP) for a reaction is determined,
the transition rate can be defined within the framework of harmonic
transition state theory (HTST) as:

HTST = exp
(
−𝛽

[ (𝜉saddle) − (𝜉min)
])
, (22)

where 𝜉min denotes the positions corresponding to the minimum en
ergy configuration, and 𝜉saddle represents the positions of the saddle
configuration. The MEP can be parameterized by a reaction coordinate
𝜉, a scalar variable that describes the progress of the system along the
reaction path. If 𝑢(𝜉) represents the reaction path, then 𝜉 serves as a
continuous parameter ranging from initial minimum energy configura
tion (𝜉 = 0) to the final minimum configuration (𝜉 = 1). The reaction
coordinate provides a natural way to track changes in energy and other
system properties along the MEP. The saddle point is identified as the
maximum energy point along the reaction coordinate. Here,  denotes
the free energy, and 𝛽 = 1∕(𝑘𝐵𝑇), where 𝑘𝐵 is the Boltzmann constant
and 𝑇 is the temperature.

To achieve a more accurate description of defect migration and for
mation in silicon, one can incorporate higher-order terms in the tran
sition state formulation. These additional terms introduce corrections
to both the energy and entropy contributions, impacting the calculated
transition rates and leading to a more precise and reliable model of de
fect dynamics. Variational transition state theory (VTST) [2,3] provides
a simple correction of this kind. Below, we briefly review the idea.

One can equivalently express the energy  and entropy  as a func
tion of the reaction coordinate 𝜉 and expand both along the reaction
coordinate on the MEP around the saddle point 𝜉 = 𝜉saddle:

(𝜉saddle + 𝜉) ≈ (𝜉saddle) +
1
2
𝜉𝜉(𝜉saddle)𝜉2, (23)

(𝜉saddle + 𝜉) ≈ (𝜉saddle) + 𝜉(𝜉saddle)𝜉, (24)

where 𝜉𝜉 = 𝜕
2
𝜕𝜉2

and 𝜉 = 𝜕
𝜕𝜉

are scalar functions. We can formally

approximate

 (𝜉) ≈ (𝜉saddle) +
1
2
𝜉𝜉(𝜉saddle)𝜉2 − 𝑇(𝜉saddle) − 𝑇𝜉(𝜉saddle)𝜉. (25)

Since we have a maximum at the saddle point along the reaction
coordinates on the MEP, we take the derivative of the free energy with
respect to 𝜉, the displacement along the reaction coordinates. This leads
to the following condition for the stationary point:

𝜕
𝜕𝜉

= 𝜉𝜉(𝜉saddle)𝜉 − 𝑇𝜉(𝜉saddle) = 0, (26)

with solution

𝜉 = 𝑇
𝜉(𝜉saddle)
𝜉𝜉(𝜉saddle)

. (27)

Fig. 9. Estimated migration rates obtained from the variational free energy bar
riers for vacancy and interstitial migration.

Substituting this back into the free energy expression, we get:

 (𝑇) ≈ (𝜉saddle) − 𝑇(𝜉saddle) −
1
2
𝑇 2

2
𝜉
(𝜉saddle)

𝜉𝜉(𝜉saddle)
. (28)

Thus,

𝑣𝑇𝑆𝑇 (𝑇) ≈ 𝐻𝑇𝑆𝑇 (𝑇) − 1
2
𝑇 2

2
𝜉
(𝜉saddle)

𝜉𝜉(𝜉saddle)
. (29)

Therefore, the temperature-dependent variational transition rate is:

𝑘𝑣𝑇𝑆𝑇 (𝑇) = exp(−𝛽𝐻𝑇𝑆𝑇) exp
(
𝛽𝑇 2

2
𝜉
(𝜉saddle)

2𝜉𝜉(𝜉saddle)

)
= 𝑘𝐻𝑇𝑆𝑇 exp

(
𝛽𝑇 2𝑇𝑒)

(30)

where 𝑇𝑒 =
2
𝜉
(𝜉saddle)

2𝜉𝜉 (𝜉saddle)
, and is referred to as the ``effective temperature''.

As shown in previous sections, 𝜉 can be easily obtained using our dif
ferentiation framework without the need to rely on approximation or
sampling techniques which are often used for this evaluation [2]. To
compare the formation rates estimated using harmonic and variational
TST, we examine the migration of vacancy and interstitial defects based
on the free energy profiles discussed in the previous subsections.

Fig. 9 presents the migration rates obtained using harmonic transi
tion state theory (HTST) and variational transition state theory (VTST).

Computer Physics Communications 317 (2025) 109832

10

T. Torabi, T.S. Gutleb and C. Ortner

For vacancy migration, as the temperature increases, the difference be
tween the predictions of VTST and HTST becomes more apparent. This
indicates that harmonic TST overestimates the migration rate and is,
therefore, less reliable for high-temperature processes. This is evident
from the fact that 𝑤𝑤(𝜉saddle) < 0, leading to

exp
(
− 𝛽 𝑇

2

2
𝑇𝑒

)
< 1.

In contrast, for interstitial migration, the temperature correction 𝑇𝑒 is
small, and the overestimation of the rate by HTST is negligible even at
elevated temperatures.

For certain systems entropic contributions become increasingly sig
nificant at elevated temperatures as the vibrational modes of atoms ex
hibit greater anharmonicity. This leads to a wider distribution of energy
states that harmonic TST can fail to capture. More advanced methods
such as VTST can be used in such circumstances to obtain more reliable
predictions of migration rates.

Remark 5.1. (Scalability) The numerical experiments of Sections 4--5
employ matrices up to hundreds of rows, while many problems of
scientific interest may be of a much larger scale. The cost estimates
in Section 3 show that the contour formulation becomes increasingly
asymptotically favorable for much larger systems, provided that the lin
ear solvers optimally exploit sparsity. When the linear systems become
very large, the bottleneck is no longer the contour integral itself but
the memory needed for the sparse LU factorizations. At that point it
is natural to switch to a distributed sparse solver [8,24,75,45], which
splits both the storage and the computations over several processors. Ad
vanced techniques such as selected inversion [40,46] can further reduce
the computational cost for very large systems.

6. Conclusion

In this paper we showed how to accurately and efficiently compute
the derivatives of functions of matrix families 𝑋𝜃 and their derivatives
with respect to the entries of 𝜃𝑗 of 𝜃. The method is an extension of an
established approach for matrix functions due to Hale, Higham and Tre
fethen [34] and thus begins with the Cauchy integral definition of matrix
functions and computes appropriate conformal maps and quadrature in
the complex plane. We explained in detail the resulting computational
complexity for both reverse and forward mode differentiation.

With the extension to derivatives in hand, we demonstrated the util
ity of the approach in natural applications in the context of molecular
simulations and material modeling. We considered questions involving
the entropy of Silicon systems which require repeated computation of
matrix trace-logarithms and gradients thereof for saddle point searches.
As the conformal map based method allows defining straightforward
adjoints for the matrix logarithm, all that is required in principle for effi
cient reverse mode automatic differentiation of such matrix functions is
a reverse mode compatible implementation of the involved interatomic
potential (in the case of our Silicon example this role is played by the
Stillinger-Weber potential).

Our aim was to demonstrate that employing modern differentiation
algorithms not only results in numerically robust and accurate deriva
tives but also in improved computational performance, and that such an
approach is entirely practical within a modern software stack.

CRediT authorship contribution statement

Tina Torabi: Writing -- review & editing, Writing -- original draft,
Visualization, Validation, Software, Investigation, Formal analysis, Con
ceptualization. Timon S. Gutleb: Writing -- review & editing, Writing
– original draft, Software, Investigation, Formal analysis, Conceptual
ization. Christoph Ortner: Writing -- review & editing, Supervision,
Resources, Project administration, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

TT and CO were supported by NSERC Discovery grant RGPIN-2021
03489 and NFRF Exploration Grant GR022937. TSG was partially sup
ported by a PIMS-Simons postdoctoral fellowship, jointly funded by the
Pacific Institute for the Mathematical Sciences (PIMS) and the Simons
Foundation.

Appendix A

A.1. Jacobi elliptic functions

We begin with some definitions and properties of Jacobi elliptic func
tions as e.g. detailed in [1,11].

A.1.1. Elliptic functions

A doubly periodic meromorphic function is called an elliptic function.
Let a parameter 𝑚 and complementary parameter 𝑝 be given satisfying

𝑚+ 𝑝 = 1. (31)

If 𝑚 ∈ℝ then in what follows one can assume without loss of generality
that 0 ≤𝑚 ≤ 1.

A.1.2. Quarter-periods

The quarter-periods 𝐾 and 𝑖𝐾 ′ are defined by the integrals

𝐾(𝑚) =𝐾 =

𝜋

2

∫
0

𝑑𝜃 √
1 −𝑚 sin2 𝜃

, (32)

𝑖𝐾 ′(𝑚) = 𝑖𝐾 ′ =

𝜋

2

∫
0

𝑑𝜃 √
1 − 𝑝 sin2 𝜃

, (33)

where 𝐾,𝐾 ′ ∈ℝ. 𝐾 is called the real quarter-period and 𝑖𝐾 ′ the imag
inary quarter-period. These quantities satisfy the relationships

𝐾(𝑚) =𝐾(𝑝) =𝐾 ′(1 −𝑚). (34)

Moreover, if any one of the numbers 𝑚,𝑝,𝐾(𝑚),𝐾 ′(𝑚), 𝐾
′(𝑚)
𝐾(𝑚) are given,

all the rest are uniquely determined through the above relations, i.e. 𝐾
and 𝐾 ′ cannot be independently chosen.

A.1.3. Jacobi elliptic functions

The Jacobi elliptic functions are widely studied standard forms of
elliptic functions represented by sn(𝑢, 𝑘), cn(𝑢, 𝑘), and dn(𝑢, 𝑘), where 𝑘
is termed the elliptic modulus. They originate from the inverse of the
elliptic integral of the first kind,

𝑢 = 𝐹 (𝜑,𝑘) =

𝜑

∫
0

𝑑𝑡 √
1 − 𝑘2 sin2 𝑡

, (35)

where 𝜑 as am(𝑢, 𝑘) denotes the Jacobian amplitude. This leads to the
relationships

sin𝜑 = sin(am(𝑢, 𝑘)) = sn(𝑢, 𝑘), (36)

cos𝜑 = cos(am(𝑢, 𝑘)) = cn(𝑢, 𝑘), (37)√
1 − 𝑘2 sin2𝜑 =

√
1 − 𝑘2 sin2(am(𝑢, 𝑘)) = dn(𝑢, 𝑘). (38)

Computer Physics Communications 317 (2025) 109832

11

T. Torabi, T.S. Gutleb and C. Ortner

These functions extend trigonometric functions to be doubly periodic,
satisfying:

sn(𝑢,0) = sin𝑢, (39)

cn(𝑢,0) = cos𝑢, (40)

dn(𝑢,0) = 1. (41)

A.1.4. Identities for Jacobi elliptic functions

The established identities for Jacobi elliptic functions are given by
the following equations:

sn2𝑢+ cn2𝑢 = 1, (42)

𝑘2sn2𝑢+ dn2𝑢 = 1, (43)

𝑘2cn2𝑢+ 𝑘′ 2 = dn2𝑢, (44)

cn2𝑢+ 𝑘′ 2sn2𝑢 = dn2𝑢. (45)

A.1.5. Specific values

Specific noteworthy values are listed below:

cn(0, 𝑘) = cn(0) = 1, (46)

cn(𝐾(𝑘), 𝑘) = cn(𝐾(𝑘)) = 0, (47)

dn(0, 𝑘) = dn(0) = 1, (48)

dn(𝐾(𝑘), 𝑘) = dn(𝐾(𝑘)) = 𝑘′ =
√
1 − 𝑘2, (49)

sn(0, 𝑘) = sn(0) = 0, (50)

sn(𝐾(𝑘), 𝑘) = sn(𝐾(𝑘)) = 1, (51)

where 𝐾 =𝐾(𝑘) signifies the complete elliptic integral of the first kind
and 𝑘′ =

√
1 − 𝑘2 represents the complementary elliptic modulus [74].

Fig. 10 illustrates the Jacobi elliptic functions for 𝑘 = 0.7.

A.1.6. Complex arguments

When dealing with complex arguments, the Jacobi elliptic functions
can be extended as follows:

sn(𝑢+ 𝑖𝑣) = sn(𝑢, 𝑘)dn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

+ 𝑖cn(𝑢, 𝑘)dn(𝑢, 𝑘)sn(𝑣,𝑘′)cn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

,

(52)

cn(𝑢+ 𝑖𝑣) = cn(𝑢, 𝑘)cn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

− 𝑖sn(𝑢, 𝑘)dn(𝑢, 𝑘)sn(𝑣,𝑘′)dn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

,

(53)

dn(𝑢+ 𝑖𝑣) = dn(𝑢, 𝑘)cn(𝑣,𝑘′)dn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

− 𝑖𝑘
2sn(𝑢, 𝑘)cn(𝑢, 𝑘)sn(𝑣,𝑘′)
1 − dn2(𝑢, 𝑘)sn2(𝑣,𝑘′)

.

(54)

A.2. Strategies for utilizing matrix sparsity

Leveraging potential sparsity of the matrix 𝑋 can significantly en
hance the efficiency of computing its Jacobian. Consider the toy model
presented in Section 4.3:

𝐸(𝐶;𝑢) =
∑
𝑖

⎛⎜⎜⎝
∑
𝑗∈𝑖

𝐶𝑖𝑗 |𝑢𝑖 − 𝑢𝑗 |2 + 𝛿|𝑢𝑖 − 𝑢𝑗 |3 + |𝑢𝑖 − 𝑢𝑗 |4⎞⎟⎟⎠ . (55)

Consider a system composed of 8 atoms. Our objective is to compute
the Jacobian of the Hessian matrix, which corresponds to the matrix of
second derivatives of the energy (17) with respect to the displacements
in such a system. The Jacobian is shown in Fig. 11 (a). Looking at this
sparse matrix, we can see that there is a lot of free space in the ma
trix. We aim to compress the sparse matrix into a denser format shown
in Figs. 11 (b) and (c), allowing for the processing of non-zero entries

Fig. 10. Jacobi Elliptic Functions sn(𝑢, 𝑘), cn(𝑢, 𝑘), dn(𝑢, 𝑘) for 𝑘 = 0.7.

with significantly fewer function calls than previously necessary. Al
though both matrices (d) and (e) represent the Jacobian in a denser
format, the main task is to find the smallest dense matrix which in our
case is (e). This technique uses a strategy from graph theory [26,41],
aiming to combine columns with non-overlapping non-zero elements,
referred to as structurally orthogonal columns into single groups, thus re
ducing the total number of groups needed. To achieve this, one can use
a number of graph coloring algorithms including Contraction Coloring,
Greedy distance-k coloring, and Backtracking Sequential Coloring. We
will briefly go over the Greedy distance-1 coloring algorithm which re
sults were also shown in Fig. 11 (f)-(g) [65].

We begin with a brief overview of essential graph theory termi
nology. A graph 𝐺 is formally defined as an ordered pair 𝐺 = (𝑉 ,𝐸),
where 𝑉 is a finite, non-empty set of vertices, and 𝐸 is a set compris
ing unordered pairs of distinct vertices, known as edges. Vertices 𝑢 and
𝑣 are adjacent if an edge (𝑢, 𝑣) is included in 𝐸; otherwise, they are de
scribed as non-adjacent. Within a graph, a path of length 𝑙 (measured in
edges) is a sequence of vertices 𝑣1, 𝑣2,… , 𝑣𝑙+1, where each consecutive
pair (𝑣𝑖, 𝑣𝑖+1) is adjacent, for all 1 ≤ 𝑖 ≤ 𝑙, with each vertex appearing
uniquely in the sequence. Vertices 𝑢 and 𝑣 are considered distance-𝑘
neighbors if the shortest path between them has a length of 𝑘 or less.
The set of all distance-𝑘 neighbors of a vertex 𝑢, denoted 𝑁𝑘(𝑢), does not
include 𝑢 itself. Additionally, if two vertices are distance-𝑘 neighbors,
they also qualify as distance-𝑘′ neighbors for any 𝑘′ > 𝑘.

A graph is categorized as bipartite if its vertex set 𝑉 can be parti
tioned into two disjoint subsets 𝑉1 and 𝑉2, such that every edge connects
a vertex from 𝑉1 to one from 𝑉2. There are no edges between vertices
within the same subset, which ensures that 𝑉1 and 𝑉2 comprehensively
separate the vertices of the graph.

A distance-𝑘 vertex coloring of a graph 𝐺 = (𝑉 ,𝐸) is a labeling func
tion 𝜑 ∶ 𝑉 → {1,2,… , 𝑝} that assigns different colors to any pair of
distance-𝑘 neighbors. The minimum number of colors needed to estab
lish such a coloring for graph 𝐺 is termed the 𝑘-chromatic number, de
noted as 𝜒𝑘(𝐺). If only a specific subset 𝑊 ⊂ 𝑉 of the vertices is colored,
the coloring is referred to as partial. Specifically, a partial distance-𝑘
coloring on 𝑊 is defined by a function 𝜑 ∶𝑊 → {1,2,… , 𝑝} such that
𝜑(𝑢) ≠ 𝜑(𝑣) for any two vertices 𝑢 and 𝑣 within 𝑊 that are distance-𝑘
neighbors. An example of such a distance-2 coloring is illustrated on the
right side of Fig. 11.

The following lemma provides a graph-theoretical characterization
of structural orthogonality for a nonsymmetric matrix.

Lemma A.1. [26, Lemma 3.4] Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐺𝑏(𝐴) =
(𝑉1, 𝑉2,𝐸) be its bipartite graph. Two columns (or rows) in 𝐴 are structurally

Computer Physics Communications 317 (2025) 109832

12

T. Torabi, T.S. Gutleb and C. Ortner

Fig. 11. The process of compressing the Jacobian matrix of the Hessian of toy model (17) with 8 atoms in two partitions (a)--(e). Each partition is also represented
as a distance-1 coloring in a column intersection graph (f)-(g).

orthogonal if and only if the corresponding vertices in 𝐺𝑏(𝐴) are at a distance
greater than two from each other.

According to Lemma A.1, determining a structurally orthogonal par
tition of the columns of a matrix 𝐴 corresponds to attaining a partial
distance-2 coloring of its bipartite graph 𝐺𝑏(𝐴) = (𝑉1, 𝑉2,𝐸) specifically
applied to 𝑉2. This coloring is termed partial as it does not extend to 𝑉1.
Theorem 3.5 provides a formal statement of this relationship.

Theorem A.1. [26, Theorem 3.5] Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝐺𝑏(𝐴) =
(𝑉1, 𝑉2,𝐸) represent its bipartite graph. A function 𝜑 constitutes a partial
distance-2 coloring of 𝐺𝑏(𝐴) on 𝑉2 if and only if 𝜑 generates a structurally
orthogonal partition of the columns of 𝐴.

Now we can reformulate our main problem as follows: Given the bi

partite graph 𝐺𝑏(𝐴) = (𝑉1, 𝑉2,𝐸) that represents the sparsity structure of
an 𝑚 × 𝑛 matrix 𝐴, the objective is to find a partial distance-2 coloring of
𝐺𝑏(𝐴) on 𝑉2 that utilizes the minimal number of colors. This coloring strat

egy aims to efficiently partition the columns of 𝐴 into structurally orthogonal
sets, corresponding to the vertices in 𝑉2, while minimizing the color count.

To solve this problem we can use the greedy distance-2 coloring al
gorithm, shown in 1. We initially need to represent our Jacobian using
a graph. Given a matrix 𝐴 ∈ ℝ𝑚×𝑛, we can represent the structure of
𝐴 using a bipartite graph 𝐺 = (𝑉 ,𝐸). The construction process for the
bipartite graph is outlined as follows:

1. Create two disjoint sets of vertices, 𝑈 and 𝑊 , where 𝑈 corresponds
to the rows of 𝐴 and 𝑊 corresponds to the columns of 𝐴. Thus,
𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚} and 𝑊 = {𝑤1,𝑤2,… ,𝑤𝑛}.

2. The set of vertices 𝑉 is the union of 𝑈 and 𝑊 , i.e., 𝑉 =𝑈 ∪𝑊 .
3. For each non-zero entry 𝐴𝑖𝑗 in the matrix 𝐴, add an edge (𝑢𝑖,𝑤𝑗)

to the set of edges 𝐸. This implies there is an edge between vertex
𝑢𝑖 ∈𝑈 and vertex 𝑤𝑗 ∈𝑊 if and only if the entry 𝐴𝑖𝑗 is non-zero.

This bipartite graph representation, 𝐺, captures the interactions be
tween the rows and columns of 𝐴 based on its non-zero entries. It allows
for a visual and analytical understanding of the matrix’s structure, and
can help us use the coloring algorithms that exploit sparsity patterns
for improved computational efficiency. Below, we outline the detailed

steps and the corresponding algorithm that collectively streamline this
process:

1. Graph Representation of Sparsity: First, the sparsity pattern of
the Jacobian matrix 𝐽 is modeled as a graph 𝐺 = (𝑉 ,𝐸), where the
vertices 𝑉 represent the matrix’s rows and columns, and the edges
𝐸 correspond to non-zero entries in 𝐽 .

2. Applying a Greedy Distance-2 Coloring Algorithm: The coloring
of graph 𝐺 is executed through a methodical greedy algorithm that
ensures no two vertices within two edges of each other share the
same color, reflecting the distance-2 coloring strategy necessary for
avoiding computational interference:
(a) Initially, all vertices are uncolored.
(b) The coloring process is iterative, with each uncolored vertex

being assigned the least positive integer color that is not used
by its distance-1 and distance-2 neighbors, ensuring that the
coloring satisfies the distance-2 constraints.

3. Constructing Perturbation Vectors: For every unique color as
signed, a corresponding perturbation vector 𝑑 is created. This vec
tor has elements set to 1 for indices colored with the current color
and 0 elsewhere.

4. Evaluating the Jacobian: Using each perturbation vector 𝑑, the
function 𝐹 (𝑥 + 𝜖𝑑) is evaluated to ascertain the non-zero compo
nents of the Jacobian matrix that correspond to each color. This
step is crucial for identifying which parts of the matrix can be inde
pendently calculated, thereby enhancing computational efficiency.

Algorithm 1, operationalizes the second step of this process. Once a
group is determined, centered finite difference or automatic differenti
ation [63] can be used to calculate the directional derivatives along the
compressed matrix directions. For more details on the graph coloring
method for computing derivatives we refer to [26].

Data availability

I have shared the code at the attach file step.

EntropyGrad.jl (Original data) (Github)
Animations of migration paths for defects in silicon crystals at 100 K

(Original data) (Figshare)

Computer Physics Communications 317 (2025) 109832

13

https://github.com/tinatorabi/EntropyGrad.jl
https://figshare.com/articles/media/Animations_of_migration_paths_for_defects_in_silicon_crystals_at_100K/27003448/3
https://figshare.com/articles/media/Animations_of_migration_paths_for_defects_in_silicon_crystals_at_100K/27003448/3

T. Torabi, T.S. Gutleb and C. Ortner

Algorithm 1 A greedy distance-2 coloring algorithm. [26, Algorithm
3.1].
1: procedure D2ColoringAlg(𝐺 = (𝑉 ,𝐸))
2: Let 𝑣1, 𝑣2,… , 𝑣|𝑉 | be a given ordering of 𝑉
3: Initialize ForbiddenColors with some value 𝑎∉ 𝑉
4: for 𝑖← 1 to |𝑉 | do

5: for each colored vertex 𝑤∈𝑁1(𝑣𝑖) do

6: ForbiddenColors[𝑐𝑜𝑙𝑜𝑟[𝑤]]← 𝑣𝑖
7: for each colored vertex 𝑥∈𝑁1(𝑤) do

8: ForbiddenColors[𝑐𝑜𝑙𝑜𝑟[𝑥]]← 𝑣𝑖
9: end for

10: end for

11: 𝑐𝑜𝑙𝑜𝑟[𝑣𝑖]←min{𝑐 > 0 ∶ ForbiddenColors[𝑐] ≠ 𝑣𝑖}
12: end for

13: end procedure

References

[1] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with For
mulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965,
p. 1046.

[2] S. Bagchi, D. Perez, Anomalous entropy-driven kinetics of dislocation nucleation,
https://arxiv.org/abs/2402.00810, 2024.

[3] J.L. Bao, D.G. Truhlar, Variational transition state theory: theoretical framework
and recent developments, Chem. Soc. Rev. 46 (2017) 7548--7596, https://doi.org/
10.1039/C7CS00602K.

[4] I. Batatia, et al., Equivariant matrix function neural networks, https://arxiv.org/abs/
2310.10434, 2024.

[5] A.G. Baydin, et al., Automatic differentiation in machine learning: a survey, J. Mach.
Learn. Res. (ISSN 1532-4435) 18 (1) (Jan. 2017) 5595--5637.

[6] M. Benzi, P. Boito, Matrix functions in network analysis, GAMM-Mitt. 43 (3) (2020)
e202000012, https://doi.org/10.1002/gamm.202000012.

[7] B. van den Berg, et al., Forward- or reverse-mode automatic differentiation: what’s
the difference?, Sci. Comput. Program. (ISSN 0167-6423) 231 (2024) 103010,
https://doi.org/10.1016/j.scico.2023.103010.

[8] L.S. Blackford, et al., ScaLAPACK Users’ Guide, Society for Industrial and Applied
Mathematics, Philadelphia, PA, ISBN 0-89871-397-8, 1997 (paperback).

[9] J. Braun, M.H. Duong, C. Ortner, Thermodynamic limit of the transition rate of a
crystalline defect, Arch. Ration. Mech. Anal. 238 (3) (2020) 1413--1474.

[10] R.J. Bunting, et al., Reactivity of single-atom alloy nanoparticles: modeling the dehy
drogenation of propane, J. Am. Chem. Soc. 145 (27) (2023) 14894--14902, https://
doi.org/10.1021/jacs.3c04030.

[11] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,
2nd ed., Grundlehren der mathematischen Wissenschaften, Springer-Verlag Berlin
Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-65140-3, 1971, pp. XVI, 360.

[12] D. Caillard, J.-L. Martin, Thermally Activated Mechanisms in Crystal Plasticity,
Pergamon Materials Series, vol. 8, Pergamon, Amsterdam, Boston, Mass, ISBN 978
0080427034, 2003.

[13] E. Carter, et al., Constrained reaction coordinate dynamics for the simulation of
rare events, Chem. Phys. Lett. (ISSN 0009-2614) 156 (5) (1989) 472--477, https://
doi.org/10.1016/S0009-2614(89)87314-2.

[14] H. Chen, C. Ortner, QM/MM methods for crystalline defects. Part 1: locality of the
tight binding model, Multiscale Model. Simul. 14 (1) (2016) 232--264, https://doi.
org/10.1137/15M1022628.

[15] M. Chen, T.-Q. Yu, M.E. Tuckerman, Locating landmarks on high-dimensional free
energy surfaces, Proc. Natl. Acad. Sci. USA 112 (11) (2015) 3235--3240, https://
doi.org/10.1073/pnas.1418241112.

[16] P.G. Coleman, Activation energies for vacancy migration, clustering and annealing
in silicon, J. Phys. Conf. Ser. 265 (1) (Jan. 2011) 012001, https://doi.org/10.1088/
1742-6596/265/1/012001.

[17] T.A. Davis, S. Rajamanickam, W.M. Sid-Lakhdar, A survey of direct methods for
sparse linear systems, Acta Numer. 25 (2016) 383--566, https://doi.org/10.1017/
S0962492916000076.

[18] J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Society for Industrial and Applied Mathematics, 1996.

[19] B.M. Dickson, et al., Free energy calculations: an efficient adaptive biasing potential
method, J. Phys. Chem. B 114 (17) (May 2010) 5823--5830.

[20] NIST Digital Library of Mathematical Functions, Release 1.2.1 of 2024-06-15. in:
F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W.
Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, M.A. McClain (Eds.), https://dlmf.nist.
gov/.

[21] I.S. Duff, A.M. Erisman, J.K. Reid, Direct Methods for Sparse Matrices, Oxford Uni
versity Press, Jan. 2017, 9780198508380.

[22] Y. Erlangga, C. Vuik, C. Oosterlee, On a class of preconditioners for solving the
Helmholtz equation, Appl. Numer. Math. (ISSN 0168-9274) 50 (3) (2004) 409--425,
https://doi.org/10.1016/j.apnum.2004.01.009.

[23] H. Fatoorehchi, S. Djilali, Stability analysis of linear time-invariant dynamic systems
using the matrix sign function and the Adomian decomposition method, Int. J. Dyn.
Control 11 (July 2022), https://doi.org/10.1007/s40435-022-00989-3.

[24] S. Filippone, M. Colajanni, PSBLAS: a library for parallel linear algebra computation
on sparse matrices, ACM Trans. Math. Softw. (ISSN 0098-3500) 26 (4) (Dec. 2000)
527--550, https://doi.org/10.1145/365723.365732.

[25] B. Fultz, Vibrational thermodynamics of materials, Prog. Mater. Sci. 55 (4) (2010)
247--352, https://doi.org/10.1016/j.pmatsci.2009.05.002.

[26] A. Gebremedhin, F. Manne, A. Pothen, What color is your Jacobian? Graph coloring
for computing derivatives, SIAM Rev. 47 (2005) 629--705, https://doi.org/10.1137/
S0036144504444711.

[27] A. Glensk, et al., Breakdown of the Arrhenius law in describing vacancy formation en
ergies: the importance of local anharmonicity revealed by ab initio thermodynamics,
Phys. Rev. X 4 (Feb. 2014) 011018, https://doi.org/10.1103/PhysRevX.4.011018.

[28] G.H. Golub, C.F. Van Loan, Matrix Computations, Eng. Baltimore, 2013.
[29] B. Grabowski, et al., Ab initio up to the melting point: anharmonicity and vacan

cies in aluminum, Phys. Rev. B 79 (Apr. 2009) 134106, https://doi.org/10.1103/
PhysRevB.79.134106.

[30] A. Griewank, K. Kulshreshtha, A. Walther, On the numerical stability of algorithmic
differentiation, Computing 94 (2012) 125--149.

[31] A. Griewank, A. Walther, Evaluating Derivatives, second edition, Society for Indus
trial and Applied Mathematics, 2008.

[32] A. Griewank, On automatic differentiation, in: M. Iri, K. Tanabe (Eds.), Mathematical
Programming, Kluwer Academic Publishers, Dordrecht, ISBN 079230490X, 1989,
pp. 83--108.

[33] Y.-L. Gu, J.Y.S. Luh, Dual-number transformation and its applications to robotics,
IEEE J. Robot. Autom. 3 (1987) 615--623.

[34] N. Hale, N.J. Higham, L.N. Trefethen, Computing A𝛼 , log(A), and related matrix func
tions by contour integrals, SIAM J. Numer. Anal. 46 (5) (2008) 2505--2523, https://
doi.org/10.1137/070700607.

[35] R. Hecht-Nielsen, Theory of the backpropagation neural network, in: International
1989 Joint Conference on Neural Networks, vol. 1, 1989, pp. 593--605.

[36] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band
method for finding minimum energy paths and saddle points, J. Chem. Phys.
(ISSN 0021-9606) 113 (22) (Dec. 2000) 9978--9985, https://doi.org/10.1063/1.
1323224.

[37] N.J. Higham, Functions of Matrices, Society for Industrial and Applied Mathematics,
2008.

[38] P. Hoffmann, A Hitchhiker’s guide to automatic differentiation, Numer. Algorithms
72 (July 2016), https://doi.org/10.1007/s11075-015-0067-6.

[39] M. Innes, Don’t unroll adjoint: differentiating SSA-form programs, CoRR, arXiv:1810.
07951, 2018, http://arxiv.org/abs/1810.07951.

[40] M. Jacquelin, L. Lin, C. Yang, PSelInv—a distributed memory parallel algorithm for
selected inversion: the symmetric case, ACM Trans. Math. Softw. (ISSN 0098-3500)
43 (Dec. 2016) 3, https://doi.org/10.1145/2786977.

[41] M. Kubale, Graph Colorings, Contemporary Mathematics, vol. 352, American Math
ematical Society, ISBN 978-0821834589, 2004.

[42] A. Laio, M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA
99 (20) (Oct. 2002) 12562--12566.

[43] C. Lapointe, et al., Machine learning surrogate models for strain-dependent vibra
tional properties and migration rates of point defects, Phys. Rev. Mater. 6 (Nov.
2022) 113803, https://doi.org/10.1103/PhysRevMaterials.6.113803.

[44] E. Lewars, Computational Chemistry: Introduction to the Theory and Applications of
Molecular and Quantum Mechanics, Springer, ISBN 978-90-481-3860-9, Jan. 2011,
pp. 1--664.

[45] X.S. Li, J.W. Demmel, SuperLU_DIST: a scalable distributed-memory sparse direct
solver for unsymmetric linear systems, ACM Trans. Math. Softw. (ISSN 0098-3500)
29 (2) (June 2003) 110--140, https://doi.org/10.1145/779359.779361.

[46] L. Lin, SelInv - an algorithm for selected inversion of a sparse symmetric matrix, in:
Lawrence Berkeley National Laboratory, 2010.

[47] S. List, H. Ryssel, Atomistic analysis of the vacancy diffusion mechanism, in: 1996
International Conference on Simulation of Semiconductor Processes and Devices,
SISPAD ’96 (IEEE Cat. No.96TH8095), 1996, pp. 27--28.

[48] X. Liu, et al., Solving the three-dimensional high-frequency Helmholtz equation us
ing contour integration and polynomial preconditioning, SIAM J. Matrix Anal. Appl.
41 (1) (2020) 58--82, https://doi.org/10.1137/18M1228128.

[49] A.M. Mathai, A Handbook of Generalized Special Functions for Statistical and Phys
ical Sciences, Eng. Oxford, 1993.

[50] C. Ortner, et al., EmpiricalPotentials.jl, https://github.com/JuliaMolSim/
EmpiricalPotentials.jl.

[51] C. Ortner, et al., SaddleSearch.jl, https://github.com/cortner/SaddleSearch.jl.
[52] D. Perez, et al., Entropic stabilization of nanoscale voids in materials under tension,

Phys. Rev. Lett. 110 (May 2013) 206001, https://doi.org/10.1103/PhysRevLett.110.
206001.

[53] D. Piponi, Automatic differentiation, C++ templates, and photogrammetry, J. Graph.
Tools 9 (Jan. 2004), https://doi.org/10.1080/10867651.2004.10504901.

[54] S. Pogatscher, et al., Diffusion on demand to control precipitation aging: application
to Al-Mg-Si alloys, Phys. Rev. Lett. 112 (22 June 2014) 225701, https://doi.org/10.
1103/PhysRevLett.112.225701.

Computer Physics Communications 317 (2025) 109832

14

http://refhub.elsevier.com/S0010-4655(25)00334-0/bibC02C44DB45DA84DBBE2D1B1645B116E8s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibC02C44DB45DA84DBBE2D1B1645B116E8s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibC02C44DB45DA84DBBE2D1B1645B116E8s1
https://arxiv.org/abs/2402.00810
https://doi.org/10.1039/C7CS00602K
https://doi.org/10.1039/C7CS00602K
https://arxiv.org/abs/2310.10434
https://arxiv.org/abs/2310.10434
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibC9D79B1C5F5680D1AFD849B66E3D6D8Es1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibC9D79B1C5F5680D1AFD849B66E3D6D8Es1
https://doi.org/10.1002/gamm.202000012
https://doi.org/10.1016/j.scico.2023.103010
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib2DBCBA41B9AC4C5D22886BA672463CB4s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib2DBCBA41B9AC4C5D22886BA672463CB4s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib3B5DFD07BB2F7F591FA765332AA0FCA8s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib3B5DFD07BB2F7F591FA765332AA0FCA8s1
https://doi.org/10.1021/jacs.3c04030
https://doi.org/10.1021/jacs.3c04030
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib870CE43597D6F70B8E3E3AFF43C7CA80s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib870CE43597D6F70B8E3E3AFF43C7CA80s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib870CE43597D6F70B8E3E3AFF43C7CA80s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibDD852F3D23F9C6FC7DA233F00C34E7A6s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibDD852F3D23F9C6FC7DA233F00C34E7A6s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibDD852F3D23F9C6FC7DA233F00C34E7A6s1
https://doi.org/10.1016/S0009-2614(89)87314-2
https://doi.org/10.1016/S0009-2614(89)87314-2
https://doi.org/10.1137/15M1022628
https://doi.org/10.1137/15M1022628
https://doi.org/10.1073/pnas.1418241112
https://doi.org/10.1073/pnas.1418241112
https://doi.org/10.1088/1742-6596/265/1/012001
https://doi.org/10.1088/1742-6596/265/1/012001
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib77B556117FC1D75F0B2689E95EF9D05Es1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib77B556117FC1D75F0B2689E95EF9D05Es1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibCFE29659793079149787CD89004879B9s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibCFE29659793079149787CD89004879B9s1
https://dlmf.nist.gov/
https://dlmf.nist.gov/
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib1655FB3E6A39F00B3DF0D4A41AFEB008s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib1655FB3E6A39F00B3DF0D4A41AFEB008s1
https://doi.org/10.1016/j.apnum.2004.01.009
https://doi.org/10.1007/s40435-022-00989-3
https://doi.org/10.1145/365723.365732
https://doi.org/10.1016/j.pmatsci.2009.05.002
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1103/PhysRevX.4.011018
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib0C92B5B6E4A8C103D291145118A7E6F1s1
https://doi.org/10.1103/PhysRevB.79.134106
https://doi.org/10.1103/PhysRevB.79.134106
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib0817D2308474D79D799C505820687CBAs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib0817D2308474D79D799C505820687CBAs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib1208966938D51FBCA40C1E5365AD4544s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib1208966938D51FBCA40C1E5365AD4544s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib588B91C23D1FEA7FABC4E845433B0B33s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib588B91C23D1FEA7FABC4E845433B0B33s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib588B91C23D1FEA7FABC4E845433B0B33s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib8E064D9025EF7A73C6D3B4FF8982DC00s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib8E064D9025EF7A73C6D3B4FF8982DC00s1
https://doi.org/10.1137/070700607
https://doi.org/10.1137/070700607
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib39589D72F8900DA899AD79461109DAABs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib39589D72F8900DA899AD79461109DAABs1
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibB87B80A4D19A543CC4BE0E33ADF09F66s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibB87B80A4D19A543CC4BE0E33ADF09F66s1
https://doi.org/10.1007/s11075-015-0067-6
http://arxiv.org/abs/1810.07951
https://doi.org/10.1145/2786977
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibBD6161215922F2BCC78B92E39A0266F6s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibBD6161215922F2BCC78B92E39A0266F6s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib106181E01883BA9011287A104B4E372Fs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib106181E01883BA9011287A104B4E372Fs1
https://doi.org/10.1103/PhysRevMaterials.6.113803
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibA8CBD30BF40A58CD0DA0525BC5465FA5s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibA8CBD30BF40A58CD0DA0525BC5465FA5s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibA8CBD30BF40A58CD0DA0525BC5465FA5s1
https://doi.org/10.1145/779359.779361
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib01906A6E88471ABB75DDA4A4094E22D9s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib01906A6E88471ABB75DDA4A4094E22D9s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib73C483C6A61B3F06D76FA07C75D4109Bs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib73C483C6A61B3F06D76FA07C75D4109Bs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib73C483C6A61B3F06D76FA07C75D4109Bs1
https://doi.org/10.1137/18M1228128
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib8D65586BDBEE7DD89EB713F40ADAECA8s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib8D65586BDBEE7DD89EB713F40ADAECA8s1
https://github.com/JuliaMolSim/EmpiricalPotentials.jl
https://github.com/JuliaMolSim/EmpiricalPotentials.jl
https://github.com/cortner/SaddleSearch.jl
https://doi.org/10.1103/PhysRevLett.110.206001
https://doi.org/10.1103/PhysRevLett.110.206001
https://doi.org/10.1080/10867651.2004.10504901
https://doi.org/10.1103/PhysRevLett.112.225701
https://doi.org/10.1103/PhysRevLett.112.225701

T. Torabi, T.S. Gutleb and C. Ortner

[55] M. Posselt, F. Gao, H. Bracht, Correlation between self-diffusion in Si and the migra
tion mechanisms of vacancies and self-interstitials: an atomistic study, Phys. Rev. B
78 (3 July 2008) 035208, https://doi.org/10.1103/PhysRevB.78.035208.

[56] M. Rajaguru, S.M. Keralavarma, A discrete dislocation model of creep in single
crystals, in: TMS 2016 145th Annual Meeting & Exhibition, Springer International
Publishing, Cham, ISBN 978-3-319-48254-5, 2016, pp. 351--358.

[57] J. Revels, M. Lubin, T. Papamarkou, Forward-mode automatic differentiation in Ju
lia, arXiv:1607.07892 [cs.MS], 2016, https://arxiv.org/abs/1607.07892.

[58] S. Ryu, K.W. Kang, W. Cai, Entropic effect on the rate of dislocation nucleation, Proc.
Natl. Acad. Sci. USA 108 (2010) 5174--5178.

[59] P. Śpiewak, K.J. Kurzydłowski, Formation and migration energies of the vacancy in
Si calculated using the HSE06 range-separated hybrid functional, Phys. Rev. B 88
(19 Nov. 2013) 195204, https://doi.org/10.1103/PhysRevB.88.195204.

[60] G. Shrivastav, E. Vanden-Eijnden, C.F. Abrams, Mapping saddles and minima on free
energy surfaces using multiple climbing strings, J. Chem. Phys. (ISSN 0021-9606)
151 (12) (Sept. 2019) 124112, https://doi.org/10.1063/1.5120372.

[61] T.D. Swinburne, M.-C. Marinica, Unsupervised calculation of free energy barriers in
large crystalline systems, Phys. Rev. Lett. 120 (Mar. 2018) 135503, https://doi.org/
10.1103/PhysRevLett.120.135503.

[62] M. Tesch, cppduals: a nestable vectorized templated dual number library for C++11,
J. Open Source Softw. 4 (43) (2019) 1487, https://doi.org/10.21105/joss.01487.

[63] T. Torabi, tinatorabi/ComplexElliptic.jl: ComplexElliptic (v1.0), 2024.
[64] T. Torabi, T.S. Gutleb, C. Ortner, Animations of migration paths for defects in silicon

crystals at 100 K, in: FigShare, Sept. 2024.
[65] T. Torabi, Vibrational entropy: spatial decomposition and surrogate models, MA the

sis, University of British Columbia, 2024.

[66] T. Torabi, T.S. Gutleb, EntropyGrad.jl, https://doi.org/10.5281/zenodo.14510426.
[67] T. Torabi, Y. Wang, C. Ortner, Surrogate models for vibrational entropy based on a

spatial decomposition, arXiv preprint arXiv:2402.12744, 2024.
[68] G. Torrie, J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy

estimation: umbrella sampling, J. Comput. Phys. (ISSN 0021-9991) 23 (2) (1977)
187--199, https://doi.org/10.1016/0021-9991(77)90121-8.

[69] D. Turnbull, Theory of grain boundary migration rates, JOM (ISSN 1543-1851) 3 (8)
(Aug. 1951) 661--665, https://doi.org/10.1007/BF03397362.

[70] B.P. Uberuaga, et al., Direct transformation of vacancy voids to stacking fault tetrahe
dra, Phys. Rev. Lett. 99 (Sept. 2007) 135501, https://doi.org/10.1103/PhysRevLett.
99.135501.

[71] D. Warner, W. Curtin, Origins and implications of temperature-dependent activation
energy barriers for dislocation nucleation in face-centered cubic metals, Acta Mater.
(ISSN 1359-6454) 57 (14) (2009) 4267--4277, https://doi.org/10.1016/j.actamat.
2009.05.024.

[72] R. Wengert, A simple automatic derivative evaluation program, Commun. ACM 7 (8)
(1964) 463--464.

[73] F. White, JuliaDiff/ChainRules.jl: v1.61.0, 2024.
[74] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Math

ematical Library, Cambridge University Press, 1996.
[75] J. Zhang, et al., The PetscSF scalable communication layer, IEEE Trans. Parallel Dis

trib. Syst. 33 (4) (2022) 842--853.
[76] J.A. Zimmerman, H. Gao, F.F. Abraham, Generalized stacking fault energies for em

bedded atom FCC metals, Model. Simul. Mater. Sci. Eng. 8 (2) (Mar. 2000) 103,
https://doi.org/10.1088/0965-0393/8/2/302.

Computer Physics Communications 317 (2025) 109832

15

https://doi.org/10.1103/PhysRevB.78.035208
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib2072876E183BD184B6EBA00A4FD1AD75s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib2072876E183BD184B6EBA00A4FD1AD75s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib2072876E183BD184B6EBA00A4FD1AD75s1
https://arxiv.org/abs/1607.07892
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibFC3C7603EAB5844015B3E4CB6EA66B2Fs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibFC3C7603EAB5844015B3E4CB6EA66B2Fs1
https://doi.org/10.1103/PhysRevB.88.195204
https://doi.org/10.1063/1.5120372
https://doi.org/10.1103/PhysRevLett.120.135503
https://doi.org/10.1103/PhysRevLett.120.135503
https://doi.org/10.21105/joss.01487
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib67E2CB7BEBD01238F7FC2BA9B2E3CE99s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib036A899DED03338316F485673E4A2FA9s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib036A899DED03338316F485673E4A2FA9s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibFC0364C1534A66D02826B590FC523141s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibFC0364C1534A66D02826B590FC523141s1
https://doi.org/10.5281/zenodo.14510426
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibB5E69C5284383F4998145F68106D9470s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibB5E69C5284383F4998145F68106D9470s1
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1007/BF03397362
https://doi.org/10.1103/PhysRevLett.99.135501
https://doi.org/10.1103/PhysRevLett.99.135501
https://doi.org/10.1016/j.actamat.2009.05.024
https://doi.org/10.1016/j.actamat.2009.05.024
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib66FE0D800D01A5F22937C2A33A160C47s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bib66FE0D800D01A5F22937C2A33A160C47s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibC364985DF2A78CAE99DBE75067D6FD28s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibCF060107F88EC2F369795130AB539B18s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibCF060107F88EC2F369795130AB539B18s1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibBC07B36D0CBB2F2075B599E6DB236B6Fs1
http://refhub.elsevier.com/S0010-4655(25)00334-0/bibBC07B36D0CBB2F2075B599E6DB236B6Fs1
https://doi.org/10.1088/0965-0393/8/2/302

	Fast automatically differentiable matrix functions and applications in molecular simulations
	1 Introduction
	2 Matrix functions
	2.1 Analytic matrix functions
	2.2 Fast computation of matrix functions f(X)
	2.3 Derivatives of matrix functions

	3 Computational complexity
	3.1 Objective and formulation
	3.2 Review: forward mode differentiation via dual numbers
	3.3 Review: reverse mode differentiation
	3.4 Simplified cost analysis
	3.5 Accuracy

	4 Numerical experiments
	4.1 Implementation details
	4.2 Scalar derivative
	4.3 Jacobian

	5 Application to defects in crystalline silicon
	5.1 Implementation details
	5.2 Complexity and convergence study
	5.3 Vacancy migration
	5.3.1 Interstitial
	5.3.2 Variational TST

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

